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Abstract

Stiff systems commonly occur in science and engineering, and the use of an implicit

integration algorithm is typically needed to simulate them. As model complexity

increases, the need for efficient ways to solve these types of systems is becoming

of increasing importance. Using a technique called inline–integration with implicit

Runge–Kutta (IRK) algorithms and tearing may lead to a more efficient simulation.

To further increase the efficiency of the simulation, the step–size of the integration

algorithm can be controlled. By using larger integration steps when allowable, the

simulation can progress with fewer computations while still maintaining the desired

accuracy.

In this thesis, for the purpose of step–size control, two new embedding methods

will be proposed. The first will be for HW-SDIRK(3)4, a singly diagonally implicit

Runge–Kutta (SDIRK) algorithm and the second for Lobatto IIIC(6). These two

embedding methods will then be compared with those previously found for the Radau

IIA family and Lobatto IIIC(4), all fully–implicit Runge–Kutta algorithms.
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Chapter 1

Preliminaries

1.1 Model Representations

A mathematical model is a representation of a system in which experiments can be

performed on that model to learn about the system [1]. One way a physical system

can be represented is by a system of Ordinary Differential Equations (ODEs). This

type of model description is called a state–space model and can be expressed by:

ẋ = f(x,u, t) (1.1)

x(t = t0) = x0

where x is the state vector, u is the input vector, and t denotes the time variable.

Another representation is by Differential Algebraic Equations (DAEs) and can be

written in general form as:

0 = f(x, ẋ,u, t) (1.2)

x(t = t0) = x0

where x is a vector of unknown variables that can also appear in differentiated form,

u is the input vector, and t is the time variable.

1.2 Solution by Numerical Methods

There are two different schemes of numerical integration, implicit methods and ex-

plicit methods. Explicit integration algorithms only depend on past values of state

variables and state derivatives to compute the next state. On the other hand, implicit

integration algorithms, depend on both past and current values of the state variables

and state derivatives. Explicit methods have the advantage over implicit methods
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in that they are relatively easy to implement. The simplest of these is the Forward

Euler (FE) algorithm:

x(t + h) ≈ x(t) + ẋ(t) · h (1.3)

where h is the step size. From Eq.(1.3), it can be seen that it is just a matter of

procedural computation to compute the next step from the current step. This is true

in general for all explicit algorithms. This relative ease, however, comes at a price.

In order to compute the next step, an explicit integration may need an excessively

small step size to maintain numerical stability if solving a stiff system. Compared

with explicit techniques, implicit techniques may have better numerical properties

but have additional computational load. This additional load comes from the need to

simultaneously solve a non–linear set of equations during every step. Even with this

additional computational load, implicit methods may allow the use of larger step sizes

when solving stiff systems. The simplest implicit integration method is the Backward

Euler (BE) algorithm:

x(t + h) ≈ x(t) + ẋ(t + h) · h (1.4)

From this equation it can be seen that additional computational load comes in the

form of a nonlinear algebraic loop. The problem is that before x(t + h) can be com-

puted, ẋ(t+h) must be known, but in order to compute ẋ(t+h) the value of x(t+h)

must be known.

Both the FE and BE algorithms are single–step methods since when moving the

solution from time t to t + h, neither method uses values from any previous time

instants t− h, t− 2h, etc. Integration algorithms that use values from multiple time

instants are referred to as multi–step algorithms. The Adams–Bashforth–Moulton

algorithms and the widely used Backward Difference Formulae (BDF) are examples

of multi–step methods. Much work has been done to solve these systems by numerical

methods. To evaluate the performance of these methods, benchmark test problems

can be used.



13

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

={λ}

<{λ}

Figure 1.1. Domain of analytical stability

1.3 Numerical Stability

The numerical stability of a solver is evaluated using a homogeneous time–invariant

linear test problem:

ẋ = Ax (1.5)

x(t = t0) = x0

This system can be solved analytically with any solution given by:

x(t) = exp(At) · x0 (1.6)

and if all of the trajectories (orbits) stay bounded as t → ∞, then the solution is

analytically stable. If all of the eigenvalues λ of A have negative real parts then

the system is analytically stable. The domain of analytical stability is shown in

Figure 1.1 where the stable region is shaded. In order to find the numerical stability,

the integration algorithm is applied to the linear test problem. For example, the

numerical stability domain of BE can be found by first creating an equivalent discrete–

time system. Substituting Eq.(1.5) into Eq.(1.4) results in:

x(t + h) = x(t) + Ax(t + h) · h (1.7)
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or written more compactly as:

xk+1 = [I − Ah]−1xk (1.8)

where I is the identity matrix and k, by indexing the simulation time is the kth

integration step. In this new representation x(t) corresponds to xk and the value at

the next time step x(t+h) corresponds to xk+1. The discrete–time system of BE can

then be expressed with a discrete state matrix F as:

xk+1 = F · xk (1.9)

F = [I − Ah]−1 (1.10)

If and only if all of the eigenvalues of F are inside the unit circle, then the system

is numerically stable. Shown in Figure 1.2 is the numerical stability domain for

BE. The region inside the circle is the unstable region and everything outside is the

stable region. The domain of numerical stability tries to approximate the domain of

analytical stability and the BE algorithm doesn’t do very well. Comparing Figure 1.1

and Figure 1.2, it can be seen that the analytically unstable region is for the most part

numerically stable when using BE. From [2], a method is called A–stable or absolute

stable if it contains the entire left half of the λ · h–plane as part of its numerical

stability domain. The BE algorithm is very stable, thus it is an A–stable method. A

method is called L–stable if it is A–stable and has damping properties such that as

the eigenvalues approach negative infinity, the damping approaches infinity.

1.4 Stiffness

Many of the interesting problems in science and engineering lead to equations that are

stiff. A rough idea of stiffness is that somehow the computation of the numerical solu-

tion to these equations is in some sense ill–conditioned over the range of integration.
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An example from [3] illustrates this. The following:

ẋ = −103 (x − exp (−t)) − (exp (−t)) 0 ≤ t ≤ tf (1.11)

x(0) = 0

is a prototypical stiff equation. Shown in Figure 1.3 is the solution for tf = 1. At first

glance, the solution seems to behave perfectly fine, but upon closer inspection there

is a transient region for small t that can be better seen in Figure 1.4. The analytical

solution of (1.11) is given by:

x(t) = exp(−t) − exp(−103t) (1.12)

From this equation it can be seen that there is a fast component given by exp(−103t)

and a slow component given by exp(−t). After a short time the solution looks like

the dominant term exp(−t) since the fast component has vanished. From the point

of view of an explicit integration algorithm, even though the fast component has de-
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cayed after the transient region, the step size must still be kept small. This is what

makes the problem stiff. Thus, if tf limited to the transient region, then the problem

is not considered stiff. There are various definitions of stiffness because several phe-

nomena can occur [4]. In general, stiff equations result from sets of equations that

have eigenvalues that vary greatly in magnitude such that there are both slow and

fast modes. The solution then behaves like it exists in multiple regions of different

scales. Although another attempt to better quantify stiffness has been made in [4],

the definition found in [2] is sufficient:

Definition 1.4.1. A system is called stiff if, when integrated with any explicit RKn

algorithm and a local error tolerance of 10−n, the step size of the algorithm is forced

down to below a value indicated by the local error estimate due to constraints imposed

on it by the limited size of the numerically stable region.

Stiff problems occur commonly and implicit integration algorithms are better

suited to solve these types of problems. Since implicit methods may have better

numerical properties, larger step sizes can be used leading to a more efficient simula-

tion.

1.5 Approximation Errors

When a model is simulated, errors can occur in various places. The first type of error

occurs because only a finite number of terms of the Taylor series are used and is

called the truncation error. A second source of error comes from the use of a digital

computer to perform a simulation. A computer can only represent numbers with

finite precision so this type of error is called roundoff error. With the combination

of truncation and roundoff errors, the computed value of the trajectory at the next

point in time cannot be exact. Over multiple integration steps this error propagates

as an error in the initial conditions from one step to the next. This type of error is

called accumulation error.
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Table 1.1. Generalized Butcher Tableau

c A

x b′

It should be noted that there can also be errors in the model itself. The system

may have dynamics that are not included in the model or the model may not represent

the physical system accurately. The former type of errors are structural model errors

and the latter are parametric model errors. Both types of errors do not affect the

numerical integration method since they are model errors and are dealt with through

model validation discussed in [5].

1.6 Fully–Implicit Runge–Kutta Algorithms

Problems of interest will primarily occur in DAE form and will invariably be stiff.

Therefore, implicit algorithms must be used for their simulation. One class of implicit

integration algorithms that may lead to efficient implementations together with a

technique called inline–integration are the implicit Runge–Kutta algorithms. Runge–

Kutta algorithms are single–step methods but compute intermediate values at various

time instants within the step called predictors. Each time instant when a predictor

is computed is called a stage. At the end of the integration step, some combination

of those predictions, called the corrector, is used to compute the state vector.

Runge–Kutta methods can be represented in a compact form shown in Table 1.1

called a Butcher Tableau [6]. In the generalized Butcher Tableau, the c–vector denotes

the time instant when each stage is evaluated. The b′–vector denotes the weights for

the corrector stage, and the A–matrix contains the weights for the predictor stages.

The Butcher Tableau of an m–stage algorithm with b′, c ∈ R
m and A ∈ R

m×m has
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the property ci =
∑m

j=1 aij for i = 1, . . . , m and can be expanded into:

1st stage: xP1 = xk +
∑

j

a1jhẋPj

ẋP1 = f(xP1 , tk+c1)

2nd stage: xP2 = xk +
∑

j

a2jhẋPj

ẋP2 = f(xP2 , tk+c2)

...
...

mth stage: xPm = xk +
∑

j

amjhẋPj

ẋPm = f(xPm , tk+cm
)

corrector: xk+1 = xk +
∑

j

bjhẋ
Pj

k

For IRKs the resulting predictor equations are coupled together and must be solved

simultaneously.

1.6.1 Radau IIA

A family of very compact fully–implicit Runge–Kutta algorithms are the Radau IIA

algorithms. The third order accurate technique, Rad3, uses only two stages, while

only three stages are needed in the fifth order accurate method, Rad5. The Rad3

algorithm is defined by the Butcher Tableau shown in Table 1.2. Although the Rad5

algorithm is fifth–order accurate, both irrational coefficients and time steps may make

this method less attractive. The Butcher Tableau shown in Table 1.3 describes the

Rad5 algorithm. Since the second and third stages of Rad3 and Rad5, respectively, are

evaluated at the end of the step, the corrector equations collapse with the respective

equations that describe those stages.
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1.6.2 Lobatto IIIC

Other fully–implicit Runge–Kutta algorithms are the Lobatto IIIC methods. The

commonly used fourth order accurate method requires three stages and is described

by the Butcher Tableau shown in Table 1.4. The sixth order accurate method uses

four stages and is analyzed in a later chapter. Like the Rad5 algorithm, the third

stage of this algorithm is evaluated at the end of the integration step. Thus, the

corrector equation also collapse with the equation that describes the third stage.

