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Abstract

The thesis presents a free Modelica library for modeling wheels and tires. The contained
models are intended to be used in vehicle simulations where computational performance
is a major concern. Semi-empirical single contact point models are well suited for this
kind of applications and are therefore applied in the presented library. These models
enhance physical aspects by means of empirical equations that represent measurement
results covering e.g. friction and slip characteristics. All featured tire models are split
into seven objects, enabling a convenient customization of all relevant properties, with
the necessary communication structure tailored to the special needs. Therefore the
focus of this research effort concerns itself less with modeling new tire properties, but
more with an improved organization of existing knowledge.

The Wheels and Tires library provides a tool to quickly build custom tire models.
This is realized by a modular and expandable design system utilizing well established
models. In addition, a set of ready-made models is provided to get a quick insight into
the used modeling structure and to enable a direct application in vehicle models.





Kurzfassung

In der vorliegenden Arbeit wird eine frei verfügbare Modelica Library zur Modellierung
von Rädern und Reifen vorgestellt. Die damit erstellten Modelle sind zur Verwendung
in Simulationen von Fahrzeugen vorgesehen, was Rechenaufwand zu einem wichtigen
Aspekt macht. Semiempirische Ein-Kontakt-Punkt Modelle sind gut für diese Art
von Applikationen geeignet und finden daher in der Library Verwendung. Diese Mod-
elle ergänzen physikalische Aspekte durch empirisch gefundene Gleichungen, welche
Messergebnisse wie z.B. Reib- und Schlupfeigenschaften widerspiegeln. Alle enthaltenen
Reifenmodelle sind in sieben Objekte aufgespalten, was eine bequeme Anpassung aller
relevanten Eigenschaften ermöglicht. Die dazu nötige Kommunikationsstruktur wurde
an die speziellen Bedürfnisse angepasst. Der Fokus der Arbeit liegt daher weniger auf
der Modellierung neuer Reifeneigenschaften, als in einer Verbesserung der Organisation
bestehenden Wissens.

Die Wheels and Tires Library stellt ein Werkzeug zur Verfügung, um Reifenmodelle
möglichst einfach erstellen zu können. Ermöglicht wird dies durch eine modulare und
erweiterbare Struktur, welche auf etablierten Modellen basiert. Zusätzlich werden eine
Reihe von vorgefertigten Modellen zur Verfügung gestellt, um einen schnellen Einblick
in die Struktur der Modelle, sowie eine direkte Anwendung als Teil von Fahrzeugmod-
ellen zu ermöglichen.
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1 Introduction

The term “wheel” may be used in a narrow sense to describe the part connecting the
tire to the rim or in a wide sense to contain the whole of the rotating elements including
the tire [Dix96]. The latter one is used in this work.

Modelica libraries, packages and models cannot have spaces in their names. As a result,
the beginning of a new word in a name, made up of multiple words, is marked with
a capital letter in Dymola. For the documentation, spaces are added for the sake of
readability and abbreviations are written in full. To be able to identify classes, packages
and libraries easily, these are referred to in italic letters, e.g. the “NoRollRes” model is
referred to as No Rolling Resistance. Additionally references to elements in figure are
written in italic font. Names of elements contained in models like variable names, and
functions as well as sub-models and classes are referred to in a typewriter font.

1.1 Structure of this Document

The first chapter covers the most general parts of the thesis including the motivation
for this work in Section 1.2 and a very general introduction into the used tools and
techniques in Section 1.3. Readers familiar with the used techniques and tools can skip
Section 1.3. The following Chapter 2 is a very compact presentation of general tire
properties that can be skipped by tire specialists. The third and main chapter of this
work covers the development of the tire model’s structure, followed by an introduction
of the communication elements used and all the classes the object-oriented tire can
be composed of. Therefore, it is a rather extensive chapter that can either be used
as reference, when an effect is not totally clear or it can be read completely to gain a
deeper understanding of the library. It is followed by Chapter 4 introducing the ready-
made tire models provided in the library. Chapter 5 then depicts how the surface class
covering even and uneven surfaces are implemented. The following chapter tries to
give an insight into the kind of simulations which can be carried out and how tests are
realized. Therefore, it is probably the best chapter to get a general impression of the
library’s capabilities and is therefore highly interesting for somebody totally new to
the library. It is recommended to be read first if the applicability of the library is not

1



1 Introduction

ensured. The last two Chapters 7 and 8 present possible enhancement to the library
and some concluding thoughts respectively.

To get a compact overview of the whole work, the reader is referred to a paper contained
in Appendix A.3. This ten page paper introduces all important properties of the tire
model and is well suited to provide a quick insight in the work. An even shorter
introduction is provided in Appendix A.4.

1.2 Motivation for Object-Orientation in Tire Modeling and
the Semi-Empirical Single Contact Point Model

During the last decades a fairly large number of tire models of varying levels of com-
plexity suiting strongly differing fields of application have been developed. These range
from simple non-slipping tires to very complex FEA (finite element analysis) models
for performance prediction [BSGR08].

The library developed is intended to be used in simulations that cover entire vehi-
cles, therefore computational effort is an important issue. Hence, the selection of the
appropriate level of detail for the used models is essential for the overall simulation
performance. Semi-empirical single contact point models provide a very good trade-
off between accuracy and computational effort. Such models are based on physical
considerations, like those emerging from multibody dynamics. These physical aspects
get enhanced with empirical formulas representing measurement results that cover e.g.
friction and slip characteristics. Two of these semi-empirical models are commonly
accepted and widely used. These are “TMeasy” by G. Rill [Ril07] and the “magic-
formula” model by H. B. Pacejka [Pac06]. However, both are often implemented in a
flat and mainly unstructured fashion, which makes them difficult to understand and
maintain. Customizing these models for particular situations or expanding them in
order to cover new aspects of tires can be hard and is often error-prone.

A paper by D. Zimmer and M. Otter [ZO09] builds on the previously mentioned mod-
els and demonstrates how models of varying levels of complexity can be integrated
within the object-oriented framework of Modelica. However, the object orientation in
these models limits itself primarily to their external interfaces. The models themselves
continue to be mostly flat. For instance the most complex tire model created, defines
approximately 200 equations [ZO09] and is a good example showing the difficulties that
arise from the common flat structure.

Another example for a quite flat structure can be found in the freely available but out-
dated Vehicle Dynamics library [And03]. There, a wheel base model gets extended with
friction models of [Ril07] and [Pac06] but not much further effort was spent regarding
object orientation.

2



1.3 Mathematical Modeling of Physical Systems

In [AJ02] a tire model is modularized in hub, belt and road elements. A further en-
hancement is made in [BA03] by redesigning the model’s structure as well as enabling
uneven road surfaces and losing contact to the ground due to enhanced vertical dy-
namics. This modularization is well defined, but still the different aspects of friction
are summarized in the Tyre-Road class and cannot be customized easily. Moreover the
libraries presented in [ZO09], [AJ02] and [BA03] are not freely available.

The newly developed library takes the object-orientation even further than in [BA03].
Therefore the focus of this research effort concerns itself less with modeling new tire
properties, but more with an improved organization of existing knowledge. This will
enable future modelers to conveniently customize the models to their own purposes.

1.3 Mathematical Modeling of Physical Systems

The content of this section can also be found in [Sch09] because the same basic re-
quirements and prerequisites are valid for this work as well. It was created by the two
authors in cooperation.

The purpose of modeling is to describe a physical system by a mathematical model
composed of differential and algebraic equations (DAE’s). To this end, the behavior of
such a system is described as accurately as possible in order to compute and predict
the system’s behavior. As soon as the physical system is described by an appropriate
mathematical model, a simulation can be carried out. In the following sections, the
steps necessary to simulate a physical system are introduced. This is done with reference
to three different modeling techniques.

1.3.1 Differential and Algebraic Equations

In general, a physical system can be described by DAE’s. The most basic approach is
to find the system of DAE’s manually by setting up the equations of the elements that
the system is composed of and combining them in an appropriate manner. As soon as
a proper description of the system is found, the DAE’s have to be transformed into a
state-space representation to be solved. The state space representation is a description
of the system by means of ordinary differential equations (ODE’s) i.e. a system of 2nd

order can be described with 2 ordinary differential equations.

1.3.2 Bond Graphs

Another approach to model physical systems are bond graphs. They are based on
energy flow through systems with the basic laws of energy conservation applied. These
state that energy can only be affected by three mechanisms: It can be stored, transported
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or converted. Energy flow is the derivation of energy by time which is also referred to as
power. In every physical system, power is the product of an effort and a flow variable,
e.g. for electrical systems the effort is the voltage, the flow is the current.

The energy flow is represented in a graphical manner by directed harpoons as shown in
Figure 1.1 and is mathematically described be the relation P = e ·f . A bond is thus the

e
f

Figure 1.1: A directed harpoon (bond) to model energy flow.

first element representing the mechanism “transport” of the energy conservation laws.
The bonds connect passive (resistive, capacitive and inductive) and active (sources)
components via 0-junctions and 1-junctions which are used to state either the same
effort or the same flow (e.g. in an electrical circuit, a 0-junctions represents Kirchhoff’s
current law whereas a 1-junction represents Kirchhoff’s voltage law). Basically, resistive
components are used to convert energy, e.g. the energy flow through a resistive element
generates heat. However, in electrical and mechanical systems more often then not such
elements are treated as dissipative elements since the thermodynamical aspects are of
less interest. Capacitive and inductive elements store energy. The former is a so-called
flow storing element whereas the latter stores effort. The energy itself is supplied by
flow and effort sources.

As the elements are very basic, they can be used when modeling several different
domains including mechanics (1D translational and rotational), electrics, thermal, hy-
draulics etc. For a more detailed description regarding bond graphs, the reader is
referred to [Cel91] or [McB05].

1.3.2.1 Multi Bond Graphs

Multi Bond Graphs are a vector extension of regular bond graphs. A freely selectable
number of regular bonds can be combined to form a Multi Bond. This was done
in [Zim06] developing a Modelica/Dymola Multi Bond Library1 for the modeling of
2D and 3D mechanics. This eases the modeling of mechanical systems, which can
get cumbersome with regular bond graphs due to difficulties when handling positional
information and holonomic constraints.

1The exact name of the library is “MulitBondLib”.
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1.3.3 Object-Oriented Modeling

The intention behind object-oriented modeling is basically the same as in object-
oriented programming. The modeler tries to describe parts of a physical system with
classes that behave as the modeled part of the real system. The reusability of these
classes should be as high as possible so e.g. an electric machine should be described
by the same model when acting as a generator and when acting as a motor. This
makes models based on equations (a-causal) rather than assignments (causal) a neces-
sity. The modeling environment has to be able to handle the resulting sets of equations
by a symbolic preprocessing.

1.3.3.1 Modelica

Modelica is an object-oriented open-source modeling language providing the language
definition [Ass07] as well as a standard library [Ass09] for modeling in different physical
domains. Different commercial simulation environments like SimulationX, MathMod-
elica and Dymola as well as some free tools like OpenModelica use the language as a
base. A very detailed introduction to Modelica can be found in a book, published by
Peter Fritzson [Fri04].

1.3.3.2 Dymola

Dymola from Dynasim is a very advanced Modelica environment capable of performing
all necessary symbolic transformations required for convenient modeling, able to handle
very big systems (> 100,000 equations). It features a graphical editor for model creation
as well as a text based view. Interfaces to MATLAB and Simulink exist in order to
integrate models in existing simulation environments.

For this work Dymola 6.1 that utilizes Modelica 2.2.1 was used.
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2 Basic Considerations regarding Tires

The following section is intended to give a broad overview of tires and how they can be
modeled. Readers, who are familiar with tire and their modeling, can skip Sections 2.1
and 2.2, but should consider reading Section 2.3 as basic definitions used throughout
the following chapters are introduced there.

2.1 A Closer Look at Tires

In motion dynamics of vehicles, the forces exerted by the tire-road contact are of major
importance. This section is intended to provide basic knowledge about tire properties,
buildup and force generation. For more detailed information, the reader is referred
to [Ril07] for a good compact German presentation of tire modeling, to [Lei09] for a
very good and general German introduction, to [Dix96] for a rather praxis-oriented
introduction or to [Pac06] for probably the most detailed description of tire modeling
available, the latter ones both in English.

The first historically known wheels had totally different duties compared to today’s
wheels and tires. They were attached to vehicles which were dragged by a transla-
tional force. Hence they “just” had to carry the vertical load and overcome their own
rolling resistance. Later on, first breaking systems were introduced widening the field
of requirements of tires without a major impact on their construction. When tires got
driven by torque, a redesign became necessary in order to transmit great forces to the
ground or road. Various alternative ideas have been investigated, with the rubber-
carcass pneumatic tire resulting to be superior to all competitors.

The modern tire is a complex construction resulting from clashing requirements. Tires
basically have to carry the vertical load, transmit forces to accelerate (and slow down)
the vehicle and generate cornering forces to guide the vehicle trough curves securely.
This has to be fulfilled under a large variety of environmental conditions with a long life
time ensured. The rolling resistance has to be as small as possible, with damping and
acoustic properties suiting modern demands. As one can imagine, there is no optimal
solution to this problem and this leads to a large variety of different tires for varying
demands, especially when peak performance is required as under racing conditions.
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A quite basic design example for a tire is depicted in Figure 2.1. For today’s passenger

Tread

Belt

Carcass

Side Wall

Bead

Tread

Belt

Carcass

Side Wall

Bead

Figure 2.1: The basic elements of a tire.

cars steel-belt tires are used exclusively, which differ in construction only marginally,
when treated from such a basic point of view. On the inside of the tire a coating
(not depicted in Figure 2.1) inherits the function of the tube, preventing the over-
pressurized air to leak to the outside. The Bead that is usually built of steel wire
with synthetic rubber components, ensuring a tight fit of the tire on the rim, allows
a reliable operation under difficult conditions e.g. when driving over a curbstone. The
rubber elements building the sidewall strongly affect the vertical dynamics of the tire
and are important when it comes to handling precision and stability. The carcass is
the element absorbing the tension from the inflation pressure. Therefore, it has to be
protected from damage, which is ensured by the side wall. The tread is responsible
for the force generation by establishing a reliable contact to the road and is therefore
a very central element of the tire. Its composition is a major factor when it comes
to the frictional properties of the tire. The tread is reinforced by the steel belt that
enhances mileage and reduces the rolling resistance. Overall a mixture of more than 20
rubber composites form the tire, which makes them quite difficult to describe as well
as enabling the engineer to adjust the tire properties to several different needs.

For the explanation of the mechanisms which are responsible for the generation of
force in the tread shuffle of the tire, the brush model is quite common [Ril07], [Pac06],
[Lei09]. Looking at Figure 2.2, one can see the shuffle described by multiple spring like
elements. These elements generate a force when getting deflected. The force of these
elements is assumed to be proportional to the deflection. Under the conditions depicted
in Figure 2.2(a), the tread elements are not getting deflected and no force is being
generated. This is the case when the tire is driven with a torque that exactly makes it
overcome the rolling resistance. If the vehicle accelerates, the tires has to generate a
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(d) r · ω >>> v.

Figure 2.2: Tire brush model under different driving conditions.
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force F which results in the rotational velocity rising as shown in Figure 2.2(b). Now
r · ω > v which results in deflecting elements of the tread shuffles. The elements at the
right side generate the bigger part of the overall force due to the greater deflection and
the (assumed) linear characteristics. If the driving torque rises further, the maximum
possible deflection that is determined by the frictional conditions is reached and the
elements partially start to slide reducing their deflection and generated force. This is
depicted in Figure 2.2(c). An even further increase of the driving torque results in very
quick sliding of the elements as shown in Figure 2.2(d). Still, there is a short period of
adhesion at the very beginning of the tread shuffle that can be neglected. Due to the
frictional properties, the transmitted force is lower than in Figure 2.2(c). The result of
this behavior and its influence on the modeling is explained in Section 3.5 on Page 27
ff where the models computing the frictional forces are explained.

The difference between the two velocities ω · r and v is called the slip velocity from
which the slip can be calculated as shown in Section 3.5.1 on Page 30. One could split
this slip or slip velocity into a “virtual” slip that is caused by the deformation of the
still adhering components and the “real” slip that is caused by the sliding of the tread
elements over the ground. [MW03] discusses this in more detail.

Taking a closer look at the effects causing the friction, one can find two major rea-
sons for the generation of frictional forces: adhesion and hysteresis [Lei09], [Dix96].
Measurements [MW03] show that for dry surfaces, the adhesion is the main reason for
frictional forces. The postulate for the adhesion to fully apply is a direct contact be-
tween the tire’s rubber and the road. If this contact is pretended by a water layer, the
adhesion component decreases making the hysteresis component more important. The
hysteresis applies in combination with form closure that is caused by micro-roughness
of the tire and the road. In contrast to the classical Coulomb friction, there is a de-
pendence on the contact area (the tread shuffle). For the adhesion component, the
frictional coefficient rises with decreasing surface pressure (force per area). Therefore,
a big tread shuffle is of advantage for the adhesion component of the friction, making
wider tires the better alternative on dry surfaces. On wet surfaces the situation in-
verses because higher surface pressure enlarges the expulsion of water and the effect of
the hysteresis directly. So, for tires that are used in dry as well as wet conditions, a
compromise has to be found. Another factor that is very important, is the distribution
of pressure in the tread shuffle. To make the situation even more difficult, both of the
effects show a dependence on sliding velocity and temperature.

To enable the tire to transmit big forces, the tread area has to have a high damping
coefficient to enhance both adhesion and hysteresis. This is the only part of the tire
that is designed to have a big damping constant because in all other parts this just
causes rising losses. To get an overview of the tire losses, [MW03] states that about
50% of the losses emerge from the tread area, 20% arise in the belt, 10% from the
carcass and another 10% from the side walls.
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2.2 State of the Art Tire Models

The following sections quickly introduce the very basics of the tire models used in the
development of the Wheels and Tires library.

2.2.1 TMeasy by G. Rill

G. Rill’s TMeasy or the Easy to Use tire model is intended to provide a quite accurate
but still simple model [Ril07]. The main emphasis is to make it work with little infor-
mation (parameters) of the tire. Based on relatively simple geometric assumptions and
piecewise polynomial equations, slip models are provided to compute

• frictional forces,

• force due to camber angle,

• nonlinear influence of the normal load,

• self aligning torque,

• bore torque,

• overturning torque and

• rolling resistance.

TMeasy is implemented in most parts of the frictional class that is presented in Sec-
tion 3.5 on Page 27.

2.2.2 Magic Formula by Hans B. Pacejka

The probably most popular tire model of today is introduced in [Pac06]. Rather than
using piecewise polynomial equations it is mainly based on a single equation that is
called the magic formula which has the following form.

y = D sin[C arctan{Bx− E(Bx− arctanBx)}] (2.1)

With B being the stiffness factor, C the shape factor, D the peak value, E the curvature
factor, x the input, and y being the output of the function. It results in a curve like
the one depicted in Figure 2.3, with some of the basic relations shown. These relations
are quite straightforward making the formula that popular. For the other relations not
depicted in Figure 2.3 the reader is referred to [Pac06].

