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ABSTRACT

In the past research has been done to solve stiff systems described by ordinary differen-

tial equations (ODEs). An important result are the famous Backward Difference Formulae

(BDF) [10]. These methods are capable of solving stiff ODE-systems up to accuracy order

six — accuracy order six means that the error made at each integration step is roughly

proportional to the seventh power of the step-size. So far, no BDF algorithms of seventh

order and higher, have been found that are stable.

This thesis proposes the Regression Backward Difference Formulae (RBDF) as new numeri-

cal solution methods for stiff systems described by first order ordinary differential equations.

The RBDF algorithms derived in this thesis, by means of a new regression technique, will

be of sixth and seventh order, and it will be shown that some of the sixth order RBDF

algorithms compare favorably against the sixth order BDF.

The results for the new seventh order RBDF algorithms are shown, but not compared to

BDF since no stable seventh order BDF technique exists.

It can be expected that RBDF methods of order higher than seven may be found by using

the proposed regression approach.

In particular, celestial analysis demands highly accurate calculation and integration. There-

fore, this might be one area where even higher order RBDF techniques than seventh order

RBDF could be applied.
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CHAPTER 1

Introduction

1.1 Ordinary Differential Equations (ODE)

A first order scalar ODE can be written as

dx
dt = ẋ(t) = f(x, u, t) (1.1)

with initial condition

x(t0) = x0. (1.2)

Here t is the independent variable (which usually, but not necessarily, denotes time), u is a

given input, and the function f indicates any explicit functionality between the dependent

variable x and the independent variable t.

Without loss of generality only systems, as shown in equation (1.3), are considered.

ẋ(t) = f(x, u), (1.3)

x(t0) = x0. (1.4)

i.e., systems, where the independent variable t does not appear explicitly in the equations.

In addition to the first-order scalar equation (1.3) it is possible to consider a set of

simultaneous first-order equations, or an equivalent higher-order single equation. Thus we
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may write

ẋi(t) = fi(u, x1, . . . xns) i = 1, 2, . . . ns, (1.5)

as representing a set of ns simultaneous first-order ODEs with the corresponding initial

conditions

xi(t0) = x0i. (1.6)

As long as the derivatives ẋ1, . . . ˙xns appear only on the left-hand side of the differential

equations, then (1.5) is equivalent to one nth
s -order equation. The equations (1.5) and (1.6)

can be written in vector form:

dx
dt = ẋ(t) = f(x, u),

x(t0) = x0,

(1.7)

These relations represent the autonomous initial value problem that this thesis will solve

with RBDF techniques.

1.2 Numerical methods to solve ODEs

There is a variety of numerical techniques which may be applied to solve system (1.7).

Two major approaches are used to solve these systems: The single-step methods and the

multistep methods. Both techniques try to approximate a Taylor-Series expansion of the

unknown solution around the current time instant.

In single-step methods, the higher order derivative information is discarded. This informa-

tion is thrown out by only using the function value xk at the preceding time instant, and

maybe its derivative, ẋk, to calculate the unknown variable xk+1. The multistep approach,



13

however, preserves some of the higher order derivative information by using data of earlier

values xi and ẋi.

In general a multistep integration algorithm can be expressed as

xk+1 = b−1hfk+1 + a0xk + b0hfk + a1xk−1 + . . . + am−1xk+1−m + bm−1hfk+1−m

=
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihfk−i,

(1.8)

where fi = ẋi is the derivative of the system variable x at the time instant t = t0 + i∆t.

Note that this method (1.8) is implicit when b−1 �= 0 and it is explicit when b−1 = 0. The

number m denotes the number of steps, so the algorithm shown in (1.8) can be called an

m-step integration algorithm.

Note also that the algorithm depicted in equation (1.8) only uses values of x and ẋ and

not higher derivatives, such as ẍk. It is also required that (1.8) be applied with equispaced

steps. These restrictions may limit the performance of solutions based on (1.8). However,

(1.8) represents a very important and extensive class of formulas which will be used to

derive RBDF methods.

The two most famous and frequently used multistep integration methods are the Adams

methods and the Backward Difference Formulae (BDF).

The Adams algorithms use the function value xk one time step back and the derivative

values of several of the preceding function values such that they can be written in the form

xk+1 = b−1hfk+1 + a0xk + b0hfk + b1hfk−1 + . . . + bm−1hfk+1−m. (1.9)

If b−1 = 0 then equation (1.9) is reduced to the explicit Adams-Bashforth algorithms.

However, if b−1 �= 0 then equation (1.9) reduces to the implicit Adams-Moulton methods.
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Unlike the Adams methods, the BDF techniques are always implicit and take into account

the current derivative fk+1 = ẋk+1 as well as the state values calculated at earlier time

instants. Figures 1.1 and 1.2 show which data points the Adams methods and BDF use to

compute the unknown value xk+1 of the function x.

x

dx/dt

t

tk+1kk−1k−2t t t t

Data points
Point to be
calculated

x

dx/dt

t

tk+1kk−1k−2t t t t

Figure 1.1: Data points used by the Adams-Bashforth algorithms (left) and the Adams-
Moulton algorithms (right)

x

dx/dt

t

tk+1kk−1k−2t t t t

Figure 1.2: Data points used by the BDF
algorithms
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1.3 Stability versus accuracy

1.3.1 Introduction

In this section two key considerations will be discussed that are important for the ana-

lysis of numerical integration algorithms: These are accuracy and stability. Both consid-

erations are strongly linked to the calculation error in a single step and the accumulation

of errors in multiple steps. The issue of accuracy is detailed in section 1.3.2 where vari-

ous types of calculation errors are discussed. The issue of stability is discussed in section

1.3.3. Finally, the relationship between so-called “spurious” or “extraneous” eigenvalues

and stability/accuracy will be introduced in section 1.3.4, since this phenomenon occurs in

multistep integration methods.

1.3.2 Errors incurred in numerical integration

The error introduced by approximating the differential equation by the difference equa-

tion (1.8) is termed local truncation error (LTE). It can be shown [14] that the LTE, at

time tk, is given by

T (x, h) = Cn+1h
n+1x(n+1)(tk) + O(hn+2), (1.10)

where the coefficient Cn+1 is called the error constant of the method (see chapter 3 for

additional details), h is the steplength of the method, x(n+1) is the (n + 1)th derivative of

the function at time tk, and n is the order of the integration algorithm.

Moreover, errors also occur during integration which are due to the deviation of the numer-

ical solution from the exact theoretical solution of the difference equation. Included in this

class of errors are round-off errors and convergence errors which are incurred since (1.8) is
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implicit and must be solved by Newton-iteration.

Another class of errors is called the startup error and it is introduced because a multistep

method requires values of m earlier steps. Typically, a single-step method is used to gen-

erate m starting steps. Hence, an error is introduced into the calculation because of the

numerical approximation of the initial steps.

In work done by Cellier [4], it was shown that the effect of the startup error being accumu-

lated during a simulation is eliminated if the system being integrated is analytically stable

and if the integration method in use is numerically stable.

Hence, the approximated initial conditions of an integration step don’t excessively affect the

result of the overall simulation of an analytically stable system, i.e. the initial conditions of

a m-step method that are produced by a single-step algorithm, are not of large significance

for the resulting accuracy of the overall simulation.

Cellier [4] notes two other classes of errors, the parametric model error and the structural

model error. Parametric model errors occur because the model parameters are inaccurately

estimated, whereas structural model errors are due to the fact that the model fails to de-

scribe important dynamics of the real system.

Thus, these types of errors have nothing to do with the accuracy and stability of the nu-

merical integration technique since they are present in the model already.

The LTE and the startup errors accumulate to produce the global truncation error (GTE)

or accumulated error [14]. The GTE can be expressed as

εk = x(tk) − xk, (1.11)
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where x(tk) is the exact function value of the analytical solution, and xk is the numerical

approximation of x(tk).

Note that the global truncation error cannot be calculated as the sum of the local errors.

It must be computed as a solution to the linear k-step difference equation

ρ(E)εk + hσ(E)λkεk + Tk + ηk = 0,

which will be derived in section 1.3.4.

While the LTE is proportional to hn+1 for a nth order algorithm, Lambert shows in [14]

that the GTE is roughly proportional to hn for analytically stable systems. Therefore, one

power of h has been lost during the process of accumulation.

1.3.3 Stability of numerical methods

Dahlquist states in [7] that:

Definition 1.3.1 A method is said to be A-stable, if the values ĥ = hλ have negative real

parts, where h is the steplength of the applied numerical method and λ denotes the (complex)

eigenvalue of the test-system ẋ = λx.

The highest order of an A-stable linear multistep method is two [7]. The smallest truncation

error is obtained by using the trapezoidal rule.

In order to be able to apply the definition of A-stability to higher order linear multistep

techniques, the requirements of A-stability have to be relaxed:

The first step is to only regard a wedge in the left half side of the complex λh-plane. This

motivates the definition [20]:
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Definition 1.3.2 A method is said to be A(α)-stable, α ∈ (0, π/2) if

RA ⊇ {ĥ| − α < π − arg{ĥ} < α},

it is said to be A(0)-stable if it is A(α)-stable for some α ∈ (0, π/2), where RA is the region

of absolute stability, and ĥ = hλ.

Gear proposes in [10] an alternative way of relaxing the requirements of A-stability by using

Cartesian rather than polar coordinates:

Definition 1.3.3 A method is said to be stiffly stable if RA ⊇ R1 ∪ R2, where R1 =

{ĥ|Re{ĥ} < −a} and R2 = {ĥ| − a ≤ Re{ĥ} < 0,−c ≤ Im{ĥ} ≤ c}, a and c are positive

real numbers and ĥ = hλ.

It is characteristic for stiffly stable systems to have eigenvalues which lie far left in the left

half plane. They represent the fast transients of the system. In order to eliminate these

transients a large damping is required as the real part of the eigenvalues goes to −∞. This

results in another definition [2],[8]:

Definition 1.3.4 A one-step method is said to be L-stable if it is A-stable and, in addition,

when applied to the scalar test equation ẋ = λx, λ a complex constant with Re{λ} < 0, it

yields xk+1 = R(hλ)xk, where |R(hλ)| → 0 as Re{hλ} → −∞.

Note that L-stable methods mustn’t be applied to unstable systems since the unstable

behavior would be removed such that the systems would appear stable [14].

Figure 1.3 illustrates the given definitions of stability:
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Figure 1.3: Stability definitions for numerical integration methods.

1.3.4 Spurious eigenvalues

Given the linear multistep method

xk+1 =
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihfk−i. (1.12)

The generating polynomials can be introduced [15]

ρ(ξ) = −ξm + a0ξ
m−1 + . . . + am−1 (1.13)

σ(ξ) = b−1ξ
m + b0ξ

m−1 + . . . + bm−1 (1.14)

along with the shift operator E ,

Emxk = xk+m, (1.15)

to reformulate equation (1.12) more compactly as

ρ(E)xk−m+1 + hσ(E)fk−m+1 = 0. (1.16)

The true solution, x(tk), is substituted into equation (1.16) which results in

ρ(E)x(tk) + hσ(E)f (tk, x(tk)) − Tk = 0, (1.17)
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where Tk = T (tk, h).

Note that the index of x has been changed from k − m + 1 to k for convenience.

For the numerical solution the relationship

ρ(E)xk + hσ(E)f(tk, xk) + ηk = 0 (1.18)

holds, where ηk represents the error which results from not having solved the difference

equation exactly.

Subtracting equation (1.17) from equation (1.18) and then applying the mean-value theorem

f(tk, xk) − f (tk, x(tk)) = fx̄(tk, x̄) (xk − x(tk)) , (1.19)

where xk ≤ x̄ ≤ x(tk), denoting fx̄(tk, x̄) as λk and introducing the accumulated error

εk = xk − x(tk), (1.20)

the m-step difference equation of the accumulated error εk

ρ(E)εk + hσ(E)λkεk + Tk + ηk = 0. (1.21)

is obtained. Assuming that Tk, λk and ηk are constants, equation (1.21) yields

ρ(E)εk + hλσ(E)εk + T + η = 0. (1.22)

Therefore, the accumulated error εk obeys a linear, inhomogeneous, m-step difference equa-

tion with constant coefficients. By solving the characteristic equation of (1.22),

ρ(µ) + hλσ(µ) = 0, (1.23)

the characteristic roots µi, i = 1, 2, . . . m are obtained.

When equation (1.22) is solved and the constant particular solution εkp is ignored, only the
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homogeneous solution εkh remains as shown in equation (1.24).

εk = εkh + εkp =

≈ εkh =

= c1µ
k
1 + c2µ

k
2 + . . . + cmµk

m.

(1.24)

Since the numerical solution xk obeys the same difference equation as the accumulated

error εk, xk can be expressed as

xk = d1µ
k
1 + d2µ

k
2 + . . . + dmµk

m. (1.25)

The root µ1, which is called the “principal root,” approximates the Taylor Series expansion

of the true solution. This approximation has a truncation error which corresponds to the

order of the method.

The other m − 1 roots are termed “spurious,” “parasitic,” or “extraneous” roots or eigen-

values.

Lapidus [10] shows that a multistep method, given by (1.12), is absolutely stable if, for

h < h0, where h0 is a real constant, the extraneous solutions in (1.25) vanish as k → ∞

[15].

Alternatively, the method is absolutely stable for those values of hλ where both the prin-

cipal root and the spurious roots are within the unit circle.

The spurious eigenvalues don’t exist in the original system and have been introduced by

the multistep algorithm, that substitutes a first-order differential equation by a mth order

difference equation. Since they bear no connection to the exact solution, they can cause
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numerical instability [15]. The impact of the extraneous eigenvalues on the stability prop-

erties of a multistep method can also be observed when regarding the stability domain of

the method (see chap. 3).

1.4 Stiff systems

Many physical systems give rise to ordinary differential equations which have eigenvalues

that vary greatly in magnitude. For instance, such situations can arise in studies of chem-

ical kinetics, network analysis and simulation, CAD techniques, and the Method-of-Lines

solution to parabolic partial differential equations.

Practical problems that exhibit such properties include the attitude control system of a

rocket [18], and switched-mode power supplies [19].