1.6.3 HW-SDIRK

One interesting algorithm is HW-SDIRK(3)4, not fully–implicit, but a diagonally

implicit Runge–Kutta. This algorithm is 4th–order accurate using five stages. Also

part of this algorithm is a 3rd–order accurate embedding method that can be used for

step size control. Unlike Rad5, both methods contained in HW-SDIRK have rational

coefficients. What makes this algorithm interesting is that when used with inlining,

each stage of this algorithm can be iterated on separately. This algorithm will be

analyzed in a later chapter.
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Table 1.2. Radau IIA(3)

1/3 5/12 −1/12

1 3/4 1/4

x 3/4 1/4

Table 1.3. Radau IIA(5)
4−

√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225
4+

√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−
√

6
36

16+
√

6
36

1
9

x 16−
√

6
36

16+
√

6
36

1
9

Table 1.4. Lobatto IIIC(4)

0 1/6 −1/3 1/6

1/2 1/6 5/12 −1/12

1 1/6 2/3 1/6

x 1/6 2/3 1/6
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Chapter 2

Background

Traditionally, the model to be simulated was kept separate from the simulation engine.

This was done since, at that time, the idea of generating a model was something that

a modeler did, whereas performing experiments on a model or simulating a model was

something that was done on a computer. Since these were two separate things, it could

happen that the model that was created may not lend itself to being implemented

very easily for simulation.

The simulation engines in use typically required first–order ordinary differential

equations (ODEs), a state–space representation, as the model description. For simple

models this may not be a problem, but as model complexity increases, it may be

more convenient to use an equivalent differential algebraic equation (DAE) model

representation.

2.1 Differential Algebraic Equations

Physical systems are not easily represented by state–space models since the equa-

tions describing a physical system are typically algebraically coupled. Because of

this, physical systems are usually described by a mixture of differential and algebraic

equations called Differential Algebraic Equations (DAEs). This can, for example, be

seen in the following set of equations that can describe the simple circuit shown in

Figure 2.1:

u0 = f(t) (2.1)

u1 = R1 · i1 (2.2)

u2 = R2 · i2 (2.3)
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i0
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i1
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R2i2

u2

L

iL

uL

Figure 2.1. Simple RLC Circuit

uL = L · diL
dt

(2.4)

iC = C · duC

dt
(2.5)

u0 = u1 + uC (2.6)

uL = u1 + u2 (2.7)

uC = u2 (2.8)

i0 = i1 + iL (2.9)

i1 = i2 + iC (2.10)

These equations can also be represented in the form of a structure incidence matrix

[2]. Each row of the structure incidence matrix S represents an equation and each

column represents a variable. When the ith equation (row) contains the jth variable

(column), then the element Si,j is set to 1, otherwise it is set to 0. With the columns
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ordered by u0, i0, u1, i1, u2, i2, uL, diL
dt

, duC

dt
, and iC , the structure incidence matrix of

this circuit can be written as:

SRLC =

































1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1

































(2.11)

The complexity of these equations is denoted by the index of the system. An index–0

system has a structure incidence matrix that is lower triangular after sorting. This

means that the system doesn’t have any algebraic loops or structural singularities.

An index–1 system doesn’t have structural singularities but does have algebraic loops.

The structure incidence matrix for this case is block lower triangular after sorting.

Systems that have an index > 1 have structural singularities and are higher–index

problems.

2.2 Inline–Integration

As noted in §1.2 it is straightforward to solve Eq.(1.1) using an explicit integration

algorithm. However, when the system to be solved is stiff it is more appropriate to

use an implicit integration algorithm. The problem is that implicit algorithms lead to

nonlinear equations that, in general, need to be solved by a Newton iteration. By tak-

ing advantage of the structure of the model equations and the integration algorithm,

the efficiency of the simulation can be improved [7]. This can by accomplished by a

technique called inline integration. Using inline integration, an implicit integration

algorithm can be merged with the model. In this way the differential equations are

eliminated and the resulting model becomes a set of difference equations (∆Es)[7].
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Using implicit Runge–Kutta algorithms together with inline integration and tearing

[8] may lead to efficient implementations. This is desirable when a sufficiently large

and complex system needs to be simulated, for instance, in real–time. This is the case

since only a Newton iteration needs to be performed on the set of ∆Es at each time

step. To illustrate the process of inline integration, the circuit shown in Figure 2.1

will be inlined with three different IRKs.

2.2.1 Radau IIA

By inlining the Rad3 algorithm with the model of the circuit shown in Figure 2.1, the

set of DAEs given by Eqs.(2.1)–(2.10) is replicated once for each stage of the integra-

tion algorithm and Rad3 integrator equations are added for each of the derivatives.

From Table 1.2, the integrator equations can be expressed as:

x
k+1

3
= xk +

5h

12
· ẋ

k+1
3
− h

12
· ẋk+1 (2.12)

xk+1 = xk +
3h

4
· ẋ

k+1
3

+
h

4
· ẋk+1 (2.13)

and inlining the circuit model with Rad3 results in the following equations:

v0 = f

(

tk +
h

3

)

(2.14)

v1 = R1 · j1 (2.15)

v2 = R2 · j2 (2.16)

vL = L · djL (2.17)

jC = C · dvC (2.18)

v0 = v1 + vC (2.19)

vL = v1 + v2 (2.20)

vC = v2 (2.21)

j0 = j1 + jL (2.22)

j1 = j2 + jC (2.23)
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u0 = f(tk + h) (2.24)

u1 = R1 · i1 (2.25)

u2 = R2 · i2 (2.26)

uL = L · diL (2.27)

iC = C · duC (2.28)

u0 = u1 + uC (2.29)

uL = u1 + u2 (2.30)

uC = u2 (2.31)

i0 = i1 + iL (2.32)

i1 = i2 + iC (2.33)

jL = iLk−1
+

5h

12
· djL − 5h

12
· diL (2.34)

iL = iLk−1
+

3h

4
· djL +

h

4
· diL (2.35)

vC = uCk−1
+

5h

12
· dvC − 5h

12
· duC (2.36)

uC = uCk−1
+

3h

4
· dvC +

h

4
· duC (2.37)

where iLk−1
and uCk−1

are the state values computed during the previous time step. In

this case, the time derivatives present in Eqs.(2.4) and (2.5) have been eliminated in

the resulting 24 equations in 24 unknowns. Since the two stages of Rad3 are coupled

together, all 24 equations of this ∆E system must be solved simultaneously.

Similarly, the set of equations for the same circuit inlined with the Rad5 algorithm

becomes:

w0 = f

(

t +
4 −

√
6

10
· h
)

(2.38)
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w1 = R1 · m1 (2.39)

w2 = R2 · m2 (2.40)

wL = L · dmL (2.41)

mC = C · dwC (2.42)

w0 = w1 + wC (2.43)

wL = w1 + w2 (2.44)

wC = w2 (2.45)

m0 = m1 + mL (2.46)

m1 = m2 + mC (2.47)

v0 = f

(

t +
4 +

√
6

10
· h
)

(2.48)

v1 = R1 · j1 (2.49)

v2 = R2 · j2 (2.50)

vL = L · djL (2.51)

jC = C · dvC (2.52)

v0 = v1 + vC (2.53)

vL = v1 + v2 (2.54)

vC = v2 (2.55)

j0 = j1 + jL (2.56)

j1 = j2 + jC (2.57)

u0 = f(t + h) (2.58)

u1 = R1 · i1 (2.59)

u2 = R2 · i2 (2.60)
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uL = L · diL (2.61)

iC = C · duC (2.62)

u0 = u1 + uC (2.63)

uL = u1 + u2 (2.64)

uC = u2 (2.65)

i0 = i1 + iL (2.66)

i1 = i2 + iC (2.67)

mL = pre(iL) +
88 − 7

√
6

360
· h · dmL

+
296 − 169

√
6

1800
· h · djL +

−2 + 3
√

6

225
· h · diL (2.68)

jL = pre(iL) +
296 + 169

√
6

1800
· h · dmL

+
88 + 7

√
6

360
· h · djL +

−2 − 3
√

6

225
· h · diL (2.69)

iL = pre(iL) +
16 −

√
6

36
· h · dmL

+
16 +

√
6

36
· h · djL +

1

9
· h · diL (2.70)

wC = pre(uC) +
88 − 7

√
6

360
· h · dwC

+
296 − 169

√
6

1800
· h · dvC +

−2 + 3
√

6

225
· h · duC (2.71)

vC = pre(uC) +
296 + 169

√
6

1800
· h · dwC

+
88 + 7

√
6

360
· h · dvC +

−2 − 3
√

6

225
· h · duC (2.72)

uC = pre(uC) +
16 −

√
6

36
· h · dwC

+
16 +

√
6

36
· h · dvC +

1

9
· h · duC (2.73)
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where pre(·) denotes the value computed for a variable during the previous time

step. After inlining the original model of 10 equations with Rad5, there are now

36 equations in 36 unknowns that must be solved simultaneously. From this set of

equations it can be seen that irrational coefficients appear in a number of different

places. The augmented incidence matrix for one stage of Rad5 inlined equations can

be written as:

S =









































1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1









































(2.74)

where the columns are now ordered by u0, i0, u1, i1, u2, i2, uL, diL, duC, iC , iL, and uC .