Equation (2.1) can be used to model the following effects.

• Longitudinal force
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Figure 2.3: Function resulting from the magic formula.

• Lateral force

• Aligning torque

The semi-empirical tire model in Chapter 4 of [Pac06] additionally introduces equations
for the friction property’s dependence on normal load, overturning couple and rolling
resistance and therefore defines a model of about the same complexity as TMeasy. In
the subsequent chapters of [Pac06], tire properties are discussed in extensive detail cov-
ering non-steady-state properties, the shimmy phenomenon, transient behavior, short
wavelength models as well as road unevenness.

Unfortunately, the Magic Formula model was not implemented in the current version
of the Wheels and Tires library due to time constraints.

2.2.3 Object-Oriented Real-Time Model by D. Zimmer and M. Otter

The object-oriented real-rime model presented in [ZO09] is mainly based on TMeasy by
G. Rill with some adjustments made to suit the Modelica environment and to enhance
its properties. A seven level model with increasing complexity is introduced enabling
the modeler to choose the level of complexity suiting the current application. As it is
developed for the Modelica environment equations found in [ZO09] are used as a base
for the model presented in this work rather than the Magic Formula model.

2.3 Definition of Vectors and Coordinate Systems

For the modeling of wheels, unit vectors describing the orientation of the tire are es-
sential. This is true for the wheel’s (rim’s) center point as well as the contact point.
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2.3 Definition of Vectors and Coordinate Systems

The center’s properties are important to find the contact point and to describe trans-
lational movement. For the contact point, it is important to have longitudinal, lateral
and normal vector forming a coordinate system that is used when forces and torques
are applied on the contact point.

Figure 2.4 shows the unitary vectors of the contact point (eLong, eN and eLat) and the

Y

X

Z

eAxis

eLat

eLong

rCP

eN

vLong

Pitch

tLong

tLat

tN

Figure 2.4: The unitary vectors of the tire without a lean angle.

rotational as well as the (longitudinal) translational velocity (ωPitch and vLong). Forces
and translational velocities always point in the direction of the corresponding unit
vectors, whereas the corresponding torques act about them. The vector rCP points
from the center of the rim to the contact point and is a fundamentally descriptive
element of the tire.

In Figure 2.5 the same wheel is shown again with a lean angle ϕ of 10◦ to show the
changes when tilting the wheel. Additionally the vector ePlane is added to the figure
that was not shown in Figure 2.4 to enhance clarity.

For forces generated by the tire, slip and sliding velocity are major factors. How slip is
computed from the sliding velocity is shown in detail in Section 3.5.1 on Page 30. Figure
2.6 depicts the sliding velocity in longitudinal direction vSlipLong = (ω × rCP ) · eLong +
vLong. There is a lateral sliding velocity as well vSlipLat = vLat that was not depicted
in the figure for the sake of clarity. The overall slip velocity is then computed from the
two longitudinal and lateral components by Pythagoras’ rule as they are orthogonal.
The computation of the unit vectors is presented in Section 3.6.1 on Page 57.

Figure 2.7 depicts the standardized names of angles as well as angular velocities used
in this work.
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Figure 2.5: The unitary vectors of the tire with a lean angle ϕ of 10◦.

The coordinate system was chosen this way in order to suit the simulation environment
Dymola. DIN (Deutsche Industie Norm) defines the coordinates differently as well
as the SOE (Society of Automotive Engineers), whereas these differ from each other
also.
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Figure 2.6: An enlarged view of the contact point with vectors for longitudinal speed
vLong, rotational speed ωPitch and longitudinal slip velocity vSlipLong.
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Figure 2.7: Standardized names of angles and angular velocities.

15



2 Basic Considerations regarding Tires

16



3 Object-Oriented Tire Modeling

In this section the separation of the different tire properties into objects will be de-
scribed. First the splitting into the used objects is justified. Afterwards a basic outline
shows the structure of the tire models and the library. This is followed by a description
of the communication structure which is used to share information among the objects.
The remaining sections explain the single classes forming the overall tire model.

3.1 Decomposition into Objects

The motivation for a decomposition of a tire model into objects was explained in Sec-
tion 1.2 on Page 2. Therefore this section focuses on demonstrating the considerations
that lead to the actual structure of the model.

Thinking about wheels, the first division of the model is quite obvious, as there are
two physical components: the rim and the tire. The rim does not need to be split up
into further objects, as the important properties for the overall wheel are very limited
in a semi-empirical tire model. This characteristic is shown in Figure 3.1, which also
lists the most important properties of tires regarding modeling, split up into different
groups. The model of the rim is quite simple just modeling its mass and inertia tensor.
It can be found in more detail in Section 3.4 on Page 27 ff.

The tire does require a much closer look concerning its properties, as they are of much
bigger importance for the overall behavior of the wheel than the ones of the rim.
Modeling every single of the properties shown in Figure 3.1 by a class of its own is
infeasible task, suggesting a certain grouping of properties. Due to the semi-empirical
single contact point model certain constraints are fixed. There has to be a contact point
as part of the model, on which forces and torques act. The model realizing the contact
point is named Contact Physics and explained in detail in Section 3.7 on Page 65 ff.

One of the most challenging tasks of a tire model is to calculate the forces the tire excites
in different driving situations. There are plenty of different models trying to describe
the relation resulting in the forces which act on the contact point. Hence, a decision
was made to create a class that gathers the different effects which are responsible for
the generation of forces and torques acting on the contact point. Due to its origin is it
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Wheel

Rim Tire

Subareas: 
Contact Patch, Parts without Contact
Subareas: 

Geometry:
Diameter, Cross-Section, Tread
Geometry:

Build-Up:
Side-Wall, Bead, Carcass, Tread, Belt
Build-Up:
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Temperature, 
Wear, Pressure Distribution in 

the Tread Area,  
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Properties:
Weight, Inertia Tensor, 
Geometry

Properties:

Figure 3.1: Composition of wheels and properties of rims and tires. Properties depicted
in gray are neglected in the tire model.

is called the Friction class. As one can imagine this is a rather complex class covering
multiple effects. Hence, a further breakdown into different sub-classes is made, for the
model to be well manageable with a structure which is simple to adapt and expand.
How this is realized is demonstrated in detail in Section 3.5 on Page 27 ff.

Figure 3.2 depicts the status of modeling, including the restriction by the single contact
point model and the reasonable introduction of the Friction class. One can easily
identify that absolutely basic properties of a tire are not yet part of the model. The
probably first to catch the reader’s eye are the Tire Diameter and the Cross-Section.
These properties basically define the geometry of the tire, which shall be changeable
conveniently in the final tire model, allowing basically different geometric properties
of the tire. Therefore a Geometry class is introduced, defining the positional relation
between the tire hub and the contact point and some other properties which are further
discussed in Section 3.6 on Page 56 ff.

The next very basic duty the tire has to fulfill, which is not yet modeled, is the Carrying
of normal Load. Depending on the tire model different techniques are utilized to realize
this functionality. These range from the holonomic constraints defining ideal tires
to more complex models including a certain Damping of Surface Unevenness by the
introduction of more complex models. Due to the changing requirements to these
aspects, the effects were gathered in a class named Vertical Dynamics. It basically
determines how the tire reacts to normal load and if the ideally stiff Geometry is able
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Friction
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Contact Patch/Point

Figure 3.2: Properties from Figure 3.1 shown in relation to the corresponding Tire
Component classes which are closely related with the semi-empirical contact point
model. Properties depicted in gray are simplified in the model.

to penetrate into the ground1 and lift from it. More details can be found in Section 3.9
on Page 72 ff.

Until now all possible tire models would be totally rigid. To enable a certain deforma-
tion of the tire, the Belt Dynamics class is introduced. It allows a flexibility of the still
rigid tire, defined by the Geometry class, related to the tire’s hub. The part of the tire
that would best suite the ideal geometry is the belt. Hence, this class is called Belt
Dynamics. A description can be found in Section 3.10 on Page 77 ff.

The tire is now modularized into six classes including the Rim class which is not
depicted in Figure 3.3, as it was shown in Figure 3.1. Section 3.2.1 explains the imple-
mented version of this classes from the modelers point of view. It also explains why the
final model of the tire contains seven classes, introducing a Center to Contact Point
class. Section 3.8 on Page 68 ff describes Center to Contact Point class in detail.

All the classes mentioned above are calculating variables that are at least partially
used by other objects for further computations. Quite a few of these variables are
passed to other objects, therefore considerable effort was put into the development of a
communication structure enabling the user to understand the connection between the

1This is necessary to model a very simple variant of a contact patch although the tire, defined by the
Geometry, on its own is ideally stiff.
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Figure 3.3: Final decomposition of the tire properties. Properties depicted in gray are
simplified in the model.

objects just from looking at the graphical view of the models. The Communication
Structure is explained in Section 3.3.

Still there is one class found in Figure 3.3 that has not yet been introduced. This is
justified as it is an inner model and is not part of the actual tire model. It realizes
uneven surfaces and enables a position-depending friction coefficient. This model is
described in detail in Chapter 5 on Page 101 ff.

3.2 Structure of the Tire and Libaray

The following sections are intended to give an broad overview of the implemented
version of the tire model (Section 3.2.1) and the Modelica library (Section 3.2.2).

3.2.1 Tire Model Structure

The connection to the superordinate vehicle model is established by the three-dimensio-
nal frame named Tire Hub depicted in Figure 3.42. The Tire Hub, a standard element

2Taking a closer look at the Center to CP class, one can recognize rectangles surrounding the frames
of the class. These are depicted by Dymola 6.1 because they are replaceable elements of the Multi
Bond Lib.
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Figure 3.4: Model of the ideal tire showing the seven used objects and the communi-
cation structure on the top level.

of the MultiBondLib [Zim06], is rigidly connected to the model of the Rim. The rim’s
frame connected to the Tire Hub therefore models the center-point of the rim. The
“output” of the Rim again models the center-point of the Rim, and is connected to the
Belt Dynamics model. In this model the relative movement between the rigid belt and
the rim can be described. The “output” of the Belt Dynamics is again positioned at
the center-point of the belt. Therefore an element is needed to realize the translation
from this point to the contact point. As this cannot be modeled by a standard element,
the Center To Contact Point model has been created. It connects the Contact Physics
model that applies forces and torques to the contact point. This lower part of the
model represents the mechanically connected part of the model. The upper three
classes are not directly connected by a mechanical connector, although the Contact
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Point Connector implies kind of a mechanical connection. The Vertical Dynamics
class determines if and how the tire is able to lift from the ground and how it responds
to normal load. The Friction class determines the longitudinal and lateral forces as well
as the torques that act on the contact point. Finally, the Geometry class determines
the unitary vectors shown in Figure 2.4 and the position of the contact point depending
on the actual geometry, position and orientation of the tire.

In order to be able to identify different tires easily, the visualization of the single parts
is done in the corresponding objects. So e.g. the rim is visualized in the Rim Class, the
tire’s geometry is visualized in the Geometry Class and contact forces are visualized
in the Contact Physics class. Therefore, changing the Rim class leads to a different
visualization.

3.2.2 Library Structure

This section is intended to give a shallow overview of the library’s structure. The top
level packages of the library are depicted in Figure 3.5. The Tire Components package

Wheels and 
Tires

Tire 
Components Tires Environment Test Bench Examples Visualization

Figure 3.5: The library’s top level packages.

covers the classes the Tires are built of. The Tire Components are described in detail
in Sections 3.4 to 3.10. Both Tires and Tire Components are colored in green, in the
library as well as in Figure 3.5, as they have the same basis. The Environment package
contains the Surface Base as well as a exemplary implementation for even and uneven
surfaces. It is described in Chapter 5 precisley. To check basic functionality of Elevation
and Friction classes as well as the Surface, the Test Bench package has been created.
The Examples package demonstrates how tire models can be used as part of a vehicle
model. Examples and Test Bench are described in Chapter 6. Finally the Visualization
package gathers a few models used to enable the animation of all necessary parts of the
library.

A detailed overview of all models contained in the library can be found in Appendix A.1,
showing the used icons and models names.
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3.3 Communication Structure

The tire’s objects compute a bunch of different variables of which some are used in
different objects as well. Therefore, the objects have to be able to share variables
among each other. Different types of communication structures have been implemented
with varying quality of results, either having too many customized connectors or an
overwhelming amount of connections on the top level.

For this reason a decision was made to create a bus connector called TireBus that
gathers the variables used in most of the objects. For a better understanding of the
model structure a further splitting ensures that not too many variables are directly on
the top level of the bus. The division was made into Unit Vectors, Contact Properties
and Sensor Values as shown in Figure 3.6. For each of these sets of variables, separate
inputs and outputs have been created. This makes it possible to show in which objects
variables are computed or just used. To conveniently connect these inputs and outputs
(containing multiple variables) to the Tire Bus a record for each of these set of variables
is created in the Tire Bus. This enables the user to connect the records directly instead
of connecting each single variable, although this would be possible as well3. The icons
used and an exact listing of which variables are contained in the different connectors
can be found in Figure 3.6. As usual in Modelica the filled icons depict inputs, whereas
the icons without a fill color depict outputs.

The second communication structure is the connector that contains the velocities as
well as the forces and torques which act on the contact point. It is named Contact
Point Connector. This connector is implemented in a a-causal manner due to the
requirements of this connection. Hence, no inputs and output are defined here, because
depending on the used classes there are either forces or velocities set and therefore the
causality can change depending on the model. As well there is no second level that
further splits the contained variables as there are just nine variables contained in the
connector. Figure 3.7 shows the contained variables and the icons of the connector.

An examplary top level view of the communication structure is shown in Figure 3.4 de-
picting the two different connectors. The very few different connectors make it straight-
forward for the first-time user to understand the structure of the tire model. Looking
at the objects directly reveals a view shown in Figure 3.8. The user can easily identify
that unit vectors are calculated in this class because UV is an output and that sensor
values (SV) are used as an input. In addition the contact properties (CP) are calculated
in the geometry class. The rhombuses placed in the shadowed area above the inputs

3This fact is useful in some cases, because e.g. in the advanced elevation models (see Figure 3.35
on Page 74) two inputs (CP and the input of the position element) would have to be connected
directly (the Real penetrationDepth is ignored here), which causes Dymola to respond with an
error message. The user can overcome this by connecting the input of the position element directly
to the Tire Bus.
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Top Level Icon Second Level Icon Contained Variables

Unit Vector Signals (UV)

RealSignal eLong[3];

RealSignal eLat[3];

RealSignal eN[3];

RealSignal ePlane[3];

RealSignal eAxis[3];

Contact Property Signals (CP)

RealSignal xCP[3];

RealSignal rCP[3];

RealSignal lCR;

RealSignal bCR;

RealSignal penetrationDepth;

BooleanSignal Contact[3];

Sensor Value Signals (SV)

RealSignal eAxis[3];

RealSignal RBelt[3,3];

RealSignal wBelt[3];

RealSignal xBelt[3];

Figure 3.6: The elements contained in the Tire Bus.
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Top Level Icon Contained Variables

RealSignal vLong;

RealSignal vLat;

RealSignal vN;

RealSignal fLong;

RealSignal fLat;

RealSignal fN;

RealSignal tLong;

RealSignal tLat;

RealSignal tN;

Figure 3.7: The elements contained in the Contact Point Connector.

and outputs define the variables that are used in this model. Utilizing the real con-
nectors in this way, one does not have to declare variables in the code separately and
the user can identify which variables are really used in the model. This is important
due to the fact that not every variable from the Tire Bus has to be used in a model
connected to the bus. Moreover for a graphically built model, connecting them is very
convenient.

The communication structure and graphical declaration of variables is done with pro-
tected items because they would be visible in the icon at the top level otherwise. As
well, this way the user can decide which variables should be shown in the simulation
window directly. Moreover every variable contained in the Tire Bus can be shown in
the simulation tab because the Tire Bus is a public element in every class of the tire.

One thing that has to be mentioned about the communication structure is that lots
of vectors are used inside of different connectors. Connecting them in the sub-classes
is a little inconvenient, as Dymola 6.1 does not recognize that the variables used in
the bus are vectors. Therefore, connecting a Real[3] to a vector in the bus has to be
done in two steps. Therefore, the connection is done graphically first with the typical
Dymola window appearing when connecting vectored variables. In the window, one
has to choose a single item from the vector of the Real[3]. That will make Dymola
accept the connection. Then switching to the code view reveals some kind of equation
like
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C
P

S
V

U
V

RBelt eLong eAxisePlaneeNeAxisS...Contact penetra... xBeltlCR bCR rCP eLatxCP

Figure 3.8: Geometry Base model showing the communication on the second level of
modeling.

connect(eLong[1], UV.eLong)

This equation then has to be manually changed into

connect(eLong[:], UV.eLong[:])

to make the connection work. The reason for this behavior seems to be that Dymola
does not recognize the variable in the bus to be a vector. This could be caused by a
wrong definition in the records which are the base for the connectors, but during this
work no better solution could be found, so this workaround has to be applied.
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3.4 Rim Class

3.4 Rim Class

The Rim Class is a rather simple model, as the rim can be modeled ideally just con-
sisting of a body that has a mass and an inertia tensor (see figure 3.9). The second
thing the model does is measure the unit vector eAxis directly from frame_a. This
unit vector is then used in the geometry class to calculate the other unit vectors used
in the model. In order to describe the rim (as well as the belt dynamics presented in
Section 3.10) a generally applicable approach was considered to be the usage of the
center-points as “in- and outputs” to the model.

The second important thing the class does is visualizing the rim. This way it is possible
to create different rims that feature different looks. No more than one rim is realized
in the current version of the library but it could be done easily.

3.5 Friction

The following chapter is intended to explain the function of the friction class and its
subcomponents. For the sake of object-oriented modeling, the different modeled effects
are put into subclasses (see Figure 3.10 as an example) that are of different complexity.
All of the featured classes which model a certain type of effect are extended from the
corresponding base class, that ensures the necessary output to be calculated. This as
well ensures that all models stay exchangeable not depending on the implementation
of the modeled effect.

The simplest model is always a class which just sets the corresponding output to a
constant value. These are useful if the overall model should not consider this effect.
If a tire shall not have a bore torque because it is unnecessary in that application.
Additionally, there are one or more models which apply different effects in various
levels of detail. The modeled effects are the following.