An illustrating example of a stiff system (taken from [9]) shall now be discussed.

The analytical solution of the linear system ẋ = Ax with the system-matrix

A =

⎛
⎜⎜⎜⎝

998 1998

−999 −1999

⎞
⎟⎟⎟⎠

and the initial conditions x1(0) = x2(0) = 1 is

x1(t) = 4e−t − 3e−1000t (1.26)

x2(t) = −2e−t + 3e−1000t. (1.27)

A plot of (1.26) and (1.27) is shown in figure 1.4.
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Figure 1.4: Simulation of a stiff linear system.

After a short time the solution can be closely approximated by the dominant terms as

x1(t) = 4e−t (1.28)

x2(t) = −2e−t, (1.29)

since the fast decaying component vanished. Therefore, an informal definition of a stiff

problem is one in which the solution components of interest are slowly varying but solu-

tions with rapidly changing components are possible [18].

Lambert [14] gives, among others, one essential definition of stiffness in his book:

Definition 1.4.1 (A system is called stiff if a) numerical method with a finite region

of absolute stability, applied to a system with any initial conditions, is forced to use in

a certain interval of integration a steplength which is excessively small in relation to the

smoothness of the exact solution in that interval.
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Using this definition, an algorithm with finite region of absolute stability (such as explicit

integration methods) used to integrate a stiff system has to apply a very small steplength

which gives rise to long and expensive simulation runs. This is the real problem when

integrating stiff ordinary differential equations.

The statement made above still doesn’t define the term stiffness exactly because of the

fuzzy expression “excessively small.” Therefore, Cellier [4] further specifies the stiffness of

a system in the following manner:

Definition 1.4.2 A system is called stiff if, when integrated with any explicit RKn algo-

rithm and a local error tolerance of 10−n, the step-size of the algorithm is forced down to

below a value indicated by the local error estimate due to constraints imposed on it by the

limited size of the numerically stable region.

This is probably the most exact definition of stiffness available. However, it still has an

inherent drawback, namely that a system may be regarded as stiff when integrated with

one RKn whereas it is not stiff when integrated with another [4].

Although explicit methods — like the explicit RKn algorithms — may be good for checking

the stiffness of a system, they are not capable of integrating stiff systems because their

stability domain in the left half plane is too small.

Dahlquist [14] states that “an explicit linear multistep method cannot be A-stable” and

“the order of an A-stable linear multistep method cannot exceed two.” These statements are

referred to as the “second Dahlquist barrier.” It can also be noted that an “explicit method

cannot be A(0)-stable” [16],[20].

Because of these properties of explicit methods they don’t lend themselves to the integration
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of stiff systems. Those should be integrated by a method which is at least A(α)-stable.

If the closed instability domain doesn’t intersect with the negative real axis of the complex

(λh)-plane, and if the system being integrated is stable and only has real eigenvalues, then

any steplength may be used to scale the eigenvalues of the system without fear of causing

numerical instability. In this case the steplength is not restricted by stability requirements,

but instead by accuracy requirements. Since explicit methods don’t have this feature,

implicit techniques have to be used to simulate stiff systems [14]. However, a Newton

iteration is required to solve the implicit algebraic equation, since fixed-point iteration

again destroys the stability properties of the stiffly stable method [4]. This causes higher

computation cost.
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CHAPTER 2

Derivation of RBDF by regression

2.1 Introduction

In chapter 1 it has been shown that linear m-step integration algorithms of order n

use p (p ≥ n + 1) function values or derivatives to calculate the unknown value xk+1.

As a consequence, numerical integration by a multistep method can be considered as an

interpolation procedure where a higher-order interpolation (extrapolation) polynomial is

used to approximate a function g through p given data points and calculate the unknown

point which is represented by xk+1. Note that g is not identical with the function x being

integrated by the multistep technique. It is instead formed by both x and its derivative f

at special time instants.

If there are p = n + 1 (n = accuracy order of the integration method) distinct data points,

then the interpolation problem has a unique solution and the resulting polynomial doesn’t

only approximate the function through the given data points but it interpolates the points

that it passes through [6], [12].

An interesting question arises about using more data points, that is, p > n+1. In practice,

this means that the multistep integration algorithm applies p > n+1 earlier function values

or derivatives to calculate the unknown function value xk+1 with the accuracy order of n.
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Thus, the order is not increased by using more data points. Instead, the interpolation

results in an nth order method which might have better properties because it uses more

information.

As far as the interpolation problem is concerned, having more data points necessarily means

that we are confronted with an overdetermined system which may be used to attain two

different types of smoothing [6]:

1. A reduction of the effect of random errors in the values of the function.

2. A smoother shape between the net points (even when the function values are perfect).

The solution to this overdetermined system using a regression approach will be discussed

in the next section.

2.2 Formulation and solution of the regression problem

An nth-order multistep algorithm is defined through an nth-order polynomial fitted

through p points which can be either function values or derivatives of the function to

be integrated.

By introducing the auxiliary variable

s =
t − tk

h
, (2.1)

such that s = 1.0 corresponds to t = tk+1 and s = 0.0 corresponds to t = tk, the interpo-

lating nth-order polynomial can be written in the form

p(s) = a0 + a1s + a2s
2 + . . . ansn, (2.2)
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where the coefficients ai are unknown.

The time derivative of equation (2.2) is given by

hṗ(s) = a1 + 2a2s + 3a3s
2 + . . . + nansn−1. (2.3)

Since the polynomial p(s) interpolates the function x in the data points xk−i, i = 0, 1, . . . , m,

relation (2.2) results in

p(0) = a0 = xk

p(−1) = a0 − a1 + a2 − a3 + . . . + an(−1)n = xk−1

p(−2) = a0 − 2a1 + 4a2 − 8a3 + . . . + an(−2)n = xk−2

...
...

...

p(−m) = a0 − ma1 + m2a2 + . . . + an(−m)n = xk−m.

(2.4)

Accordingly, it follows from (2.3) that

hṗ(1) = a1 + 2a2 + 3a3 + . . . + nan = hfk+1

hṗ(0) = a1 = hfk

hṗ(−1) = a1 − 2a2 + 3a3 + . . . + nan(−1)n−1 = hfk−1

...
...

...

hṗ(−m) = a1 − 2a2m + 3a3m
2 + . . . + nan(−m)n−1 = hfk−m.

(2.5)
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Equations (2.4) and (2.5) can be combined such that they fit the matrix form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hfk+1

xk

hfk

xk−1

hfk−1

...

xk−m

hfk−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 · · · n

1 0 0 0 · · · 0

0 1 0 0 · · · 0

1 −1 1 −1 · · · (−1)n

0 1 −2 3 · · · n(−1)n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 −m m2 · · · (−m)n

0 1 −2m 3m2 · · · n(−m)n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0

a1

a2

...

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.6)

which can be abbreviated by

x = Ha. (2.7)

Hence, vector x has 2m + 3 elements for an m-step algorithm and contains all the in-

formation about the state vector and its derivative at the given data points. Vector a

contains n + 1 unknown coefficients (n = order of the integration algorithm) and H is the

[(2m + 3) × (n + 1)] transformation matrix.

In the special case where n + 1 = 2m + 3, the matrix H will be quadratic and nonsingu-

lar. Therefore, H can be inverted and equation (2.7) has the unique solution a = H−1x.

However, the RBDF techniques derived in this thesis use more than n +1 data points such

that the case 2m + 3 > n + 1, has to be considered — note that 2m + 3 is the maximum

number of data points. Consequently, equation (2.7) results in an overdetermined system.

Since this system cannot be solved exactly any more, a vector a has to be found such that
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H a is the “best” approximation to x [6]. The solution vector a is the least-squares solution

of the overdetermined system.

Definition 2.2.1 The vector a is defined as the vector which minimizes the Euclidean

length of the residual vector, i.e. minimizes

‖r‖2 = (rT r)1/2, r = Ha. (2.8)

In [1] it is stated that when the columns of H are linearly independent, i.e. H has full rank

(ρ(H) = n + 1), then the matrix HT H is nonsingular and can be inverted.

Hence, in order to solve system (2.7) it first has to be shown that the columns of matrix

H are linearly independent. This is done by defining two generating row vectors p and q

shown in equations (2.9) and (2.10).

p = [ 1 −s s2 . . . (−s)n ], (2.9)

q = [ 0 1 −2s 3s2 . . . n(−s)n−1 ]. (2.10)

The rows of H that correspond to xk−s are formed by the components of vector p and

and the rows corresponding to hfk−s are formed by the components of vector q. The

components of these two row vectors (2.9) and (2.10) are elements of polynomials. Such

elements are linearly independent [3] and thus, all the column vectors of H, that are formed

by the components of the generating row vectors p and q when varying the parameter s,

are linearly independent, too, which was to be shown.

Therefore, matrix H can be inverted and it follows from (2.7) that

HT x = HT Ha (2.11)
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or

a = (HT H)−1HT x. (2.12)

Dahlquist [6] proves that this is the unique solution which solves the overdetermined system

(2.7) in a least-squares sense.

In the literature the matrix

H+ = (HT H)−1HT (2.13)

is referred to as the Penrose-Moore Pseudoinverse.

By using (2.12) to calculate a, the elements of a can be substituted into (2.2) to determine

xk+1.

xk+1 = p(1) = a0 + a1 + . . . + an
(2.14)

Note that the coefficients ai are not constants. Each of them represents a linear combination

of the elements of the vector x, given in (2.6) and (2.7).

2.3 Development of an algorithm for the search of RBDF

In the preceding section it has been described how an integration algorithm can be

derived if p data points are chosen out of the possible 2m + 3 points.

Since m and p are free parameters, the search is (theoretically) not restricted, and to get an

nth-order integration algorithm, more data points may be used as long as p ≥ n + 1 holds.

In practice, the search is limited by efficiency considerations. Since the H-matrix becomes

larger as m grows, the integration algorithm is likely to consume more execution time.

Thus there are two questions that have to be answered:
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1. How many data points should be used?

2. Where should these data points lie to result in an integration algorithm with minimum

stability properties?

In this context, having “minimum stability properties” means that the stability locus of

an implicit method doesn’t intersect with the negative real axis of the complex (λh)-plane

(see chapter 3).

To answer the first question, multiple experiments have been performed with only a few data

points. These experiments have shown that the probability of getting implicit algorithms

with minimum stability properties shrinks as the number of employed data points grows.

Hence, the search starts with pmin = n+2 employed data points and it stops at pmax = 2n

data points. No decent RBDF algorithms have been found for values p > 2n.

Concerning the second question, a lot of calculations with a small number of data points

have shown that most of the data points that yield decent integration algorithms lie within

the time range [tk−n−2, tk+1]. The stability properties of the resulting RBDF algorithms

worsen as the data points get farther away from the defined interval. For this reason the

search is limited to the interval [tk−n−2, tk+1].

This search for RBDF methods can be automated by testing all possible combinations of p

data points within the range [tk−n−2, tk+1] where p is incremented step by step from n + 2

to 2n.
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CHAPTER 3

Analysis of RBDF

3.1 Introduction

In this chapter some methods will be discussed to analyze integration methods, in par-

ticular RBDF.

These integration methods will be used in chapters 5 and 6 to assess the RBDF methods

that will be derived.

The technique being discussed in the second section of this chapter is the analysis of the

stability domain of the numerical integration method.

In the third section the error constant will be computed.

Another important method for investigating the quality of RBDF is the analysis of the

damping plot which will be described in section four.

The order star will be introduced in the fifth section to make some additional statements

about stability and accuracy. Finally, the Bode plot of the integration algorithm will be

analyzed in section six to see how the algorithm behaves in the frequency domain.
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3.2 Stability domain

3.2.1 Introduction

In chapter 1, some definitions of numerical stability are given. Chapter 1 also mentions

that the stability properties of the integrator depend strongly on both the steplength used

during the integration, and the eigenvalues of the system.

Before the numerical stability domain is determined, the analytical stability of the system

being integrated can be determined using the following definition:

Definition 3.2.1 The solution of the autonomous, time-invariant linear system

ẋ = Ax (3.1)

with the initial conditions specified by x(t = t0) = x0 is called analytically stable if all the

eigenvalues of A have negative real parts.

Figure 3.1 shows the domain of analytical stability in the λ-plane.

Suppose that the system (3.1) is analytically stable and that it is integrated by a linear

Im(

Re(λ)

λ)

Figure 3.1: Domain of analytical stability

technique. Then, the domain of analytical stability changes and it becomes a function of

the step-size h. Hence, the stability domain of a linear integration method (with fixed
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step-size h), when used to integrate the autonomous system (3.1) is defined as the region

in the complex (λh)-plane where the eigenvalues of the equivalent discrete time system all

lie within the unit circle. Note that all the eigenvalues have negative real parts. This is

illustrated by means of the implicit Backward Euler algorithm expressed by:

xk+1 = xk + hf
k+1

, (3.2)

where f
k+1

= ẋk+1.

Substituting equation (3.1) into (3.2), equation (3.2) results in

xk+1 = xk + hAxk+1,

or

xk+1 = [I(ns) − Ah]−1xk, (3.3)

where ns is the dimension of system (3.1) and I(ns) is the (ns × ns) identity matrix.

Consequently, the continuous linear system (3.1) has been converted into the equivalent

discrete system (3.3) with the new system matrix

F = [I(ns) − Ah]−1. (3.4)

This discrete system is analytically stable if all of the eigenvalues of F are located within

the unit circle [4].

Since matrix F depends on the steplength h, the eigenvalues of F depend on h, too.

Therefore, the stability domain indeed depends on h. Figure 3.2 displays the stability

region of the implicit Backward Euler integration algorithm. Figure 3.2 shows that a

typical property of implicit methods is to have a region of instability in the right half plane,
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Im(

Re(λ

λ h)

h)
20

Figure 3.2: Stability domain of the BE-algorithm

close to the origin.

When integrating a stable system, whose eigenvalues are in the left half plane, the instability

region shown in figure 3.2 shouldn’t extend into the left half plane. However, this property,

called A-stability in chapter 1, cannot be obtained by linear multistep methods of higher

than second order.