Together with the incidence matrix for the coupling between the different stages:

C =









































0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0









































(2.75)

the structure incidence matrix for the Rad5 set of inlined equations can be written

as:

Srad5 =





S C C
C S C
C C S



 . (2.76)
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2.2.2 Lobatto IIIC(4)

Finally, the same circuit inlined with Lobatto IIIC(4) result in the following equations:

w0 = f(t) (2.77)

w1 = R1 · m1 (2.78)

w2 = R2 · m2 (2.79)

wL = L · dmL (2.80)

mC = C · dwC (2.81)

w0 = w1 + wC (2.82)

wL = w1 + w2 (2.83)

wC = w2 (2.84)

m0 = m1 + mL (2.85)

m1 = m2 + mC (2.86)

v0 = f

(

t +
h

2

)

(2.87)

v1 = R1 · j1 (2.88)

v2 = R2 · j2 (2.89)

vL = L · djL (2.90)

jC = C · dvC (2.91)

v0 = v1 + vC (2.92)

vL = v1 + v2 (2.93)

vC = v2 (2.94)

j0 = j1 + jL (2.95)

j1 = j2 + jC (2.96)
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u0 = f(t + h) (2.97)

u1 = R1 · i1 (2.98)

u2 = R2 · i2 (2.99)

uL = L · diL (2.100)

iC = C · duC (2.101)

u0 = u1 + uC (2.102)

uL = u1 + u2 (2.103)

uC = u2 (2.104)

i0 = i1 + iL (2.105)

i1 = i2 + iC (2.106)

mL = pre(iL) +
h

6
· dmL − h

3
· djL +

h

6
· diL (2.107)

jL = pre(iL) +
h

6
· dmL +

5h

12
· djL − h

12
· diL (2.108)

iL = pre(iL) +
h

6
· dmL +

2h

3
· djL +

h

6
· diL (2.109)

wC = pre(uC) +
h

6
· dwC − h

3
· dvC +

h

6
· duC (2.110)

vC = pre(uC) +
h

6
· dwC +

5h

12
· dvC − h

12
· duC (2.111)

uC = pre(uC) +
h

6
· dwC +

2h

3
· dvC +

h

6
· duC (2.112)

Compared with Rad5, the only differences in the equations are the time instants when

the equations are evaluated and the coefficients for the integration algorithm. Since

the equations are otherwise the same, both Rad5 and Lobatto IIIC(4) have the same

structure incidence matrix. The procedure is similar for inlining with any integration

algorithm.
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2.3 Sorting

Before the inlined model can be simulated the equations must first be sorted and

causalized. For an acausal equation, the equal sign is used in the sense of equality.

Looking at Eqs.(2.77) and (2.82), both have the same variable, w0, on the left hand

side of the equal sign, but only one of the equations can be used to compute w0. The

remaining equation must be used to solve for another variable. The variable that was

selected to be solved for in a particular equation can by marked by enclosing it in

square brackets [·]. Since that variable is now computed it can be considered as known

in the remaining equations and is denoted by underlining. Unfortunately, inlining

with an implicit integration algorithm leads to algebraic loops. Thus, the equations

cannot be completely sorted and using the Rad3 example above, the partially sorted

equations are:

[v0] = f

(

tk +
h

3

)

(2.113)

v1 = R1 · j1 (2.114)

v2 = R2 · j2 (2.115)

vL = L · [djL] (2.116)

jC = C · dvC (2.117)

v0 = v1 + vC (2.118)

[vL] = v1 + v2 (2.119)

vC = v2 (2.120)

[j0] = j1 + jL (2.121)

j1 = j2 + jC (2.122)

[u0] = f(tk + h) (2.123)

u1 = R1 · i1 (2.124)
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u2 = R2 · i2 (2.125)

uL = L · [diL] (2.126)

iC = C · duC (2.127)

u0 = u1 + uC (2.128)

[uL] = u1 + u2 (2.129)

uC = u2 (2.130)

[i0] = i1 + iL (2.131)

i1 = i2 + iC (2.132)

[jL] = iLk−1
+

5h

12
· djL − 5h

12
· diL (2.133)

[iL] = iLk−1
+

3h

4
· djL +

h

4
· diL (2.134)

vC = uCk−1
+

5h

12
· dvC − 5h

12
· duC (2.135)

uC = uCk−1
+

3h

4
· dvC +

h

4
· duC (2.136)

There is only one variable in Eq.(2.113) so this equation must be used to compute v0

and is then underlined in Eq.(2.118). The variable i0 only appears in Eq.(2.131) so this

equation must be used to compute i0. Only 10 of the equations can immediately be

sorted and the remaining 14 equations must be solved together. Although the model

is linear, a Newton iteration may still be used to solve the remaining equations. For

linear models, a Newton iteration will converge in one iteration step but this is still

not efficient since more iteration variables are being used than necessary. To improve

simulation efficiency, a method called tearing can be used to find a smaller set of

iteration variables. With tearing, the remaining equations can be causalized and the

number of iteration variables will be reduced. After all of the equations have been

sorted and made causal, the equal sign is now used in the sense of assignment, where

there is an individual equation to compute each variable.
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2.4 Tearing

Physical system models, such as those that describe electrical circuits, may contain

algebraic loops that are large. However, the subset of equations to be solved simulta-

neously that form the algebraic loop usually only have a small number of variables in

each equation. In this case, by reducing the dimensionality of the system of equations

to be solved, a solution can be found more efficiently. This is done by a technique

called tearing in which the reduction can be done symbolically and then passed to

the numerical solver [8]. In practice, the model may possibly contain thousands of

equations in thousands of unknowns. For the numerical solver, a Newton iteration is

efficient when there is a small set of iteration variables but becomes inefficient when

there is a large number of iteration variables. Here, large describes systems with

thousands of equations in thousands of iteration variables. With tearing, the number

of iteration variables needed can be reduced.

Once the equation sorting algorithm stalls, the tearing algorithm needs to make

assumptions about one or more variables to be known. The solution of the system

is not changed by tearing; it only makes finding the solution more efficient. After

inlining with an implicit Runge–Kutta algorithm, and only after inlining, tearing can

be used to reduce the size of the Jacobian making the problem more efficient to solve.

For the Rad3 example given in the previous section the equations can be completely

sorted after tearing:

[v0] = f

(

tk +
h

3

)

(2.137)

v1 = R1 · [j1] (2.138)

v2 = R2 · [j2] (2.139)

vL = L · [djL] (2.140)

jC = C · [dvC ] (2.141)

v0 = [v1] + vC (2.142)
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[vL] = v1 + v2 (2.143)

vC = [v2] (2.144)

[j0] = j1 + jL (2.145)

j1 = j2 + [jC ] (2.146)

[u0] = f(tk + h) (2.147)

[u1] = R1 · i1 (2.148)

u2 = R2 · [i2] (2.149)

uL = L · [diL] (2.150)

[iC ] = C · duC (2.151)

u0 = u1 + [uC] (2.152)

[uL] = u1 + u2 (2.153)

uC = [u2] (2.154)

[i0] = i1 + iL (2.155)

[i1] = i2 + iC (2.156)

[jL] = iLk−1
+

5h

12
· djL − 5h

12
· diL (2.157)

[iL] = iLk−1
+

3h

4
· djL +

h

4
· diL (2.158)

[vC ] = uCk−1
+

5h

12
· dvC − 5h

12
· duC (2.159)

uC = uCk−1
+

3h

4
· dvC +

h

4
· [duC ] (2.160)

In this set of equations, the variables vc and i1 are assumed known and are called

tearing variables. These two variables are the iteration variables for this problem. The

tearing variables are computed from Eqs.(2.156) and (2.159) which are called residual

equations. The tearing variables were found using a heuristic procedure [2] that always
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results in a small number of tearing variables, but not necessarily the smallest number

of tearing variables. A heuristic procedure must be used since finding the minimum

number of tearing variables is an np–complete problem. After tearing, the size of the

Jacobian for this set of equations has been reduced from a 24 × 24 matrix to a 2 × 2

matrix. While this set of equations can now be used for simulation, the simulation

efficiency can again be improved by using step–size control.

2.5 Step–Size Control

One last piece for efficient simulation is step–size control of the integration algorithm.

In general, smaller step sizes result in smaller integration errors and larger step sizes

tend to lead to larger integration errors. However, choosing a smaller step size comes

at the cost of a higher computational load. For this reason, using a variable–step

integration algorithm may be desirable.

The concept for step size control is simple. First, perform the same integration

step using two integration algorithms. Next, take the difference between the two

computed values to find the estimated error ε. If ε is bigger than some specified error

tolerance tol, then reject that step and repeat the same step with a smaller step size.

Finally, if after a some number of consecutive integration steps the estimated error

remains smaller than the tolerated error, then the step size is increased. For step

size control, it is always possible to use a second separate integration algorithm in

parallel and independent of the first algorithm. This is hardly efficient because the

solver would then have the additional computational load of the second independent

algorithm.

Traditionally, for explicit Runge–Kutta algorithms, an embedding method was

found and used for step–size control. An embedded method is a second integration

algorithm that has stages in common with the integration algorithm that it is embed-

ded in so that the computational load is shared between them. Since fully implicit
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algorithms like Radau IIA are so compact and optimized there doesn’t exist any

freedom to find an embedding method with the existing information. In [2], using in-

formation from two steps, embedding methods that can be used for step–size control

of Rad3, Rad5 and Lobatto IIIC(4) have been found.

It should be mentioned that order–control is not even considered because accuracy

is typically reduced by a factor of 10 when the order of the method is decreased by

one [2]. Hardly any efficiency is gained and its impact on the accuracy of the solution

does not justify the use of order–control. In addition, some implicit Runge–Kutta

algorithms are not suited for use with order–control, since an integration algorithm

within the same family may not exist at all one order lower. For instance, if a fifth

order accurate Radau IIA method is used, there doesn’t exist a forth-order accurate

Radau IIA method to drop to [11].

2.5.1 Radau IIA

For Rad3, the embedding method found in [2] turned out to be 3rd–order accurate

and is given by:

xk+1 = − 1

13
xk−1 +

2

13
x

k−2
3

+
14

13
xk −

2

13
x

k+1
3

+
11h

13
ẋ

k+1
3

+
3h

13
ẋk+1 (2.161)

While the embedding method found for Rad5 turned out to be 5th–order accurate

and is given by:

xk+1 = c1xk−1 + c2hẋ1k−1
+ c3x2k−1

+ c4hẋ2k−1
+ c5xk

+ c6x1k
+ c7hẋ1k

+ c8x2k
+ c9hẋ2k

+ c10hẋk+1

(2.162)

where the coefficients are:

c1 = −0.00517140382204 c2 = −0.00094714677404

c3 = −0.04060469717694 c4 = −0.01364429384901

c5 = +1.41786808325433 c6 = −0.17475783086782
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c7 = +0.48299282769491 c8 = −0.19733415138754

c9 = +0.55942205973218 c10 = +0.10695524944855

2.5.2 Lobatto IIIC

The embedding method found in [2] for Lobatto IIIC(4) is 4th–order accurate and is

given by:

xk+1 =
63

4552
xk−1 −

91h

81936
ẋ1k−1

+
1381h

81936
ẋ2k−1

+
3101

2276
xk − 393

4552
x1k

+
775h

3414
ẋ1k

− 165

569
x2k

+
62179h

81936
ẋ2k

+
12881h

81936
ẋk+1

(2.163)

With these error methods, the step size can only change after two consecutive steps.