• Slip Properties

• Roll Resistance

• Bore Torque

• Load Influence

• Camber Force

• Overturning Torque

• Self Aligning Torque
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name

frame_a frame_b

Name: SpokedRim

Location: WheelsAndTires/TireComponents/Rim
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Figure 3.9: Model of an ideal rim containing mass and inertia tensors.
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name
eN

e Long

e Lat

tN

tLong

tLat fLong

fLat

ideal

Name: IdealFriction

Location: WheelsAndTires/TireComponents/Friction

SlipProperties

no

BoreTorque

no

CamberForce

phi

Flat

no

SelfAligningTorque

lTrail

no

RollResistance

no

LoadInfluence

mu

fN

linear

OverturningTorque

tOver

phi

no

U
V

C
P

S
V

RBelt wBeltrCPlCRbCReLong ContacteAxisePlaneeNeLatfLong fLat fN

vLong vLat

tLong tLat tN

xCP

Figure 3.10: Model of an ideal frictional behavior.
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All of these models are combined in a base model that is called Friction Base. Common
variables are computed here and it provides the inner/outer framework for the com-
munication among the sub-models. The following sections will describe the different
classes in more detail.

3.5.1 The Friction Base Class

The base class of the friction is shown in Figure 3.11. Here the user can see that the
class uses variables from the Tire Bus (UV, SV and CP are inputs) to calculate frictional
forces and torques. To be able to calculate either forces or set velocities, it is important
that the contact point connector on the left is a-causal.

The friction base class computes many of the variables needed in the sub-classes which
are added to determine the frictional behavior of the tire. The rest of this section shows
how these are calculated exactly and what type of limitations they imply.

The slip velocities are computed by the following equations. See Figure 2.6 on Page 15
for a partial graphical representation.

vSlipLong = vRotLong + vLong (3.1)
vSlipLat = vLat (3.2)

vSlip =
√
v2
SlipLong + v2

SlipLat (3.3)

The translational velocities used in the equations above are determined by the following
equations. Whereas the index of the speeds Rot stands for velocity due to angular
velocities.

vRot = wBelt × rCP (3.4)
vRotLong = vRot · eLong (3.5)
vRotLat = vRot · eLat (3.6)

vRotP lane = vRot · ePlane (3.7)

Whereas ωBelt was used instead of ωRim due to the fact that models presented later
can result in a ωBelt different from ωRim.

From these quantities the slip values can be calculated4. The equations are formulated
in a conditional way due to the fact that for wheels that do not turn (vRotLong = 0 or

4There are several different definitions of slip. The one used by G. Rill in [Ril07] was used in this
implementation in a slightly modified version.
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name
eN

e Long

e Lat

tN

tLong

tLat fLong

fLat

Name: FrictionBase

Location: WheelsAndTires/TireComponents/Friction

U
V

C
P

S
V

RBelt wBeltrCPlCRbCReLong ContacteAxisePlaneeNeLatfLong fLat fN

vLong vLat

tLong tLat tN

xCP

Figure 3.11: Friction Base class defining in- and outputs as well as some of the used
variables.
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ωRot = 0), the slip becomes infinite. Therefore, the following equations are used.

sLong =


vSlipLong/ |vRotLong| if |vRotLong| > |vRotMin|

vSlipLong/ |vRotMin| else
(3.8)

sLat =


−vSlipLat/ |vRotLong| if |vRotLong| > |vRotMin|

−vSlipLat/ |vRotMin| else
(3.9)

s =
√
s2Long + s2Lat (3.10)

Whereas vRotMin is a parameter value with a default value of 10−6ms−1. The influence
of this limitation can be seen in Figure 3.15(b) on Page 40.

In [Ril07], a different approach is used to get rid of the division by 0. Instead of the
border introduced in Equations 3.8 and (3.9), vRotMin a term small compared to the
pitch angle velocity, is added to the denominator resulting in the equation

s =
v

R · |Ω|+ vNum
(3.11)

with v being the sliding velocity, R the tires’ radius and |Ω| the absolute rotational
velocity. vNum << R|Ω| should be valid throughout the simulation. However, the
limitation in the implemented way is more suitable for the Modelica environment.

Section 3.5.2.5 introduces the variables vAd and vSl that are directly connected to sAd
and sSL in a similar way as shown in Equations (3.8) and (3.9). As they are introduced
due to the friction model described in this section, they are explained there.

Another value that is computed in the frictionBase class is the slip angle. It is
determined in the following way:

α =


arctan(sLat) if |vRotLong| > |vRotMin|
π
2 else if vLat < 0

−π
2 else

(3.12)

Finally, the effects which arise due to the sub-models are considered. This is done by
either adding output values to the originally calculated ones (for the sliding velocity
due to camber angle) or by setting the output to the calculated value (for the calculated
torques due to overturning, bore effects, self aligning and roll resistance). The relevant
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3.5 Friction

equations for this are:

vSlipLat = vLat + vLatCamber (3.13)
tLong = tOverturn (3.14)
tN = tBore + tAlign (3.15)
tLat = tRoll (3.16)

For a graphical representation of the torques and the slip angle, see Figure 2.4 on
Page 13.

Note that Equation (3.13) replaces Equation (3.2) in the final model. This adds a force
that arises due to lateral displacement of parts traveling through the contact area. The
effect is described more precisely in Section 3.5.5 on Page 48.

3.5.2 Slip Properties

This section is intended to describe models relating slip or sliding velocity to the forces
acting on the contact point. There are basically three different approaches to calculate
contact forces. One is to set the sliding velocity to 0, the second to use slip as a
base, the last is to use sliding velocities. All have advantages over the other which
will be explained in the following sections. One approach is shown that combines the
advantages of the latter both.

3.5.2.1 No Slip

The simplest way to model a tire’s slip behavior is to assume an ideal tire having no
slip at all. This is done in the No Slip class by defining the following equations.

vSlipLong = 0 (3.17)
vSlipLat = 0 (3.18)

This introduces two holonomic constraints that result in the two contact point forces
fLat and fLong. This is a quite similar situation as with the No Elevation class
described in Section 3.9.1 on Page 72 which results in fN.

One property of the model is that it does not take into account the variable Contact
that is a boolean variable defining if the tire has contact to the ground (Contact =
true) or not. So in the event that a model, which allows the tire to lift from the ground,
is chosen in the Vertical Dynamics class and the tire really does lift from the ground, it
can still transmit forces although it has no contact to the ground. That property is not
a big issue, because the combination of a model with the ability to lift from the ground
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3 Object-Oriented Tire Modeling

but without slip is one that would usually not be simulated, as usually the slip is one of
the first things that is modeled. Additionally every model that imposes slip and sliding
velocity depends on the normal force. If there is no contact, the normal force will be
zero and therefore no longitudinal or lateral force can be generated, independent of the
contact variable.

3.5.2.2 Sliding Dry Friction Longitudinal

This model utilizes the properties of the No Slip model for the lateral force generation
but allowing slip in the longitudinal direction. Therefore, the same that is valid for the
No Slip class is true for the lateral direction of the Sliding Dry Friction Longitudinal
class. Lateral forces can be transmitted if there is no contact to the ground.

The generation of the longitudinal force is based on Coulomb’s law of dry friction.
Therefore, the equation for the equation used to calculate the longitudinal force is
quite simple:

fLong = −fN · µ(vSlip) (3.19)

What makes that model meaningful for the modeling of tires is that the friction co-
efficient µ depends on the (overall) sliding velocity. Otherwise that model would not
represent a tire accurately. The function that is used to calculate the friction coefficient
depending on the sliding velocity is shown in [Ril07] and [ZO09]. It is a curve deter-
mined by a continuous interpolation between characteristic points vAdhesion/muMax
and vSlide/muMin shown in Figure 3.12. One more parameter in the used interpolation

µ

vSlip

µmax

vAdhesion

µmin

vSlide

Figure 3.12: The frictional coefficient µ depending on the sliding velocity vSlip showing
the two descriptive points.

is the slope of the curve in the origin. The slope dµ/dvSlip is a final parameter and is
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3.5 Friction

set to 2/vAdhesion as this one is usually not that important and difficult to determine
for the average user.

The used equations for this piecewise polynomial interpolation are the following.

µ(vSlip) =



vSlip · µ̇vSlip(0)
1 + σ(vAdhesion

µmax
µ̇vSlip(0)− 2 + σ)

if vSlip ≤ vAdhesion

µmax − (µmax − µmin)τ2(3− 2σ) if vAdhesion < vSlip < vSlide

µmin else

(3.20)

with

σ =
vSlip

vAdhesion
(3.21)

τ =
vSlip − vAdhesion
vSlide − vAdhesion

(3.22)

The result of this interpolation can be seen in Figure 3.13(a), where one can also clearly
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Figure 3.13: The dependence of force generation in the longitudinal direction on the
sliding velocity.

recognize the two characteristic points of the curve. These are the parameters of the
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model which were set to

vAdhesion = 0.3
m

s
(3.23)

vSlide = 1
m

s
(3.24)

µmaxN = 1 (3.25)
µminN = 0.6 (3.26)

for this simulation. The “N” in the indexes indicates that these are nominal values
because the friction coefficient can change in dependence of the normal load. This fact
is explained more closely in Section 3.5.6 on Page 50. The simulation also results in a
longitudinal force shown in Figure 3.13(b) that is the output of Equation (3.19) with
a normal force that results from 15kg weight.

Regarding the implementation of Equation (3.20), it has to be mentioned that it was
done in a way more suitable for the computation. The function get_mu_vSlip (that
computes the interpolation) does not directly return the friction coefficient µ but rather
the quotient µ/vSlip. The reason for that can be found in the way the force is actu-
ally computed. The way it is implemented differs a little from the mentioned Equa-
tion (3.19), due to the fact that the direction the force acts in has to be considered.
Therefore, and for similarity with the other classes based on the sliding velocity, the
following equation has been used.

fLong =


−fN ·

(
µ

vSlip

)
vSlipLong if Contact

0 else
(3.27)

In this case vSlip and vSlipLong are always the same values because there is no slip in
lateral direction, it does not matter which one is taken to multiply with. Of greater im-
portancd is that in the implementation the fraction µ/vSlip is one variable of type Real5

which is named mu_vSlip. Therefore the Equation (3.20) was manually divided by vSlip
directly returning the term (µ/vSlip). This moves the division from Equation (3.27) to
(3.20), which overcomes the problem with the division by zero as the term vSlip cancels
out in the case of vSlip ≤ vAdhesion. For the other terms, the resulting division by vSlip
does not matter as vSlip cannot be 0 in these cases. This way, Equation (3.27) cannot
result in a division by 0 and becomes generally usable.

It is important to notice, that the if statement accounting for the Contact variable
that would not be necessary in general, because the normal force fN is 0 when there is

5The reason for using type Real without any unit is that the function gets called by models based
on sliding velocities and slip as well. Therefore, it would have to return different units depending
on the type of class calling it. This would be possible to realize with an additional input to the
function but better usability is considered to be more important.
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3.5 Friction

no contact resulting in fLong and fLat to obtain 0. Still, it has been implemented this
way to ensure that the Contact variable can have influence on the simulation result
not depending on the normal force.

As the friction coefficient is not directly calculated because the variable mu_vSlip has
been used, the equation

µ =
(

µ

vSlip

)
vSlip (3.28)

calculates the friction coefficient to display it in the simulation results.

3.5.2.3 Sliding Dry Friction

The main difference between the Sliding Dry Friction and the foregoing Sliding Dry
Friction Long is that for the former, lateral sliding velocity is possible as well. The
characteristics for the friction are the same in principle (see Figure 3.13), but one has
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Figure 3.14: The dependence of force generation on the overall sliding velocity with
two different cases shown.

to keep in mind that a lateral slip velocity adds up to the total sliding velocity in a
quadratic sense as shown in Equation (3.3) on Page 30. Therefore, a lateral slip has an
effect on overall coefficient in the longitudinal direction as well.

This effect is shown in Figure 3.14, where a simulation of two different cases was carried
out. The one is the same as shown in Figure 3.13 on Page 35. The second one adds a
lateral sliding velocity of 0.2ms−1 which results in the corresponding curves. In 3.14(b),
one can see that the force available for the longitudinal force is reduced by the lateral
sliding velocity. In 3.14(a) the friction coefficient is shown. It does not reach 0 in the
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case of vLat = 0.2ms−1 due to the fact that the overall slip velocity cannot get 0ms−1

with vLat 6= 0ms−1 during the simulation. The “jump” of the friction coefficient at
vSlipLong = 0ms−1 has its reasons in the simulation. The lateral sliding velocity is
realized by a ramp function, hence the friction coefficient raises with the lateral sliding
velocity from 0 to a value above 0.9 at vSlipLong = 0ms−1.

The implementation is a consequential extension to the one in Sliding Dry Friction
Long. The equations used are:

fLong =


−fN

(
µ

vSlip

)
vSlipLong if Contact

0 else
(3.29)

fLat =


−fN

(
µ

vSlip

)
vSlipLat if Contact

0 else
(3.30)

3.5.2.4 Rill Friction

The major difference of the Rill Fricition to the foregoing classes is that it depends
on the slip rather then the sliding velocity. The results of this difference are explained
in Section 3.5.2.5. Another difference is that friction properties for longitudinal and
lateral friction can separately be set by parameters. These are used during simulation
to determine the frictional properties in every slipping situation. The equations are

sAdhesion =
√

(cos(α) · sLongAdhesion)2 + (sin(α) · sLatAdhesion)2 (3.31)

sSlide =
√

(cos(α) · sLongAdhesion)2 + (sin(α) · sLatAdhesion)2 (3.32)

µMaxN =
√

(cos(α) · µLongMaxN )2 + (sin(α) ·muLatMaxN )2 (3.33)

µMinN =
√

(cos(α) · µLongMinN )2 + (sin(α) ·muLatMinN )2 (3.34)

µ

sN
=

√(
cos(α) · µ

sLongN

)2

+
(

sin(α) · µ

sLatN

)2

. (3.35)

taken from [Ril07].

The interpolation for the friction coefficient is the same one that was used in the
foregoing classes. It does not matter whether it is used based on sliding velocities or
the slip. So again the actual value of µ has to be computed from the term (µ/s) by
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multiplying with s. For the actual forces, the equations

fLong =


−fN

(µ
s

)
sLong if Contact

0 else
(3.36)

fLat =


−fN

(µ
s

)
sLat if Contact

0 else
(3.37)

are used, which take into account the overall slip.

3.5.2.5 Combined Friction

The Combined Friction class is named this way because it combines the advantages that
arise from the usage of the sliding velocity and the ones that arise from the slip as a base
for the frictional forces. The method was published in a paper by the DLR [ZO09]. As
it can be seen easily from Figure 3.15 on Page 40 there are essential differences between
the models that base on the sliding velocity which were named “dry sliding” models
and the one based on the slip. The former does not change its behavior with the pitch
angle velocity and is therefore very stable but valid only for a small velocity range. The
model used by Rill in [Ril07] is better suited for higher rolling velocities but gets stiff
at low pitch angle velocities. The stiffness was regarded to by the limitation of the slip
(see Equation (3.10)) with the result visible in Figure 3.15(b).

In [ZO09], a possibility is shown to combine the advantages of these two models based
on the function softMaxTol. This combines the stability of the first (Figure 3.15(a))
approach with the accuracy of the second approach (Figure 3.15(b)). The result of this
smooth transition between the two models is shown in Figure 3.15(c). The influence of
the parameter tol on the transition between the two models is depicted in Figure 3.16.
Values that are much bigger or smaller than the used ones do not provide useful results.
The softMaxTol function is implemented in the following way

softMaxTol(a, b) = log
(
ea/tol + eb/tol

)
· tol (3.38)

with tol = 0.1 by default.

It is silently assumed that µmax and µmin are the same for both models, which is
arguable because the actual process of rolling should not influence these attributes
drastically. Also the values for vAd and vSl can just rise with increasing pitch rotation
velocity [ZO09].

The resulting velocities at which adhesion and full sliding occur now depend on the
actual driving situation, therefore they cannot be described by a simple parameter
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(a) Based on the sliding velocity. (b) Based on the slip.

(c) Based on a combination of both.

Figure 3.15: The friction coefficient in dependence on the overall sliding velocity and
the velocity due to pitch angle rate.
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(a) Result using tol = 2. (b) Result using tol = 1.

(c) Result using tol = 0.1. (d) Result using tol = 0.01.

Figure 3.16: The influence of the parameter tol on the transition between the two
frictional models.
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anymore. Therefore, two new variables vAd and vSl are introduced. These describe
the velocity of adhesion (vAd) and the one of full sliding (vSl). These two variables
are necessary for the calculation of the actual friction coefficient by the get_mu_vSlip
function and for other models like e.g. the bore torque. Generally, throughout all models
these variables can be used for comparison whether slipping occurs or not. Therefore,
all the foregoing models have set these variables to the corresponding values which
are parameters there. The Combined Friction model is the only one to have changing
values for vAd and vSl. For all the other models, these values do not change during
the simulation time6.

The Rill Friction is based on the slip and future models may as well need slip values of
adhesion (sAd) and full sling (sSl) as well. Therefore the frictionBase class features
two equations that compute sAd and sSl from vAd and vSl in a similar fashion to
Equation (3.8) and (3.9) on Page 32.

With this as a base, it is possible for models to get information whether the tire is
sticking or sliding by comparing with the presented values. This is possible with every
type of friction model independent of the type of friction model used.

3.5.3 The Rolling Resistance

The rolling resistance arises due to an asymmetric pressure distribution in the tread
shuffle and a number of other effects that shall not be mentioned here. For a more
detailed description, the reader is referred to [MW03]. The result of these effects is
that the normal force fN does not act in the middle of the contact area but a certain
distance in front of it. This positional shift in longitudinal direction and the normal
force result in a torque that tries to slow down the movement of the tire. For reasons
of generality, the measured positional shift xR is usually divided by the tires radius r
resulting in a friction coefficient fR.

fR =
xR
r

(3.39)

It is important to notice that no force has to be transmitted via the contact point in
order to make the rolling resistance slow down the tire. Therefore, it is possible to
have a decreasing tire velocity for a freely rolling wheel on a surface with a friction
coefficient of µ = 0.

6Models based on slip have constant sAd and sSl, models based on the sliding velocities have constant
vAd and vSl, with the respectively other one changing depending on the pitch angle veocity .
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3.5.3.1 Roll Resistance Base and No Rolling Resistance

The partial base class ensures tRoll to be an output of every model with No Roll
Resistance setting it to 0 in the event that the rolling resistance should not be part of
the simulation.

3.5.3.2 Constant Rolling Resistance

The constant rolling resistance is specified by one parameter fR0 that is the relative
friction coefficient defined in Equation (3.39). The index 0 indicates that it is not
velocity dependent. In Figure 3.17, the result of the model is shown. The torque does
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Figure 3.17: Constant roll resistance torque depending on the pitch angle velocity.

not rise with growing velocity, but a limitation has been added if the velocity gets lower
than the velocity of adhesion vAd to avoid step like change at the zero crossing. The
used equation is

tRoll =


−fN · fR0 · rWheel · sign(vRotLong) if |vRotLong| > vAd AND Contact

−fN · fR0 · rWheel ·
vRotLong
vAd

if Contact

0 else

(3.40)

with the result shown in Figure 3.17.
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3.5.3.3 Speed Depending Rolling Resistance

This model improves the accuracy of Constant Rolling Resistance by the two additional
parameters fR1 and fR4 whereas the number indicates the order of term it is used in.
In this model, fR is dependent on the speed in the following way.

fR = fRO + fR1 ·
|vRotLong|
100/3.6

+ fR4 ·
( |vRotLong|

100/3.6

)4

(3.41)

Whereas the denominator 100/3.6 indicates that the velocity v is divided by 100km/h
in [MW03].