At the very least an implicit integration algorithm must have an instability domain that

doesn’t include the origin. In other words, the stability locus, i.e. the border line of the

stability domain, mustn’t intersect with the negative real axis. Recall that this has been

the main requirement for RBDF algorithms to be good candidates in chapter 2.

3.2.2 Stability domain of RBDF

In order to depict the stability domain, the F -matrix, the discrete time system that

results from applying the RBDF method to system (3.1) is calculated.

The general RBDF algorithm is given by

xk+1 =
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihf
k−i

. (3.5)
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By applying this algorithm to system (3.1), relation (3.5) can be rewritten in the form of

xk+1 = b−1Ahxk+1 + a0xk + b0Ahxk + . . . + am−1xk−m+1 + bm−1Ahxk−m+1,

or

xk+1 = [I(ns) − b−1Ah]−1[(a0I
(ns) + b0Ah)xk + (a1I

(ns) + b1Ah)xk−1 + . . .+

+(am−1I
(ns) + bm−1Ah)xk−m+1],

(3.6)

where ns is the dimension of system (3.1) and I(ns) is the (ns × ns) identity matrix.

Equation (3.6) is a mth-order difference equation which can be transformed into m first

order difference equations by applying the transformation

z1(tk) = x(tk−m+1)

z2(tk) = x(tk−m+2)

...

zm(tk) = x(tk).

(3.7)

or

z1(tk+1) = x(tk−m+2) = z2(tk)

...

zm(tk+1) = x(tk+1).

(3.8)

By substituting xk+1 from equation (3.6) into (3.8), it follows that

z(tk+1) = Fz(tk), (3.9)

where the mns-vector z is given by

z(ti) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1(ti)

z2(ti)

...

zm(ti)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = k, k + 1, (3.10)
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and the (mns × mns)-matrix F can be written as

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O(ns) I(ns) O(ns) · · · O(ns)

... O(ns) I(ns)
. . .

...

... O(ns)
. . . O(ns)

...
. . . I(ns)

Fm,1 Fm,2 · · · Fm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.11)

Fm,1 = Q(ns)[am−1I
(ns) + bm−1Ah], (3.12)

Fm,2 = Q(ns)[am−2I
(ns) + bm−2Ah], (3.13)

Fm,m = Q(ns)[a0I
(ns) + b0Ah], (3.14)

Q(ns) = [I(ns) − b−1Ah]−1. (3.15)

(3.16)

As an example one of the RBDF methods that have been found, RBDF61, is considered:

xk+1 = 594
1357hfk+1 + 977

461xk − 1612
915 xk−1 + 361

943xk−2

+1171
1310xk−3 − 3199

3212xk−4 + 257
592xk−5 − 389

5370xk−6

(3.17)

Figure 3.3 displays the stability region of RBDF61.

There exist many different ways of assessing the stability domain of implicit methods. One

criteria is the size of the stability region in the left half plane. Since most of the systems

being integrated are stable, this region should be as large as possible. Therefore, the

instability domain shouldn’t extend too far into the left half plane.

By considering the definition of A(α)-stability given in chapter 1, the angle α should be

large.

For stiff systems the definition of stiffly stable algorithms might be even more useful. This
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Figure 3.3: Stability region of RBDF61

definition of stability is shown once again in figure 3.4. In this case, the parameter a

c

−c

−a

Figure 3.4: Stiffly stable system

should be as small as possible and c should be as large as possible.

It can also be observed that the spurious eigenvalues (discussed in chapter 1) may affect

the shape of the stability region. The stronger this impact is the less smooth the stability

locus becomes. As an example, figure 3.4 shows the stability domain of RBDF69, whose
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formula is given by:

xk+1 = 232
533hfk+1 + 2734

1241xk − 414
227xk−1 − 211

1164hfk−1

+1007
1440xk−2 − 985

2009xk−5 + 871
5716hfk−5 + 471

1144xk−6 + 191
1020hfk−6

(3.18)

Figure 3.5 illustrates that the stability locus of (3.18) has some sharp bends which are
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Figure 3.5: Stability locus of RBDF69

caused by the spurious eigenvalues described in chapter 1. As noted previously, they

strongly disturb the behavior of integration algorithms in terms of stability and accuracy.

3.3 Error constant

In [14], the Linear Difference Operator L, associated with the linear m-step method

given in standard form as

m∑
i=0

αixk+i = h
m∑

i=0

βifk+i, (3.19)
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is defined as

L[z(t); h] =
m∑

i=0

[αiz(t + ih) − hβiż(t + ih)], z(t) ∈ C1[a, b]. (3.20)

If z(t) is infinitely differentiable, then z(t + ih) and ż(t + ih) can be developed in a Taylor

series around t as shown in the following equation

L[z(t); h] = C0z(t) + C1hz(1)(t) + . . . + Cqh
qz(q)(t) + . . . , (3.21)

where z(q)(t) is the qth time derivative of z(t)/.

Now the following statement can be made [14]:

Definition 3.3.1 The linear multistep method (3.19) and the associated difference operator

L are said to be of order n if, in (3.21),

C0 = C1 = . . . = Cn = 0; Cn+1 �= 0.

For the constants Ci the formulae

C0 =
m∑

i=0

αi

C1 =
m∑

i=0

(iαi − βi)

...

Cq =
m∑

i=0

(
1
q! i

qαi − 1
(q−1)! i

q−1βi

)
, q = 2, 3, . . .

(3.22)

hold. Using the equations shown in (3.22), the error constant can be defined as:

Definition 3.3.2 The linear multistep method of order n is said to have the error constant

Cn+1 given by (3.22).
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In the first chapter it is shown that the local truncation error T (x, h) is strongly related to

this error constant by

T (x, h) = Cn+1h
n+1x(n+1)(tk) + O(hn+2). (3.23)

Hence, a multistep method may integrate more accurately than others if the absolute value

of its error constant is smaller.

3.4 Damping plot

Cellier [4] introduces the damping plot as yet another tool to describe the accuracy of

an integration algorithm. In order to derive the damping plot, the standard linear system

ẋ = Ax, x(t0) = x0 is considered which has the analytical solution xanal = eA(t−t0)x0.

This solution is true for any value of x0, and any value of t. Therefore, if the time instant

t = tk+1 is chosen as well as the initial conditions t0 = tk, and x0 = xk, the analytical result

becomes

xk+1 = eAhxk. (3.24)

This discrete system has the analytical F -matrix Fanal = eAh and the eigenvalues

λdis = eig{Fanal} = eeig{A}h = eλih, i = 1, . . . , ns. (3.25)

The damping of an analytically stable system ẋ = Ax is defined as the smallest magnitude

value of the real parts of its eigenvalues, or

σ = min
i

(|σi|) = min
i

(|Re{λi}|). (3.26)
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Since the eigenvalues λi are complex, i.e. λi = −σi + jωi, the eigenvalue λdis can be

rewritten in the form

λdis = eλih = e−σihejωih. (3.27)

The damping of the discrete system (3.24) is defined as the largest magnitude value of the

eigenvalues λdis. Therefore, it follows from equation (3.27) that the damping of the discrete

system can be expressed as

σdis = max
i

(e−σih). (3.28)

Thus, in the case of the continuous system ẋ = Ax, the damping corresponds to the smallest

distance of the eigenvalues from the imaginary axis in the λ-plane, whereas in the case of the

corresponding discrete system xk+1 = eAhxk, the damping refers to the largest distance of

the eigenvalues from the origin in the eλh-plane. This is commonly known as the z-domain,

where z = eλh. Cellier [4] introduces the discrete damping as

σd = hσ. (3.29)

The relationship between σd and Fanal can be derived from the equations (3.25), (3.27) and

(3.28):

σd = −log(max
i

|eig{Fanal}|). (3.30)

In order to come up with an expression for the numerical damping, i.e. the damping of the

numerical integration algorithm applied to the system ẋ = Ax, the analytical Fanal-matrix

needs to be approximated by the matrix Fnum of the numerical integration method.

Thus, by substituting Fanal by Fnum, equation (3.30) yields

σ̂d = −log(max
i

|eig{Fnum}|), (3.31)
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where σ̂d is the discrete damping of the numerical integration algorithm.

Cellier [4] also defines the damping plot as the curve of the function

σ̂d = σ̂d(σd). (3.32)

This curve represents the relationship between the numerical and analytical damping. In

particular, it reveals where these two damping values are approximately the same, and

where they differ. As an example, figure 3.6 shows the damping plot of the BDF6 method.

It can be seen in figure 3.6 that as soon as the analytical damping σd becomes larger than
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Figure 3.6: Damping plot of BDF6

σd,crit = 0.13, σd and the numerical damping σ̂d start to diverge from each other. The

spurious eigenvalues mentioned in chapter 1 are responsible for this behavior [4].

The value of the damping plot is that it can be used to assess an integration algorithm. If an

integration method has a larger value σd,crit than another integration algorithm, then the

first method may integrate accurately in a larger range. The range of accurate integration
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is often referred to as the asymptotic region in the literature.

To illustrate the relationship between the damping plot and the stability domain of the

integration method (sec. 3.2.2), figure 3.7 shows the modified damping plot for the BDF6

technique where the negative numerical damping −σ̂d is a function of the negative analytical

damping −σd. It can be seen in figure 3.7 that the negative numerical damping −σ̂d
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Figure 3.7: Modified damping plot of the BDF6 method

is zero at −σd = 0 and −σd = 27.72. These points can also be found in figure 3.8 which

displays the stability domain of the BDF6 technique. There, these points are given by the

intersection points of the stability locus with the real axis.

In order to state anything about the behavior of the numerical damping σ̂d as

σd → ∞, Cellier [4] proposes to produce a logarithmic damping plot. Figure 3.9 displays

the logarithmic damping plot of the BDF6 method.

Using this technique, if a numerical integration method is at least A(α)-stable and if σ̂d
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Figure 3.8: Stability domain of BDF6
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Figure 3.9: Logarithmic damping plot of BDF6



47

goes to infinity as σd goes to infinity, then it lends itself to integrate a stiff system because

it is capable of damping out the fast transients. Note that it is not required that the

numerical method integrating a stiff system be L-stable since L-stability is only possible if

the integration technique is A-stable. For instance, the A(α)-stable BDF6 method can be

used to integrate a stiff system although it it not L-stable.

3.5 Order star

Before we derive the order star of a numerical method, we make the following definition:

Definition 3.5.1 A function f is called “essentially analytic” if it is analytical in the

complex plane except at a finite set of singularities.

Assuming that an essentially analytic function f is approximated by a rational function R,

the rational function ρ(z) can be introduced:

ρ(z) =
R(z)
f(z)

, z ∈ C. (3.33)

In [13], the order star (of the first kind) is defined as the locus where ρ(z) = 1. Thus, a

damping order star can be created by defining z as z = λh and ρ(λh) as

ρ(λh) =
σ̂d(λh)
σd(λh)

, (3.34)

where the numerical damping σ̂d is an approximation for the analytical damping σd. In

other words, the damping order star is the locus of the points in the complex (λh)-plane

where σ̂d(λh) = σd. In figure 3.10 the order star for the BDF6 algorithm is depicted.

Since the damping order star is produced by integrating a system with two complex eigen-

values, the function ρ(λh) is complex, too. Recall that the damping plot introduced in
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Figure 3.10: Order star of the BDF6 method

the preceding section is a real function because only systems with real eigenvalues are con-

sidered. Therefore, the real axis in the plot for the damping order star corresponds to

the damping plot. To illustrate this, a modified damping plot for the BDF6 method is

displayed in figure 3.11 where the negative numerical damping −σ̂d is a function of the

negative analytical damping −σd. Figure 3.11 shows that −σ̂d and −σd are equal when

−σd = 0 or −σd = 2.82. These values can also be found in figure 3.10 by considering the

points where the order star intersects with the real axis.

Furthermore, it can be seen in figure 3.11 that

−σ̂d(λh) → ∞ (3.35)

holds for −σd = 2.45. In figure 3.10 this point on the real axis is marked by a cross and it

is referred to as the “pole of the order star”.
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Figure 3.11: Modified damping plot of the BDF6 method

An order star may also have zero points where

σ̂d(z) = 0. (3.36)

For a scalar system ẋ = λx the following theorems can be formulated:

Theorem 3.5.1 The only pole of the order star of the m-step integration algorithm

xk+1 =
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihfk−i (3.37)

is that point in the complex (λh)-plane for which

λh =
1

b−1
(3.38)

holds.
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Proof: The system matrix F of the discrete system (3.37) can be expressed by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

...
. . . 1

. . .
...

. . . 0

0 · · · 0 1

pm−1 pm−2 pm−3 · · · p0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.39)

where

pi =
ai + biq

1 − b−1q
, q = λh. (3.40)

The eigenvalues of F are calculated by solving the characteristic equation:

|λI − F | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 · · · 0

0
. . . . . . . . .

...

...
. . . 0

0 · · · 0 λ −1

−pm−1 −pm−2 · · · −p1 λ − p0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ(λAm−3 + Bm−2) + Bm−1

!= 0,

(3.41)

where

Ai =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 · · · 0

0
. . . . . . . . .

...

...
. . . 0

0 · · · 0 λ −1

−pi · · · −p1 λ − p0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.42)
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Bi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · · · 0

0 λ
. . . . . .

...

...
. . . . . . 0

0 · · · 0 λ −1

−pi −pi−2 · · · −p1 λ − p0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.43)

The determinants Ai and Bi may be written as

Ai = λAi−1 + Bi, (3.44)

Bi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · · · 0

0 λ
. . . . . .

...

...
. . . . . . 0

0 · · · 0 λ −1

−pi −pi−3 −pi−4 · · · −p1 λ − p0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= . . .

= −pi.

(3.45)

Hence it follows from (3.44) that

Ai = λAi−1 + Bi

= λ(λAi−2 + Bi−1) + Bi

...