This is a minor restriction as stated in [2] and the new step can be computed using

a standard rule:

hnew = hold · δ ·
(

Tol

err

)1/(n̂+1)

(2.164)

where Tol is the specified tolerance, δ is a safety factor, err is the estimated error,

and n̂ is the order of the error estimate [10, 11]. The estimated error is given by:

err = ‖x̂− x‖2 (2.165)

where x is computed by the integration algorithm and x̂ is computed from the em-

bedding method. To prevent the step size from changing drastically, the new step

size can be limited to values between [h/2, 2h].

2.6 HW-SDIRK and Lobatto IIIC(6)

In this thesis, two different implicit Runge–Kutta algorithms will be studied: HW-

SDIRK(3)4 and Lobatto IIIC(6). Following the idea of using data from a previous

step, it may be possible to find an alternative embedding method for HW-SDIRK

and to find an embedding method for Lobatto IIIC(6). Together with the above

techniques, all of the integration methods will then be compared with each other

using benchmark ODEs [12].
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Chapter 3

HW–SDIRK

A diagonally implicit Runge–Kutta (DIRK) algorithm contains zero elements above

the main diagonal of the Butcher tableau. A method of this type that has non–zero

elements of equal value on the main diagonal is called a singly diagonally implicit

Runge–Kutta (SDIRK) algorithm.

An SDIRK algorithm containing third and fourth order accurate methods is HW-

SDIRK(3)4 [11]. The Butcher tableau describing these algorithms is shown in Ta-

ble 3.1 with the third order accurate method denoted by x̂.

3.1 Numerical Stability

Plugging the HW-SDIRK algorithm into the standard test problem of Eq.(1.5), the

following set of equations in ODE form results:

k1 =

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − Ah +
3(Ah)2

8
− (Ah)3

16
− (Ah)4

256

)

Ah (3.1)

Table 3.1. HW-SDIRK(3)4
1
4

1
4

0 0 0 0
3
4

1
2

1
4

0 0 0
11
20

17
50

−1
25

1
4

0 0
1
2

371
1360

−137
2720

15
544

1
4

0

1 25
24

−49
48

125
16

−85
12

1
4

x̂ 59
48

−17
96

225
32

−85
12

0

x 25
24

−49
48

125
16

−85
12

1
4
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k2 =

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − Ah

2
− (Ah)3

32
− (Ah)4

256

)

Ah (3.2)

k3 =

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − 7Ah

10
+

13(Ah)2

100
+

3(Ah)3

800
− (Ah)4

492

)

Ah (3.3)

k4 =

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − 3Ah

4
+

29(Ah)2

170
− 2(Ah)3

259
− (Ah)4

1088

)

Ah (3.4)

k5 =

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − Ah

4
− (Ah)2

8
+

(Ah)3

96
+

7(Ah)4

768

)

Ah (3.5)

x̂k+1 = xk + h

(

59k1

48
− 17k2

96
+

225k3

32
− 85k4

12

)

(3.6)

xk+1 = xk + h

(

25k1

24
− 49k2

48
+

125k3

16
− 85k4

12
+

k5

4

)

(3.7)

where:

k1 = the state derivative 1/4 into the step

k2 = the state derivative 3/4 into the step

k3 = the state derivative 11/20 into the step

k4 = the state derivative 1/2 into the step

k5 = the state derivative at the end of the step

These equations can be expressed in the form of a discrete time system:

xk+1 = F · xk (3.8)

where F is the new discrete state matrix and the simulation time is now indexed.
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Therefore, the third–order accurate HW-SDIRK method is characterized by the

following F–matrix:

F = I(n) +

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − 3Ah

4
+

(Ah)2

6
− (Ah)3

768
− (Ah)4

439

)

Ah

(3.9)

A Taylor series can be developed around h = 0:

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

13(Ah)4

256
(3.10)

Comparing this equation with the Taylor series of the analytical solution:

F = exp(At) = I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

120
+

(Ah)6

720
+ . . . (3.11)

it can be seen that this method is indeed third–order accurate and that the error

coefficient is:

ε =
7(Ah)4

768
(3.12)

The fourth-order accurate HW-SDIRK method is characterized by the following F–

matrix:

F = I(n) +

[

I(n) − 5Ah

4
+

5(Ah)2

8
− 5(Ah)3

32
+

5(Ah)4

256
− (Ah)5

1024

]−1

·
(

I(n) − 3Ah

4
+

(Ah)2

6
− (Ah)3

96
+

(Ah)4

1024

)

Ah

(3.13)

A Taylor series can be developed around h = 0

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

23(Ah)5

3072
(3.14)

giving an error coefficient of:

ε =
13(Ah)5

15360
(3.15)

The stability domains of the third– and fourth–order methods are shown in Fig-

ures 3.1–3.2, respectively. Evidently, despite being part of an overall implicit algo-



42

−14 −12 −10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6

8

ℜ {λ⋅ h}

ℑ
{λ

⋅ h
}

Figure 3.1. Stability domain of HW-SDIRK(3)
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rithm, the 3rd–order accurate embedding method behaves like an explicit method as

the stability domain loops in the left half of the λh–plane. In this case, the region

inside the curve of Figure 3.1 is the stable region and everything outside the curve is

the unstable region.

3.2 Numerical Damping

In order to judge the accuracy of an integration algorithm, a damping plot can be

used [2]. Again using the standard linear test problem of Eq.(1.5), and choosing the

initial conditions such that t0 = tk and x0 = xk, the solution for t = tk+1 is:

xk+1 = exp(Ah) · xk (3.16)

The discrete system then has the analytical F–matrix:

F = exp(Ah) (3.17)

with eigenvalues:

λd = eig(F) = exp(eig(A)h) (3.18)

or since the eigenvalues are complex:

λd = exp(λih)

= exp((−σi + jωi)h)

= exp(−σih) · exp(jωih)

(3.19)

In the continuous system, the damping σ is the distance of an eigenvalue from the

imaginary axis in the λ–plane. This damping maps in the discrete system to a distance

from the origin in the exp(λ·h)–plane. This can be recognized as the z–domain, where

z = exp(λ · h). In [2], the analytical discrete damping is then defined as σd = σih.

The F–matrix is then related to the numerical discrete damping σ̂d by:

σ̂d = log(max(| eig(F)|)) (3.20)
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Figure 3.3. HW-SDIRK(3)4: a) Damping plot; b) Logarithmic damping plot

where F is now the F–matrix of the numerical solver.

The damping plot is then given by plotting both −σd and −σ̂d against −σd. The

damping plots of of the third– and fourth–order methods are shown in Figure 3.3 with

σd shown as the dotted line. From Figure 3.3 it can be seen that the fourth–order

method is L-stable while the damping for the third–order method becomes negative.

3.3 Step–Size Control

Although HW-SDIRK already has a proper embedding method, it behaves like an

explicit method. For step–size control, using such an embedding method to compute

the error estimate may unnecessarily restrict the step size when solving a stiff system.

While the simulation should proceed without incident, this may not be efficient as

the solver may need to take more integration steps than required. Perhaps the same

idea from [2] can be used to find an alternate embedding method for HW-SDIRK.
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Since HW-SDIRK is not a compact algorithm, needing five stages to generate a fourth

order accurate method, it should be possible to search for an alternate implicit em-

bedding method. Solving a stiff system together with an implicit embedding method

to compute the error estimate should allow for the use of larger step sizes. A single

step of HW-SDIRK has the following 10 data points: xk, xk+1/4, xk+3/4, xk+11/20,

xk+1/2, ẋk+1/4, ẋk+3/4, ẋk+11/20, ẋk+1/2, and ẋk+1. Looking for a 5th order polyno-

mial requires 6 of the 20 available data points giving 38760 different methods to be

evaluated. The first four stages of this method are only 1st order accurate, so none

of the 5th order polynomials are expected to be greater than 1st order accurate. By

blending, the approximation order is increased by one for each additional method.

Therefore, at least 3 of these methods need to be blended:

xblended
k+1

= αx1
k+1

+ βx2
k+1

+ (1 − α − β)x3
k+1

(3.21)

to create another 3rd–order accurate method. A decent 3rd–order accurate method

that can be used for step–size control is the following:

xk+1 = c1x1k−1
+ c2x3k−1

+ c3xk + c4hẋ1k
+ c5x2k

+ c6hẋ2k
+ c7x3k

+ c8hẋ3k
+ c9x4k

+ c10hẋ4k
+ c11hẋk+1

(3.22)

where the coefficients are:

c1 = 0.03987986285618 c2 = −0.01359695108066

c3 = −3.64539939561975 c4 = −1.87066547933118

c5 = −2.52317069157776 c6 = −0.38422673936017

c7 = 57.03714503309798 c8 = 1.43334998089280

c9 = −49.89485785767970 c10 = −2.92514906283553

c11 = 0.23985974910811

In this equation, x1k−1
represents the state vector computed for the first stage of

HW-SDIRK from the previous integration step, x3k−1
represents the state vector
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Figure 3.4. Stability domain of the HW-SDIRK alternate error method

computed for the third stage of the previous step, ẋ2k
represents the state derivative

vector computed for the second stage of the current step, and so on.

The stability domain and damping plots of this method are shown in Figures 3.4–

3.5, respectively. This method is not L–stable, however, it is implicit and is better

suited for the purposes of step size control when solving stiff systems than the original

embedding method.

3.4 Inlining

The various stages of this integration algorithm can be written as:

x
k+1

4
= xk +

h

4
· ẋ

k+1
4

(3.23)

x
k+3

4
= xk +

h

2
· ẋ

k+1
4

+
h

4
· ẋ

k+3
4

(3.24)

x
k+11

20
= xk +

17h

50
· ẋ

k+1
4
− h

25
· ẋ

k+3
4

+
h

4
· ẋ

k+11
20

(3.25)
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x
k+1

2
= xk +

371h

1360
ẋ

k+1
4
− 137h

2720
ẋ

k+3
4

+
15h

544
ẋ

k+11
20

+
h

4
ẋ

k+1
2

(3.26)

xk+1 = xk +
25h

24
ẋ

k+1
4
− 49h

48
ẋ

k+3
4

+
125h

16
ẋ

k+11
20

− 85h

12
ẋ

k+1
2

+
h

4
ẋk+1 (3.27)

x̂k+1 = xk +
59h

48
ẋ

k+1
4
− 17h

96
ẋ

k+3
4

+
225h

32
ẋ

k+11
20

− 85h

12
ẋ

k+1
2

(3.28)

As before, using the same circuit shown in Figure 2.1 the model equations need to be

replicated once for each stage of the integration algorithm. For HW-SDIRK(3)4, the

first two of the five sets of equations are reproduced here:

v0 = f

(

t +
h

4

)

(3.29)

v1 = R1 · j1 (3.30)

v2 = R2 · j2 (3.31)

vL = L · djL (3.32)

jC = C · dvC (3.33)

v0 = v1 + vC (3.34)

vL = v1 + v2 (3.35)

vC = v2 (3.36)

j0 = j1 + jL (3.37)

j1 = j2 + jC (3.38)

u0 = f

(

t +
3h

4

)

(3.39)

u1 = R1 · i1 (3.40)

u2 = R2 · i2 (3.41)

uL = L · diL (3.42)

iC = C · duC (3.43)

u0 = u1 + uC (3.44)

uL = u1 + u2 (3.45)
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uC = u2 (3.46)

i0 = i1 + iL (3.47)

i1 = i2 + iC (3.48)

jL = pre(iL) +
h

4
· djL (3.49)

iL = pre(iL) +
h

2
· djL +

h

4
· diL (3.50)

vC = pre(uC) +
h

4
· dvC (3.51)

uC = pre(uC) +
h

2
· dvC +

h

4
· duC (3.52)

(3.53)

The complete set of inlined equations consists of 60 equations in 60 unknowns. As

mentioned before, the procedure is similar for inlining with any integration algorithm.

