
Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Design and Development of a Dymola/Modelica
Library for Discrete Event-oriented Systems using

DEVS Methodology

Tamara Beltrame
Adviser: Prof. François E. Cellier
Responsible: Prof. Walter Gander

9th March 2006



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Outline

Outline

Goal

Motivation

Quantised State Systems

The DEVS Formalism

The ModelicaDEVS Simulator

The PowerDEVS Simulator

Example/Efficiency

Conclusion



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Goal

Goal

I Development of a discrete-event systems library for Dymola.

I Enable simulation of continuous systems.

I Implementation of a Modelica version of PowerDEVS.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Motivation

Motivation

Additional integration method for Dymola.

I Dymola is primarily designed for physical simulations.

I Physical systems are described by DAE’s, need integration.

I QSS and the DEVS formalism are well suited for integration.
I Idea: computers have to discretise.
I Use state quantisation instead of time discretisation.
I State variables evolve individually, no need to update them

simultaneously.
I A simulation of a QSS is numerically stable.
I Formula for global error bound ⇒ mathematical analysis.

In general: enable DEVS simulation within Dymola.

I For common discrete-event systems without integration.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Quantised State Systems

Concept

Quantised State Systems (QSS)

I QSS have piecewise constant input and output trajectories.

I Systems with piecewise constant trajectories can be simulated
by the DEVS formalism

I QSS use a quantisation function to transform a continuous
system into a system with piecewise constant input and
output trajectories.

I Quantisation function is hysteretic in order to avoid
illegitimate models.

I Illegitimate models perform an infinite number of transitions in
a finite interval of time.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Quantised State Systems

Hysteretic Quantisation Function

Hysteretic Quantisation Function

I A quantisation function maps
real numbers x(t) into a
discrete set of real values q(t).

I Problem: ẋ(t) = −sign(q(t))

I A hysteretic quantisation
function inhibits infinite
oscillations within one time step.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Quantised State Systems

Discretisation

Discretisation of a Continuous System

I Conventional continuous system: ẋ(t) = f(x(t),u(t), t)

I Quantised continuous system: ξ̇(t) = f(q(t),u(t), t)

I Example: ẋ(t) = −x(t) + 10ε(t − 1.76)
Used quantisation function: q(t) = floor(ξ(t))

⇒ ξ̇(t) = −floor(ξ(t)) + 10ε(t − 1.76)
⇒ ξ̇(t) = −q(t) + 10ε(t − 1.76)

I q(t) is a piecewise constant, linear or quadratic function.
I QSS1 ⇒ uses constant function.
I QSS2 ⇒ uses linear function.
I QSS3 ⇒ uses quadratic function.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The DEVS Formalism

Introduction

The DEVS Formalism

I Introduced by B. Zeigler in 1976.

I Discrete-event simulation methodology.
Other discrete-event techniques: Petri nets, finite state
machines, Markov chains, ...

I Particularity: DEVS models have infinite number of states
⇒ useful for numerical integration.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The DEVS Formalism

Atomic Models

Atomic Models

I Accepts an input trajectory (external events), generates an
output trajectory.

I Definition: M = (X ,Y ,S , δint , δext , λ, ta)
I X = set of inputs
I S = set of possible states
I Y = set of outputs
I δext = external transition
I ta = time-advance function, often represented by σ
I δint = internal transition
I λ = output function



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The DEVS Formalism

Atomic Models

Atomic Models (cont.)

Example:



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The DEVS Formalism

Coupled Models

Coupled Models

I DEVS is closed under coupling.

I Useful to split a complex model into simpler models.

I The dynamics of the coupled model N:

1. Evaluate the atomic model d* that is the next one to
execute an internal transition. Let tn be the time when
the transition has to take place.

2. Advance the simulation time to t = tn and let d*
execute the internal transition.

3. Forward the output of d* to all connected atomic models
and let them execute their external transitions.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The DEVS Formalism

Hierarchic Models

Hierarchic Models

I Reuse of coupled models as atomic models.

I The actual task of N is to wrap Ma and Mb, in order to make
them look like as if they were one single model.

I The coupled model N features the same transitions as an
atomic model, but the transitions of N depend on the
transitions of its submodels.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

The ModelicaDEVS Simulator

The ModelicaDEVS Simulator
I Modelica models are described by equations.

I Undirected data-flow: x = y ⇒ either x or y has to be known.
2 + 4 = x ⇒ ok

I Directed data-flow: x := y ⇒ y has to be known.
2 + 4 := x ⇒ not ok

I Simultaneous equation evaluation ⇒ parallel update of
variables.

I Modelica is object oriented.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Atomic Models

Atomic Models in ModelicaDEVS

I ModelicaDEVS models have one or more input ports and one
output port.

I ModelicaDEVS signals/events consist of the following values:
I Coefficients of Taylor series up to second order of the current

function value.
I Boolean value. Indicates the creation of an event.