= λiA0 + λi−1B1 + λi−2B2 + . . . + λBi−1 + Bi

(3.46)

By applying (3.45), equation (3.46) can be formulated as

Ai = λi(A0 −
i∑

j=1

pjλ
−j). (3.47)
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Since A0 = λ − p0, equation (3.47) yields

Ai = λi(λ −
i∑

j=0

pjλ
−j). (3.48)

With (3.45) and (3.48), equation (3.41) results in

|λI − F | = λ[λm−2(λ −
m−3∑
j=0

pjλ
−j) − pm−2] − pm−1

= λm−1(λ −
m−3∑
j=0

pjλ
−j) − λpm−2 − pm−1

!= 0, m ≥ 3.

(3.49)

Because of (3.31) and (3.35), a pole requires that the largest eigenvalue λmax of F goes

to infinity. Therefore, relation (3.49) can only be satisfied if pi → ∞ holds for i = 0 or

i = m − 2 or i = m − 1.

From (3.40) it follows that this is identical with the requirement that q = 1
b−1

. Since this

is the only pole, the proof is complete.

Theorem 3.5.2 For the zeros of the order star of the m-step integration method (3.37)

the relation

max
i

|λi| = 1, i = 0, 1, . . . , m − 1, (3.50)

holds where λi are the eigenvalues of F and can be calculated with (3.49).

Proof: This theorem follows directly from (3.31) and (3.36).

Theorem 3.5.2 means that all the eigenvalues have to be within the unit circle in the

(λh)-plane while it is required that at least one eigenvalue lies exactly on the unit circle.
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Hence, the more steps the multistep method uses, the larger the F -matrix becomes, and

the less probable it is that this condition can be satisfied.

Note that the unit circle represents the stability locus of a discrete system. Thus, theorem

3.5.2 shows that the zeros of the damping order star correspond to points on the stability

locus.

To be able to use the order star of an integration method to compare one method with

another, the region around the origin is of particular interest. Basically, the order star,

that is the locus of all those points where the error

∆σd = σ̂d − σd (3.51)

is zero, is not displayed. Instead, the region is determined where

∆|σd| ≤ ∆σd,lim. (3.52)

Statements about the size of the area can be made where an integration method works

accurately with respect to a given error bound ∆σd,lim.

Roughly speaking, the larger this area is, the more accurate is the integration method.

3.6 Bode plot

In this section an alternative way of evaluating an integration algorithm will be intro-

duced. This time, the behavior of the integration method is analyzed in the frequency

domain through the use of a Bode plot. To provide a motivation for this approach, the

Bode plot of a first order system is considered as shown in figure 3.12.

Figure 3.12 illustrates that the gain |P (iω)| is 1 at low frequencies, while it goes to smaller

values when the frequency is increased. In other words, this system lets signals of lower
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Figure 3.12: Bode plot of a first order system

frequencies pass through whereas it attenuates signals of higher frequencies. Hence, this

system is called a low-pass filter.

When integrating a system whose input signal includes high frequency noise, an integration

method might fail to control the step-size. Instead, the step-size control would follow the

high frequencies such that the step-size would be reduced to an excessively small value.

This effect can be avoided if the integration method is able to damp out high frequencies

(i.e. functions as a low-pass filter).

To look for this property in a RBDF method, a Bode plot is used.

A key result of section 3.2.2 is that the general RBDF method which is formulated as

xk+1 =
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihf
k−i

(3.53)
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can be considered as a discrete system

zk+1 = Fzk, (3.54)

or more generally as

zk+1 = Fzk + Guk,

xk = Hzk + Iuk,

(3.55)

where uk = u(tk) is a given input variable.

This system has a transfer function which is called the pulse transfer function (PTF) in the

discrete case.

For Single-Input Single-Output (SISO) systems, the pulse transfer function P results in

P (ζ) =
x(ζ)
u(ζ)

, (3.56)

where ζ = e−hs (h = step-size of the discrete system). This function describes how an

input value u is propagated to the output.

Equation (3.56) can be transformed from the ζ-domain to the frequency domain where the

transfer function P (iω) corresponds to P (ζ). Figure 3.13 illustrates how an integration

algorithm can be regarded as a discrete system, and it gives an idea of what P (iω) =

x(iω)/u(iω) means.

By displaying both |P (iω)| and arg{P (iω)} over a logarithmically scaled frequency axis a

Bode plot is obtained.

Three linear test systems — stable, marginally stable, unstable — described by ẋ = Ax, are

chosen that keep their stability properties when being integrated by the considered RBDF

algorithm.

This means that if this system is integrated by the method Φ using the step-size h then
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dx/dt = Ax + Bu

state space model

Integrator

z−1

u

xk+1

k+1

Figure 3.13: Integration method regarded as a discrete system

the eigenvalues λi = eig{A} should satisfy

Re{λi} < 0 =⇒ λih
!∈ S(Φ)

Re{λi} = 0 =⇒ λih
!∈ M(Φ)

Re{λi} > 0 =⇒ λih
!∈ I(Φ),

(3.57)

where

S = stability domain of method Φ in the (λh)-plane,

M = stability locus of Φ in the (λh)-plane,

I = instability domain of Φ in the (λh)-plane

After the integration algorithm has been chosen such that the conditions (3.57) are satisfied,

the integration technique is described as a discrete system as shown in (3.55). Then the

Bode plot can be produced by using the MATLAB-command “DBODE.” As an example,

figure 3.6 shows the Bode plot when the stable system ẋ = Ax is integrated by the BDF6
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technique, where

A =

⎛
⎜⎜⎜⎝
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Figure 3.14: Bode plot of a stable system integrated by BDF6
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CHAPTER 4

Implementation of RBDF

4.1 Startup problem

An m-step integration method needs m initial values of the state variable in order to

get started. These starting values needn’t be accurate as has been described in chapter 1.

Gear [10] proposes to use Runge-Kutta methods for startup purposes. This is specified

more in detail by Cellier [4] who applies n − 1 steps with fixed step-size of a nth order

Runge-Kutta. Thus, the step-size should only be determined once at the beginning of the

simulation. In order to calculate the initial step-size h quickly a binary search technique is

employed that starts at a steplength h0. This starting value of h0 must guarantee a stable

integration of a system with known eigenvalues by a Runge-Kutta algorithm of nth order.

At each step of the binary search, an estimate of the relative error, εrel, is made where,

εrel =
|x1 − x2|

max(|x1|, |x2|, δ) . (4.1)

Hence, x1 is the value of the state variable x calculated by a nth order RK-algorithm and

x2 is the value of the state variable x calculated by a (n − 1)th order RK-algorithm. This

result shown in equation (4.1) can be compared to a given error bound tolerance denoted

as tolrel:

If 0.9tolrel ≤ εrel ≤ tolrel, then the binary search is stopped; otherwise, either h is increased
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(if εrel < 0.9tolrel) or h is decreased before the step is calculated again. If the initial values

vanish (x(0) = 0, f(0) = 0) then the startup with RK-methods fails to compute the initial

values for the multistep technique. In this case, a general RK-method described as

xk+1 = xk + h
l∑

i=1

βliẋ
Pi−1 , (4.2)

where ẋPi−1 are the predictors given by

ẋPi−1 = f(xPi−1 , tk + αi−1h), (4.3)

will always yield the result x = 0. Therefore, relation (4.1) results in εrel = 0, such that

the step-size is never changed. Since the algorithm has been started at the maximum value

of the steplength h0 this might give rise to instability.

This problem can be solved by running one step with an RK-method of nth order to modify

the initial conditions. The time is set back to t = t0 and one step of the startup is executed

to determine the initial step-size h0. By using h0 and the original initial conditions of the

system, the startup procedure is started again at t = t0.

4.2 Step-size control

4.2.1 Introduction

Most of the integration methods can only be applied efficiently if the step-size is adjusted

according to accuracy requirements. For example, when integrating stiff systems without

step-size control a very small steplength would be applied during the whole integration (cf.

chapter 1). Thus, the simulation would last excessively long.

Before the step-size control with multistep methods will be discussed, a mathematical tool,
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the so-called Newton-Gregory polynomials, is introduced.

Afterwards, it will be shown how this tool is used to calculate Nordsieck vectors of different

order.

Finally, the algorithm for step-size control will be derived that applies the Nordsieck vector

to update the state history vector if the step-size h is changed. This vector contains m

earlier state variables x.

4.2.2 Newton-Gregory polynomials

To make the following calculations more convenient the forward difference operator ∆ is

introduced:

∆g0 = g1 − g0,

∆g1 = g2 − g1,

...

∆gi = gi+1 − gi,

(4.4)

where gi denotes the value of a continuous function g(t) at the point of time ti.

By recursively applying the operator ∆, higher-order forward difference operators are ob-

tained which, in the general case, are given by [4]

∆gp−1
i =

⎛
⎜⎜⎜⎝

p − 1

0

⎞
⎟⎟⎟⎠ gi+p−1 −

⎛
⎜⎜⎜⎝

p − 1

1

⎞
⎟⎟⎟⎠ gi+p−2 +

⎛
⎜⎜⎜⎝

p − 1

2

⎞
⎟⎟⎟⎠ gi+p−3

+ . . . ±

⎛
⎜⎜⎜⎝

p − 1

p − 1

⎞
⎟⎟⎟⎠ gi,

(4.5)
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where p is the number of earlier data points.

After having defined the backward difference operator ∇ as

∇gi = gi − gi−1, (4.6)

we get the higher-order backward difference operators accordingly:

∇p−1gi =

⎛
⎜⎜⎜⎝

p − 1

0

⎞
⎟⎟⎟⎠ gi −

⎛
⎜⎜⎜⎝

p − 1

1

⎞
⎟⎟⎟⎠ gi−1 +

⎛
⎜⎜⎜⎝

p − 1

2

⎞
⎟⎟⎟⎠ gi−2

+ . . . ±

⎛
⎜⎜⎜⎝

p − 1

p − 1

⎞
⎟⎟⎟⎠ gi−p+1.

(4.7)

The task is to find a vector polynomial, i.e. a polynomial with scalar argument and vector

coefficients, which interpolates the p distinct data points. This interpolant takes a particu-

larly simple form when the time points ti, where the function values are taken, are equally

spaced [14], i.e.

tk−j = tk − jh, j = 0, 1, 2, . . . , p (h = const.). (4.8)

At this point an auxiliary variable s is introduced as defined in [4],

s =
t − t0

h
. (4.9)

Hence, the interpolation polynomial can be depicted either as

g(s) ≈

⎛
⎜⎜⎜⎝

s

0

⎞
⎟⎟⎟⎠ g0 + . . . +

⎛
⎜⎜⎜⎝

s

p − 1

⎞
⎟⎟⎟⎠∆p−1g0,

(p = number of data points)

(4.10)

or

g(s) ≈ g0 +

⎛
⎜⎜⎜⎝

s

1

⎞
⎟⎟⎟⎠∇g0 +

⎛
⎜⎜⎜⎝

s + 1

2

⎞
⎟⎟⎟⎠∇2g0 + . . . +

⎛
⎜⎜⎜⎝

s + p − 2

p − 1

⎞
⎟⎟⎟⎠∇p−1g0. (4.11)
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The expression in (4.10) is called the Newton-Gregory forward polynomial whereas (4.11)

is known as the Newton-Gregory backward polynomial (see [4] for the derivation of (4.10)

and (4.11)).

Note that the Newton-Gregory polynomials are only valid if the data points are evenly

spaced, otherwise interpolating polynomials, such as the ones derived by Lagrange [14],

have to be used.

The Newton-Gregory backward polynomial can be employed in a multistep integration by

setting tk = t0 and s = 1.0. Furthermore, the back values need to be substituted by the

corresponding function values x(tk), x(tk−1), . . . etc..

Thus, equation (4.11) automatically calculates an estimate x(tk+1) = g1 which is the un-

known of the multistep algorithm.

4.2.3 Calculation of the Nordsieck vector

In the following it is assumed for convenience that the system being integrated is scalar,

that is: ns = 1.

With the results of the preceding subsection, the Newton-Gregory backward polynomial

for x(t) can be written as

x(t) = xk + s∇xk +

(
s2

2
+

s

2

)
∇2xk +

(
s3

6
+

s2

2
+

s

3

)
∇3xk + . . . (4.12)

This equation is differentiated with respect to time which yields

ẋ(t) =
1
h

[∇xk + (s +
1
2
)∇2xk + (

s2

2
+ s +

1
3
)∇3xk + . . .]. (4.13)

The higher order derivatives are determined by recursively differentiating (4.13). By trun-

cating the resulting expressions after the nth
g term (ng = order of the Nordsieck vector)
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and expanding the ∇-operator according to (4.4) and evaluating for t = tk (s = 0.0), the

expression

g = Ts, (4.14)

is obtained where

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk

xk−1

...

xk−m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the state history vector that contains m state variables of m earlier time instants, T is a

[(ng + 1) × m] transformation matrix, and

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk

hẋk

...

hng

ng!
x

(ng)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the (ng + 1)-vector which is similar to the Nordsieck vector N = (xk, hẋk, . . . , h
ngx

(ng)
k )

of nth
g -order (cf. [4]). However, for convenience we refer to g as the Nordsieck vector in this

section.

In the appendix some transformation matrices are shown for different values of ng and m

if the system being integrated is one-dimensional (ns = 1).

One might get the idea of using the given value hẋk as additional information in the state

history vector s. This would require one to substitute the expressions for the last element
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of s by the expressions dependent on ẋk. These expressions can be derived by solving

ẋ = . . . + ak−m+1xk−m+1

for xk−m+1. Hence, the last element of s can be rewritten as

xk−m+1 = axk + bhẋk + cxk−1 + . . . ,

where the constants a, b, c, . . . need to be determined.

However, multiple simulations which implemented the described step-size control have

shown that the use of hẋk is not advantageous. The following quickly describes two key

results:

1. The integration process becomes slower. One reason for this is that the transformation

matrix T , which has to be inverted to calculate the new state history vector after

a change of the step-size, becomes larger. This is explained by the fact that the

formula of the integration algorithm contains the last element of the state history

vector s. Therefore, this element has to be calculated and can only be substituted by

an expression of ẋk when the Nordsieck vector is computed.

Furthermore, it can be observed that the Nordsieck vector is calculated less accurately:

An error is introduced by replacing ẋ by ẋk. Therefore, the integration algorithm must

use smaller steplengths to satisfy the accuracy requirements.