The structure incidence matrix for the HW-SDIRK set of inlined equations can be

written as:

Shwsdirk =













S Z Z Z Z
C S Z Z Z
C C S Z Z
C C C S Z
C C C C S













(3.54)

where Z is the zero matrix. The structure incidence matrix after inlining is lower

block–triangular even before sorting, but this is only true for HW-SDIRK. The ad-

vantage of this is that one Newton iteration per stage can be used instead of one

Newton iteration across all stages. As model complexity grows it should be obvious

that this process of inlining, sorting and causalizing, tearing, and setting up the New-

ton iterations must be automated. The number of equations can become quite large

and this process can no longer be done by hand.
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Chapter 4

Lobatto IIIC(6)

Another Lobatto IIIC method has also been published that is sixth order accurate

[11]. This algorithm uses four stages but also has the potential disadvantage of

irrational coefficients and time steps. The Lobatto IIIC(6) algorithm is described by

the Butcher tableau of Table 4.1.

4.1 Numerical Stability and Damping

Again using the standard linear test problem, ẋ = Ax, with the ODE description of

Lobatto IIIC results in the following set of equations:

k1 =

[

I(n) − 2Ah

3
+

(Ah)2

5
− (Ah)3

30
+

(Ah)4

360

]−1

·
(

I(n) − 2Ah

3
+

(Ah)2

5
− (Ah)3

30

)

Ah (4.1)

k2 =

[

I(n) − 2Ah

3
+

(Ah)2

5
− (Ah)3

30
+

(Ah)4

360

]−1

·
(

I(n) − 329Ah

843
+

61(Ah)2

1131

)

Ah (4.2)

k3 =

[

I(n) − 2Ah

3
+

(Ah)2

5
− (Ah)3

30
+

(Ah)4

360

]−1

Table 4.1. Lobatto IIIC(6)

0 1
12

−
√

5
12

√
5

12
−1
12

5−
√

5
10

1
12

1
4

10−7
√

5
60

√
5

60
5+

√
5

10
1
12

10+7
√

5
60

1
4

−
√

5
60

1 1
12

5
12

5
12

1
12

x 1
12

5
12

5
12

1
12
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·
(

I(n) +
16Ah

281
− 24(Ah)2

1165
− (Ah)3

30

)

Ah (4.3)

k4 =

[

I(n) − 2Ah

3
+

(Ah)2

5
− (Ah)3

30
+

(Ah)4

360

]−1

·
(

I(n) +
Ah

3
+

(Ah)2

30

)

Ah (4.4)

xk+1 = xk +
h

12
(k1 + 5k2 + 5k3 + k4) (4.5)

The sixth order accurate Lobatto IIIC method is characterized by the following F–

matrix:

F = I(n) +

[

I(n) − 2Ah

3
+

Ah2

5
− Ah3

30
+

Ah4

360

]−1

·
(

I(n) − (Ah)

6
+

(Ah)2

30
− (Ah)3

360

)

Ah

(4.6)

Developing a Taylor series around h = 0

F ≈ I(n) + Ah +
(Ah)2

2
+

(Ah)3

6
+

(Ah)4

24
+

(Ah)5

120
+

(Ah)6

720
+

(Ah)7

5400
(4.7)

and comparing this with the Taylor series of the analytical solution gives an error

coefficient of:

ε =
(Ah)7

75600
(4.8)

4.2 Step–size control

Using the same idea as in [2], let us look for an embedding method for the sixth

order accurate Lobatto IIIC algorithm, since no embedding method currently exists.

A single step of Lobatto IIIC(6) has the following data points: xk, xk+0, x
k+5−

√

5
10

,

x
k+5+

√

5
10

, ẋk, ẋk+0, ẋ
k+5−

√

5
10

, ẋ
k+5+

√

5
10

, and ẋk+1. This algorithm unfortunately has

the same problem as the 4th–order accurate method, namely, there is a zero time

advance from the fourth stage of a step to the first stage of the next step. The

data points xk and xk+0 represent the state vector at the same time instant so no
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single error method can use them both simultaneously. The first three stages of this

algorithm are only 3rd–order accurate so none of the polynomials being searched for

are expected to be of greater accuracy. To find a 5th–order accurate method, three

suitable polynomials will need to be blended by Eq.(3.21). The following 5th–order

accurate method can be used for step size control:

xk+1 = c1xk−1 + c2hẋ1k−1
+ c3x2k−1

+ c4hẋ2k−1
+ c5xk

+ c6x1k
+ c7hẋ1k

+ c8x2k
+ c9hẋ2k

+ c10hẋ3k
+ c11hẋk+1

(4.9)

where the coefficients are:

c1 = 0.02061173185679 c2 = 0.00133204868429

c3 = −0.00704709981316 c4 = 0.00908420357588

c5 = 0.83597287802675 c6 = 0.03506343063678

c7 = 0.07743334426486 c8 = 0.11539905929277

c9 = 0.39352639145014 c10 = 0.41959151135295

c11 = 0.08264938766485

Similarly in this equation, ẋ1k−1
represents the state derivative vector computed for

the first stage of Lobatto IIIC(6) from the previous integration step, x2k−1
represents

the state vector computed for the second stage of the previous integration step, ẋ2k

represents the state derivative vector computed for the second stage of the current

integration step, and so on.

This method has a nice stability domain shown in Figure 4.3 and damping char-

acteristics shown in Figure 4.4. This error method is not L–stable but has a large

asymptotic region and should be well suited for step–size control when solving stiff

systems. In Figure 4.4a, the asymptotic region is the area near the origin where σ̂d

follows σd until about σd = 3.4 [2].
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Chapter 5

Numerical Experiments

In this chapter, the different integration algorithms and respective error methods

will be evaluated using selected test ODEs found in Appendix A. These ODEs were

selected, along with considerations from [17], from a larger set suggested by [12].

For reference, the solution of these ODEs have been plotted in Figures 5.1– 5.8.

These solutions were all found using the MATLAB command ode15s. This command

invokes a stiff system solver based on Numerical Differential Formulae (NDF) which

are closely related to the BDF techniques [18].
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Figure 5.1. ODE set A solution
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Figure 5.6. ODE set E y2 solution

5.1 Implementation

The methods presented in the previous chapters have been implemented using the

Modelica language [21]. One software package that implements Modelica is called

Dymola [22]. Due to the large number of difference equations resulting after inlining,

sorting and tearing operations can no longer be done by hand. Since Modelica is an

acausal language, Dymola can perform automated sorting and tearing. An example

Rad3 implementation in pseudo–Modelica code is shown in Listing 5.1. As an ex-

ample, the implementation of ODE set A inlined with Rad5 used can be found in

Appendix B. The Modelica implementations are similar for the various algorithms.

After inlining Dymola can then just loop over the model equations to find a solution.
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Listing 5.1. Inlining Rad3 in pseudo-Modelica

model i n l i n e r a d 3
parameter Real <parameters : to l , i n i t i a l s t ep s i z e >
constant Real <Time ins tant s >
constant Real <Radau IIA (3 ) c o e f f i c i e n t s >
constant Real <Step s i z e con t r o l c o e f f i c i e n t s >

// v a r i a b l e f o r s t a t e s and s t a t e d e r i v a t i v e s
Real <s tage1 va r i a b l e s with i n i t i a l cond i t i ons>
Real <s tage2 va r i a b l e s with i n i t i a l cond i t i ons>
Real <va r i ab l e h i s t o ry>

algor i thm
when time >= pre ( NextSampling ) then

compute stage1 s t a t e d e r i v a t i v e s
end when ;
when time >= pre ( NextSampling2 ) then

compute stage2 s t a t e d e r i v a t i v e s
compute stage1 s t a t e s
compute stage2 s t a t e s
compute er ror , new s tep s i z e
s t o r e s t a t e h i s t o r y

end when ;
end i n l i n e r a d 3 ;
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Figure 5.7. ODE set E y3 solution

5.2 Simulation Results

Shown in Figures 5.9–5.14 are the simulation results for ODE set A. Each of the

various algorithms with associated error estimate have been inlined with this ODE set.

For this set, the Radau algorithms reach a step size of about 8×10−4 before constantly

changing. One drawback to this implementation is that rejected steps are not repeated

but propagated to the next step as the integration continues. Despite having data

with a large error propagated, the Rad3 algorithm is able to continue. For the Lobatto

family, the solutions are not correct when compared with the accurately computed

solution of Figure 5.1 but the error estimate stays fixed and the step size remains

small. The solution with the original embedding method of HW-SDIRK determines

a step size of about 8×10−4 and stays unchanged until the end of the simulation. Using

the alternate embedding method causes a slightly larger step size, on average, of 8.7×
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Figure 5.8. ODE set E y4 solution

10−4 to be selected. The alternate error method allows more aggressive step sizes to be

chosen but in this implementation has a hard time keeping the error near the specified

tolerance. The errors in the resulting trajectory of y9 are apparent when comparing

Figure 5.14 with that of the accurately computed solution shown in Figure 5.1. The

CPU-time needed using an Intel Pentium–M1 processor running at 1.8 GHz and

the total number of steps computed for the various algorithms are summarized in

Table 5.1. The data given for ode15s is only for reference and cannot be used for

direct comparison. One difference is that the implicit Runge–Kutta algorithms are

single–step methods while ode15s is a multi–step method. Another difference is that

ode15s offers a mature and optimized implementation while additional development

and optimization needs to be performed on the still immature implementation of

IRKs and associated error methods presented.