The speed dependent factor fR computed by equation (3.41) is then used instead of fR0

in Equation (3.40). This type of model for the rolling resistance as well as the default
parameters are shown in [MW03]. Figure 3.18 shows the rising rolling resistance in
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Figure 3.18: Speed dependent roll resistance torque depending on the pitch angle ve-
locity.

dependence of the velocity. The area close to the zero crossing applies the same linear
dependences below the velocity of full adhesion as shown in Section 3.5.3.2.

There is no quadratic term in the equation because the quadratic term of the frictional
force acting on a vehicle is usually dominated by the aerodynamic forces, not by the
tire.

3.5.4 Bore Torque

Bore torque appears when the tire is rotated around its vertical axis at a yaw rate
6= 0. In the contact area, parts are sticking to the ground and therefore a kind of
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spring has to be stretched to get the tire spinning until the parts of the tread shuffle
start sliding. The bore torque is the physical quantity describing its characteristic. It
always counteracts this rotating movement. For a more detailed description, the reader
is referred to [Ril07]

3.5.4.1 Bore Torque Base and No Bore Torque

The Bore Torque Base is a partial class ensuring, that every class extending it has tBore
(the bore torque) as an output variable. No Bore Torque is a simple class defining the
output tBore to be zero. So this class is to be used if there is no bore torque shall be
modeled.

3.5.4.2 Linear Bore Torque

The linear bore torque model is a modified version of the one is shown in [ZO09]. It
has been modified to better suit friction models that do not use vAd and vSl as a base.
The equations that were used are the following.

tBore =



−fN · loadInfluence · µTurn
1
16
l2CR + b2CR ·

ωPlane
vRotLong

if |ωPlane|
1
4

√
l2CR + b2CR < |vRotLong| AND Contact

−fN · loadInfluence · µTurn
1
4

√
l2CR + b2CR · sign(ωPlane)

else if Contact

0 else

(3.42)

The liniarily rising torque is calculated in the if part of Equation (3.42). The else
part takes care of the limitation to the maximum torque with a changing border. This
limitation is realized by dividing the actual equation for the depending torque by the
condition that of the if clause, what results in the equation that is used in the else if
section. Finally the else section sets the bore torque to 0 if there is no contact to the
ground. The factor loadInfluence enables the model to have a friction coefficient that
is dependent on the normal load. The factor is explained in more detail in Section 3.5.6
on Page 50.

The result of this model can be seen in Figure 3.19. The bore torque strongly depends
on the pitch rotation velocity of the tire which is true according to experience. But
for every driving situation the torque is limited to the maximum value that depends
on the size of the contact area, which in turn depends on the normal load via the
Vertical Dynamics determined in the elevation class. From Figure 3.19 one can see
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Figure 3.19: The bore torque depending on the yaw rate at different pitch angle veloc-
ities in the linear model.

that the situation of the tread elements sticking to the ground is not modeled assuming
an immediate sliding of the tread elements.

The only parameter of the model µTurn (muTurn) basically determines the amplitude
of the maximum value for the bore torque. The slope of the bore torque depending on
ωPlane and the contact area is a result of the model and cannot be influenced directly.

3.5.4.3 Combined Bore Torque

The Combined Bore Torque model is basically the same as the foregoing model. The
main difference is that for the if condition, not the pitch rotation speed is used, but the
velocity of adherence. This is a valid assumption if this velocity of adhering changes
with the pitch rotation velocity, what is true for the Combined Friction. Therefore,
this model should just be used in combination with the combined model for friction,
indicated by the names of the models.

The used equations are the following which are very similar to the ones shown in
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Equation 3.19.

tBore =



−fN · loadInfluence · µTurn
1
16

√
l2CR + b2CR ·

ωPlane
vAd

if

|ωPlane|
1
4

√
l2CR + b2CR < |vAd| AND Contact

−fN · loadInfluence · µTurn
1
4

√
l2CR + b2CR · sign(ωPlane) else

if Contact

0 else

(3.43)

The derivation of these equations can be found in [ZO09].

The results of this model are shown in Figure 3.20. Although the value for vAd changes
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Figure 3.20: The bore torque depending on the yaw rate at different pitch angle veloc-
ities in the model from [ZO09].

slightly during the simulation, the pitch rotation velocity is too low to get big differences
in vAd that would result in a curve with a lower slope. The reason for that is the offset
in vAd that comes from the softMaxTol function and the parameters of the Combined
Friction model which can be seen in Figure 3.16 on Page 41. This also means that the
maximum values for the bore torque are reached at a relatively high turning speed of
the tire compared to the foregoing model. This can be seen in Figure 3.20 as well when
looking at the scaling of the x-axis. For higher pitch rotation velocities, the behaviors
of the models become more similar.
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3.5.5 Camber Force

The effect of camber force has its reason in the lean angle of a wheel. The elements
in the tread shuffle cannot follow their natural path because they stick to the ground
during the contact phase. That effect produces a force that adds up to the lateral force
with its origin shown in Figure 3.21.

lCR

contact area
b

C
R

natural path forced path

r
r

camber deflection

eN

eLat

eLat

eLong

top viewtop viewfront viewfront view

ö

Figure 3.21: View of a wheel with lean angle and highlighted contact area including a
sketch of the maximal camber deflection.

As pointed out by [ZO09] and presented in [Ril07], [Pac06] the force that results from
a camber angle can be modeled by an additional sliding velocity, which adds up to
the lateral sliding velocity. This is a convenient way because all the properties of the
friction model stay valid automatically.

Regarding the implementation it would be possible to introduce a force as well, even in
parallel with the additional sliding velocity. This could be done by adding the force to
the frictionBase class and the CamberForceBase. The models covering the effects of
occurring camber angles would then determine either the additional sliding velocity or
the force directly and set the other one to zero. The approach using the force was not
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used in the library due to the fact that the technique based on the additional sliding
velocity is more convenient and common.

An application one could seriously worry about is, when the tire is not able to move
laterally because of restrictions outside the tire model, but a lateral speed arises from a
camber angle. In this case the additional slip velocity is transformed to lateral sliding
velocity by Equation (3.13) and results in the corresponding force based on the friction
model. Therefore, this application is not a problem.

3.5.5.1 Camber Force Base and No Camber Force

The model CamberForceBase ensures that variable vLatCamber is calculated somehow.
Like in the foregoing models No Camber Force just sets vLatCamber to 0.

3.5.5.2 Simple Camber Speed

The Simple Camber Speed model is based on the assumption mentioned in the intro-
duction. It computes the speed of the parts in the contact area arising from the forced
path and adds it to the lateral sliding velocity. The equations are based on geometric
properties that are depicted in Figure 3.21.

Following Pythagoras’ rule for right-angled triangles, one can find the maximum of the
camber deflection to be

CamberDeflectionmax = r − r
√

1−
(
lCR
2r

)2

(3.44)

CamberDeflection = CamberDeflectionmax · sin(ϕ) (3.45)

Now the actual speed that adds up to the lateral sliding velocity is calculated by7

vLatCamber =



camberGain · camberDeflection
(
vRotLong
2 · lCR

)
if

Contact AND lCR > 0

0

else

(3.46)

Equation (3.46) is based on the fact that the time of contact tContact can be approxi-
mately calculated from the length of the contact area lCR and the speed due to pitch

7Inserting (3.47) in (3.48) leads to (3.46).
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rotation vRotLong by the equation

tContact ≈
lCR

vRotLong
(3.47)

and the average speed vLatCamber therefore becomes

vLatCamber ≈ camberGain ·
camberDeflection

2 · tContact
(3.48)

assuming a triangular velocity curve during the time of deflection. With the parameter
camberGain the effect of the model can be scaled easily to fit measured data. The
result of the model is shown in Figure 3.22 in Section 3.5.5.3 depicting the additional
lateral speed due to the lean angle. This is possible as both models have the same
results qualitatively.

3.5.5.3 Combined Camber Speed

The foregoing model was based on assumptions that were taken from [ZO09] and mod-
ified them partially. Combined Camber Speed is taken directly from [ZO09] and utilizes
the same equations for the calculation of the camber deflections. The following equa-
tions differ a little, with the argumentation for that to be looked up in [ZO09]. The
camberDeflection is computed by Equation (3.44) and (3.45) again

vLatCamber =


camberGain · camberDeflection · vRotLong if

Contact AND lCR > 0

0 else

(3.49)

Figure 3.22 depicts the sinusoidal characteristics of the camber speed with respect to the
camber angle. The horizontal line on the left of the figure results from the initial tilting
of the wheel when applying the lean angle without pitch angle velocity and therefore
as well with out camber force. As mentioned before the resulting speed is added to the
lateral sliding velocity in the Friction Base model and therefore the characteristics of
the slip models are directly influencing the resulting force.

3.5.6 Influence of the Load on the Friction Coefficient

As shown in [Ril07] the normal load of the tire has a nonlinear influence on the friction
properties. Usually a doubled normal load does not enable the tire to transmit the
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Figure 3.22: The lateral velocity due to the camber angle.

double forces in longitudinal and lateral direction. This fact shall be accounted for in
the more complex of the following models.

3.5.6.1 Friction Load Influence Base

Besides the icon the Friction Load Influence Base defines the factor loadInfluence to
be defined by the models that extend this base.

3.5.6.2 Linear Load Influence

Linear Load Influence is a quite simple model defining the factor loadInfluence to be
1. This results in a tire capable of transmitting driving forces which rise linearly with
the normal load. Although this is not a very realistic model, it makes it possible to
understand complex driving situations more easily and is therefore very useful for the
modeler when trying to understand more complex simulations e.g. when searching for
errors.

3.5.6.3 Quadratic Load Influence

The Quadratic Load Influence model from [ZO09] makes the coefficient of friction µ
dependent on the normal load. This combined with the fact that µ gets multiplied
with the normal load in the reasonable models for slip properties is the reason for the
quadratic behavior of the overall model with a maximum of the contact forces at fNSat.
If the normal force rises further, the contact forces stay constant due to a decreasing
friction coefficient that is determined by the else clause of Equation (3.50).
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The decrease of the friction coefficient is specified by three values. These are the nominal
load fNominal, the friction coefficient at nominal load µN and the friction coefficient at
the double of the nominal load µ2N . The used equations are the following.

loadInfluence =


(2µN − µ2N )− (µN − µ2N ) · fN

fNNominal
if fN <= fNSat

(2µN − µ2N )2

4 · (µN − µ2N )
fNNominal

fN
else

(3.50)

fNSat = fNNominal ·
2µN − µ2N

2 · (µN − µ1N )
(3.51)

Figure 3.23 shows the values of the loadInfluence factor as well as the corresponding
longitudinal force at full sliding. Full sliding has been chosen because then the fric-
tion coefficient does not change during the simulation due to varying slip. The used
values are the defaults of the model which are fN = 3kN , µN = 1 and µ2N = 0.75.
Figure 3.23(a) shows the factor in an usual range of fN , whereas Figure 3.23(b) shows
the behavior of the model when very big normal loads are acting. These are not repre-
sentative for usual simulation cases, but for quick transient events it is important that
the friction coefficient still has positive values.

3.5.7 Overturning Torque

The overturning torque tries to reduce the lean angle of the tire by a counteracting
torque.

3.5.7.1 Overturing Torque Base and No Overturning Torque

The Overturing Torque Base model ensures tOverturn to be calculated and No Over-
turning Torque can be used to set it to 0 if this effect is not accounted for in the overall
model.

3.5.7.2 Linear Overturning Torque

This effect arises due to the varying deflection of the contact area. This effect can be
modeled as shown in [Ril07]. The model developed there is linearly dependent on the
lean angle ϕ (phi).
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Figure 3.23: The load influence factor and longitudinal friction force in dependence on
the normal load fN .

As mentioned before the relationship between the lean angle ϕ and the overturning
torque can be modeled linearly, as shown in Figure 3.24. Other factors that influence
the value of the torque are radial stiffness and the width of the contact area. The
equations used are the following.

cOverturn =
1
12
· b2CR · cR (3.52)

tOverturn = cOverturn · ϕ (3.53)

3.5.8 Self Aligning Torque

The self aligning torque is the result of the lateral force fLat which does not act on
the center of the contact area in longitudinal direction. This distance is called the
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Figure 3.24: The overturning torque in dependence on the lean angle ϕ.

pneumatic trail due to the reasons of this trail. The force and the mentioned positional
shift lTail produce a torque that tries to reduce the slip angle. How this can be modeled
is shown in [MW03] very well. They find that lTrail mainly depends on the slip angle.

The following models do a piecewise polynomial interpolation introduced by [Ril07].
They build on the lateral slip sLat, the slip of adhesion sAd and full sliding sSl as a
base for the calculation of lTrail rather than the slip angle α. This is possible due to
the fact that the relation

tan(α) = sLat (3.54)

is quite linear for low values of α. For values of α that would result in a nonlinear
relation the values of lTrail get 0, therefore this effect has no noticeable influence on
the result.

3.5.8.1 Self Aligning Torque Base and No Self Aligning Torque

Self Aligning Torque Base ensures that variable tAlign is calculated somehow. Like in
the foregoing models No Self Aligning sets tAlign to 0.

3.5.8.2 Self Aligning Torque Rill

As mentioned in the introduction and shown in Figure 3.25, the model of Rill uses the
lateral slip as base for the calculation of the dynamic trail. The used interpolation is
the following.
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lTrail =



1
6
· lCR ·

(
1− |sLat|

sAd

)
if

|sLat| < sAd AND Contact

−1
6
· lCR ·

|sLat| − sAd
sAd

(
sSl − |sLat|
sSl − sAd

)2

if

|sLat| > sAd AND |sLat| < sSl AND Contact

0 else

(3.55)

Figure 3.25(b) shows the pneumatic trail in dependence on the lateral sliding velocity.
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Figure 3.25: The dynamic trail depending on different physical quantities.

The differing curves arise from the fact that in the equation of the slip (3.10) the pitch
angle velocity is accounted for inversely. As this velocity changes during the simulation
that was carried out resulting in Figure 3.25, the dynamic trail does not directly depend
on lateral sliding velocity.

In Figure 3.26, one can see the influence of the friction model on the dynamic trail
lTrail. Figure 3.26 depicts the result of a simulation with the friction model Combined
Friction. The characteristic point of the friction curve sAd and sSl can change depending
on the situation of the tire. As these are used for the borders of the interpolation for
the pneumatic trail, this influences the curve for the pneumatic trail. The simulation
was carried out with a translational speed of 2ms−1 (resulting in the wider curve)
and 10ms−1 (the tighter curve) respectively. For all the other models, either the slip
or the sliding velocities of the characteristic curve are constants and they therefore
result in a behavior depicted in Figure 3.25(a) either based on the lateral slip (for
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Figure 3.26: The pneumatic trail by [ZO09] depending on different variables with the
Combined Friction model for the slip properties.

RillFriction) or the sliding velocities (for Sliding Dry Friction and Sliding Dry Friction
Longitudinal).

3.6 Geometry

All geometric classes have two main tasks to fulfill. The first is to determine the contact
point properties8 including the vector rCP that points from the center of the rim9 to
the contact point. Secondly, all have to compute the unit vectors that are important
in many other objects. As the unit vectors are calculated similarly, independent of
the actual geometric properties, these equations are implemented in the base model, as
shown in Section 3.6.1.

The first task - the determination of rCP is depending on the actual geometry of the
tire, the normal vector of the surface at the contact point and the lean angle of the
tire described by ePlane. Therefore the contact point has to be found, which can be a
non-trivial task in case of an uneven surface. In case of the Wheels and Tires library a
quite simple approach was developed, which is described in Section 3.6.5 on Page 64.
Although the same code for the finding of the contact point is used in all the models,
it was copied to the three different geometric classes. This is reasonable due to the fact
that the base class can be extended by classes using other techniques for finding the
contact point totally different.

Figure 3.27 depicts the penetrationDepth, which is calculated in all geometric classes

8A full listing of the quantities gathered in the contact point properties can be found in Figure 3.6 on
Page 24.

9In case of a dynamic belt the center point of the belt.
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Figure 3.27: A tire with an ideally stiff belt penetrating the surface.

in a similar manner. It is used in the Vertical Dynamics classes to calculate the normal
force acting on the contact point. The No Elevation class is a special case here as
it sets the penetrationDepth to a value rather than using it to calculate a force10.
More details on the Vertical Dynamics Classes can be found in 3.9 starting on Page 72.
Positive values of the penetrationDepth indicate a tire lifted from the ground, whereas
negative values denote a real penetration in the surface.

3.6.1 Geometry Base

The graphical model of the Geometry Base can be found in Figure 3.8 on Page 26. It
can be seen that the unit vectors are calculated in this class because UV is an output
This is done based on eAxis as this is an input to the model from a measurement in
the Rim Class. Furthermore, eN is determined utilizing the get_eN11 function. The

10In this case Figure 3.8 on Page 26 has a wrong causality indicated for the penetrationDepth what is
not a problem for Dymola and therefore disregarded for the sake of understandability of the mainly
used models.

11The get eN function is part of the Surface class described in Chapter 5. It returns the normal vector
on the Surface at the current position of the tire.
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equations used for computing the other unit vectors are the following.

dLong = eN × eAxis (3.56)

eLong =
dLong√

dLong · dLong
(3.57)

dLat = eLong × eN (3.58)

eLat =
dLat√

dLat · dLat
(3.59)

dPlane = eLong × eAxis (3.60)

ePlane =
dPlane√

dPlane · dPlane
(3.61)

The graphical view of all the classes in the Geometry package is the same, as only
equations are added to realize their functionality.

3.6.2 Flat Disc Model

The first and simplest model has the geometry of a flat disc and it is shown in Fig-
ure 3.28. The width of the model is just used for the visualization and is not accounted
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ö

Figure 3.28: Geometric properties of the ideal tire.

for in the geometrical calculations.
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The equations that are used to find the contact point properties are the following.

rCP =


rWheel · ePlane − penetrationDepth · eN if

Contact

rWheel · ePlane else

(3.62)

penetrationDepth = (xBelt − xCP + rCP ) · eN (3.63)
Contact = penetrationDepth ≤ 0 (3.64)

lCR =



√
8 · rWheel · penetrationDepth if

Contact

0 else

(3.65)

bCR = 0 (3.66)

With rCP being the vector pointing from the belts center point to the contact point,
rWheel the overall radius of the wheel (rRim + height of the belt), xBelt being the
absolute position of the belt, xCP the absolute position of the contact point and lCR,
bCR being the length and the width of the contact area respectively.