2. Although one might think that the integration would become more accurate by using

additional information about the state space model within each integration step, this

is not true. Simulations have proven without any exception that the remaining global
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error becomes larger as soon as hẋk is used.

If ng + 1 = m then T is quadratic and nonsingular and can be quickly inverted. However,

if the integration algorithm uses more than ng + 1 steps, the vector s would have more

elements than the Nordsieck vector g. Therefore, T isn’t quadratic any more. In the

following section it will be shown how the step-size can be controlled in this case.

When the integration algorithm uses one step more than necessary (m = ng + 2), then

the latter technique needn’t be used. Instead, T is still a quadratic matrix which yields a

Nordsieck vector that seems to have one element too much at first glance. However, it will

be shown in the following section that this is not the case.

4.2.4 Step-size control algorithm

The idea is to calculate an estimate for the local error produced at each step and to

compare it to a given error bound tol. Depending on the result of the comparison the

steplength h will be changed.

The following shows how an estimate for the relative local error εrel can be obtained:

The last element gng of the Nordsieck vector

g =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xk

hẋk

...

hng

ng!
x

(ng)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0

g1

...

gng

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.15)
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is given by

gng =
hngx(ng)

ng!
. (4.16)

According to [10], the change ∆gng of gng is an estimate of

∆gng =
hng+1x(ng+1)

ng!
(4.17)

which can be shown by:

∆gng = hng
x

(ng)
k
ng!

− hng
x

(ng)
k−1
ng!

= hng

ng!
h

⎛
⎝x

(ng)
k − x

(ng)
k−1

h

⎞
⎠

︸ ︷︷ ︸
x
(ng+1)

k

. (4.18)

As shown in chapter 1, the local truncation error can be estimated by

T = Cn+1h
n+1x

(n+1)
k + O(hn+2). (4.19)

Only the principal term is considered, and that needs to be smaller than the given error

bound tol:

Cn+1h
n+1x

(n+1)
k ≤ tol. (4.20)

By choosing ng = n, the equations (4.18) and (4.20) can be combined to formulate

Cn+1n!∆gn ≤ tol. (4.21)

As Gear [10] proposes, relation (4.21) should be tested first. If the test succeeds, the step

is accepted; otherwise it is rejected.

The new step-size is calculated by

hnew = αhold, (4.22)
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where

Cn+1n!αn+1∆gn = tol. (4.23)

This can be shown by plugging (4.22) into (4.17) which yields

∆gn,new = αn+1hn+1

n!

(
x

(n+1)
k

)T
=

= αn+1∆gn,old.

(4.24)

By plugging relation (4.24) into (4.21) and treating (4.21) as an equality, equation (4.23)

is obtained.

Since ∆gn usually is not constant, a slightly smaller step-size is used in order that (4.21)

can be expected to be satisfied. Thus α is determined by

α =
1

1.2

(
tol

Cn+1n!∆gn

) 1
n+1

. (4.25)

However, calculating α and changing the step-size at each step, the integration algorithm

would be very slow. Therefore, some of the advises given in [11] should be considered:

1. Values for α are only accepted between 0.5 and 2.0.

2. If 1 ≤ α ≤ 1.1, the new step-size is chosen to be hnew = 0.9hold.

3. When the step has failed, the step-size is halved.

As soon as the step-size is changed the state history vector s will have to be adjusted

accordingly. Otherwise the integration method would proceed with wrong initial values.

The adjustment can easily be done by the Nordsieck technique:

The new Nordsieck vector is computed by

g
new

= Hg
old

, (4.26)
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where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 α
. . .

...

...
. . . α2

. . . 0

0 0 αng

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.27)

In order to obtain the new state history vector snew, equation (4.26) is plugged into the

relation

snew = T−1g
new

, (4.28)

where T is the transformation matrix introduced in (4.14).

So far the only case which has been regarded is where ng = n. This means that the state

history vector s has n + 1 elements if T is quadratic. Therefore, the integration method

uses m = n + 1 steps.

If m = n + 2 steps are applied, then the [(ng + 1) × m] transformation matrix T is still

quadratic. Thus, the last element of the Nordsieck vector becomes

hng

ng!
x

ng

k =
hn+1

(n + 1)!
x

(n+1)
k , (4.29)

and it can be directly used in (4.20) without making the approximation (4.17). This saves

computation time.

If the integration algorithm employs more than n + 2 steps then there are two options:

1. The transformation matrix T used in

g = Ts
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can still be quadratic. However, the Nordsieck vector will have too many elements

since only the (ng + 1)th element of g has to be determined (gng). The state history

vector might be updated after a change of the steplength by applying the relation

s = T−1g. (4.30)

2. The (n + 2)-Nordsieck vector g keeps its size. Therefore, g can still be computed by

g = Ts,

where s is the state history vector containing m components (m > n + 2).

However, to get the new vector snew after a change of the step-size, which results in

a change of g, an overdetermined system has to be solved. As in chapter 2 this sys-

tem is solved in a least-squares sense by calculating the Penrose-Moore Pseudoinverse:

s =
(
T T T

)−1
T T g. (4.31)

In order to decide which of the two options is better the number of applied scalar multipli-

cations (sms) is estimated. To investigate the efficiency of the first option relation (4.14)

has to be solved first where T is a (m × m)-matrix (m > n + 2). This can be done with

q1 = m2 multiplications. For the solution of the inverse problem (4.30) after the change of

the step-size, it is assumed that the computation of the inverse of the asymmetric matrix

T corresponds to q2 multiplications. Therefore

q3 = m2 + q2 (4.32)
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multiplications are needed to determine s. Thus, after a change of the step-size

qo,1 = q1 + q3

= 2m2 + q2

(4.33)

multiplications have to be executed when choosing the first option.

When choosing the second option, the [(n+2)×m]-matrix T (m > n+2) in equation (4.14)

isn’t quadratic any more. Therefore, equation (4.14) can be calculated with q4 = m(n + 2)

multiplications. Since the matrix

T ∗ = T T T (4.34)

is a (m × m)-matrix, the calculation of its inverse corresponds to q2 multiplications again.

Hence, the inverse problem (4.28) is solved by

q5 = q2 + 2m2(n + 2) + m(n + 2) (4.35)

multiplications. Thus, by choosing the second option, the calculation of new vectors g and

s corresponds to

qo,2 = q4 + q5

= q2 + 2m(n + 2) + 2m2(n + 2)
(4.36)

multiplications.

Since m ≥ n + 2, it follows from (4.33) and (4.36) that

qo,2 > qo,1, (4.37)

that is, the first option is faster.
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4.3 Integration of nonlinear systems

4.3.1 Startup problem

In section 4.1 it has been described how a multistep integration method can be started

quickly by using a binary search technique and RK methods.

In order to search in a binary fashion for the initial step-size h, a starting value h0 is

required. This value can be obtained by determining the largest magnitude |λmax| of the

eigenvalues of the system and using the condition

|λmax|h0 = r0, (4.38)

where r0 is the radius of the largest semicircle around the origin that fits completely into

the part of the stability domain, of the applied nth-order RK-method (n > 2), which is in

the left half plane.

The eigenvalues can be calculated if the system being integrated is linear. However, in

the nonlinear case the eigenvalues of the Jacobian of the system may be determined. The

column vectors J i can be computed as shown in equation (4.39) [4].

J i =
δf

δxi
≈ f

dev
− f

∆xi
, (4.39)

where f is the state derivative vector of the nominal state variables and the vector f
dev

is

the state derivative vector which results from the perturbation of the state variable xi by

∆xi. Note that all of the other state variables are kept unchanged.

By determining the maximum eigenvalue λmax of the Jacobian J and using relation (4.38)

we obtain the initial step-size h0. The value r0 should be chosen slightly smaller since the

Jacobian can only be approximated and a stable integration has to be ensured in any case.
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4.3.2 Newton iteration

In this thesis only implicit linear multistep integration methods are of interest. They

are given by

xk+1 =
m−1∑
i=0

aixk−i +
m−1∑
i=−1

bihf
k−i

. (4.40)

In the case of a linear homogeneous system

ẋ = Ax, x(0) = 0, (4.41)

equation (4.40) results in

xk+1 = [I(ns) − b−1hA]−1
m−1∑
i=0

(aixk−i + bihf
k−i

). (4.42)

However, the matrix inversion cannot be applied to a nonlinear problem. Cellier [4] proposes

to rewrite (4.40) in the form

F(xk+1) = b−1hf(xk+1, tk+1) − xk+1 +
m−1∑
i=0

(aixk−i + bihf
k−i

) = 0 (4.43)

which can be solved by Newton iteration,

xl+1
k+1 = xl

k+1 − [Hl]−1[F l], (4.44)

where the Hessian H is given by:

H = b−1Jh − I(ns). (4.45)

In order to save computation time the Jacobian and the Hessian are only computed if it is

necessary, e.g. when the state variables change drastically. This is discussed in more detail

in [4].
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4.4 Readout problem

At the end of a simulation the results of the simulation need to be displayed. Note that

the points xk calculated by the integration algorithm are most likely not evenly spaced

because the step-size control always changes the step-size.

The problem is that the person who runs the simulation desires values at defined points

called communication points. It is assumed for convenience that these points are equally

spaced.

Within the startup period it is integrated right past the communication point, which is

characterized by the time instant t = tcom. Then an interpolation is made between the

calculated values to obtain the value of xcom at tcom.

As soon as the multistep integration algorithm is applied, the Nordsieck technique is used

again: After having integrated right past tcom, a negative step-size is applied to reach the

communication point. By calculating the Nordsieck vector g at tcom and adding up the

components of g, which represent terms in a Taylor series expansion, an estimate for

xcom = x(tcom).

is obtained (see [4] for more details).
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CHAPTER 5

RBDF of 6th order (RBDF6)

5.1 Derivation of the algorithms

In this chapter RBDF techniques will be derived that are 6th-order accurate (RBDF6

methods).

The order of 6 is chosen because this is the largest order for which a conventional stable

BDF method can be found. Thus, it is possible to compare the performance of the RBDF6

methods with that of the BDF6 algorithm. The probability of finding RBDF methods in-

creases with the accuracy order of the method due to the increased number of interpolation

points available in the search. However, since there are more possible candidates, the search

also takes longer.

The search method mentioned at the end of chapter 2 is applied to find RBDF6 algorithms

that satisfy minimum stability requirements. In chapter 2 it is discussed that “minimum

stability requirements” means that the stability locus doesn’t intersect with the negative

real axis of the complex (λh)-plane.

Table 5.1 displays the numbers of 6th-order RBDF algorithms that have been found for

different numbers of applied data points. Note that the data points are always given within

the time interval [tk−n−2, tk+1].
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Number of Number of
data points RBDF6

algorithms
8 71
9 45
10 15
11 3
12 -

Table 5.1: Number of 6th order RBDF al-
gorithms satisfying minimum stability re-
quirements

The stability domain of these methods is considered and compared to the stability do-

main of BDF6 depicted in figure 5.1.

Out of the 134 RBDF techniques, only 18 algorithms are found whose stability domains
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Figure 5.1: Stability domain of BDF6

look similar to the one of BDF6.

The next step is to analyze the damping plots of the new methods and compare them with
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the damping plot of BDF6 that is shown in figure 5.2.

Figure 5.2 illustrates that as soon as the magnitude of the analytical damping σd exceeds
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Figure 5.2: Damping plot of BDF6

σd,crit = 0.13, then the numerical damping σ̂d of BDF6 starts to deviate from σd.

Only those methods which have a greater or at least only slightly smaller value σd,crit than

BDF6 are discussed in this section.

Regarding the damping plot shown in figure 5.3, one of the new methods can be seen to

have poor damping qualities as expressed by the small value σd,crit = 0.001. This can

be explained by the spurious eigenvalues which have a negative impact on the damping

properties of a multistep technique (cf. chapter 3). They can also influence the numerical

stability properties which can be observed in figure 5.4 where the stability domain of the

considered RBDF method is depicted.

Figure 5.4 shows that the stability domain of the “bad” RBDF method has some sharp
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Figure 5.3: Damping plot of a “bad”
RBDF
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Figure 5.4: Stability domain of the “bad”
RBDF

bends which are due to the spurious eigenvalues.

By comparing the damping plots of the RBDF6 methods to the damping plot of the

BDF6 algorithm, the number of possible candidates is further reduced. Only 11 methods

are left over by now.

Since it is required that the numerical damping σ̂d goes to infinity as the analytical damping

σd goes to infinity (cf. chapter 3), the logarithmic damping plot also needs to be analyzed.

As a result of this analysis it is found that only one method satisfies this condition. This

method will be referred to as RBDF61. All the other techniques have logarithmic damping

plots where the magnitude of the numerical damping σ̂d reaches a constant value σ̂d,lim as

the analytical damping σd goes to infinity. Those methods with a small value for σ̂d,lim are

eliminated.

Finally, there are eight methods left. They are listed in table 5.2. This table tabulates the

number of applied data points, the RBDF formula and the error constant for each method

by method name. Figures 5.5 and 5.6 show the corresponding stability domains, and figures
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5.7 and 5.8 depict the damping plots.

The logarithmic damping plots are illustrated in figures 5.9 and 5.10.

Figures 5.11 and 5.12 depict the order stars of the methods. In order to make a comparison,

the corresponding plots of BDF6 have been added to the figures.