1with SpeedStep disabled
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The solutions for ODE set B for the various algorithms are shown in Figures 5.15–

5.20. Again the trajectories produced by the Lobatto family are incorrect. Both error

estimates for the Radau solutions stay near the specified tolerance of 10−5 and the step

size shrinks before the error grows too large. Rad3 completes the simulation using

13,737 steps while Rad5 needs 35,811 steps. Using the included embedding method

of HW-SDIRK, one of the trajectories is oscillating even though the estimated error

stays around 10−3 after the initial spike. This could suggest that the explicit method

is not stable when solving this problem. The errors produced by HW-SDIRK with

the alternate error estimate are similar to those produced by the Radau algorithms

in that these three algorithms keep the error near the specified tolerance of 10−3.

With the alternate embedding method the step size for HW-SDIRK is chosen more

appropriately.

ODE set C solutions are shown in Figures 5.21–5.26. Yet again the trajectories

produced by the Lobatto algorithms are incorrect. Both Radau solutions run into

a bit of trouble as the step size grows too large. The problem is caused by the

restriction that the step size not change too dramatically. By the time the step size

drops sufficiently, too many steps have occurred and the data being propagated during

the subsequent steps is completely incorrect such that a different problem is now being

solved. HW-SDIRK with the included embedding method has similar problems but

is able to recover without completely changing the trajectories. For this ODE set,

HWSDIRK with the alternate error method is the winner when looking only at the

solution trajectories. Evidently, the error estimate became equal in magnitude to the

specified tolerance, so the step size remained small and unchanged for a longer period

than in the other algorithms.

Interesting results, shown in Figures 5.27–5.32, are produced for ODE set D. When

inlined with Rad3, the errors cause the step size to shrink but in this implementation

Rad3 and the error estimate cannot recover from bad data being propagated. The

errors become so bad that the integration terminates itself. On the other hand, Rad5
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is able to solve this system while the estimated error changes wildly between 10−4 and

10−6. The Rad5 algorithm tries to keep the step size around 5 × 10−4. Surprisingly,

without working for any of the other test problems, the Lobatto algorithms are able

to solve this problem. Perhaps this is only because there is little change, in this case

less than ±0.2, from the initial value to the final values of y1 and y2. Both Lobatto

algorithms try to keep the step size around 6.4 × 10−4.

As noted in [17], this problem is badly scaled, so the trajectories are plotted

individually and shown in Figures 5.33–5.44. Inlining doesn’t seem to mind this

ill–posed problem and even for tol = 10−6 the resulting trajectories still resemble

the accurately computed trajectories of Figures 5.5–5.8. The relative magnitudes for

each of the solutions are |y1| ≤ 10−8, |y2| ≤ 3 × 10−7, |y3| ≤ 2 × 10−5, |y4| ≤ 10−3.

Again, the Lobatto algorithms incorrectly compute the trajectories, but this time

HW-SDIRK with the alternate error method allows for a step size larger than that of

Rad5 as seen in Figures 5.35 and 5.44. Even though a bigger step was taken, Rad5

completes this problem using 933 steps whereas HW-SDIRK and the alternate error

method needs 9,514 steps. For improved trajectory results, the specified tolerance

could be increased to at least 10−9, one order of magnitude smaller than the smallest

component, and rejected integration steps must not be propagated to the next step.

In this test case, it is also evident that limiting the step size to h/2 causes problems

since the integration algorithms cannot keep up with the dynamics of the system.
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Table 5.1. Cost Summary
ODE set Algorithm CPU Time (sec) Total Steps

A

ode15s 0.04 86
Rad3 1.29 30110
Rad5 4.68 63250
Lob4 4.43 55970
Lob6 8.62 68034

HW-SDIRK 5.03 25354
HW-SDIRK w/alt. error 5 22893

B

ode15s 0.12 346
Rad3 0.551 13737
Rad5 2.32 35811
Lob4 12 175817
Lob6 6.78 77156

HW-SDIRK 0.24 1104
HW-SDIRK w/alt. error 48.6 396890

C

ode15s 0.04 124
Rad3 1.84 45264
Rad5 0.751 11350
Lob4 2.08 30441
Lob6 6.25 68364

HW-SDIRK 0.16 627
HW-SDIRK w/alt. error 8.09 73311

D

ode15s 0.04 24
Rad3 0.2 1861
Rad5 2.05 30501
Lob4 0.981 15910
Lob6 1.58 16818

HW-SDIRK 3.37 32252
HW-SDIRK w/alt. error 9.85 93748

E

ode15s 0.05 66
Rad3 0.08 665
Rad5 0.15 933
Lob4 0.341 3051
Lob6 0.701 6102

HW-SDIRK 0.17 442
HW-SDIRK w/alt. error 1.11 9514
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Figure 5.9. ODE set A inlined with Rad3



67

0 5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
y

0 5 10 15 20
10

−6

10
−5

10
−4

ε
avg

 =3.4149e−005

E
st

im
at

ed
 E

rr
or

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

h
avg

 =0.00031621

S
te

p 
S

iz
e

Figure 5.10. ODE set A inlined with Rad5
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Figure 5.11. ODE set A inlined with Lob4
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Figure 5.12. ODE set A inlined with Lob6
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Figure 5.13. ODE set A inlined with HW-SDIRK
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Figure 5.14. ODE set A inlined with HW-SDIRK and alternate error method
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Figure 5.15. ODE set B inlined with Rad3
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Figure 5.16. ODE set B inlined with Rad5
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Figure 5.17. ODE set B inlined with Lob4
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Figure 5.18. ODE set B inlined with Lob6
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Figure 5.19. ODE set B inlined with HW-SDIRK
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Figure 5.20. ODE set B inlined with HW-SDIRK and alternate error method
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Figure 5.21. ODE set C inlined with Rad3
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Figure 5.22. ODE set C inlined with Rad5
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Figure 5.23. ODE set C inlined with Lob4
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Figure 5.24. ODE set C inlined with Lob6
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Figure 5.25. ODE set C inlined with HW-SDIRK
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Figure 5.26. ODE set C inlined with HW-SDIRK and alternate error method
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Figure 5.27. ODE set D inlined with Rad3
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Figure 5.28. ODE set D inlined with Rad5
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Figure 5.29. ODE set D inlined with Lob4
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Figure 5.30. ODE set D inlined with Lob6
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Figure 5.31. ODE set D inlined with HW-SDIRK
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Figure 5.32. ODE set D inlined with HW-SDIRK and alternate error method
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Figure 5.33. ODE set E inlined with Rad3
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Figure 5.34. cont) ODE set E inlined with Rad3
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Figure 5.35. ODE set E inlined with Rad5
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Figure 5.36. cont) ODE set E inlined with Rad5
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Figure 5.37. ODE set E inlined with Lob4
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Figure 5.38. cont) ODE set E inlined with Lob4



96

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y 1*1
0−

8

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

y 2*1
0−

7

0 0.2 0.4 0.6 0.8 1
−6
−4
−2

0
2
4
6
8

10
12
14

y 3*1
0−

6

Figure 5.39. ODE set E inlined with Lob6
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Figure 5.40. cont) ODE set E inlined with Lob6
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Figure 5.41. ODE set E inlined with HW-SDIRK
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Figure 5.42. cont) ODE set E inlined with HW-SDIRK
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Figure 5.43. ODE set E inlined with HW-SDIRK and alternate error method
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Figure 5.44. cont) ODE set E inlined with HW-SDIRK and alternate error method
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Chapter 6

Conclusions

Two new error methods that can be used for step size control of HW-SDIRK and

Lobatto IIIC(6) have been presented. Both methods have good damping and stability

properties and are well suited for use when solving stiff systems. The Lobatto IIIC

family seems to produce dubious results but both algorithms and associated error

methods perform consistently with each other.

Together with inlining, implicit Runge–Kutta algorithms can be implemented with

relative ease. Symbolic manipulations further add to the efficiency as tearing can be

used to reduce the number of iteration variables. The problem of step size control with

implicit Runge–Kutta algorithms is effectively solved by using data from a previous

step. With embedding methods the computational load of the error estimate is now

shared with the main integration algorithm. The biggest advantage with step size

control and implicit Runge–Kutta algorithms is that with larger step sizes fewer

integration steps are necessary. Thus, fewer iterations will be performed and the

overall computational cost will be reduced.

The Radau IIA family performs well and has good resistance to bad initial (or

propagated) data from taking too large of a step. The Lobatto IIIC family seems to

produce correct results only for ODE set D, so evidently this family may not lead to

a good general purpose stiff system solver.

A different step size control algorithm, such as a predictive control [23], may

also be used to improve step size selection. Depending on the application this may

further avoid the occurrence of rejected steps. The restriction to limit the step sizes

from drastically changing is not needed since implicit Runge–Kutta algorithms are

single–step algorithms. This was seen in the results for ODE set C and E as the
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integration algorithms could not keep up with the dynamics of the systems being

solved. By allowing the step size to drastically change, the Radau IIA algorithms

may be suitable for use in real–time applications. In this application, much like the

in the numerical experiments performed, there isn’t time to reject and recompute a

step.
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Appendix A

Test Problems

In this section are the 5 test problems selected from [12] with considerations from

[17]. The complete set of 25 test problems were separated into five different classes

and have been widely used to test the performance of stiff system solvers. The initial

step sizes for each of the problems are given by h0.

A.1 Class A – Linear with real eigenvalues

(A2; circuit theory)

y′
1 = −1800y1 + 900y2 y1(0) = 0 (A.1)

y′
i = yi−1 − 2yi + yi+1 yi(0) = 0 i = 2 . . . 8 (A.2)

y′
9 = 1000y8 − 2000y9 + 1000 y9(0) = 0 (A.3)

h0 = 5 × 10−4

A.2 Class B – Linear with non–real eigenvalues

(B1)

y′
1 = −y1 + y2 y1(0) = 1 (A.4)

y′
2 = −100y1 − y2 y2(0) = 0 (A.5)

y′
3 = −100y3 + y4 y3(0) = 1 (A.6)

y′
4 = −10000y3 − 100y4 y4(0) = 0 (A.7)

h0 = 7 × 10−3



105

A.3 Class C – Non-linear coupling

(C1)

y′
1 = −y1 + y2

2 + y2
3 + y2

4 y1(0) = 1 (A.8)

y′
2 = −10y2 + 10(y2

3 + y2
4) y2(0) = 1 (A.9)

y′
3 = −40y3 + 40y2

4 y3(0) = 1 (A.10)

y′
4 = −100y4 + 2 y4(0) = 1 (A.11)

h0 = 10−2

A.4 Class D – Non-linear with real eigenvalues

(D4; chemistry)

y′
1 = −0.013y1 − 1000y1y3 y1(0) = 1 (A.12)

y′
2 = −2500y2y3 y2(0) = 1 (A.13)

y′
3 = +0.013y1 − 1000y1y3 − 2500y2y3 y3(0) = 0 (A.14)

h0 = 2.9 × 10−4

A.5 Class E – Non-linear with non-real eigenvalues

(E1; control theory)

y′
1 = y2 y1(0) = 0 (A.15)

y′
2 = y3 y2(0) = 0 (A.16)

y′
3 = y4 y3(0) = 0 (A.17)

y′
4 =

(

y2
1 − sin(y1) − K4

)

y1 +

(

y2y3

y2
1 + 1

− 4K3

)

y2

+ (1 − 6K2)y3 + (10e−y2
4 − 4K)y4 + 1 y4(0) = 0 (A.18)

h0 = 6.8 × 10−3 K = 100



106

Appendix B

Sample Implementation

Shown in the following listing is a Modelica implementation of ODE set A inlined

with Radau IIA(5) together with the embedding method. This is the same model

that was used for simulation. Although Modelica supports arrays, an implementation

using arrays doesn’t behave as expected in version 5.0 of Dymola.