The if clauses are necessary due to the fact that the penetrationDepth gets positive
values if the tire lifts from the ground. That would lead to wrong results for rCP.

3.6.3 Circular Tire

The geometry of the circular tire is depicted in Figure 3.29. From the figure one can
directly recognize that the rCP depends on the lean angle ϕ of the tire. This has to
be accounted for in the computation. One can also see that the radius of the circular
element is called height. This is done to enable a simple class change from the ideally
slim belt to the circular belt.

The resulting equations are the following.
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Figure 3.29: Geometric properties of the circular tire.

rCP =


rRim · ePlane − height · eN − penetrationDepth · eN if

Contact

rRim · ePlane − height · eN else

(3.67)

penetrationDepth = (xBelt − xCP + rCP ) · eN (3.68)
Contact = penetrationDepth <= 0 (3.69)

lCR =



√
8 · (rRim + height) · (−penetrationDepth) if

Contact

0 else

(3.70)
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bCR =



√
8(rRim + height) · (−penetrationDepth) if

Contact AND (−penetrationDepth) < height

2 · height if

Contact AND (−penetrationDepth) > height

0 else

(3.71)

For the visualization of the tire (or the belt), a torus element is used. It extends the
Visualizer Base and computes a donut like shape with an parameter opening angle
that makes it useful for the visualization of a tire. To visualize it correctly, a relative
rotation matrix RRel has to be calculated which is done by the following equation. This
is a simplified version of Equation (7.5) in [Zim06].

RRel = RBelt[1, :] ·RBelt[1, :]′ − skew(RBelt[1, :]) (3.72)

3.6.4 Belted Tire

The most complex geometry that is possible with the library is the belted tire shown
in Figure 3.30. It features a tire that has a radius describing the tread area as well
as side walls, both configurable easily by the parameters width, height and r (radius).
Out of these three parameters, adding the information of the rim’s radius, the other
geometrical aspects are computed. As well a detection whether the tire rolls on the
corner between the side wall and radius is implemented.
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Figure 3.30: Geometric properties of a tire with side walls and tread area.

Therefore the equations become as follows.

if Contact then

rCP =



d · ePlane − r · eN − penetrationDepth · eN

if (abs(ϕact) < ϕmax)

(rRim + height)ePlane + x · eAxis − penetrationDepth

else AND (ϕact > ϕmax)

(rRim + height)ePlane − x · eAxis − penetrationDepth · eN

else

(3.73)

else
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3.6 Geometry

rCP =



d · ePlane − r · eN

if (abs(ϕact) < ϕmax)

(rRim + height) · ePlane + x · eAxis

else AND (ϕact > ϕmax)

(rRim + height) · ePlane − x · eAxis

else

(3.74)

ϕAct =
π

2
− arccos(eAxis · (−eN )) (3.75)

penetrationDepth = (xBelt − xCP + rCP ) · eN (3.76)
Contact = penetrationDepth < 0 (3.77)

lCR =



√
8 · (rRim + r · (−penetrationDepth))

if Contact

0

else

(3.78)

bCR =



√
8r · (−penetrationDepth)

if Contact AND (−penetrationDepth) < r − height

2 · r

if Contact AND (−penetrationDepth) > r − height

0

else

(3.79)

Again the matrix RRel is computed for the visualization of the torus element. This is
done the same way as in Equation (3.72). Some additional equations are set to find
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the following final parameters.

x =
width

2
(3.80)

y = rRim+ height (3.81)

d = y −
√
r2 − x2 (3.82)

ϕmax =
π

2
− arctan

(√
r2 − x2

x

)
(3.83)

ϕBelt = arctan
(

x

y − d

)
(3.84)

With x being the x coordinate of the outmost possible contact point of the tire, y the
y coordinate of the outmost possible contact point of the tire, d the distance from the
rims center to the midpoint of the circle describing the tire’s curvature, whereas ϕmax
lean angle at which the tire’s contact point is at the outmost possible point and ϕBelt
being half opening angle of the torus used for the visualization.

3.6.5 Finding the Contact Point

To prevent unnecessary computational effort in case of a flat surface that will be suf-
ficient in many cases, the parameter FlatSurface has been integerated in the Surface
class. This parameter can be used in geometric classes to find the contact point which is
described by the vector xCP pointing from the world’s coordinate system to the contact
point CP in a very simple way. This is done by the following equations

xCP =


xBelt[1] + rCP [1]

0

xBelt[3] + rCP [3]


(3.85)

eN =


0

1

0


(3.86)

The main simplification is that the normal vector always points into the positive y axis
and does not have to be determined by a function. The second element of xCP can be
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set to zero directly what is another simplification.

In the surface class the two functions get_eN and get_elevation have to be defined.
Depending on the way the actual surface is defined, they can have very different algo-
rithms in their body, the geometric class does not have to account for. The Environ-
ment package containing the surface is described in Section 5.2.1 on Page 102 in more
detail.

On uneven surfaces, the following equations are used to find the contact point.

xCP =


xBelt[1] + rCP [1]

Surface.get elevation(xCP [1], xCP [3])

xBelt[3] + rCP [3]


(3.87)

eN = Surface.get eN(xCP [1], xCP [3]) (3.88)

Obviously there is no iteration used to find the contact point. This is not necessary due
to the fact that the geometry of the tire is well defined and in combination with the
unit vectors the ideal contact point can be calculated by geometric equations starting
from the belt’s center point xCP. The penetrationDepth is calculated in the geometry
class as well and is used to correct the ideal vector rCP to the real one. Adding the
vector rCP to the position of the rim xBelt leads to the position of the contact point
xCP. In case of an uneven surface this is done for the x and z coordinates, whereas the
y coordinate is determined by the get_elevation function. Furthermore the normal
vector eN can be found from the x and z position of the contact point. So everything
needed for further calculation is defined in a quite simple fashion.

Basically, the vector xCP is just used for the functions get_elevation, get_eN and
get_mu. It is not set in the translational part of the Contact Bond, as the contact
point’s position is defined by xBelt adding rCP. To be precise, the Contact Bond’s
frame position is not equal to xCP at all times as the vector xCP is pointing on the
surface at all times whereas the Contact Bond’s frame is on the tires surface (lifting
with the tire from the ground).

3.7 Contact Physics

The Contact Physics model applies forces and torques on the contact point, as well as
measuring its velocities. All these physical quantities get transferred via the Contact
Point Connector to the models determining friction and vertical dynamic properties.
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Measuring and setting of speeds and forces has to be done in an acasual way as ideal
models set velocities rather then applying forces.

The second thing determined by the Contact Physics class is the dynamic behavior of
the contact point as some models developed [Pac06] introduce a flexibility of the contact
point in longitudinal and lateral direction. Two different models are implemented, both
described in the following sections.

3.7.1 Contact Physics Base

The Contact Physics Base features the variable definitions and the connections to the
Tire Bus as well as the Contact Point Connector. It contains everything that can be
seen in the shaded part in Figure 3.31.

3.7.2 Contact Bond No Dynamics

As mentioned above, the model applies forces and torques and measures the speed of
the contact point. This can be seen in Figure 3.31. The mSe elements fSource and
tSource act as sources of force or torque respectively, whereas the Df element vSens
measures the speed of the contact point. Important to now is that these bond graphic
elements are a-causal. This means that e.g. a velocity sensor can apply a velocity to
the bond as well as measure one. The main difference between the two items is that
the sensor contains more equations that set the not measured quantity (in the actual
case of the Df element the effort) to zero, whereas the source does not set the other
quantity.

Another thing contained is the MBG_defaults item with the “3” in it. This element
defines the contained multi bond elements to have a size of three, defining the three
dimensional space the model is calculated in. This makes e.g. the source element apply
three torques and the sensors measure three quantities.

Another important element in the model is the mTF element. It does the transformation
of the translational quantities from the world coordinate system to the body-coordinate
system that is used for calculations at the contact point. The body coordinate system
in the contact point is defined by the three unit vectors eLong, eLat and eN. These
three unit vectors are used to build the rotation matrix that is fed into the mTF element
by the Equation (3.89)12. This body coordinate system is also used to set the rotation
matrix of the flange connector of the Contact Physic’s frame. This is done in order to
enable the modeler to simply connect parts (like arrows for visualization) to the frame
in a convenient way.
12Torques (and angular velocities) do not need any transformation as they are given in the body

coordinate system by the definition of the Multi Bond Library, whereas translational quantities are
resolved in the world coordinate system.
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Figure 3.31: The model applying forces and torques to the contact point and measuring
its velocities without any dynamics.
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R =
{
eLong eN eLat

}′
(3.89)

The model cPNoDynamics can be found between the MBG2Mech element and frame_b
does not feature anything else but a rigid connection between its two frames and is
therefore not described any closer.

3.7.3 Contact Bond With Dynamics

The only difference between the Contact Bond With Dynamics and the one without
is the model for the contact point dynamics. In this model, the rigid connection from
Contact Bond No Dynamics is replaced by the model shown in Figure 3.32.

The Contact Point Second Order model features two Modulated Actuated Prismatic
elements that apply forces computed by the connected spring damper elements. The
Modulated Actuated Prismatic elements are different to the usual prismatic elements
as their direction of operation is determined by a vector that is an input to the model.
A more detailed description can be found in Section 3.11.2.5 on Page 91. The main
purpose of these elements is to ensure that the dynamics point to the lateral and
longitudinal direction regardless of what happens during initialization or with dynamic
elements in the Belt Dynamics.

Using the Contact Bond With Dynamics together with an uneven surface will cause
Dymola to respond with an error message. This arises due to the fact that for used
spring damper models the relative position and velocity have to be calculated which
implies a derivation of the elevation (from the Surface class). This is not possible due
to the structure of the used Surface class.

The initialization is done in a quite simple way setting the relative distance and speed
of the Modulated Actuated Prismatic elements to zero.

3.8 Center to Contact Point

The Center To Contact Point model is a model without a nice physical interpreta-
tion. It is kind of a Fixed Translation element known from the Modelica Standard
Library [Ass09]. This model is built on multi bond graph techniques and is therefore
derived from the Fixed Translation in the Multi Bond Lib [Zim06]. It shall describe
the translation between the contact point and the belt’s center point.
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Figure 3.32: Model that enables the contact point to shift in longitudinal and lateral
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3.8.1 Center to Contact Point Base

The base class does not feature more than the frames and the interface to the Tire Bus
the definition of the variable r (rCP) needed from the communication structure.

3.8.2 Center to Contact Point Bond

There are three main differences between the Center To Contact Point model and
the Fixed Translation. The first of which is that the Center To Contact Point model
does not have fixed dimensions as the vector rCP (r in Figure 3.33) depends on the
penetrationDepth as well as the normal vectors ePlane and eN. The second difference
is that it must not rotate even if frame_a is connected to a frame with a pitch angle
velocity. The last is that the two frames have different rotation matrices. To cover all
these demands a special model was created, shown in Figure 3.33.

To realize the required features mentioned at the beginning of this section, two new
multi bond elements had to be created. These are the mTranslationalTF_r (modulated
translational transformer radius) and the mTranslation_r (modulated translation ra-
dius). The first one adds a variable vector to a positional vector of the frame_a setting
the geometrical relation between frame_a and frame_b. A more precise description
can be found in Section 3.11.2.4. The mTranslationalTF_r is an element computing
the relation between torques and forces acting on a translational element depending
on the dimensions and orientation of the element. A more detailed description can be
found in Section 3.11.2.3.

The second requirement to not rotate with the pitch angle velocity is fulfilled by the
mSF element on the lower left of the model. It measures the angular velocity about the
local z axis and subtracts it from the speeds at the following 0 junction. This results
in an element that does not react on pitch angle velocity but does so for the other two
angular velocities.

The different rotation matrices emerge from the contact bond (frame_b) and from the
Rim/Belt Dynamics (frame_a)13. Different matrices are used to enable a more plau-
sible description of the two frames. It was considered to have a single rotation matrix
solution for which the frame of the contact point would be described by the same ro-
tational matrix as the rim. This would lead to a rotating frame of the contact point,
which is inconvenient as the frame of the contact point would rotate around the unit
vector eAxis. Additionally, this structure is likely to cause higher computational effort
during simulation. Therefore, the solution containing two rotation matrices was chosen
and thus the Center to Contact Point model has to handle these two rotation matri-
ces. The Modulated Effort Transformer mTF_efford calculates the rotational quanti-
ties from the belt’s body coordinate system to the world system. The same is done
13Note that the Model is flipped horizontally when built in the wheels model.
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by mTF_efford1 for the quantities of the contact point. Additionally, the Modulated
Translational Transformer translational connects the rotational and translational
quantities (both in the world coordinate system) as in the Fixed Translation model.

3.9 Vertical Dynamics

The base class just defines the two bus connections to the Tire Bus and the Contact
Point Properties. Nothing more is defined here due to the essentially different structure
of the models extending the base.

The penetrationDepth is calculated in the Geometry Class. It can either be set to
a certain value as in the No Elevation class or be the base for the calculation of the
normal force fN. It is important to notice that penetrationDepth as well as fN are
directed as eN is.

3.9.1 No Elevation

This class (depicted in Figure 3.34) differs from the other elevation classes due to the
fact that not a normal force is computed as a function of the penetration depth and
speed. It imposes a holonomic constraint, that defines the values of penetrationDepth
and therefore also its derivative the penetration speed to be zero. This implies that
there is contact at all time. The necessary force is then calculated from that holonomic
constraint.

An important characteristic of this model is that is has to derive the penetrationDepth
that depends on the get_elevation function. As this function is not derivable analyt-
ically, it is not possible to use this model on uneven surfaces. To be more precise, the
parameter flatSurface has to be true.

3.9.2 Kelvin Elevation

This class is the first one to enable the tire to lift from the ground. The force-free
elevation is realized with the Elevation Gap described in detail in Section 3.11.1.7 on
Page 3.11.1.7. The model compensates the force of the connected mechanical system,
when there is no contact to the ground. The external mechanical system is connected
via the lower two mechanical connectors flange a extension and flange b exten-
sion. A problem regarding the so-called “sticking effect” is explained in more detail in
Section 3.11.1.7 on Page 87.

The Kelvin Elevation shown in Figure 3.35 is basically a model that combines the
Elevation Gap model with a parallel spring damper component. This is a simple but
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Figure 3.34: Model that makes the tire stick to the ground.
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yet realistic way to model vertical dynamics of a tire and is quite familiar to modelers
as well.

3.9.3 Gehmann Elevation

The Gehmann Elevation model combines the Elevation Gap with a more complex model
for rubber modeling [MW03]. Here one can see the advantage of the Elevation Gap
model that makes it very easy to use the components of the 1D mechanics bond graph
library to define vertical dynamics. The only difference to the Kelvin Elevation is that
the Damper is replaced by a serial spring damper element, what is the reason why the
Gehmann Elevation is not depicted separately.

However, in this case there is one problem related to the bond graph library that cannot
compute the behavior of a spring and a damper connected in series directly. The simpler
possibility to overcome this problem is to add a very light weight mass between the
two components. However, this introduces additional oscillations to the system which
is usually of very low damping. So to overcome this problem a bond graphic model of
the whole spring damper system connected in series has been created that is now used
to calculate the behavior of the Gehmann model for rubber. This bond graphic model
is shown in Figure 3.42 on Page 88. It is based on the model of a simple spring as it
has been modeled in the 1D translational library of the Bond Lib [CN05].

3.9.4 Elasto Elevation

The Elasto Elevation (shown in Figure 3.36) is derived from the Standard Library of
Modelica in Version 3.0 [Ass07]. The problem concerning sticking was elegantly solved
there. So this model features a parallel spring damper system that acts without sticking.
Another advantage of that model is that it does not introduce a discontinuity, that
usually arises from the dampers force which is proportional to the speed of movement.
In the event that the tire moves to the road with a certain speed, the damper force
gets compensated until Contact gets true. From that point on the spring, force rises
continuously but the damping force already has a certain value 6= 0 due to the speed
of movement. So in general and if there is no more complex behavior to be modeled,
the Elasto Elevation model is the best choice for the vertical dynamics.

The model is defined by equations exclusively as no standard elements can be used to
model the described behavior. The gray elements shown in Figure 3.36 are simple lines
representing the following equations.
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Figure 3.36: Model of the vertical dynamics with possible elevation and a special spring
damper combination to overcome the sticking effect.
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if Contact == 1



fc = cR · penetrationDepth

fd = dR · penetrationSpeed

fN =


0 if (fc + fd) ≥ 0

fc + max(fc, fd) else

else


fc = 0

fd = 0

fN = 0

(3.90)

3.10 Belt Dynamics

The models described in this section are intended to provide a dynamically behaving
belt. To be more precise, it shall model the flexibility of the tire. This is realized
by connecting an ideal tire model defined by the Geometry Class to the ideal rim in
different ways. The models are called Belt Dynamics models because the Belt suits the
description by the ideal geometry best. All models except the Rigid Belt model add a
considerable amount of complexity to the simulation. This challenges the modeler to
exactly know what is going on in the model.

Every belt model is realized to describe the relationship between the center point of
the rim and the (virtual) center point of the belt. This is considered to be the most
general approach of modeling. This is also the reason for the Center to CP model to
be necessary, because it realizes the translation between the center of the belt to the
contact point.

3.10.1 Belt Dynamics Base

The base model defines the used connections to the Tire Bus, necessary sensors and UV
as an input. The basic elements of the icon are defined in the base as well. Nothing
more is done here. The model looks exactly the same as shown in Figure 3.37 on
Page 79 without the rigid connection between the two frames and is therefore not
depicted separately.
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3.10.2 Rigid Belt

This model is used to provide an ideal belt for the tire models that do not imply a
dynamic belt behavior. Hence, the model is shown in Figure 3.37 and is obviously
quite simple.

3.10.3 Torsion Belt

The torsion belt is useful for simulations where just longitudinal properties are of inter-
est. For this purpose, a quite simple model is presented in Figure 3.38. An Actuated
Revolute is used to model the flexibility combined with a parallel spring damper ele-
ment for the determination of the belt’s behavior. As no more precise model than the
parallel spring damper system was found in literature, no more complex models for the
behavior have been added, but expanding the model should not be any problem.

The initialization was again done simply by setting the initial angle of the revolute ϕ
to zero as well as the angular velocity ω.

3.10.4 Longitudinal Lateral Belt

This model has a certain similarity with the Contact Bond With Dynamics presented
in Section 3.7.3 on Page 68 and is depicted in figure 3.39. Therefore, it also does not
work in combination with an uneven surfaces which’s function computing the elevation
is not derivable analytically. The main difference is that the inbuilt flexibility is at
the center of the rim, not at the contact point. The other functions are quite similar,
letting the belt translate in longitudinal and lateral direction. The difference between
the models results from the different forces acting on spring and damper elements, due
to the translational element Center To Contact Point that connects the contact point
and belt center. This is also the reason why using the Longitudinal Lateral Belt in
combination with the Contact Bond With Dynamics does not make much sense.