Name Number Formula Error
of constant

data points Cerr

RBDF61 8
xk+1 = 594

1357hfk+1 + 977
461xk − 1612

915 xk−1 + 361
943xk−2

+1171
1310xk−3 − 3199

3212xk−4 + 257
592xk−5 − 389

5370xk−6

-0.1350

RBDF62 8
xk+1 = 582

1331hfk+1 + 849
392xk − 2675

1733xk−1 − 448
2075hfk−1

+504
503xk−3 − 987

1082xk−4 + 751
2608xk−5 + 449

14014hfk−6

-0.1435

RBDF63 8
xk+1 = 139

327hfk+1 + 671
291xk − 496

249xk−1 − 704
2707hfk−1

+ 717
1045xk−2 + 953

3537hfk−3 − 649
8310hfk−5 + 159

6644hfk−6

-0.1117

RBDF64 8
xk+1 = 440

991hfk+1 + 1538
747 xk − 982

635xk−1 + 717
842xk−3

+1278
4789hfk−3 − 955

1969xk−4 + 659
5445xk−6 + 418

5011hfk−6

-0.1612

RBDF65 8
xk+1 = 533

1231hfk+1 + 4519
2033xk − 958

509xk−1 − 587
3222hfk−1

+1543
2037xk−2 − 326

993xk−5 + 402
1747xk−6 + 537

4430hfk−6

-0.1443

RBDF66 9

xk+1 = 731
1692hfk+1 + 1733

780 xk − 4758
2779xk−1 − 609

2605hfk−1

+ 291
1169xk−2 + 769

942xk−3 − 1070
1183xk−4 + 1265

3196xk−5

− 596
8993xk−6

-0.1258

RBDF67 9

xk+1 = 607
1385hfk+1 + 566

265xk − 1868
1137xk−1 − 319

3077hfk−1

+ 247
1239xk−2 + 879

976xk−3 − 591
677xk−4 + 943

3367xk−5

+ 428
13581hfk−6

-0.1433

RBDF68 9

xk+1 = 958
2253hfk+1 + 3743

1623xk − 1121
564 xk−1 − 1389

5230hfk−1

+604
859xk−2 + 895

3989hfk−3 − 289
2536hfk−5 − 87

3995xk−6

+ 180
10001hfk−6

-0.1125

Table 5.2: RBDF6 methods
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Figure 5.5: Stability domains of RBDF6 with 8 data points
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Figure 5.8: Damping plots of RBDF6 with 9 data points
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Figure 5.9: Logarithmic damping plots of RBDF6 with 8 data points
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Name Number Formula Error constant
of Cerr

data points

BDF6 7
xk+1 = 20

49hfk+1 + 120
49 xk − 150

49 xk−1 + 400
147xk−2

−75
49xk−3 + 24

49xk−4 − 10
147xk−5

-0.0583

Table 5.3: BDF6 method

5.2 Analysis

The RBDF methods were already analyzed while they were being derived to make sure

that they are good candidates. However, their properties are now discussed in more detail

in order to assess their characteristics.

After applying the definition of stiffly stable systems (see figure 1.3) to the stability domain

of BDF6 and RBDF6 it can be seen that only RBDF61, RBDF62, RBDF65, RBDF66 and

RBDF67 can compete against BDF6, i.e. they have a smaller value a and a larger value c.

The damping plots of all eight RBDF6 methods look better than the one of BDF6. However,

the logarithmic damping plot is always worse. Only for the BDF6 method and the RBDF61

technique, σ̂d → ∞ holds as σd → ∞. Thus, the other RBDF methods cannot dampen fast

transients of a system sufficiently well, which might give rise to longer integration runs.

Table 5.2 shows that the error constant of every RBDF6 algorithm is larger in magnitude

than the error constant of BDF6 (cf. table 5.3). This might cause higher computation cost

since the step-size control will suggest smaller step sizes to be used.

The order stars of the new methods look very similar to the order star of BDF6. However,

no conclusions can be drawn from this since the order star itself doesn’t tell us much about

numerical stability and accuracy (cf. chapter 3). Therefore, the region is considered where
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the absolute damping error

∆σd = |σ̂d − σd| (5.1)

is smaller than a given absolute error bound ∆σd,lim. Since a 6th-order integration technique

is used it makes sense to choose ∆σd,lim = 1E − 6.

The accuracy properties of the integration method are determined by the area close to the

origin. Therefore, this origin-close region should be regarded in detail as shown in figure

5.13 where the accuracy regions for BDF6, RBDF61 and RBDF66 are displayed.

Figure 5.13 shows that the accuracy regions of BDF6, RBDF61 and RBDF66 are almost
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Figure 5.13: Accuracy region of BDF6, RBDF61 and RBDF66

identical in the left half plane. However, near the real axis, the border of the accuracy

region of BDF6 is slightly closer to the origin than the ones of RBDF61 and RBDF66.

Therefore, RBDF61 and RBDF66 can use a slightly larger step-size than BDF6 when a
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stable system with real eigenvalues is integrated and a given accuracy condition has to be

satisfied.

5.3 Simulation results and comparison of the RBDF6 methods with BDF6

In this section RBDF6 methods will be used to integrate some stiff systems. The re-

sults will be compared to those obtained when integrating the same systems with BDF6.

Although seven stiff systems have been simulated, the results of only two of these systems

are discussed here since they are representative of the others. One of the two systems is

linear, the other one is nonlinear:

• System 1 (taken from [6]):

ẋ =

⎛
⎜⎜⎜⎝

0 1

−1000 −1001

⎞
⎟⎟⎟⎠x, (5.2)

x(0) =

⎛
⎜⎜⎜⎝

1

−1

⎞
⎟⎟⎟⎠ . (5.3)

(5.4)

Eigenvalues: λ1 = −1000; λ2 = −1

Analytical solution:

x1(t) = e−t

x2(t) = −e−t

(5.5)

• System 2:

ẍ + x + 0.01

(
ẋ − ẋ3

3

)
= 0, (5.6)
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x(0) = 0.01, (5.7)

ẋ(0) = −4.999875E − 5. (5.8)

Analytical solution:

x(t) = a(t) cos t, (5.9)

where

a(t) =
0.01e0.005t(

1 + 0.000025(e0.01t − 1)
) 1

2

. (5.10)

Note that system 2 is a special case of the famous Rayleigh-equation and its analytical

solution has been derived by using the Krylov-Bogoliubov-Formulae [?].

All of the eight RBDF6 methods displayed in table 5.1 are tested using these two systems.

Although all of these algorithms perform fairly well in simulating these systems, only the

results of RBDF61 and RBDF66 will be shown. These two algorithms yield the best results

overall. This might be explained by the better damping properties of the two methods (see

chapter 3). Therefore, RBDF61 and RBDF66 are the best RBDF6 methods to compete

against BDF6.

The relative error bound for the step-size control is chosen to be tolrel = 0.001. Hence, the

relative local truncation error (LTE) is compared to this value of tolrel and, the result of

this comparison determines the need for step-size change.

Of course the value of tolrel is chosen to be much smaller in a real simulation —

e.g. tolrel = 1E − 6. However, to be able to more easily compare the different integration

methods, the error is made larger.

In order to assess the simulation results the time functions of the numerical solution x and
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the global error ε = x− xanal, will be recorded where xanal is the analytical solution of the

system. Furthermore, the time behavior of the step-size h will be displayed.

Eventually, the number of floating-point operations (fop) will be considered to compare the

efficiency of the integration techniques.

At first, system 1 is integrated by BDF6. The simulation results are shown in figure 5.14.

The MATLAB-simulation over 5 time units with BDF6 takes 59026 floating point opera-

tions (fops). Recall that system 1 is stable — both eigenvalues have negative real parts.

Figure 5.14 shows that the integration by BDF6 is stable, too, since the global error is

decreasing with time. This seems to be clear because both eigenvalues being multiplied

with an arbitrary step-size h still lie within the stability domain of BDF6.

Now the same system is simulated with RBDF61 and RBDF66. Figures 5.15 and 5.16

display the results.
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Figure 5.14: Integration of system 1 by BDF6
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Figure 5.16: Integration of system 1 by RBDF66
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When integrating system 1 with RBDF61 over 5 time units 68441 fops are needed,

whereas RBDF66 only needs 48634 fops.

By comparing the results displayed in figures 5.15 and 5.16 it can be seen that RBDF66

integrates much more accurately than RBDF61 and BDF6. Moreover, RBDF66 needs 20%

- 30% less floating point operations than its competitors.

The nonlinear Rayleigh-equation (system 2) is integrated with BDF6, RBDF61 and

RBDF66 which yields the results depicted in figures 5.17 through 5.19.
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Figure 5.17: Integration of system 2 by BDF6
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Figure 5.18: Integration of system 2 by RBDF61



95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

t

x1
,xa

cc

x1

xacc

Analytical (x1,anal) and numerical solution (x1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

0

2

4

6

8

10

12

14
x 10

-3

t

ep
sil

on

Global error

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

h

Step-size h

Figure 5.19: Integration of system 2 by RBDF66
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This time BDF6 needs 139229 fops, RBDF61 uses 142983 fops and RBDF66 applies

131570 fops. It can be seen that RBDF66 is less accurate than the other two methods but

it is still the fastest one of the three integrators.

These results might be explained by the better stability properties of RBDF61 and RBDF66

in comparison with BDF6 since in terms of all the other properties — e.g. damping, error

constant — the two RBDF6 methods are worse. However, the following chapter will show

that this assumption doesn’t hold.

In figures 5.17 through 5.19 it can be seen that the integration is slightly unstable. This is

due to the fact that the step-size in this implementation is usually changed only after each

(n + 1)th step, where n is the order of the integration method — recall that this has been

done to save computation time. In addition, the bound tolrel for the relative error has been

chosen to be rather large.

Thus, the phenomenon of instability is a problem of the implementation, rather than a

problem of the integration algorithm itself. The unstable behavior can easily be removed

by choosing a smaller value for tolrel and by changing the step-size more frequently.

Finally, the three methods are analyzed in the frequency domain by means of the Bode

plot. As mentioned in chapter 3, three test systems (stable, marginally stable, unstable) of

the kind ẋ = Ax are chosen that don’t change their stability properties when integrated by

the three methods.
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The system matrix of the stable system is chosen to be

A =

⎛
⎜⎜⎜⎝

−10 0

0 −10

⎞
⎟⎟⎟⎠ , (5.11)

where the eigenvalues are λ1,2 = −10.

The marginally stable system has the system matrix

A =

⎛
⎜⎜⎜⎝

0 1

−1 0

⎞
⎟⎟⎟⎠ , (5.12)

which corresponds to the eigenvalues λ1 = −i, λ2 = i.

The unstable system is characterized by the system matrix

A =

⎛
⎜⎜⎜⎝

10 0

0 10

⎞
⎟⎟⎟⎠ (5.13)

with the eigenvalues λ1,2 = 10.

The stable system is integrated with the step-size h = 1. Note that λih = −10 lies within

the stability region of BDF6, RBDF61 and RBDF66.

Figure 5.20 shows the Bode plots that correspond to this stable integration. They have

been produced using the MATLAB-command “DBODE.”

Figure 5.20 shows that RBDF66 is better than RBDF61 with respect to low-pass filter

characteristics and that RBDF61 is still better than BDF6.

The step-size h = 0.01 is chosen when simulating the marginally stable system. Figure 5.21

displays the corresponding Bode plots.

It can be seen in figure 5.21 that the gain has its maximum at the frequency ω = 1 which

is known as the resonance frequency.

Concerning filter properties this plot doesn’t allow us to make clear statements.
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Figure 5.20: Bode plot of a stable system integrated by BDF6, RBDF61and RBDF66.
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Finally, the unstable system is integrated with the step-size h = 0.1 which results in the

Bode plots depicted in figure 5.22.

In this case BDF6 and RBDF61 behave like high-pass filters, i.e. they rather let high fre-
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Figure 5.22: Bode plot of an unstable system integrated by BDF6, RBDF61 and RBDF66.

quent signals pass. RBDF66 still shows low-pass filter characteristics.

To sum this discussion up, the RBDF6 methods may lend themselves better to integrate

systems with input noise than BDF6 since they show stronger low-pass filter behavior.

Since inaccuracies (numerical errors) can be interpreted as high frequency noise, they shall

be filtered out better by the RBDF6 methods.
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CHAPTER 6

RBDF of 7th order (RBDF7)

6.1 Derivation of the algorithms

The procedure described in section 5.1 is applied to find 7th order RBDF methods. Once

again, the first step is to determine those algorithms that satisfy “minimum stability re-

quirements.”

Table 6.1 shows the number of RBDF7 methods that can be found for different numbers

of applied data points.

Note that there are many more RBDF7 methods with the mentioned requirements than

RBDF6 algorithms (cf. table 5.1).

Unlike the preceding chapter where BDF6 was the competitor, we don’t have any compari-

son within the 7th order range since BDF7 is unstable. Again, only those RBDF7 methods

are accepted that are stiffly stable according to Gear’s definition 1.3.3. 174 RBDF7 were

determined that possess this property.

In chapter 5 it has been shown that it is more restrictive to require the numerical damping

σ̂d to go to infinity as σd goes to infinity than to require a large critical damping σd,crit.

Therefore, the logarithmic damping plot is regarded first and the RBDF methods with the

best damping curves are extracted. This results in 15 RBDF algorithms of 7th order whose
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Number of Number of
data points RBDF7

algorithms
9 268
10 278
11 189
12 77
13 14
14 -

Table 6.1: Number of 7th order RBDF al-
gorithms satisfying minimum stability re-
quirements

damping plots are displayed in figures 6.5 and 6.6.

The tables 6.2 and 6.3 tabulate these algorithms, their formulae and error constants.

The corresponding stability domains are depicted in figures 6.1 and 6.2, and the damping

plots can be found in figures 6.3 and 6.4.

Figures 6.5 and 6.6 show the logarithmic damping plots.

6.2 Analysis

By considering again the definition of stiffly stable systems (figure 1.3) the values for a

and c are measured for each RBDF7 algorithm. Moreover, we determine the value σd,crit

in the damping plot, where the numerical damping σ̂d starts to deviate from the analytical

damping σd, and σ̂∗
d(= σ̂d(σd = 1E+6)) in the logarithmic damping plot and list all these

values in table 6.4, together with the error constant Cerr.