Listing B.1. ODE set A inlined with Rad5 in Modelica

model odeArad5
parameter Real t o l =1.0e−5 ”Tolerated e r r o r ” ;
parameter Real h0=5.0e−4 ” I n i t i a l s t ep s i z e ” ;
constant Real t i 1 = (4 − s q r t (6 ) )/10 ”Time in s t an t 1” ;
constant Real t i 2 = (4 + sq r t (6 ) )/10 ”Time in s t an t 2” ;
constant Real t i 3 = 1 ”Time in s t an t 3” ;

//Butcher t a b l e au A−matrix c o e f f i c i e n t s
constant Real a11 = (88 − 7∗ s q r t ( 6 ) ) / 360 ;
constant Real a12 = (296 − 169∗ s q r t ( 6 ) ) / 1800 ;
constant Real a13 = (−2 + 3∗ s q r t ( 6 ) ) / 225 ;
constant Real a21 = (296 + 169∗ s q r t ( 6 ) ) / 1800 ;
constant Real a22 = (88 + 7∗ s q r t ( 6 ) ) / 360 ;
constant Real a23 = (−2 − 3∗ s q r t ( 6 ) ) / 225 ;
constant Real a31 = (16 − s q r t ( 6 ) ) / 3 6 ;
constant Real a32 = (16 + sq r t ( 6 ) ) / 3 6 ;
constant Real a33 = 1/9 ;

//Rad5 error method error c o e f f i c i e n t s
constant Real c1 = −0.00517140382204;
constant Real c2 = −0.00094714677404;
constant Real c3 = −0.04060469717694;
constant Real c4 = −0.01364429384901;
constant Real c5 = +1.41786808325433;
constant Real c6 = −0.17475783086782;
constant Real c7 = +0.48299282769491;
constant Real c8 = −0.19733415138754;
constant Real c9 = +0.55942205973218;
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constant Real c10 = +0.10695524944855;

// S ta t e v a r i a b l e s wi th i n i t i a l c ond i t i on s
Real y1 ( s t a r t =0);
Real y2 ( s t a r t =0);
Real y3 ( s t a r t =0);
Real y4 ( s t a r t =0);
Real y5 ( s t a r t =0);
Real y6 ( s t a r t =0);
Real y7 ( s t a r t =0);
Real y8 ( s t a r t =0);
Real y9 ( s t a r t =0);
Real y12 ( s t a r t =0);
Real y22 ( s t a r t =0);
Real y32 ( s t a r t =0);
Real y42 ( s t a r t =0);
Real y52 ( s t a r t =0);
Real y62 ( s t a r t =0);
Real y72 ( s t a r t =0);
Real y82 ( s t a r t =0);
Real y92 ( s t a r t =0);
output Real y13 ( s t a r t =0);
output Real y23 ( s t a r t =0);
output Real y33 ( s t a r t =0);
output Real y43 ( s t a r t =0);
output Real y53 ( s t a r t =0);
output Real y63 ( s t a r t =0);
output Real y73 ( s t a r t =0);
output Real y83 ( s t a r t =0);
output Real y93 ( s t a r t =0);
Real y13e ( s t a r t =0);
Real y23e ( s t a r t =0);
Real y33e ( s t a r t =0);
Real y43e ( s t a r t =0);
Real y53e ( s t a r t =0);
Real y63e ( s t a r t =0);
Real y73e ( s t a r t =0);
Real y83e ( s t a r t =0);
Real y93e ( s t a r t =0);

Real y1dot ( s t a r t =0);
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Real y2dot ( s t a r t =0);
Real y3dot ( s t a r t =0);
Real y4dot ( s t a r t =0);
Real y5dot ( s t a r t =0);
Real y6dot ( s t a r t =0);
Real y7dot ( s t a r t =0);
Real y8dot ( s t a r t =0);
Real y9dot ( s t a r t =0);
Real y12dot ( s t a r t =0);
Real y22dot ( s t a r t =0);
Real y32dot ( s t a r t =0);
Real y42dot ( s t a r t =0);
Real y52dot ( s t a r t =0);
Real y62dot ( s t a r t =0);
Real y72dot ( s t a r t =0);
Real y82dot ( s t a r t =0);
Real y92dot ( s t a r t =0);
Real y13dot ( s t a r t =0);
Real y23dot ( s t a r t =0);
Real y33dot ( s t a r t =0);
Real y43dot ( s t a r t =0);
Real y53dot ( s t a r t =0);
Real y63dot ( s t a r t =0);
Real y73dot ( s t a r t =0);
Real y83dot ( s t a r t =0);
Real y93dot ( s t a r t =0);

// S ta t e h i s t o r y with i n i t i a l c ond i t i on s
Real y1old ( s t a r t =0);
Real y2old ( s t a r t =0);
Real y3old ( s t a r t =0);
Real y4old ( s t a r t =0);
Real y5old ( s t a r t =0);
Real y6old ( s t a r t =0);
Real y7old ( s t a r t =0);
Real y8old ( s t a r t =0);
Real y9old ( s t a r t =0);
Real y12old ( s t a r t =0);
Real y22old ( s t a r t =0);
Real y32old ( s t a r t =0);
Real y42old ( s t a r t =0);
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Real y52old ( s t a r t =0);
Real y62old ( s t a r t =0);
Real y72old ( s t a r t =0);
Real y82old ( s t a r t =0);
Real y92old ( s t a r t =0);
Real y13old ( s t a r t =0);
Real y23old ( s t a r t =0);
Real y33old ( s t a r t =0);
Real y43old ( s t a r t =0);
Real y53old ( s t a r t =0);
Real y63old ( s t a r t =0);
Real y73old ( s t a r t =0);
Real y83old ( s t a r t =0);
Real y93old ( s t a r t =0);

Real y12old2 ( s t a r t =0);
Real y22old2 ( s t a r t =0);
Real y32old2 ( s t a r t =0);
Real y42old2 ( s t a r t =0);
Real y52old2 ( s t a r t =0);
Real y62old2 ( s t a r t =0);
Real y72old2 ( s t a r t =0);
Real y82old2 ( s t a r t =0);
Real y92old2 ( s t a r t =0);
Real y13old2 ( s t a r t =0);
Real y23old2 ( s t a r t =0);
Real y33old2 ( s t a r t =0);
Real y43old2 ( s t a r t =0);
Real y53old2 ( s t a r t =0);
Real y63old2 ( s t a r t =0);
Real y73old2 ( s t a r t =0);
Real y83old2 ( s t a r t =0);
Real y93old2 ( s t a r t =0);

Real y1doto ld ( s t a r t =0);
Real y2doto ld ( s t a r t =0);
Real y3doto ld ( s t a r t =0);
Real y4doto ld ( s t a r t =0);
Real y5doto ld ( s t a r t =0);
Real y6doto ld ( s t a r t =0);
Real y7doto ld ( s t a r t =0);
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Real y8doto ld ( s t a r t =0);
Real y9doto ld ( s t a r t =0);
Real y12doto ld ( s t a r t =0);
Real y22doto ld ( s t a r t =0);
Real y32doto ld ( s t a r t =0);
Real y42doto ld ( s t a r t =0);
Real y52doto ld ( s t a r t =0);
Real y62doto ld ( s t a r t =0);
Real y72doto ld ( s t a r t =0);
Real y82doto ld ( s t a r t =0);
Real y92doto ld ( s t a r t =0);

Real y1doto ld2 ( s t a r t =0);
Real y2doto ld2 ( s t a r t =0);
Real y3doto ld2 ( s t a r t =0);
Real y4doto ld2 ( s t a r t =0);
Real y5doto ld2 ( s t a r t =0);
Real y6doto ld2 ( s t a r t =0);
Real y7doto ld2 ( s t a r t =0);
Real y8doto ld2 ( s t a r t =0);
Real y9doto ld2 ( s t a r t =0);
Real y12doto ld2 ( s t a r t =0);
Real y22doto ld2 ( s t a r t =0);
Real y32doto ld2 ( s t a r t =0);
Real y42doto ld2 ( s t a r t =0);
Real y52doto ld2 ( s t a r t =0);
Real y62doto ld2 ( s t a r t =0);
Real y72doto ld2 ( s t a r t =0);
Real y82doto ld2 ( s t a r t =0);
Real y92doto ld2 ( s t a r t =0);

output Real e ( s t a r t =0);
output Real er ( s t a r t =0);
output Real h( s t a r t=h0 ) ;
I n t eg e r count ( s t a r t =0);
d i s c r e t e Real NextSampling ( s t a r t=t i 1 ∗h0 ) ;
d i s c r e t e Real NextSampling2 ( s t a r t=t i 2 ∗h0 ) ;
d i s c r e t e Real NextSampling3 ( s t a r t=t i 3 ∗h0 ) ;

a lgor i thm
//Compute f i r s t s ta ge s t a t e d e r i v a t i v e s
when time >= pre ( NextSampling ) then
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y1dot := −1800∗y1 + 900∗y2 ;
y2dot := y1 − 2∗y2 + y3 ;
y3dot := y2 − 2∗y3 + y4 ;
y4dot := y3 − 2∗y4 + y5 ;
y5dot := y4 − 2∗y5 + y6 ;
y6dot := y5 − 2∗y6 + y7 ;
y7dot := y6 − 2∗y7 + y8 ;
y8dot := y7 − 2∗y8 + y9 ;
y9dot := 1000∗y8 − 2000∗y9 + 1000 ;

end when ;