For the initialization, the longitudinal and lateral positions as well as the corresponding
velocities for frame_a and frame_b have been set to the same value in longitudinal and
lateral direction. This is done that way due to the fact that these are the directions
where the only difference would be possible.

3.10.5 Quad Order Two Belt

The Quad Order Two Belt is a quite intuitive model. The Rim model in Figure 3.40
consists of four fixed translations that connect the center of the rim to the outer di-
ameter of the rim. The pretensioned springs connect the outer radius of the rim with
another four fixed translations that are part of the belt. These again model the ideal
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Figure 3.37: Model of an ideal belt without any dynamics.
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Figure 3.39: Model of a belt able to translate in longitudinal and lateral direction.
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connection from the outer diameter of the belt to the virtual center point of the belt
that is the “output” of the model. The springs model the belt in a way that their
unstretched length is the height of the side wall without any inflation pressure. The
actual tension is reasoned by the inner pressure of the tire.

The model is probably not a very good description of a real tire though, because a
deformation at the contact point does move the whole ideally stiff belt due to the
ideal translational elements in the Belt model. Additionally for every deformation
all the four spring/dampers combinations respond with a force what is not realistic
either. Without the dampers or with a zero damping constant, the tire will never stop
oscillating when there is no contact with the ground, which is unrealistic as well. So
further consideration is necessary to make this model really useful. It was still left in
the library due to the fact that the initialization is non-trivial. This way the Quad
Order Two Belt can be used as a working base for further extensions.

The initialization is non-trivial because Dymola will initialize the BeltMass with angle
and position set to {0,0,0} regardless of where the rim is when no manual adjustments
are made. The translational properties as well as the rotational velocities can simply be
initialized in the same way it was done in the preceding models by putting the following
equations in the initialization section.

frame a.P.x = frame b.P.x (3.91)
frame a.P.v = frame b.P.v (3.92)
frame a.P.w = frame b.P.w (3.93)

Problems come up with the angle of the mass that cannot be aligned with

frame a.P.R = frame b.P.R (3.94)

because the rotation matrix R is a highly redundant description resulting in a overspec-
ified system of equations for the initialization problem. One possibility to overcome
this is to compute the three Cartesian angles and then the BeltMass has to be initial-
ized with these starting angles. This can be done by adding the following code in the
equation section.

when {initial()} then
Ra = transpose(frame_b.P.R);
phi[2] = atan2(-Ra[3,1], sqrt(Ra[1,1]^2+Ra[2,1]^2));

if abs(phi[2]) < PI/2-tol or abs(phi[2]) > PI/2+tol then
phi[3] = atan2(Ra[2,1]/cos(phi[2]), Ra[1,1]/cos(phi[2]));
phi[1] = atan2(Ra[3,2]/cos(phi[2]), Ra[3,3]/cos(phi[2]));

elseif phi[2] > 0 then
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phi[3] = 0;
phi[1] = atan2(Ra[1,1],Ra[2,2]);

else
phi[3] = 0;
phi[1] = -atan2(Ra[1,1],Ra[2,2]);

end if;
end when;

These equations can be found e.g. in [Cra89]. The singularity at phi[2] = π/2 is caught
by an assert statement as there is no unique solution and one angle has to be set to
a guess value. The equations are put in the when {initial()} clause in the equation
section, because if they were used in the initial equations these variables would have to
be given dummy values in the equation section.

One problem with the dynamic belts is that the relative rotation of the belt is not taken
care of in the code section that is responsible for finding the contact point. Therefore
when using the Quad Order 2 Belt, errors in the determination of the contact point will
occur. The solution was not further investigated on because the Quad Order 2 Belt has
to be revised anyway. Probably using the relative rotational matrix of the two frames
would lead to a correct result somehow.

3.11 Utilities

This section describes the models that were created because they were needed to model
certain special effects and are not contained in the Bond Library (BondLib) or Multi
Bond Library (MultiBondLib). This distinction was made in the library as well, split-
ting the utilities into Additional Bond Graph elements and Additional Multi Bond ele-
ments.

This section also describes the Icons that are useful for quick changes in the library’s
optical design.

3.11.1 Additional Bond Graphs

The following sections describe the elements used for the tire models, but which are
not contained in the Bond Library [CN05].
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3.11.1.1 Angle

There are two reasons for this model to exist. The first is a design issue that restricts
the use of the original Angle element of the Bond Library. This issue can lead to a
problem with one equation to many in the system of equations due to the connection
from phi_ref to BG2Rot.phi (the real port of the “BG→ Rot” element in Figure 3.41).
Therefore this connection was canceled in this element. The second reason is that an
approximated derivative block was used instead of an analytically calculating one. The
main reason for that is consistency with the element Position (Section 3.11.1.3) where
an analytical derivative block leads to problems in certain models.

3.11.1.2 Angular Velocity

The Angular Velocity block is added to the library for the same reasons as the Angle
block. It is the one equation too many when connected e.g. to an actuated revolute
joint.

The model is the same as for the Angle class without the derivative block.

3.11.1.3 Position

The Position model has the same background as the Angle. The main difference is that
here translational elements are used instead of rotational ones.

3.11.1.4 Position With S

The Position With S element is basically the Position element with the additional
equation for the position added from the input to the “BG → Tr”14 element. So the
only difference between the Position With S element and the original Position from
the Bond Library element is the non ideal derivative block used instead of the ideal
one. This is done because the element is used in the Vertical Dynamics classes. The
functions that are used to determine elevation and normal vector of the surface are
not derivable analytically (what the ideal derivative block does). Therefore, the non
ideal block has been used introducing just little difference to the ideal solution. The
time constant which is the reason for the non ideal behavior, is a parameter that can be
set to very small values. For the default value, a time constant was used that enables
good accurateness with very little influence on simulation time.

14The translational version of the BG → Rot element in Figure 3.41.
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Name: Angle

Location: WheelsAndTires/TireComponents/Utilities
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Figure 3.41: Alternative model of an angle source with one less equation compared to
the original one from the Bond Library and a non ideal derivative block.
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3.11.1.5 Velocity

The velocity block leaves out the superfluous equation contained in the original Speed
block of the Bond Library for the position to allow simulation.

3.11.1.6 Serial Spring Damper

In contrast to the Modelica Standard Library, the Bond Library does not allow a serial
connection of a spring and a damper element without a mass in between the two
elements. Therefore, an element was developed that is used in the Gehmann Elevation
model. It is derived from the original model of a spring in the Bond Library and shown
in Figure 3.42.

3.11.1.7 Elevation Gap

The model shown in Figure 3.43 allows a force free lift of the tire from the ground.
This is realized by a force sensor that measures the force generated by the externally
connected elements in order to supply an inversely connected source of force if there
is no contact to the ground. This makes it possible to have external 1D translational
elements determining the vertical dynamics of the tire in the case of contact which is
very convenient. E.g. the Kelvin Elevation uses a simple spring damper system for
the vertical dynamics, which can be extended easily to more complex ones like the
Gehmann Elevation.

There is one disadvantage of this model. This is that in the case of decreasing penetra-
tionDepth, the damper introduces a force that “pulls” the tire back onto the street.
This happens because of the damper’s characteristic. If this force gets bigger than
the force of the spring that “presses” the tire away from the street, the tire “sticks”
on the street, what is not the real physical behavior. This is a serious issue if the
damping coefficient is big compared to the spring constant. As tires usually have very
low damping coefficients and are relatively stiff, that fact is neglected in favor of the
comfortable way to specify more complex vertical dynamics. If there are problems due
to the sticking effect, a model presented in Section 3.9.4 on Page 75 overcomes this
effect utilizing a modeling technique from the Modelica 3.0 Library. Still both versions
are part of the library because both have advantages. One is simple to customize, the
other has no sticking.

3.11.2 Additional Multi Bond Graphs

The models contained in this section are created as they are necessary in the tire models
and not contained in the Multi Bond Library.
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Figure 3.42: Bond graphic model of a serial spring damper system.
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Figure 3.43: Model enabling a force free lift from the ground (with sticking effect).
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3.11.2.1 BooleanSignal

The Boolean Signal (depicted in Figure 3.44) is created to handle the Contact signal

Figure 3.44: The icon of the Boolean signal.

in an a-causal way in the communication structure described in Section 3.3 on Page 23.
It is simply the Boolean version of the Real Signal in the Multi Bond Library.

3.11.2.2 Modulated Effort Transformer 2

The Modulated Effort Transformer 2 is the modulated version of the Effort Transformer
TF effort in the Multi Bond Library. The equations used are

eB = M · eA (3.95)
fA = M ′ · fB (3.96)

whereas M is an input not a parameter in the modulated version, e is the effort of the
corresponding input A or B and f is the adequate flow variable.

3.11.2.3 Modulated Translational Transformer

The Modulated Translational Transformer is again the modulated version of the Trans-
lational Transformer in the Multi Bond Library. It computes a cross product connecting
forces and torques as well as velocities and angular velocities in an a-causal way.

There are actually two versions of this model, one using a radius (translational) that is
the input to the model, the other using an amplification in combination with directional
information that represents the radius. These are used in different models depending
on which suits the application better.
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The equations for the “radius version” are the following

f2 = cross(f1, r) (3.97)
e1 = cross(r, e2) (3.98)

whereas the “amplification version” uses equations with an additional variable ampl.

f2 = cross(f1, ampl · r) (3.99)
e1 = cross(ampl · r, e2). (3.100)

3.11.2.4 Modulated Translation

The Modulated Translation is the element that relates the position of the two frames
depending on r, a vector that connects the two. As in Section 3.11.2.3, there is a
version with the vector as a “real” (Equation (3.101)) vector and a second version
using an amplification in combination with directional information (Equation (3.102))
representing the vector, where either one can be used depending on the application.
For Equation (3.101) the input vector eR is normalized and the connections are tested
whether something is connected, and are set to default values if not.

x2 = x1 + r (3.101)
x2 = x1 + (eR · ampl) (3.102)

3.11.2.5 Modulated Actuated Prismatic

The model shown in Figure 3.45 is derived from the Actuated Prismatic element in the
Multi Bond Library [Zim06]. The difference is that for the original prismatic element
the direction of action can be set via parameter values and the environment determines
how the model behaves during simulation. E.g. if the model is attached to a revolute
joint the direction of action changes with the angle of the revolute joint, which makes
total sense from the physical or mechanical point of view.

For some models of tires though these elements have to act in given directions inde-
pendently of what happens at the frames they are connected to. That is exactly what
the Modulated Actuated Prismatic does. The input r sets the direction of action in-
dependent of the connected frames. This may not be a reasonable model in terms of
mechanics, but it is very useful in tire modeling e.g. due to the fact that no initialization
is needed and it is guaranteed to act e.g. in the longitudinal direction in every case.
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Figure 3.45: Model of a Modulated Actuated Prismatic element.
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3.11.2.6 Absolute Sensor

The Absolute Sensor is just a very slight modification of the original element in the Multi
Bond Library. The difference is that the original element sets the unit of the output to
Newton, which does not suit the application in the Wheels And Tires Library. So this
section has been deleted from the original model and this is the only difference.

3.11.2.7 Normalize

This model is just a graphical version of the Modelica function normalize and is intended
to be used in graphical models to connect the contained elements more conveniently.
It is done for vectors of dimension 3 only, which makes it exclusively suitable for 3D
applications.

3.11.3 Icons

Figure 3.46 shows the icons used for the corresponding packages and models. Models
in the library are created extending these base models to ensure a common look and
enabling a fast changes in the optical design of the library.
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(a) Tire Components Pack-
age

(b) Communictaion Package (c) Tire Package

Environment

(d) Environment Package

Test Bench

(e) Test Bench Package (f) Example Package

(g) Tire Components

name

(h) Tire Model (i) Example Icon

Figure 3.46: Icons used in the library.
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All tires presented in this chapter are basically built up like the ideal tire in Figure 3.4
on Page 21. All connect seven objects defining the tire’s properties with three different
connectors. Two of these are the customized bus connections described in Section 3.3,
the other is the rigid connection between frames defined by the Multi Bond Library.
These rigid connections transfer mechanical properties and describe an ideal connection
between the two connected frames. Different properties can simply be realized by
choosing different classes. As the interfaces between the classes are standardized, no
further adaptation is necessary. If no parameter passing from the top level is realized,
the tire is usable already. Although for convenient use parameter passing combined with
a well engineered initialization is a postulate. How parameters can be aggregated is
shown in Section 4.2, whereas the different strategies of initialization are demonstrated
in Section 4.3. The ready-made tire models delivered with the library are presented in
the following section.

4.1 Predefined Models

Figure 4.1 shows the different tire models and the components they utilize.

For different combinations of frictional components, a class has to be created. There-
fore, the amount of combinations of different frictional components was kept as small
as possible, creating the following frictional classes.

• Ideal Friction – IdealFriction, modeling ideal frictional behavior.

• Dry Friction with Roll Resistance – DryFrictionRollRes, adding slip based on
the sliding dry friction model and constant rolling resistance.

• Advanced Friction – AdvancedFriction, the most advanced version of friction
possible with the current version of the library including all covered frictional
effects.

Looking at Figure 4.1, two elements in brackets are found for the Linear Overturning
Torque. These models will compute the overturning torque to be zero because a width
of the tire is required to get an overturning stiffness 6= 0.
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Figure 4.1: Predefined tires available in the Wheels and Tires Library.

96



4.2 Parameter Aggregation

4.2 Parameter Aggregation

As many of the parameters are commonly used in every tire model, a Commons package
has been created to gather all these parameters. The different tire models can then
simply extend these partial models and will feature all the parameters from these files.
So there is a central place to change parameters in one go, instead of doing it in every
tire model.

The created “parameter” files are the following.

• ParametersCommon – Parameters Common

• ParametersDryRollRes – Parameters Dry Friction with Roll Resistance

• ParametersAdvancedFriction – Parameters Advanced Friction

The first of these gathers the parameters that are common for every tire model, like
the rim mass or different variables for the visualization. Parameters Dry Friction with
Roll Resistance model contains all the parameters used by the Dry Friction with Roll
Resistance as the last (partial) model does for the Advanced Friction class. These
parameter models can be used in combination with the corresponding friction class,
independent of the other used classes. No further gathering was realized because the
cost-benefit ratio is inadequate.

Generally, it has to be mentioned that some of the parameters have to be adapted to
suit the actual application. But as the user is expected to be familiar with tire modeling
or will even add own models to the library, that is not considered to be a problem.

4.3 Initialization

The initialization is quite different for ideal models and their slipping counterparts. The
major differences regarding initialization are that predefined ideal models are not able
to lift from the ground and obviously do not slip. Therefore, two different initialization
strategies have been implemented, which unfortunately could not be aggregated for all
models as is possible with the parameters. This is not possible due to the fact that
variables cannot be initialized in a different model than they are used in. For this
reason, every tire has its own equations for initialization.

Another very important aspect of the initialization is that every model adding dynam-
ics to the system like the Contact Point Dynamics or some kind of belt dynamics is
initialized in a way suitable for the unloaded steady state directly in the model adding
the dynamics. That makes it possible to just have two different initializations. So every
tire provided in this library will initialize with a PenetrationDepth of 0 then start to
penetrate the ground to build up the necessary normal force.

97



4 Provided Tire Models

4.3.1 Initialization of Non-Slipping Tires

The initialization of the tires with ideal slip behavior is relatively straightforward. The
approach used in the Wheels and Tires Library is based on the models of the ideal tire
from the Multi Bond Library [Zim06]. It can be done by setting the rotational speed
of the rim mass. The holonomic constraint caused by the ideal slip behavior and the
Center to Contact Point model directly converts this into a translational velocity of
the rim mass. As it can be more convenient to set the translational velocity, an option
called useTranslationalVelocities was added to the initialization, enabling the user
to set the translational velocities directly. Again the model converts the translational
velocity into rotational speed by the model geometry automatically when setting the
translational velocity of the rim mass.

There are a couple of restrictions to these ideal models that become obvious when
looking at the code more closely. The first is the No Elevation class fixing the contact
point somewhere in the x-z-plane. Therefore, the initialization just sets coordinates
in x and z direction not considering inputs that would put the tire above the surface
in the air or penetrating in the ground as this is not possible. This also applies for
the translational speed in vertical direction, as the tire cannot move in this direction.
Another thing important to notice is that for the usage of translational velocities in
the initialization, the yaw rate is set to 0 to ensure a reasonable start of the tire.

4.3.2 Initialization of Slipping Tires

Tires that can slip have to be initialized in a more complex way to cover all possible
combinations of translational velocities, sliding velocities and angular velocities. A tire
that is initialized with a speed about its rotational axis will directly transform this rota-
tional speed to sliding velocity as the rim mass is initialized with a translational speed
of 0 in that particular case. This will make the tire slip for some time, transforming
the rotational energy to translational with losses due to the slip. This is not convenient
in general, as the user usually wants to initialize a model with an exact translational
speed e.g. for stability analysis of a bicycle. Therefore a more complex version of ini-
tialization was implemented. To enable the user to switch from ideal models to this
more complex conveniently, an additional variable useAdvancedInitialization was
added. This disables the simple initialization used for nonslipping tires that is possible
for the slipping ones as well. The user is now able to set two of the possible velocities1

manually, letting the model determine the third automatically. So the user can set e.g.
the translational speed to a certain value and the slip to zero, making the model behave
as the ideal version at least during the initialization.

Another option called onSurface is provided to enable the user to make the tire ini-
tialize on the surface that can be uneven in the event of these models. The tire is

1Which are the rotational velocities, the translational velocities and the sliding velocities.
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initialized with the rim mass at height 0 by default otherwise. This would stretch the
spring of the vertical dynamics to an unrealistically big value making the tire respond
to the very big normal force resulting in a very big acceleration normal to the surface.
This can be overcome with the initialization of the position. Problematic with this
version of initialization is that e.g. the positions of 3 of the tires of a simple car model
are defined by holonomic constraints from the position of the fourth tire. Therefore,
initializing the position of all tires of this model can be problematic. In this case the
onSurface option becomes useful. The option is automatically ignored if the position
is initialized directly by the user.

There are two more properties that have to be kept in mind with the advanced ini-
tialization. The first is that the normal component is ignored in the initialization of
translational velocities. Secondly in the case of setting the rotational speed, the normal
component it is set to 0. Generally, it is suggested to initialize the tire on a flat part
of the surface.