A good method would have a small value a, a large value c, both σd,crit and σ∗
d would be

large and |Cerr| would be small.
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Name Number Formula Error
of constant

data points Cerr

RBDF71 9
xk+1 = 948

2257hfk+1 + 454
201xk − 1476

683 xk−1 + 653
869xk−2

+1151
1240xk−3 − 452

357xk−4 + 1224
2285xk−5 − 193

3802xk−7

+ 42
10813xk−9

-0.1765

RBDF72 9
xk+1 = 372

869hfk+1 + 443
204xk − 3349

1814xk−1 + 1345
4324xk−2

+703
648xk−3 − 658

715xk−4 + 298
909xk−6 − 845

6228xk−7

+ 83
12165xk−9

-0.2249

RBDF73 9
xk+1 = 1363

3123hfk+1 + 1022
489 xk − 1165

733 xk−1 + 421
4469xk−2

+ 801
1027xk−3 − 4831

4944xk−5 + 810
947xk−6 − 407

1542xk−7

+ 119
10830xk−9

-0.2851

RBDF74 9
xk+1 = 147

344hfk+1 + 4431
2014xk − 1295

636 xk−1 + 584
647xk−2

+ 997
3006xk−4 − 883

967xk−5 + 1885
2599xk−6 − 417

1900xk−7

+ 153
16820xk−9

-0.2433

RBDF75 9
xk+1 = 133

305hfk+1 + 675
323xk − 1269

808 xk−1 + 1138
1143xk−3

− 504
1777xk−4 − 1065

1417xk−5 + 2668
3553xk−6 − 337

1399xk−7

+ 47
4554xk−9

-0.2780

RBDF76 9
xk+1 = 503

1187hfk+1 + 322
145xk − 2357

1161xk−1 + 665
1142xk−2

+1313
1343xk−3 − 2125

1834xk−4 + 1176
2749xk−5 − 107

3718xk−8

+ 51
5581xk−9

-0.2052

RBDF77 9
xk+1 = 647

1498hfk+1 + 2005
939 xk − 2119

1225xk−1 + 364
1983xk−2

+1268
1165xk−3 − 1254

1511xk−4 + 925
4782xk−6 − 53

931xk−8

+ 33
2065xk−9

-0.2608

RBDF78 9
xk+1 = 473

1069hfk+1 + 5326
2621xk − 709

507xk−1 − 349
2482xk−2

+679
778xk−3 − 7103

8625xk−5 + 987
1849xk−6 − 188

1825xk−8

+ 131
4855xk−9

-0.3424

Table 6.2: RBDF7 methods — 1. part
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Name Number Formula Error
of constant

data points Cerr

RBDF79 9
xk+1 = 512

1163hfk+1 + 1162
565 xk − 970

651xk−1 + 1263
1612xk−3

− 172
7307xk−4 − 699

931xk−5 + 571
1152xk−6 − 559

5769xk−8

+ 293
11507xk−9

-0.3288

RBDF710 9
xk+1 = 511

1132hfk+1 + 2136
1087xk − 1049

844 xk−1 − 208
1401xk−2

+ 620
1011xk−3 − 1735

2353xk−6 + 1087
1205xk−7 − 1586

3723xk−8

+ 847
11393xk−9

-0.4700

RBDF711 9
xk+1 = 601

1348hfk+1 + 1077
529 xk − 1311

850 xk−1 + 293
685xk−2

+ 455
1401xk−4 − 1424

1683xk−6 + 2381
2466xk−7 − 1069

2424xk−8

+ 33
437xk−9

-0.4504

RBDF712 9
xk+1 = 938

2101hfk+1 + 891
443xk − 1277

920 xk−1 + 151
238xk−3

− 345
2531xk−4 − 447

812xk−6 + 460
643xk−7 − 579

1663xk−8

+ 192
3103xk−9

-0.4221

RBDF713 9
xk+1 = 326

751hfk+1 + 1016
473 xk − 725

381xk−1 + 587
713xk−2

+ 70
891xk−5 − 1913

3775xk−6 + 432
733xk−7 − 3220

11559xk−8

+ 598
12199xk−9

-0.3424

RBDF714 9
xk+1 = 914

2053hfk+1 + 931
461xk − 2045

1456xk−1 + 918
1465xk−3

−2277
7079xk−5 − 170

903xk−6 + 397
810xk−7 − 368

1347xk−8

+ 388
7551xk−9

-0.3993

RBDF715 9
xk+1 = 503

1104hfk+1 + 857
443xk − 2192

1837xk−1 + 209
222xk−4

−318
419xk−5 − 811

1867xk−6 + 2273
2578xk−7 − 1175

2599xk−8

+ 285
3518xk−9

-0.5153

Table 6.3: RBDF7 methods — 2. part
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Figure 6.1: Stability domains of RBDF7 — 1. part
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Figure 6.3: Damping plots of RBDF7 — 1. part (RBDF71 through RBDF78)
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Figure 6.4: Damping plots of RBDF7 — 2. part (RBDF79 through RBDF715)
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Figure 6.5: Logarithmic damping plots of RBDF7 — 1. part (RBDF71 through RBDF78)
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Name a c σd,crit σ̂∗
d Cerr

RBDF71 1.90 0.81 0.04 1.83 -0.1765
RBDF72 1.94 0.73 0.04 1.74 -0.2249
RBDF73 1.82 0.72 0.04 1.68 -0.2851
RBDF74 1.64 0.78 0.05 1.70 -0.2433
RBDF75 1.59 0.72 0.04 1.69 -0.2780
RBDF76 1.90 0.73 0.05 1.72 -0.2052
RBDF77 1.67 0.72 0.05 1.67 -0.2608
RBDF78 1.59 0.65 0.04 1.60 -0.3424
RBDF79 1.43 0.65 0.04 1.62 -0.3288
RBDF710 1.31 0.63 0.04 1.45 -0.4700
RBDF711 1.37 0.63 0.05 1.45 -0.4504
RBDF712 1.20 0.63 0.05 1.47 -0.4221
RBDF713 1.14 0.59 0.07 1.49 -0.3424
RBDF714 1.06 0.63 0.05 1.50 -0.3993
RBDF715 1.14 0.63 0.04 1.45 -0.5153

Table 6.4: Data of RBDF7 algorithms

No RBDF7 method stands out from the others with respect to stability and to accuracy.

However, two methods are chosen that are better than the other techniques:

For RBDF71, the values c and σ̂∗
d are largest and |Cerr| is smallest.

RBDF713 is the best method among those that have good values for a and c because σd,crit

is largest for RBDF713, while σ̂∗
d and |Cerr| still have decent values.

6.3 Simulation results

The systems 1 and 2 introduced in chapter 5 are integrated with RBDF71 and RBDF713.

To save computation time, the relative error tolrel used for step-size control is assigned a

value of 0.05.

Figures 6.7 and 6.8 display the results of the simulation of system 1 with RBDF71 and

RBDF713.
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It can be seen in these figures that RBDF71 integrates system 1 more accurately than

RBDF713 does.

Moreover, RBDF71 integrates system 1 faster since it only uses 249355 fops during the

simulation while RBDF713 needs to execute 278368 fops.

In figures 6.9 and 6.10 the results of the integration of the nonlinear system 2 are illustrated.

Again, these results show that RBDF71 behaves better than RBDF713, both with respect

to accuracy and to efficiency — RBDF71 needs 599412 fops and RBDF713 uses 672005 fops.

One might be tempted to think that the values σ̂∗
d and Cerr are responsible for this behavior

since RBDF71 has better values σ̂∗
d and Cerr than RBDF713 whereas the values a and σd,crit

are worse (see table 6.4).

However, the results of chapter 5 don’t confirm this assumption. Thus, only by considering

all of the properties of a numerical integration method it can be stated that this method is

better than another technique.
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Figure 6.7: Integration of system 1 by RBDF71
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Figure 6.9: Integration of system 2 by RBDF71
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CHAPTER 7

Conclusions

In chapter 3, two new analysis methods for assessing numerical integration algorithms

have been introduced:

1. Order star – accuracy region analysis

2. Bode plot analysis

The RBDF6 techniques presented in chapter 5 can compete with BDF6 in integrating stiff

systems, a fact that has been verified in numerous simulations. In most of the cases con-

sidered in this thesis, the two algorithms RBDF61 and RBDF66 outperform BDF6, and

because of the better shape of their Bode plot it may be concluded that they would do

better than BDF6 when integrating a stiff system with noise input. However, this hasn’t

been proven so far and might be a topic of further research.

As seen in chapter 6, the RBDF7 methods offer a way to integrate stiff systems of

ordinary differential equations with an accuracy order of 7 based on backward difference

formulae. This hasn’t been possible so far since there don’t exist stable BDF methods of

order higher than 6.



114

The regression approach introduced in this thesis to find stiffly stable integration algo-

rithms of accuracy order seven, could be used to identify new stiffly stable RBDF methods

of even higher accuracy orders.

Such methods would be of much interest for use in celestial dynamics where highly

accurate integration of ordinary differential equations is required.
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Appendix A

Nordsieck transformation matrices of different order

Appendix A contains transformation matrices T of different order that are used to

calculate the Nordsieck vector.

1. m = 2, ng = 1:

T =

⎛
⎜⎜⎜⎝

1 0

1 −1

⎞
⎟⎟⎟⎠ .

2. m = 3, ng = 2:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

3
2 −2 1

2

1
2 −1 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3. m = 4, ng = 3:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

11
6 −3 3

2 −1
3

1 −5
2 2 −1

2

1
6 −1

2
1
2 −1

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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4. m = 5, ng = 4:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

25
12 −4 3 −4

3
1
4

35
24 −13

3
19
4 −7

3
11
24

5
12 −3

2 2 −7
6

1
4

1
24 −1

6
1
4 −1

6
1
24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5. m = 6, ng = 5:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

137
60 −5 5 −10

3
5
4 −1

5

15
8 −77

12
107
12 −13

2
61
24 − 5

12

17
24 −71

24
59
12 −49

12
41
24 − 7

24

1
8 − 7

12
13
12 −1 11

24 − 1
12

1
120 − 1

24
1
12 − 1

12
1
24 − 1

120

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

6. m = 7, ng = 6:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

49
20 −6 15

2 −20
3

15
4 −6

5
1
6

203
90 −87

10
117
8 −127

9
33
4 −27

10
137
360

49
48 −29

6
461
48 −31

3
307
48 −13

6
15
48

35
144 −31

24
137
48 −121

36
107
48 −19

24
17
144

7
240 −1

6
19
48 −1

2
17
48 − 2

15
1
48

1
720 − 1

120
1
48 − 1

36
1
48 − 1

120
1

720

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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7. m = 8, ng = 7:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

363
140 −7 21

2 −35
3

35
4 −21

5
7
6 −1

7

469
180 −223

20
879
40 −949

36
41
2 −201

20
1019
360 − 7

20

967
720 −319

45
3929
240 −389

18
2545
144 −134

15
1849
720 −29

90

7
18 −111

48
71
12 −1219

144
22
3 −185

48
41
36 − 7

48

23
360 − 59

144
9
8 −247

144
113
72 −69

80
19
72 − 5

144

1
180 − 3

80
13
120 − 25

144
1
6 − 23

240
11
360 − 1

240

1
5040 − 1

720
1

240 − 1
144

1
144 − 1

240
1

720 − 1
5040

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

8. m = 9, ng = 8:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

761
280 −8 14 −56

3
35
2 −56

5
14
3 −8

7
1
8

29531
10080 −481

35
621
20 −2003

45
691
16 −141

5
2143
180 −103

35
363
1120

267
160 −349

36
18353
720 −2391

60
1457
36 −4891

180
561
48 −527

180
469
1440

1069
1920 −329

90
15289
1440 −268

15
10993
576 −1193

90
2803
480 −67

45
967
5760

9
80 −115

144
179
72 −213

48
179
36 −2581

720
13
8 − 61

144
7

144

13
960 − 73

720
239
720 −149

240
209
288 −391

720
61
240 − 49

720
23

2880

1
1120 − 1

144
119
5040 − 231

5040
1
18 − 217

5040
1
48 − 29

5040
1

1440

1
40320 − 1

5040
1

1440 − 1
720

1
576 − 1

720
1

1440 − 1
5040

1
40320

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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9. m = 10, ng = 9:

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

7129
2520 −9 18 −28 63

2 −126
5 14 −36

7
9
8 −1

9

6515
2016 −4609

280
5869
140 −6289

90
6499
80 −265

4
6709
180 −967

70
3407
1120 − 761

2520

4523
2268 −14139

1120
20837
560 −72569

1080
6519
80 −3273

48
84307
2160 −4101

280
1823
560 −29531

90720

95
128 −7667

1440
24901
1440 −4013

120
122249
2880 −5273

144
10279
480 −2939

360
10579
5760 − 89

480

3013
17280 −7807

5760
6787
1440 −13873

1440
36769
2880 −32773

2880
9823
1440 −3817

1440
3487
5760 − 1069

17280

5
192 − 77

360
563
720 −401

240
3313
1440 −305

144
313
240 −373

720
347
2880 − 1

80

29
12096 − 413

20160
7
90 − 31

180
353
1440 − 67

288
53
360 − 151

2520
287

20160 − 91
60480

1
8064 − 11

10080
43

10080 − 7
720

41
2880 − 1

72
91

10080 − 19
5040

37
40320 − 1

10080

1
362880 − 1

40320
1

10080 − 1
4320

1
2880 − 1

2880
1

4320 − 1
10080

1
40320 − 1

362880

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Appendix B

Implementation of RBDF61 in MATLAB to integrate (non-)linear

ordinary differential equations of first order

Appendix B contains a complete listing of the MATLAB program ”INT” that represents

the implementation of the RBDF61 method .

By slightly modifying this program, other RBDF techniques introduced in this thesis can

be implemented as well.

