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Goal

Goal

I Development of a discrete-event systems library for Dymola.

I Enable simulation of continuous systems.

I Implementation of a Modelica version of PowerDEVS.
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Motivation

Motivation

Additional integration method for Dymola.

I Dymola is primarily designed for physical simulations.

I Physical systems are described by DAE’s, need integration.

I QSS and the DEVS formalism are well suited for integration.
I Idea: computers have to discretise.
I Use state quantisation instead of time discretisation.
I State variables evolve individually, no need to update them

simultaneously.
I A simulation of a QSS is numerically stable.
I Formula for global error bound ⇒ mathematical analysis.

In general: enable DEVS simulation within Dymola.

I For common discrete-event systems without integration.
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Quantised State Systems

Concept

Quantised State Systems (QSS)

I QSS have piecewise constant input and output trajectories.

I Systems with piecewise constant trajectories can be simulated
by the DEVS formalism

I QSS use a quantisation function to transform a continuous
system into a system with piecewise constant input and
output trajectories.

I Quantisation function is hysteretic in order to avoid
illegitimate models.

I Illegitimate models perform an infinite number of transitions in
a finite interval of time.
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Quantised State Systems

Hysteretic Quantisation Function

Hysteretic Quantisation Function

I A quantisation function maps
real numbers x(t) into a
discrete set of real values q(t).

I Problem: ẋ(t) = −sign(q(t))

I A hysteretic quantisation
function inhibits infinite
oscillations within one time step.
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Quantised State Systems

Discretisation

Discretisation of a Continuous System

I Conventional continuous system: ẋ(t) = f(x(t),u(t), t)

I Quantised continuous system: ξ̇(t) = f(q(t),u(t), t)

I Example: ẋ(t) = −x(t) + 10ε(t − 1.76)
Used quantisation function: q(t) = floor(ξ(t))

⇒ ξ̇(t) = −floor(ξ(t)) + 10ε(t − 1.76)
⇒ ξ̇(t) = −q(t) + 10ε(t − 1.76)

I q(t) is a piecewise constant, linear or quadratic function.
I QSS1 ⇒ uses constant function.
I QSS2 ⇒ uses linear function.
I QSS3 ⇒ uses quadratic function.
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The DEVS Formalism

Introduction

The DEVS Formalism

I Introduced by B. Zeigler in 1976.

I Discrete-event simulation methodology.
Other discrete-event techniques: Petri nets, finite state
machines, Markov chains, ...

I Particularity: DEVS models have infinite number of states
⇒ useful for numerical integration.
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The DEVS Formalism

Atomic Models

Atomic Models

I Accepts an input trajectory (external events), generates an
output trajectory.

I Definition: M = (X ,Y ,S , δint , δext , λ, ta)
I X = set of inputs
I S = set of possible states
I Y = set of outputs
I δext = external transition
I ta = time-advance function, often represented by σ
I δint = internal transition
I λ = output function
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The DEVS Formalism

Atomic Models

Atomic Models (cont.)

Example:
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The DEVS Formalism

Coupled Models

Coupled Models

I DEVS is closed under coupling.

I Useful to split a complex model into simpler models.

I The dynamics of the coupled model N:

1. Evaluate the atomic model d* that is the next one to
execute an internal transition. Let tn be the time when
the transition has to take place.

2. Advance the simulation time to t = tn and let d*
execute the internal transition.

3. Forward the output of d* to all connected atomic models
and let them execute their external transitions.
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The DEVS Formalism

Hierarchic Models

Hierarchic Models

I Reuse of coupled models as atomic models.

I The actual task of N is to wrap Ma and Mb, in order to make
them look like as if they were one single model.

I The coupled model N features the same transitions as an
atomic model, but the transitions of N depend on the
transitions of its submodels.
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The ModelicaDEVS Simulator

The ModelicaDEVS Simulator

The ModelicaDEVS Simulator
I Modelica models are described by equations.

I Undirected data-flow: x = y ⇒ either x or y has to be known.
2 + 4 = x ⇒ ok

I Directed data-flow: x := y ⇒ y has to be known.
2 + 4 := x ⇒ not ok

I Simultaneous equation evaluation ⇒ parallel update of
variables.

I Modelica is object oriented.
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The ModelicaDEVS Simulator

Atomic Models

Atomic Models in ModelicaDEVS

I ModelicaDEVS models have one or more input ports and one
output port.

I ModelicaDEVS signals/events consist of the following values:
I Coefficients of Taylor series up to second order of the current

function value.
I Boolean value. Indicates the creation of an event.