4.4 Defining New Tires

For the user who has to define new tire models, it is suggested to copy the most similar
version of a tire that is available in the library. Afterwards, the user can exchange
the objects that were adapted or created by right-clicking on the object to be replaced
and choosing Change Class from the Dymola context menu. If the used simulation
environment does not support this function the model can also be exchanged in the
Modelica code directly which is equal to the Change Class option. When changing
sub-classes a good approach is to duplicate the most similar class and then modify
the equations or models contained. This way, models are likely to not have basic
errors, as all the parameters are left in the code which can be useful and the names
in the model stay the same. Basically, the names of every model can be changed
because the communication structure does not care about the names of the objects,
but the initialization is done utilizing some of the names in the described example tires.
Therefore, difficulties can arise with the initialization when changing object names.

As mentioned before, the initialization of components adding dynamics to the model
is usually done in the dynamic model directly making them exchangeable, without
having to care about the initialization of the overall model. So it is suggested that
future models, which add dynamics to the model, are initialized in the same way.
Although e.g. initializing everything from a central code section could add some clarity,
the initialization structure would have to be adapted with every change in the tire’s
structure which is important for the initialization.
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5 Environment

The environment in the current version of the library is limited to even or uneven
surfaces which the tire can have contact to. A very simple approach to describe an even
surface is to set the contact point to a constant height and the frictional coefficient to
a constant value as well. This simplifies some of the essential parts of tire modeling
drastically. Although it may not be the very core of the library, it was decided to create
an uneven surface, even if it is still a rather simple one. The main aspect of this part
is to create a kind of framework that guides future modelers through expanding the
library with more complex surfaces that the tire model is compatible with.

The following sections describe the Surface Base that is intended to form the framework.
Afterwards, the section Surface describes the implementation chosen in the Wheels And
Tires library.

5.1 Surface Base

This partial model defines the functions necessary to calculate the behavior of the tire,
including the following.

• get_eN_Base – returns the normal vector of the surface at the actual x and z
coordinates.

• get_elevation_Base – returns the y coordinate of the surface at the actual x
and z coordinates.

• get_mu_Base – returns the frictional coefficient at the actual x and z coordinates.

From the description above, one can see that inputs for all functions are the x and z
coordinates. How the results of these functions are determined is left open and can be
defined by the user.
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5.2 Surface Class

Basically the method to be implemented must be able to compute elevation (the y
coordinate shown in Figure 5.1) and the normal vector at every point of the surface.
There are many substantially different approaches whereas the chosen one is a rather
simple and conveniently configurable one.

5.2.1 The used Method

The implemented version of the Surface in the Wheels and Tires Library is based on the
method shown in the following section and introduced in [AS93]. It is an interpolation
in a unit square based on four y values and the eight corresponding partial derivatives.
A sketch of the unit square is shown in Figure 5.1.
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Figure 5.1: The foundation for the interpolation used to compute the elevation y and
normal vector in a square.

5.2.1.1 Limitation

Limitations are given due to the single contact point model used. The radii describing
the surface have to be significantly greater than the tire’s radius. This ensures that
only a single contact point occurs.
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As the model uses the introduced interpolation structure, rather than e.g. a two di-
mensional mathematical function, the results are not derivable analytically by Dymola.
This limits the application of this surface model to Vertical Dynamics that have a non
ideal derivative block to calculate the normal velocity of the ideal penetration depth.
These are all models in the Wheels and Tires library except the No Elevation class.

5.2.1.2 Interpolation in one rectangle element

Starting from Figure 5.1, the value of y as well as dy
dx and dy

dz at an arbitrary point in the
square can be found by the following equations. The equations are a modified version
of the ones in [AS93] in order to have y and the corresponding partial derivatives as an
output rather than z. This better suits the simulation environment Dymola.

y(x, z) = (HY)T



y(0, 0) y(1, 0) dy
dz (0, 0) dy

dz (1, 0)

y(0, 1) y(1, 1) dy
dz (0, 1) dy

dz (1, 1)

dy
dx(0, 0) dy

dx(1, 0) 0 0

dy
dx(0, 1) dy

dx(1, 1) 0 0


︸ ︷︷ ︸

G

(HY) (5.1)
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Y =



y3

y2

y

1


H =



2 −3 0 1

−1 3 0 0

1 −2 1 0

1 −1 0 0


(5.2)

This is the basis for the function get_elevation that returns y at every possible
position in the rectangle as an output.

In order to compute the normal vector, the following functions are useful.

dy

dz
(x, z) = (dHX)TG(HZ) (5.3)

dy

dx
(x, z) = (HX)TG(dHZ) (5.4)
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with

dH =



0 6 −6 0

0 −6 6 0

0 3 −4 1

0 3 −2 0


(5.5)

from what the normal vector can be computed by

n(x, y) =


0

dy
dz (x, z)

1


×


1

dy
dx(x, z)

0


(5.6)

with the normal vector resulting in

en(x, z) =
n(x, z)
|n(x, z)| (5.7)

which is the mathematical background behind the get_eN function.

The transpose signs in the equation above indicate that a scalar product is to be used at
these places. Whereas this is done that way in MATLAB, Dymola does automatically
compute a scalar product with vector · vector as it distinguishes between vectors and
matrices.

5.2.1.3 Combining multiple Rectangles of arbitrary size

In order to be able to describe more complex surfaces than the ones shown in Sec-
tion 5.2.1.2, a possibility was created to add multiple surfaces to form one big surface.
The major problem regarding this strategy is that the functions presented in the fore-
going chapter just work with a single unit square.

The interpolation method is based on a square element with a side length of 1. This
is not very convenient to describe bigger surfaces which are reasonable when modeling
motorcycles or cars. The Surface class therefore enables the user to define the total
length and width of the Surface as well as the amount of grid points representing the
vertices of the (in general) rectangular elements shown in Figure 5.2(a). Therefore, the
values returned by the get_rectangle function have to be scaled to unitary values
which is done by the following equations.
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5.2 Surface Class

rectangleX := LengthX/(nu-1);
localXNorm := localX/rectangleX;
X :={localXNorm^3,localXNorm^2,localXNorm,1};

Hereby LengthX denotes the total length of the surface, nu the number of grid points in
the x direction and localX is the position in the currently “active” rectangular element.
These values are then used to compute X and do the interpolation. The same is done
for the z coordinate.

The number of connected rectangles is defined by [nu, nv] as depicted in Figure 5.2.
The size of the corresponding matrices of y, dy

dx and dy
dz obviously has to match the

X

Z

[1,1] [2,1]

[1,2]

[nu,nv]

[...]

[...][2,2]

[...][1,3]

[3,1] [nu,1]

[1,nv]

[...]

[...]

[...][...]

[...]

[...]

[...]

[...][...][...]

[...]

[...]

[...]

(a) Point indexes.

X

Z

[1,1] [2,1]

[1,2]

[nu-1,
nv-1]

[...]

[...][...]

[...][1,3]

[3,1]

[...]

[...]

[nu-1,1]

[...][1,nv-1] [...]

(b) Area indexes.

Figure 5.2: Coordinates for multiple rectangles assembled to form a more complex
surface.

values of nu, nv.

Therefore, the function get_rectangle was created and returns the values given below,
as this is useful for both functions get_elevation and get_eN.

• xIndex – The index in x direction, denoting the area which the tire is in (see
Figure 5.2(b)).

• zIndex – Same as xIndex for the z direction.

• inArea – A boolean variable denoting whether the tire is in the area of the defined
surface1.

1If the tire is not in the defined area, the elevation is set to 0 and the normal vector is set to {0, 1, 0}.
This can be troublesome when the defined surface reaches below the elevation of 0, as then the
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• localX – The position in x direction in the current rectangle.

• localZ – The same as localX in the z direction.

Figure 5.3 shows the parameter window for the configuration of a Surface class. Here

Figure 5.3: The parameter window for customizing the Surface’s properties.

a quite simple one is shown with just two values 6= 0 and all partial derivatives = 0.

5.2.1.4 The Visualization

For the visualization of the Surface, the Surface Material class is used. This is a class
provided with Dymola enabling a visualization of parametric surfaces.

To utilize this class, one has to set the number of grid points nu and nv as they are
shown in Figure 5.2(a). To be able to visualize the surface, one has to set x, y and z
coordinates for every point in that grid. As the surfaces in the Wheels and Tires library
have a regular grid, this can be done by a double loop for the x and z coordinates in
a linear fashion. Building a grid for the visualization with exactly as many grid points
used to define the single sections of the surface results in a visualization shown in
Figure 5.4. This will return the same simulation results as the one in Figure 5.5 but
with a confusing visualization. Therefore the parameter IP (see Figure 5.3 on Page 106)

limitation for a single contact point is not fulfilled. If the tire was at a elevation > 0, it would
simply fall down hitting a virtual and not visualized “floor” at 0 height.
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5.2 Surface Class

Figure 5.4: The result of the surface configuration shown in Figure 5.3 without any
further interpolation for the visualization without a PNG as texture.

Figure 5.5: The result of the surface configuration shown in Figure 5.3 without a PNG
as texture and five interpolation points between the vertices.

has been introduced. This adds IP points between the original grid points providing a
much smoother visualization.

To determine the single y values for the visualization, basically the same function as
shown in Section 5.2.1.2 on Page 103 is used. The full code for this visualization is
provided in Appendix A.2.3.

It is important to notice that the interpolation just has optical reasons. The real values
of y and eN the simulation is based on are determined totally smoothly and independent
of the visualization.
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5.2.1.5 The Flat Surface Option

As mentioned in Section 3.9.1 on Page 72, the models that have to derive the penetra-
tionDepth are not usable in combination with these parametric surfaces. Therefore an
option has been created that is especially useful if flat surfaces are simulated which is
often adequate for vehicle dynamics simulations. If this option is enabled two major
changes happen throughout the model. The first is that the Surface class disables
the parameters y, dy_dx and dy_dz and switches to a visualization of exclusively flat
surfaces. The second difference lets the Geometry class set the y coordinate of the con-
tact point to 0. This enables the model to derive the penetrationDepth and therefore
suitable for the No Elevation class. Additionally, eN is set to {0,1,0}.

5.2.1.6 The frictional coefficient

Another thing that can be customized with the Surface class is the frictional coefficient.
This is done by the parameter mu which can be found in Figure 5.3 on Page 106, for
all of the rectangles depicted in Figure 5.2(b) on Page 105. The transition between
the single rectangles is a hard one so no kind of interpolation between the rectangles is
implemented. Thus, the frictional coefficient changes step like when crossing a border
between two rectangle elements.

5.2.2 Changing the Surface Class

Changing the Surface class could bring the advantage that a derivable version of a
surface could be implemented. This would enable the usage of analytical derivation
throughout the Vertical Dynamics class.

The most reliable version to implement a new Surface class would extend the existing
Surface Base. This would ensure compatibility with the rest of the tire model. In order
to make the existing models work with the new Surface class, one would have to remove
or rename the existing one. This has to be done as the parts of the tire communicating
with the Surface class imply the definition found below.

protected
outer WheelsAndTires.Environment.Surface Surface;

This covers the model path as well as the name so either all models implementing
these lines of code have to be changed or the original surface has to be removed or
renamed2.

2Renaming will change the definitions in the models containing this statement, what has to be con-
sidered.
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5.2.3 Implementation Details

This section presents a method of parameter passing that is very useful in the Surface
class and is therefore presented quickly. Additionally two minor implemantation details
are mentioned afterwards.

In order to get functions in Dymola using parameters of a superposed model, it is
possible to utilize protected functions. This can be done in the following way.

public
function get_eN = get_eN_protected (
Parameter1 = Parameter1,
Parameter2 = Parameter2);

Where get_eN_protected is the function implementing the “real” body. The code
section above is just useful to pass parameters to the function without the user caring
about these. The protected function then receives these values as inputs as follows.

protected
function get_eN_protected
extends get_eN_Base; // adds x and z as inputs and eN[3] as output
input Real Parameter1;
input Real Parameter2;

algorithm
...
end get_eN_protected;

The result of this, at first sight slightly obscure construction, is that the user is able
to call get_eN(x,z) with the function gathering the parameters from the Surface on
its own. Otherwise, the call would have to include all the parameters from the Surface
which does not make sense at all, because the Geometry class would have to know
about the parameters of the Surface class.

Another important aspect describing the functionality of the Surface class can be
seen when looking at the last code section. The base function is extended by the
get_eNprotected function in order to add standardized in- and outputs.

To move the surface in the x/z plane, the two parameters offsetX and offsetZ have
been introduced (see Figure 5.3 on Page 106) which basically define the position of the
left upper corner of the grid shown in Figure 5.2(a) on Page 105.

The full code of the Surface class is shown in Appendix A.2.
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6 Simulation Results

This section covers the models in the Wheels and Tires library that can be simulated
directly. These are split up into two packages.

• The Test Bench covers models that are provided to verify basic functions of
the tire. These include the Elevation, Friction Effects, Surfaces and Plotting
Functions.

• The Examples package includes models that are provided to show the usage of
the tires in combination with a vehicle.

6.1 The Test Bench

Models contained in the Test Bench are designed to verify fundamental properties of
the tested tires. The packages contained are listed and described below.

• Elevation – Two models to test basic properties of the Elevation objects. The
first is rather simple and the latter a little more complex.

• Friction Effects – Eight models to test the objects of the Friction class.

• Surfaces – Three models to gain some knowledge about the usage of the Surface
class and its configuration as well as checking its functionality.

• Plotting Functions – One function to plot the behavior of different frictional
classes. Possible results are shown in Figures 3.15 and 3.16 on Pages 40 and 41.

All of the models in the test benches for Elevation and Friction Effects are basically
built up like the one shown in Figure 6.1. They consist of Actuated Prismatics to
stabilize the tire. Actuated Revolutes are used to let the tire spin or (not in the depicted
model) have lean angle or e.g. turn around the y axis to exhibit bore torque. The other
models built on the same basis, should therefore be self-explanatory and are thus not
depicted in particular.

The models provided are suited to the tire models used. So when changing tire param-
eters or objects of the tire, one will have to reconfigure at least the parameters of the
test bench models as well.
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Name: SlipLongModel

Location: WheelsAndTires/TestBench/FrictionEffects
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Figure 6.1: Model that applies a driving torque making the tire slip.
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6.1 The Test Bench

To give an impression of how the simulation results look like, Figures 6.2 to 6.5 provide

Figure 6.2: Tire elevating from the ground while driving a curve. Result of Elevation
Advanced.

Figure 6.3: Tire’s overturning torque Test Bench result.

some screen shots of simulation results from the Test Bench files. The “history frames”
option in the “Animation Setup” was turned on to provide some idea of the behavior of
the tires during the simulation. Unfortunately the transparency setting of the surface
becomes deactivated when enabling the history frames. A transparent surface would
make it possible to see the reaction forces of the tire.

The simulation of the Test Bench models covering frictional properties takes about
0.13ms/Interval to 0.25ms/Interval. The fastest model is the Self Aligning Torque
test that computes 10s with 2500Intervals in 0.33s. The slowest is the Advanced Ele-
vation test taking about 0.6s for 2500Intervals covering 10s of simulation time. The
situation changes when simulating the Surface test models that take between 1.8 and
35.5ms/Interval. So the slowest model takes about 4.5s for 10s of simulation time for
three tires. This shows that the simulation times strongly depend on the application
of the wheel models making general predictions difficult.

113



6 Simulation Results

Figure 6.4: A tire rolling up an uneven surface with an initial lean angle (resulted from
Uneven Surface Rotating Tire).

6.2 Provided Examples

Six examples are provided with the library. Five of the Examples are two-wheeled
(single-track) vehicles, whereas three are unsprung bicycle models composed of rigid
elements exclusively. The other two model sprung motorcycles including front and rear
suspension. For both vehicles, models are provided to analyze the uncontrolled stability,
by comparing two bicycles in one model directly, e.g. with different tire properties for
geometry and friction as shown in Figures 6.6 and 6.7 for the bicycle. The other two
models are “nice to show” models with the bicycle being accelerated by a strong torque
to make the front wheel lift from the ground as shown in Figure 6.8 and the motorcycle
jumping over a gap as depicted in Figure 6.9.

In contrast to the motorcycle the bicycle example has a proper visualization. For the
motorcycle (and the four-wheeled vehicle), no further effort was spent regarding the
visualization, as it is not the crucial aspect of the examples. Both two-wheeled models
(found in the Used Models package) were provided by Thomas Schmitt and were part
of the development of the Motorcycle Library [Sch09].

The sixth example is a very basic unsprung model of a four-wheeled vehicle with a
predefined steering angle profile and driving torques acting on the rear tires. The
result of the quite simple input signals is a rather curious behavior of the vehicle with
the car starting to drift after 22s of the simulation, due to an impulse in the driving
torque (shown in Figure 6.10). This is “reacted” on by a full breaking of all wheels
marking the wheels slide to standstill of the vehicle.

Regarding the simulation speeds of the examples, it can be stated that the bicycle
models take about half of the simulated time for the computation of the result. The
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Figure 6.5: Tire dropping on an uneven surface (resulted from Uneven Surface Dropping
Tire).

Figure 6.6: Two similar bicycles with non-slipping tires differing in their geometric
properties. The upper bicycle is equipped with ideally slim tires whereas the lower one
has a belted tire having a width of 2cm.

motorcycle jumping over the gap takes about 250s of calculation time for 16s of actual
simulation. The reason for this is the more complex structure of the motorcycle than
the one of the bicycle. The undamped four wheeled models compute the results in a
little less time than the simulation time. All of the models used non-dynamic tires
either with slipping or the advanced friction models. All simulations have been carried
out on a Core2Duo clocked at 2GHz equipped with 4GB RAM, computing 250 output
intervals per second. It has to be mentioned that no big effort was spent regarding the
optimization of simulation speed of the overall models. A more suitable combination
of state variables would most likely lead to a considerable enhancement in speed.
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Figure 6.7: Two similar bicycles with slipping tires differing in their frictional prop-
erties. The one driving the inner circle is equipped with the Advanced Friction class,
whereas the outer bicycle is equipped with the Dry Fricition with Constant Roll Resis-
tance class.

Figure 6.8: A bicycle with non-ideal tires accelerated by a torque on the rear tire, with
the front tire lifting from the ground.

Figure 6.9: A motorcycle jumping over a gap.
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Figure 6.10: Result of the Four Wheeled Vehicle example after 22.5s (vehicle is drifting)
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7 Conclusions

The goal of the Master’s Thesis was to create a truly object-oriented tire library with a
hierarchical composition. The necessary decomposition of properties results in a wheel
model consisting of seven well-defined and truly self-sufficient classes (see Chapter 3).
To ease the use of these classes a communication structure tailored to the special needs
arising from the decomposition was introduced. Two of the classes have a further hier-
archical decomposition, namely the Friction and the Contact Physics class. Whereas
the latter one could be discussed to get split up into two separate classes, the Friction
class is one of the key enhancements making it possible for the future modeler to focus
on a special part of frictional properties exclusively.