B.1 Main program INT

% Program to integrate ordinary differential equations of

% first order

%

flops(0)

define

% order of the integration algorithm

order = 6

steps = order + 1 % number of steps that we go backwards within the state

% history vector

all points = 15



120

algor = 3

load searchmethod7

pick = picks(algor,:)

%

Ms = [ 0 1 2 3 4 5 6; 1 0 0 0 0 0 0; 0 1 0 0 0 0 0; 1 -1 1 -1 1 -1 1; 0 1 -2 3 -4 5 -6; 1 -2 4

-8 16 -32 64; 0 1 -4 12 -32 80 -192; 1 -3 9 -27 81 -243 729; 0 1 -6 27 -108 405 -1458; 1 -4 16

-64 256 -1024 4096; 0 1 -8 48 -256 1280 -6144; 1 -5 25 -125 625 -3125 15625; 0 1 -10 75 -500

3125 -18750; 1 -6 36 -216 1296 -7776 46656; 0 1 -12 108 -864 6480 -46656; 0 1 -12 108 -864

6480 -46656; 1 -7 49 -343 2401 -16807 117649; 0 1 -14 147 -1372 12005 -100842 ]

M = Ms(pick,:)

if rank(M) == order+1

% Penrose-Moore-Pseudoinverse

Minv = inv(M’*M)*M’

s = Minv(1,:)

for k=2:order+1

s = s + Minv(k,:)

end

ss = zeros(1,all points)

ss(pick) = s

end

startup

[xvec,tvec,hvec] = mult(xvec,tvec,hvec,t,tsim,tcom,h,A,B,u,order,...

s,ss,all points,xhist,tolrel,deltat,...
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delta,pick,found,steps)

fop = flops % number of floating point operations

acc = exp(-tvec)

epsvec = xvec(:,1) – xacc

save 703mo1 xvec tvec hvec fop xacc epsvec

B.2 Procedure DEFINE

tolrelruku = 1E-6 % tolerance for the relative error produced by

% the Runge Kutta startup algorithm

tolrel = 1E-3 % tolerance of the relative error of the multistep algorithm

% stability domain of Ruku 5th order

stab limit = 2.6

deltat = 0.05 % Length of communication interval

tsim = 5.0 % Simulation time

t = 0

tcom = 0

% Definition of the system

A =[ 0 1; -1000 -1001]

B = [0;0]

C = 0

D = 0

max eig = max(abs(eig(A)))
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% Input

u = 0

% Initial state vector x(0)

x = [1; -1]

n = size(x,1)

delta = ones(1,n)*1E-10

ECHO = 1

xvec = x’

tvec = tcom

hvec = 0

xcom = x’ % state vector that is depicted graphically

xhist = x % whole state history matrix

B.3 Procedure STARTUP

bin search h0

if found == 1

x = x2

t = h

tcom = 0

if t >= tcom + deltat

% communication

comm
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end

xhist = [x, xhist]

% order–1 times Runge Kutta 6th order with fixed step-size

for i=1:order–1

t = t + h

ruku6

x = x2

xhist = [x, xhist]

if t >= tcom + deltat

comm

end

end

end

B.4 Procedure BIN SEARCH H0

% This program calculates the initial step-size h for the

% multistep algorithm by means of a binary search

%

deltas = delta

ts = t

xs = x

hmin = 0

hmax = stab limit/max eig
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maxcount = 30 % maximal number of steps of the binary search

count = 0

found = 0 % =1: Initial step-size h is found

% =0: Initial step-size h can’t be found

xlast = x

terminate= -1

% Is hmax the step-size we are searching for?

h = hmax

ruku5

ruku6

eps1 = abs((x1 – x2)’)

v = [x1’;x2’;delta]

epsrel= max(eps1 ./ max(abs(v)))

if epsrel < tolrelruku*1E-6 % too accurate —> change the initial values!

% First step with ruku6 to reevaluate the initial conditions

t = t + 0.5*(hmax+hmin)

ruku6

x = x2

delta = delta*1E-10

else

if epsrel <= tolrelruku

terminate = 1

found = 1
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end

end

while terminate < 0

h = 0.5*(hmin + hmax)

ruku5

ruku6

eps1 = abs((x1 – x2)’)

v = [x1’;x2’;delta]

epsrel= max(eps1 ./ max(abs(v)))

if epsrel > tolrelruku

hmax = h

else

hmin = h

if epsrel >= 0.9*tolrelruku

terminate = 1

found = 1

else

if count > maxcount

terminate = 1

else

count = count + 1

end

end
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end

end

if delta < deltas

t = ts

x = xs

ruku6

end

B.5 Procedure RUKU5

% This program executes one step of a Runge Kutta 5th order

%

K1 = h*func(x,t,u)

K2 = h*func(x+0.125*K1,t,u)

K3 = h*func(x+0.25*K2,t,u)

K4 = h*func(x+0.5*K1–K2+K3,t,u)

K5 = h*func(x+0.1875*K1+0.5625*K4,t,u)

K6 = h*func(x+(–5*K1+4*K2+12*K3–12*K4+8*K5)/7,t,u)

x1 = x + (7*K1 + 32*K3 + 12*K4 + 32*K5 + 7*K6)/90
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B.6 Procedure RUKU6

% This program executes one step of a Runge Kutta 6th order

%

K1 = h*func(x,t,u)

K2 = h*func(x+K1/9,t,u)

K3 = h*func(x+(K1+3*K2)/24,t,u)

K4 = h*func(x+(K1–3*K2+4*K3)/6,t,u)

K5 = h*func(x–0.625*K1+3.375*K2–3.0*K3+6.0*K4,t,u)

K6 = h*func(x+(221*K1–981*K2+867*K3–102*K4+K5)/9,t,u)

K7 = h*func(x+(-783*K1+678*K2–472*K3–66*K4+80*K5+3*K6)/48,t,u)

K8 = h*func(x+(761*K1–2079*K2+1002*K3+834*K4–454*K5–9*K6+72*K7)/82,t,u)

x2 = x + (41*K1 + 216*K2 + 27*K4 + 272*K5 + 27*K6 + 216*K7 + 41*K8)/840

B.7 Procedure COMM

% This procedure calculates the communication state vector that is

% used further to depict the state vector equidistantly

%

ncom = (t – tcom)/deltat – rem(t – tcom,deltat)

deltat1 = tcom + deltat – t + h

% Note that deltat1 > epscom is fulfilled!

deltax = (x–xlast)*deltat1/h
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xcom = xlast + deltax

xvec = [xvec; xcom]

tcom = tcom + deltat

tvec = [tvec; tcom]

hvec = [hvec; h]

if ncom > 1

ncom = ncom – 1

deltax = (x – xcom)*deltat/h

for i = 1:ncom

xcom = xcom + deltax

tcom = tcom + deltat

xvec = [xvec; xcom]

tvec = [tvec; tcom]

hvec = [hvec; h]

end

end

B.8 Function FUNC

% Implementation of system 3 (Rayleigh equation)

%

function [fu] = func(x,t,u)

%
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w = 1 – x(1)*x(1) – x(2)*x(2)

fu1 = 0.01*x(2) – x(1)*w

fu2 = -0.01*x(1) – x(2)*w

fu = [fu1;fu2]

B.9 Function MULT

% Multistep algorithm

%

% xhist is now a (n x m) matrix

%

function [xvec,tvec,hvec] = mult(xvec,tvec,hvec,t,tsim,tcom,h,u,n,order,...

s,ss,all points,xhist,tolrel,deltat,...

delta,pick,found,steps)

%

I = eye(n)

toldelta = 0.1 % maximal value of the relative error that keeps the Jacobian unchanged

%

% Factorial of ”order”:

ordfac = 1

for i = 1:order

ordfac = ordfac*i

end
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%

% Calculation of the error constant C err

%

B1 = 0

p1 = size(pick)p1 = p1(2)

A1 = [zeros(1,p1)]

B1 = [zeros(1,p1)]

for k=p1:-1:1

kk = pick(k)

if (0.5*kk–0.5) == fix(0.5*kk)

B1(steps–0.5*kk+1.5) = s(k)

else

A1(steps–0.5*kk+1)= -s(k)

end

end

A1(steps+1) = 1

C err = 0

for k = 1:p1,

k1 = k–1

Ak = A1(1,k)

Bk = B1(1,k)

C err = C err + (k1ˆ 7)*Ak/5040 – (k1ˆ 6)*Bk/720

end
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%

factor = 1/1.2

p = 1/(order + 1)

if found == 1

% The first step of the multistep algorithm uses the old step-size

%

% Transformation matrix T to calculate the Nordsieck vector

%

T = [ 1 0 0 0 0 0 0; 2.45 -6 7.5 -20/3 3.75 -1.2 1/6; 20.3/9 -8.7 117/8 -127/9 33/4 -

2.7 137/360; 49/48 -29/6 461/48 -31/3 307/48 -13/6 5/16; 35/144 -31/24 137/48 -121/36

107/48 -19/24 17/144; 7/240 -1/6 19/48 -0.5 17/48 -2/15 1/48; 1/720 -1/120 1/48 -1/36

1/48 -1/120 1/720]

% Note: This matrix T is only valid for the order = 6!

if det(T’) == 0

else

Tinv = inv(T)

%

stepcount = 0

alpha = 1

N old = T*xhist’

n old = N old(order+1,:)

h old = h

chg jacob = 1 % Jacobian is reevaluated
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epsmultold = delta

x = xhist(:,1) % initial value of x k+1 is x k!

first time = 1

while t < tsim

t = t + h

stepcount = stepcount + 1

finish step = -1

errcount = 0

chgstep = 0

while finish step < 0

one mul = -1

while one mul < 0

f = func(x,t,u)

if chg jacob > 0

% reevaluation of the Jacobian

jacob = jac(x,t,u,f,n)

chg jacob = 0

hess = ss(1)*h*jacob – I % Hesse matrix

inv hess = inv(hess)

else

if chgstep > 0

chgstep = 0

hess = ss(1)*h*jacob – I
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inv hess = inv(hess)

end

end

% Modified Newton-Raphson iteration

[x,conver] = newton(all points,x,t,u,inv hess,h,conver,delta, ss,...

xhist,0.1*tolrel)

if conver > 0

% convergence of Newton-Raphson

xhist = [x, xhist]

xhist = xhist(:,1:order+1)

%

% Estimation of the relative error

N = T*xhist’ % We have to take the transposed history matrix!

epsmult = C err*ordfac*(N(order+1,:)–n old*alphaˆ order)

epsmult = abs(epsmult)

v = [abs(x’); delta]

xmax = max(v)

epsmultrel = max(epsmult ./ xmax)

deltaeps = (epsmultrel – epsmultold)/epsmultold

epsmultold = epsmultrel

if deltaeps > toldelta

if first time == 1

first time = 0
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one mul = 1

else

chg jacob = 1

end

else

one mul = 1

end

else

x = xhist(:,1)

one mul = 1

finish step = 1

t = tsim

end % of if conver > 0

end % of while one mul

if conver > 0

% Newton iteration worked fine

if epsmultrel < tolrel

finish step = 1

else

% maybe change of the step-size

errcount = errcount + 1

if errcount >= 3

alpha = 0.5
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stepcount = 0

chgstep = 1

h old = h

else

stepcount = order + 1

end

end

if stepcount >= order + 1

stepcount = 0

alpha = factor*(tolrel/epsmultrel)ˆp

if alpha >= 1

if alpha > 1.1

chgstep = 1

alpha = min(2,alpha)

else

% step-size is not changed

chgstep = 0

end

else

chgstep = 1

if alpha > 0.9

alpha = 0.9

else



136

alpha = max(alpha,0.5)

end

end % of if alpha >= 1

end % of if stepcount >= order+1

if chgstep > 0

% change of the step-size

chgstep = 0

h = alpha*h old

%Adjustment of the state history matrix

H = [1 0 0 0 0 0 0; 0 alpha 0 0 0 0 0; 0 0 alphaˆ 2 0 0 0 0; 0 0 0 alphaˆ 3 0 0 0; 0 0 0 0

alphaˆ 4 0 0; 0 0 0 0 0 alphaˆ 5 0; 0 0 0 0 0 0 alphaˆ 6]

if epsmultrel < tolrel

N = H*N % Nordsieck matrix

else

N = H*N old

end

xhist = Tinv*N

xhist = xhist’ % We have to transpose the matrix again

end % of if chgstep

end % of if conver > 0

end % of while finish step ..

N old = N

n old = N old(order+1,:)
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h old = h

if t >= tcom + deltat

% communication point

[xvec,tvec,tcom,hvec] = comm mult(tcom,deltat,t,N,order,h,xvec,...

tvec,hvec,tsim)

end

end % of while t < tsim

end end

B.10 Function NEWTON

% Modified Newton iteration to solve the implicit equation of the

% integration algorithm

%

function [x,conver] = newton(all points,x,t,u,inv hess,h,conver,delta,ss,...

xhist,tolnewton)

%

finish = -1

count = 0

maxcount = 30

conver = 0

while finish < 0

x old = x
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F = imp func(all points,ss,xhist,x,t,u,h)

x = x – inv hess*F

epsx = abs((x – x old)’)

v = [abs(x’);delta]

xmax = max(v)

epsrel = max(epsx ./ xmax)

if epsrel > tolnewton

if count > maxcount

conver = 0

finish = 1

else

count = count + 1

end

else

finish = 1

conver = 1

end

end

B.11 Function IMP FUNC

%This function calculates the implicit function of the integration algorithm

function [F] = imp func(all points,ss,xhist,x,t,u,h)
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%

F = 0

for i = 2:all points % all points = size(ss)

if ss(i) == 0

else

if 0.5*i–0.5 == fix(0.5*i)

F = F + ss(i)*h*func(xhist(:,0.5*i–0.5),t,u)

else

F = F + ss(i)*xhist(:,0.5*i)

end

end

end

F = F + ss(1)*h*func(x,t,u) – x

B.12 Function JAC

% This program calculates the Jacobian matrix for the Newton iteration

%

function [J] = jac(x,t,u,f,n)

%

for i = 1:n % columns

xnew = x

if x(i) == 0
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deltax = 1E-10

else

deltax = x(i)*1E-7

end

xnew(i) = xnew(i) + deltax

fnew = func(xnew,t,u)

J(:,i) = (fnew – f)/deltax

end

B.13 Function COMM MULT

% This function calculates the communication state vector if a

% multistep integration algorithm is used

%

function [xvec,tvec,tcom,hvec] = comm mult(tcom,deltat,t,N,order,...

h,xvec,tvec,hvec,tsim)

finish = -1

while finish < 0

if tcom + deltat <= t

tcom = tcom + deltat % update tcom

if tcom > tsim

finish = 1

else
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d = tcom – t % negative step-size!

N1 = N

for i = 2:order+1

N1(i,:) = ((d/h)ˆ (i – 1)) * N1(i,:)

end

xcom = N1(1,:)

for i = 2:order+1

xcom = xcom + N1(i,:)

end

xvec = [xvec; xcom]

tvec = [tvec; tcom]

hvec = [hvec; h]

end

else

finish = 1

end

end