I Input event: uVal[1], uVal[2], uVal[3] and uEvent.
Output event: yVal[1], yVal[2], yVal[3] and yEvent.

I Components have two Boolean variables dint and dext...
I dint=true ⇒ execute internal transition.
I dext=true ⇒ execute external transition.

I ... and two real-valued variables lastTime and sigma.
I lastTime stores the time of the last event.
I sigma stores the amount of time that has to elapse before the

next internal transition takes place.
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The ModelicaDEVS Simulator

Coupled Models

Coupled Models in ModelicaDEVS

I Communication between blocks:

I When block A executes its internal transition (dint=true) it
sends an output to block B (yEvent=true).

I When block B receives an event (uEvent=true) it executes its
external transition.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Coupled Models

Coupled Models in ModelicaDEVS (cont.)
I Benefit of the Dymola simulator:

I Dynamics of coupled model still determined by its submodels.
I Performs the same loop as defined by the DEVS formalism...
I ... but the evaluation of d* is done implicitly by Modelica’s

concept of simultaneous equation evaluation.

I Coupled models are handled implicitly by the Dymola
Simulator.



Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems using DEVS Methodology

The ModelicaDEVS Simulator

Hierarchic Models

Hierarchic Models in ModelicaDEVS

I A hierarchic model contains a component that consists of
other components (submodels).

I Submodels just add a number of equations to the model
equation “pool” ⇒ no special treatment required.

I Hierarchic models are handled implicitly by the Dymola
Simulator.
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The PowerDEVS Simulator

The PowerDEVS Simulator

I PowerDEVS is written in C++ ⇒ sequential variable updates.

I Hierarchical simulation scheme.

I Coordinators represent coupled models, simulators represent
atomic models.

I Coordinators contain simulators or other coordinators.

I Coordinators control the interaction between their children.
⇒ Components on the same level do not communicate with
each other, but only with their parent coordinator.
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Example/Efficiency

The Flyback Converter

The Flyback Converter - Dymola

U0 = constant
0 = if open1 then i0 else uS

uL = L · diL
dt

iC = C · duR
dt

uR = R · iR
0 = if open2 then iD else uD

open2 = uD < 0 and iD ≤ 0
uT = −uL

iT = −iD
i0 = iL + iT
iD = iC + iR
u0 = uS + iL
0 = uT + uD + uR
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Example/Efficiency

The Flyback Converter

The Flyback Converter - ModelicaDEVS/PowerDEVS
I ModelicaDEVS requires a block diagram representation.

I ModelicaDEVS contains generic blocks, no electrical
components

I DEVS imposes certain data flow.

I Causalise equations by the Tarjan algorithm (x=y ⇒ x:=y).

I Model each (causalised) equation by a compound of blocks.
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Example/Efficiency

The Flyback Converter

The Flyback Converter - Results
I Flyback converter simulated with Dymola, PowerDEVS and

ModelicaDEVS (2ms of simulation time).
I PowerDEVS needs 0.018s
I Dymola (LSODAR) needs 0.062s, generates 738 result points
I ModelicaDEVS (LSODAR, QSS3) needs 0.656s, generates

2164 result points

I PowerDEVS is faster than Dymola:
I Dymola “suffers” from the simultaneous equation evaluation:

PowerDEVS updates only the variables of the active
component, Dymola updates all variables.

I Dymola is faster than ModelicaDEVS:
I ModelicaDEVS generates a lot more result points than

Dymola.
I ModelicaDEVS models feature more variables (factor 3).
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Conclusion

Summary

I Unfortunately, ModelicaDEVS is about 10 times slower than
Dymola and about 40 times slower than PowerDEVS.

I Transformation of continuous systems described by equations
into block diagrams is time consuming and sometimes
problematic.

I ModelicaDEVS enables simulation according to the DEVS
formalism within the Dymola environment.

I Possibility to combine standard Dymola simulation with
DEVS.
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Additional Example Hysteretic Quantisation Function

I Continuous system: ẋ = −x + 0.5, initial condition x(0) = 2

I Quantised system: ξ̇ = −floor(ξ) + 0.5

Dynamics

t = 0 : ξ = 2 ⇒ ξ̇ = −1.5

t = 0+ : ξ = 1.999 ⇒ ξ̇ = −0.5

t = 2 : ξ = 1 ⇒ ξ̇ = −0.5

t = 2+ : ξ = 0.999 ⇒ ξ̇ = +0.5

t = 2++ : ξ = 1 ⇒ ξ̇ = −0.5

t = 2+++ : ξ = 0.999 ⇒ ξ̇ = +0.5
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