I Input event: uVal[1], uVal[2], uVal[3] and uEvent.
Output event: yVal[1], yVal[2], yVal[3] and yEvent.

I Components have two Boolean variables dint and dext...
I dint=true ⇒ execute internal transition.
I dext=true ⇒ execute external transition.

I ... and two real-valued variables lastTime and sigma.
I lastTime stores the time of the last event.
I sigma stores the amount of time that has to elapse before the

next internal transition takes place.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Coupled Models

Coupled Models in ModelicaDEVS

I Communication between blocks:

I When block A executes its internal transition (dint=true) it
sends an output to block B (yEvent=true).

I When block B receives an event (uEvent=true) it executes its
external transition.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Coupled Models

Coupled Models in ModelicaDEVS (cont.)
I Benefit of the Dymola simulator:

I Dynamics of coupled model still determined by its submodels.
I Performs the same loop as defined by the DEVS formalism...
I ... but the evaluation of d* is done implicitly by Modelica’s

concept of simultaneous equation evaluation.

I Coupled models are handled implicitly by the Dymola
Simulator.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Hierarchic Models

Hierarchic Models in ModelicaDEVS

I A hierarchic model contains a component that consists of
other components (submodels).

I Submodels just add a number of equations to the model
equation “pool” ⇒ no special treatment required.

I Hierarchic models are handled implicitly by the Dymola
Simulator.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The PowerDEVS Simulator

The PowerDEVS Simulator

I PowerDEVS is written in C++ ⇒ sequential variable updates.

I Hierarchical simulation scheme.

I Coordinators represent coupled models, simulators represent
atomic models.

I Coordinators contain simulators or other coordinators.

I Coordinators control the interaction between their children.
⇒ Components on the same level do not communicate with
each other, but only with their parent coordinator.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Example/Efficiency

The Flyback Converter

The Flyback Converter - Dymola

U0 = constant
0 = if open1 then i0 else uS

uL = L · diL
dt

iC = C · duR
dt

uR = R · iR
0 = if open2 then iD else uD

open2 = uD < 0 and iD ≤ 0
uT = −uL

iT = −iD
i0 = iL + iT
iD = iC + iR
u0 = uS + iL
0 = uT + uD + uR



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Example/Efficiency

The Flyback Converter

The Flyback Converter - ModelicaDEVS/PowerDEVS
I ModelicaDEVS requires a block diagram representation.

I ModelicaDEVS contains generic blocks, no electrical
components

I DEVS imposes certain data flow.

I Causalise equations by the Tarjan algorithm (x=y ⇒ x:=y).

I Model each (causalised) equation by a compound of blocks.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Example/Efficiency

The Flyback Converter

The Flyback Converter - Results
I Flyback converter simulated with Dymola, PowerDEVS and

ModelicaDEVS (2ms of simulation time).
I PowerDEVS needs 0.018s
I Dymola (LSODAR) needs 0.062s, generates 738 result points
I ModelicaDEVS (LSODAR, QSS3) needs 0.656s, generates

2164 result points

I PowerDEVS is faster than Dymola:
I Dymola “suffers” from the simultaneous equation evaluation:

PowerDEVS updates only the variables of the active
component, Dymola updates all variables.

I Dymola is faster than ModelicaDEVS:
I ModelicaDEVS generates a lot more result points than

Dymola.
I ModelicaDEVS models feature more variables (factor 3).



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Conclusion

Summary

I Unfortunately, ModelicaDEVS is about 10 times slower than
Dymola and about 40 times slower than PowerDEVS.

I Transformation of continuous systems described by equations
into block diagrams is time consuming and sometimes
problematic.

I ModelicaDEVS enables simulation according to the DEVS
formalism within the Dymola environment.

I Possibility to combine standard Dymola simulation with
DEVS.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

Additional Example Hysteretic Quantisation Function

I Continuous system: ẋ = −x + 0.5, initial condition x(0) = 2

I Quantised system: ξ̇ = −floor(ξ) + 0.5

Dynamics

t = 0 : ξ = 2 ⇒ ξ̇ = −1.5

t = 0+ : ξ = 1.999 ⇒ ξ̇ = −0.5

t = 2 : ξ = 1 ⇒ ξ̇ = −0.5

t = 2+ : ξ = 0.999 ⇒ ξ̇ = +0.5

t = 2++ : ξ = 1 ⇒ ξ̇ = −0.5

t = 2+++ : ξ = 0.999 ⇒ ξ̇ = +0.5


	Outline
	Goal
	Motivation
	Quantised State Systems
	Concept
	Hysteretic Quantisation Function
	Discretisation

	The DEVS Formalism
	Introduction
	Atomic Models
	Coupled Models
	Hierarchic Models

	The ModelicaDEVS Simulator
	The ModelicaDEVS Simulator
	Atomic Models
	Coupled Models
	Hierarchic Models

	The PowerDEVS Simulator
	Example/Efficiency
	The Flyback Converter
	Results

	Conclusion
	
	