//Compute second s tage s t a t e d e r i v a t i v e s
when time >= pre ( NextSampling2 ) then

y12dot := −1800∗y12 + 900∗y22 ;
y22dot := y12 − 2∗y22 + y32 ;
y32dot := y22 − 2∗y32 + y42 ;
y42dot := y32 − 2∗y42 + y52 ;
y52dot := y42 − 2∗y52 + y62 ;
y62dot := y52 − 2∗y62 + y72 ;
y72dot := y62 − 2∗y72 + y82 ;
y82dot := y72 − 2∗y82 + y92 ;
y92dot := 1000∗y82 − 2000∗y92 + 1000 ;

end when ;

//Compute l a s t s ta ge s t a t e d e r i v a t i v e s and s t a t e s f o r time+h
when time >= pre ( NextSampling3 ) then

y13dot := −1800∗y13 + 900∗y23 ;
y23dot := y13 − 2∗y23 + y33 ;
y33dot := y23 − 2∗y33 + y43 ;
y43dot := y33 − 2∗y43 + y53 ;
y53dot := y43 − 2∗y53 + y63 ;
y63dot := y53 − 2∗y63 + y73 ;
y73dot := y63 − 2∗y73 + y83 ;
y83dot := y73 − 2∗y83 + y93 ;
y93dot := 1000∗y83 − 2000∗y93 + 1000 ;

// S ta t e s
y1 := y13old + a11∗h∗y1dot + a12∗h∗y12dot + a13∗h∗y13dot ;
y2 := y23old + a11∗h∗y2dot + a12∗h∗y22dot + a13∗h∗y23dot ;
y3 := y33old + a11∗h∗y3dot + a12∗h∗y32dot + a13∗h∗y33dot ;
y4 := y43old + a11∗h∗y4dot + a12∗h∗y42dot + a13∗h∗y43dot ;
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y5 := y53old + a11∗h∗y5dot + a12∗h∗y52dot + a13∗h∗y53dot ;
y6 := y63old + a11∗h∗y6dot + a12∗h∗y62dot + a13∗h∗y63dot ;
y7 := y73old + a11∗h∗y7dot + a12∗h∗y72dot + a13∗h∗y73dot ;
y8 := y83old + a11∗h∗y8dot + a12∗h∗y82dot + a13∗h∗y83dot ;
y9 := y93old + a11∗h∗y9dot + a12∗h∗y92dot + a13∗h∗y93dot ;

y12 := y13old + a21∗h∗y1dot + a22∗h∗y12dot + a23∗h∗y13dot ;
y22 := y23old + a21∗h∗y2dot + a22∗h∗y22dot + a23∗h∗y23dot ;
y32 := y33old + a21∗h∗y3dot + a22∗h∗y32dot + a23∗h∗y33dot ;
y42 := y43old + a21∗h∗y4dot + a22∗h∗y42dot + a23∗h∗y43dot ;
y52 := y53old + a21∗h∗y5dot + a22∗h∗y52dot + a23∗h∗y53dot ;
y62 := y63old + a21∗h∗y6dot + a22∗h∗y62dot + a23∗h∗y63dot ;
y72 := y73old + a21∗h∗y7dot + a22∗h∗y72dot + a23∗h∗y73dot ;
y82 := y83old + a21∗h∗y8dot + a22∗h∗y82dot + a23∗h∗y83dot ;
y92 := y93old + a21∗h∗y9dot + a22∗h∗y92dot + a23∗h∗y93dot ;

y13 := y13old + a31∗h∗y1dot + a32∗h∗y12dot + a33∗h∗y13dot ;
y23 := y23old + a31∗h∗y2dot + a32∗h∗y22dot + a33∗h∗y23dot ;
y33 := y33old + a31∗h∗y3dot + a32∗h∗y32dot + a33∗h∗y33dot ;
y43 := y43old + a31∗h∗y4dot + a32∗h∗y42dot + a33∗h∗y43dot ;
y53 := y53old + a31∗h∗y5dot + a32∗h∗y52dot + a33∗h∗y53dot ;
y63 := y63old + a31∗h∗y6dot + a32∗h∗y62dot + a33∗h∗y63dot ;
y73 := y73old + a31∗h∗y7dot + a32∗h∗y72dot + a33∗h∗y73dot ;
y83 := y83old + a31∗h∗y8dot + a32∗h∗y82dot + a33∗h∗y83dot ;
y93 := y93old + a31∗h∗y9dot + a32∗h∗y92dot + a33∗h∗y93dot ;

//Compute error e s t ima te
y13e := c1∗y13old2 + c2∗h∗y1doto ld2 + c3∗y12old2 +

c4∗h∗y12doto ld2 + c5∗y13old + c6∗y1old +
c7∗h∗y1doto ld + c8∗y12old + c9∗h∗y12doto ld +
c10∗h∗y13dot ;

y23e := c1∗y23old2 + c2∗h∗y2doto ld2 + c3∗y22old2 +
c4∗h∗y22doto ld2 + c5∗y23old + c6∗y2old +
c7∗h∗y2doto ld + c8∗y22old + c9∗h∗y22doto ld +
c10∗h∗y23dot ;

y33e := c1∗y33old2 + c2∗h∗y3doto ld2 + c3∗y32old2 +
c4∗h∗y32doto ld2 + c5∗y33old + c6∗y3old +
c7∗h∗y3doto ld + c8∗y32old + c9∗h∗y32doto ld +
c10∗h∗y33dot ;

y43e := c1∗y43old2 + c2∗h∗y4doto ld2 + c3∗y42old2 +
c4∗h∗y42doto ld2 + c5∗y43old + c6∗y4old +
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c7∗h∗y4doto ld + c8∗y42old + c9∗h∗y42doto ld +
c10∗h∗y43dot ;

y53e := c1∗y53old2 + c2∗h∗y5doto ld2 + c3∗y52old2 +
c4∗h∗y52doto ld2 + c5∗y53old + c6∗y5old +
c7∗h∗y5doto ld + c8∗y52old + c9∗h∗y52doto ld +
c10∗h∗y53dot ;

y63e := c1∗y63old2 + c2∗h∗y6doto ld2 + c3∗y62old2 +
c4∗h∗y62doto ld2 + c5∗y63old + c6∗y6old +
c7∗h∗y6doto ld + c8∗y62old + c9∗h∗y62doto ld +
c10∗h∗y63dot ;

y73e := c1∗y73old2 + c2∗h∗y7doto ld2 + c3∗y72old2 +
c4∗h∗y72doto ld2 + c5∗y73old + c6∗y7old +
c7∗h∗y7doto ld + c8∗y72old + c9∗h∗y72doto ld +
c10∗h∗y73dot ;

y83e := c1∗y83old2 + c2∗h∗y8doto ld2 + c3∗y82old2 +
c4∗h∗y82doto ld2 + c5∗y83old + c6∗y8old +
c7∗h∗y8doto ld + c8∗y82old + c9∗h∗y82doto ld +
c10∗h∗y83dot ;

y93e := c1∗y93old2 + c2∗h∗y9doto ld2 + c3∗y92old2 +
c4∗h∗y92doto ld2 + c5∗y93old + c6∗y9old +
c7∗h∗y9doto ld + c8∗y92old + c9∗h∗y92doto ld +
c10∗h∗y93dot ;

e := sq r t ( ( y13e − y13 )ˆ2 + ( y23e − y23 )ˆ2 + ( y33e − y33 )ˆ2 +
( y43e − y43 )ˆ2 + ( y53e − y53 )ˆ2 + ( y63e − y63 )ˆ2 +
( y73e − y73 )ˆ2 + ( y83e − y83 )ˆ2 + ( y93e − y93 ) ˆ 2 ) ;

e r := i f e > t o l /10 then e else t o l /10 ;

//Keep s t ep s i z e cons tant f o r 2 s t e p s
i f count == 2 then

h := max(h/2 , min (2∗h , ( t o l / er )ˆ(1/6)∗h ) ) ;
count := 1 ;

else
count := count + 1 ;

end i f ;

//Next i n t e g r a t i o n time i n s t a n t s
NextSampling := time + h∗ t i 1 ;
NextSampling2 := time + h∗ t i 2 ;
NextSampling3 := time + h∗ t i 3 ;
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//Remember s t a t e and s t a t e d e r i v a t i v e h i s t o r y
y12old2 := y12old ;
y22old2 := y22old ;
y32old2 := y32old ;
y42old2 := y42old ;
y52old2 := y52old ;
y62old2 := y62old ;
y72old2 := y72old ;
y82old2 := y82old ;
y92old2 := y92old ;

y13old2 := y13old ;
y23old2 := y23old ;
y33old2 := y33old ;
y43old2 := y43old ;
y53old2 := y53old ;
y63old2 := y63old ;
y73old2 := y73old ;
y83old2 := y83old ;
y93old2 := y93old ;

y1doto ld2 := y1doto ld ;
y2doto ld2 := y2doto ld ;
y3doto ld2 := y3doto ld ;
y4doto ld2 := y4doto ld ;
y5doto ld2 := y5doto ld ;
y6doto ld2 := y6doto ld ;
y7doto ld2 := y7doto ld ;
y8doto ld2 := y8doto ld ;
y9doto ld2 := y9doto ld ;

y12doto ld2 := y12doto ld ;
y22doto ld2 := y22doto ld ;
y32doto ld2 := y32doto ld ;
y42doto ld2 := y42doto ld ;
y52doto ld2 := y52doto ld ;
y62doto ld2 := y62doto ld ;
y72doto ld2 := y72doto ld ;
y82doto ld2 := y82doto ld ;
y92doto ld2 := y92doto ld ;
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y1old := y1 ;
y2old := y2 ;
y3old := y3 ;
y4old := y4 ;
y5old := y5 ;
y6old := y6 ;
y7old := y7 ;
y8old := y8 ;
y9old := y9 ;

y12old := y12 ;
y22old := y22 ;
y32old := y32 ;
y42old := y42 ;
y52old := y52 ;
y62old := y62 ;
y72old := y72 ;
y82old := y82 ;
y92old := y92 ;

y13old := y13 ;
y23old := y23 ;
y33old := y33 ;
y43old := y43 ;
y53old := y53 ;
y63old := y63 ;
y73old := y73 ;
y83old := y83 ;
y93old := y93 ;

y1doto ld := y1dot ;
y2doto ld := y2dot ;
y3doto ld := y3dot ;
y4doto ld := y4dot ;
y5doto ld := y5dot ;
y6doto ld := y6dot ;
y7doto ld := y7dot ;
y8doto ld := y8dot ;
y9doto ld := y9dot ;

y12doto ld := y12dot ;
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y22doto ld := y22dot ;
y32doto ld := y32dot ;
y42doto ld := y42dot ;
y52doto ld := y52dot ;
y62doto ld := y62dot ;
y72doto ld := y72dot ;
y82doto ld := y82dot ;
y92doto ld := y92dot ;

end when ;

end odeArad5 ;
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