Tire models can be built from scratch which is absolutely manageable as well as the even
simpler and therefore recommended possibility to adapt ready-made tires presented
in Chapter 4. The resulting models can be combined with simple (even) or more
complex surfaces (see Chapter 5) without changing the tire model. Moreover, a number
of test bench models are provided, enabling a test of single tire properties. Finally,
models of two-wheeled single-track and four-wheeled vehicles are provided, showing
the capabilities of the library (see Chapter 6).

Still, the lack of comparison to verified simulation results and measurement data is
considered to be a drawback as some malfunctions could probably not be identified.
Moreover the application of the library is limited due to the fact that the 3D mechanics
connectors of the Multi Bond Library (which the library was built upon) and the
Multi Body Library (that is part of the Modelica Standard library) are incompatible.
This restricts the use of the tires to models built with elements from the Multi Bond
Library.

To sum up, the library enables a quick and convenient building of easily customizable
tire models. There are some further enhancements possible, but the structure of the
tire models should persist as it can easily be extended, fulfilling the major requirements
that were demanded at the beginning of the work.
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8 Further Work

The following section accumulates some thoughts that arose during the creation of the
library. Every paragraph intends to present one improvement to the library which is
considered to be reasonable. It is split into the sections covering functional enhance-
ments, better usability and one section regarding computational effort.

Usability

A very important factor to enhance the library’s usability would be to add more suitable
default parameters. Especially for inexperienced users this would be a great advantage.
Still, the finding of suiting parameters is a very time consuming task especially for
persons not very familiar with the topic. Apart from that a number of real-world tires
could be implemented as a reference if parameter data is freely available.

A further enhancement regarding usability could be achieved by using parameters,
which the average user is more familiar with. So e.g. it would be possible to provide
a (non-linear) relationship between the inflation pressure of the tire and the vertical
stiffness for the Vertical Dynamics model. This would enable the user to enter pressure
values which nearly everybody is familiar with, rather than having to think about a
stiffness and damping constant.

One task to improve the exchangeability of the geometric classes would be to unify
the parameters of these models. This was not done in the library in order to have
parameters that the modeler is more familiar with, especially for the Belted Tire. Still,
one could discuss whether it makes more sense to use the ISO standard tire codes
(P215/65R15...) as parameters or to make it more exchangeable with different geome-
tries.

For more complex tire models, the number of parameters rises quickly. This can lead
to a cumbersome adaptation of parameters when switching from one tire to a different
one. Records of parameters could enhance this aspect as well as creating a separate
class for every single tire. Both versions have advantages over the other and if the
library is extended with more ready-made tires, one should think about which version
is the better one.
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Using Surfaces in models with working directories other than the directory the Wheels
and Tires library is saved in will cause the textures (PNGs) of the surfaces to disappear.
This is caused by the fact that the Surface Material class searches for the image files
in the ./images subdirectory of the working directory. Therefore, the modeler has to
copy the PNG files to the modeling directory or use the gray surfaces that are created
without a PNG. No possibility to overcome this problem was investigated during the
thesis, but still it would be an advantage.

Initializing the model together with a mass (not the simple mass from the Multi Bond
Librarys) causes inconvenient behavior during the initialization. This could probably
be overcome by a correct usage of the defineRoot statement. If that is not possible,
it could be considered to set angles and translational positions separately to overcome
this issue at least partly.

Function

Probably the most important part that is not realized in the current version of the
library are the tire models by Pacejka [Pac06]. This would be an extension to the
friction class that could be done quite quickly, greatly enhancing the applicability of
the library. Moreover this would add the possibility to model non-symmetric tread
profile, which results in an offset to the frictional curve shown in Section 3.5.2.

In some simulations, not the whole 3D tire model is necessary. Sometimes a simplified
version in 2D or even 1D would be enough e.g. when simulating the behavior of a single
suspension with a road profile as an input. This would decrease computational effort
drastically whilst barely reducing the result’s quality. Still, this would most likely cause
some major changes in the library and therefore has to be thought of carefully before
starting the redesign or extension.

Many relations that influence the tire’s behavior are not considered in the library.
So e.g. there is an influence of the driving speed to the damping of the Vertical Dy-
namics model and the friction coefficient. There are quite a lot of these effects that
are not modeled arising from the complex structure of a tire making it difficult for
a person not very familiar with the topic to decide which effects are more important
than others. Therefore, either an experienced person or users should demand certain
improvements.

A very beneficial part to improve would be the Surface class. If it was made derivable,
that would enable modifications of the Vertical Dynamics class replacing the non-ideal
derivative block with an ideal one.

In order to have a more correct result in combination with the actual Surface, it would
be possible to use conditional declarations to either use ideal or non-ideal derivation
blocks in the elevation and “long-lat” dynamic models. This could be made directly
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dependent on the flatSurface option. Apart from that this would make it possible
to use all models on all possible surfaces without the user having to adapt models.

Another useful enhancement for the surface class would be to create multiple surfaces
instead of a single one. This would enable the modeler to create more appealing vi-
sualizations and simply show e.g. different frictional properties indicated by different
textures. Moreover this would enable a reduced stretching of the used image files
(PNGs), which would be another optical enhancement.

A kind of environment-builder concept featuring different parts e.g. standardized road
elements, or even some aesthetically pleasing elements like houses or trees with a proper
visualization would greatly enhance the libraries optics. To make more complex parts
like road elements possible, a different concept of friction-coefficient determination
would have to be introduced.

An interesting aspect would be to include the temperature rise due to losses in the tires.
Still this a quite complex enhancement because models would be needed that compute
the overall losses, and the cooling by the surrounding air would have to be included as
well. Still the change of temperature of the air inside the tire has a noticeable influence
on the pressure (with respect to rough calculations). Based on measurements one could
as well include the influence of the warming of the tire’s rubber composition. It would
be possible to separate the vertical dynamics into models for inflation pressure and the
rubber. With the temperature included in the model the generation of longitudinal
and lateral forces could be made dependent on the temperature as well.

For simulations that include freely moving tires, problems occur during the initializa-
tion. The vector dLong is reportedly set to 0 in the dimensions 1 and 3, as these values
are not initialized. This can cause a division by zero in the equation normalizing dLong
to eLong because all elements of dLong can become zero when setting dimensions 1
and 3 to zero. This is ignored, as the solver is able to handle this problem and it
therefore has no influence on the result. Attempts to account for the displayed warning
by setting dLong[1] to a reasonable value during initialization cause Dymola to get an
over-specified initial problem.

One possibility to enhance the usage of more complex surfaces is presented in Chapter
10 of [Pac06]. Rather than the smoothly interpolated surfaces implemented in the
Wheels and Tires library, this would enable the models to respond on more unsteady
surfaces correctly. But as mentioned in [BA03], the implementation of this “filter” is
quite complex.

There are different definitions of slip found in literature. An enhancement would be
to implement these different definitions that could then be used by the different Slip
Properties classes. This would enable an exact comparability to different available
simulation results.
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Speed

One quite important aspect would be to review the model structure with regards to
simulation efficiency. Some effort was spent selecting appropriate state variables with
the enforce states parameter turned on, but there are plenty of possibilities to further
enhance the models’ efficiency.

Investigations which part of the model adds immoderate computational effort would
be very interesting. These analyses are possible with Dymola and would most likely
be highly revealing. Other possibilities would be to do an in-depth presentation of the
library to experienced Modelica users who would probably be able to directly identify
problems regarding computational efficiency. E.g. a test regarding the filtering times
of the non-ideal derivative blocks, in order to find the right balance between accuracy
and speed would be very interesting.
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[CN05] F. E. Cellier and À. Netbot. The modelica bond-graph library. In Proceed-
ings of the 4th International Modelica Conference, Hamburg, pages 57–65,
2005.

[Cra89] John J. Craig. Introduction to Robotics Mechanics and Control. Addison
Wesley Longman, 1989. Second Edition.

[Dix96] John C. Dixon. Tires, Suspension and Handling. Cambridge University
Press, 1996. Second Edition.

[Fri04] P. Fritzson. Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley & Sons, 2004.

125

http://www.modelica.org/documents/ModelicaSpec30.pdf
http://www.modelica.org/documents/ModelicaSpec30.pdf
http://www.modelica.org/libraries/Modelica
http://www.modelica.org/libraries/Modelica


Bibliography

[Lei09] Günter Leister. Fahrzeugreifen und Fahrwerkentwicklung. Vieweg + Teub-
ner, 2009. 1. Auflage.

[McB05] Robert Thomas McBride. System Analysis through Bond Graph Modeling.
PhD thesis, University of Arizona, 2005.

[MW03] Manfred Mitschke and Henning Wallentowitz. Dynamik der Kraftfahrzeuge.
Springer Verlag, VDI, 2003. 4. Auflage.

[Pac06] Hans B. Pacejka. Tyre and Vehicle Dynamics. Butterworth-Heinemann,
2006. Second Edition.

[Ril07] Georg Rill. Simulation von Kraftfahrzeugen. Vieweg-Verlag, 2007. geneh-
migter Nachdruck.

[Sch09] Thomas Schmitt. Modeling of a motorcycle in dymola/modelica. Master’s
thesis, Vorarlberg University of Applied Sciences, 2009.

[Zim06] Dirk Zimmer. A modelica library for multibond graphs and its application
in 3d-mechanics. Master’s thesis, ETH Zürich, 2006.
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A.2 Complete Code for the Surface Class

A.2.1 WheelsAndTires.Environment.SurfaceBase

partial model SurfaceBase
import SI = Modelica.SIunits;

partial function get_eN_Base
input SI.Position x;
input SI.Position z;
output Real eN[3];

end get_eN_Base;

partial function get_elevation_Base
input SI.Position x;
input SI.Position z;
output SI.Position elevation;

end get_elevation_Base;

partial function get_mu_Base
input SI.Position x;
input SI.Position z;
output Real mu;

end get_mu_Base;

end SurfaceBase;

A.2.2 WheelsAndTires.Environment.Surface

model Surface

extends WheelsAndTires.Environment.SurfaceBase;
import SI = Modelica.SIunits;
import MB = Modelica.Mechanics.MultiBody;
import WheelsAndTires.Visualization.BaseClasses.SurfaceMaterial;

parameter Boolean FlatSurface = true
"If true simpler equations for the functions can be used,
false enables uneven surfaces";

parameter Boolean visSurface = true
"= true if the surfrace shall be shown in the animation window";
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parameter Integer nu(final min=2) = 4
"Number of grid points in x direction";
parameter Integer nv(final min=2) = 4
"Number of grid points in z direction";
parameter Integer IP(final min=0) = 5
"Number of interpolation points between the grid points
(just for visualization)";

parameter Real PNG = 1
"Filename of the that shall be used as texture";
parameter MB.Types.Color Color= {255,255,255}
"Surface color (mixed with texture)";

parameter MB.Types.SpecularCoefficient SpecularCoefficient = 0.1
"Specular coefficient of the road surface without texture";

parameter SI.Length LengthX = 50
"Length of the surface area in x direction";
parameter SI.Length LengthZ = 50
"Length of the surface area in z direction";
parameter SI.Length OffsetX = -LengthX/2 "Offset in x direction";
parameter SI.Length OffsetZ = -LengthZ/2 "Offset in z direction";

parameter SI.Distance y[nu,nv] = zeros(nu,nv)
"Matrix with the y (elevation) values at the grid points"
annotation(Dialog(enable= not FlatSurface));

parameter Real dy_dx[nu,nv] = zeros(nu,nv)
"Matrix with the slope of the grid points in x direction"
annotation(Dialog(enable= not FlatSurface));

parameter Real dy_dz[nu,nv] = zeros(nu,nv)
"Matrix with the slope of the grid points in y direction"
annotation(Dialog(enable= not FlatSurface));

parameter Real mu[nu-1,nv-1] = ones(nu-1,nv-1)
"Matrix with the friction coefficient for every rectangle";

final parameter Integer nuIP = nu+(nu-1)*IP
"Number of the grid values in x direction with interpolation";

final parameter Integer nvIP = nv+(nv-1)*IP
"Number of the grid values in y direction with interpolation";

public
function get_eN = get_eN_protected (
FlatSurface = FlatSurface,
yMatrix=y,
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dy_dxMatrix=dy_dx,
dy_dzMatrix=dy_dz,
nu=nu,
nv=nv,
LengthX=LengthX,
LengthZ=LengthZ,
OffsetX=OffsetX,
OffsetZ=OffsetZ);

protected
function get_eN_protected
extends get_eN_Base;
// adds x and z as inputs and eN[3] as output
input Boolean FlatSurface;
input SI.Distance yMatrix[:,:];
input Real dy_dxMatrix[:,:];
input Real dy_dzMatrix[:,:];
input Integer nu;
input Integer nv;
input SI.Length LengthX;
input SI.Length LengthZ;
input SI.Distance OffsetX;
input SI.Distance OffsetZ;

protected
Integer xIndex;
Integer zIndex;
SI.Distance localX;
SI.Distance localZ;
Boolean inArea;
SI.Distance rectangleY[2,2];
Real rectangleDy_dx[2,2];
Real rectangleDy_dz[2,2];
Real X[4];
Real Z[4];
Real G[4,4];
constant Real H[4,4] = [2,-3, 0, 1;-2, 3, 0, 0;

1,-2, 1, 0; 1,-1, 0, 0];
constant Real dH[4,4] = [0, 6,-6, 0; 0,-6, 6, 0;

0, 3,-4, 1; 0, 3,-2, 0];
Real dy_dx;
Real dy_dz;
SI.Distance factorX;
SI.Distance factorZ;
SI.Length localXNorm;
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SI.Length localZNorm;
SI.Length rectangleX;
SI.Length rectangleZ;
Real dN[3];

algorithm

(xIndex, zIndex, inArea, localX, localZ) :=
get_rectangle(x=x,z=z,nu=nu,nv=nv,LengthX=LengthX,
LengthZ=LengthZ,OffsetX=OffsetX,OffsetZ=OffsetZ);

if inArea and not FlatSurface then

rectangleX :=LengthX/(nu-1);
rectangleZ :=LengthZ/(nv-1);

rectangleY :=yMatrix[xIndex:xIndex + 1, zIndex:zIndex + 1];
rectangleDy_dx :=dy_dxMatrix[xIndex:xIndex + 1,
zIndex:zIndex + 1];
rectangleDy_dz :=dy_dzMatrix[xIndex:xIndex + 1,
zIndex:zIndex + 1];
G :=[rectangleY, rectangleDy_dz*rectangleZ;
rectangleDy_dx*rectangleX, zeros(2, 2)];

localXNorm :=localX/rectangleX;
localZNorm :=localZ/rectangleZ;

X :={localXNorm^3,localXNorm^2,localXNorm,1};
Z :={localZNorm^3,localZNorm^2,localZNorm,1};

dy_dx := (dH*X)*G*(H*Z)/rectangleX;
dy_dz := (H*X)*G*(dH*Z)/rectangleZ;

dN :=cross({0,dy_dz,1}, {1,dy_dx,0});
eN :=dN/sqrt(dN*dN);

else
eN :={0,1,0};

end if;

end get_eN_protected;

public
function get_elevation = get_elevation_protected (
FlatSurface = FlatSurface,
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yMatrix=y,
dy_dxMatrix=dy_dx,
dy_dzMatrix=dy_dz,
nu=nu,
nv=nv,
LengthX=LengthX,
LengthZ=LengthZ,
OffsetX=OffsetX,
OffsetZ=OffsetZ);

protected
function get_elevation_protected
extends get_elevation_Base;
// adds x and z as inputs and elevation as output
input Boolean FlatSurface;
input SI.Distance yMatrix[:,:];
input Real dy_dxMatrix[:,:];
input Real dy_dzMatrix[:,:];
input Integer nu;
input Integer nv;
input SI.Length LengthX;
input SI.Length LengthZ;
input SI.Distance OffsetX;
input SI.Distance OffsetZ;

protected
Integer xIndex;
Integer zIndex;
SI.Distance localX;
SI.Distance localZ;
Boolean inArea;
SI.Distance rectangleY[2,2];
Real rectangleDy_dx[2,2];
Real rectangleDy_dz[2,2];
Real X[4];
Real Z[4];
Real G[4,4];
SI.Distance rectangleX;
SI.Distance rectangleZ;
Real localXNorm;
Real localZNorm;
constant Real H[4,4] =
[2,-3, 0, 1; -2, 3, 0, 0; 1,-2, 1, 0; 1,-1, 0, 0]
"Matrix used for the interpolation";
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algorithm
(xIndex, zIndex, inArea, localX, localZ) :=
get_rectangle(x=x,z=z,nu=nu,nv=nv,LengthX=LengthX,
LengthZ=LengthZ,OffsetX=OffsetX,OffsetZ=OffsetZ);

if inArea and not FlatSurface then
rectangleX := LengthX/(nu-1);
rectangleZ := LengthZ/(nv-1);

rectangleY :=yMatrix[xIndex:xIndex + 1, zIndex:zIndex + 1];
rectangleDy_dx :=dy_dxMatrix[xIndex:xIndex + 1,
zIndex:zIndex + 1];
rectangleDy_dz :=dy_dzMatrix[xIndex:xIndex + 1,
zIndex:zIndex + 1];
G :=[rectangleY, rectangleDy_dz*rectangleZ;

rectangleDy_dx*rectangleX, zeros(2, 2)];

localXNorm :=localX/rectangleX;
localZNorm :=localZ/rectangleZ;

X :={localXNorm^3,localXNorm^2,localXNorm,1};
Z :={localZNorm^3,localZNorm^2,localZNorm,1};

elevation := (H*X)*G*(H*Z);
else

elevation := 0;
end if;

end get_elevation_protected;

public
function get_mu = get_mu_protected (
muMatrix=mu,
nu=nu,
nv=nv,
LengthX=LengthX,
LengthZ=LengthZ,
OffsetX=OffsetX,
OffsetZ=OffsetZ);

protected
function get_mu_protected
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extends get_mu_Base; // adds x and z as inputs and mu as output
input Real muMatrix[:,:]; //additional input(s)
input Integer nu;
input Integer nv;
input SI.Length LengthX;
input SI.Length LengthZ;
input SI.Distance OffsetX;
input SI.Distance OffsetZ;

protected
Integer xIndex;
Integer zIndex;
Boolean inArea;

algorithm
(xIndex,zIndex,inArea) :=
get_rectangle(x=x,z=z,nu=nu,nv=nv,LengthX=LengthX,LengthZ=LengthZ,
OffsetX=OffsetX,OffsetZ=OffsetZ);
if inArea then

mu := muMatrix[xIndex,zIndex];
else

mu := 1;
end if;

end get_mu_protected;

public
function get_rectangle
input SI.Position x;
input SI.Position z;
input Integer nu;
input Integer nv;
input SI.Length LengthX;
input SI.Length LengthZ;
input SI.Distance OffsetX;
input SI.Distance OffsetZ;

output Integer rectX;
output Integer rectZ;
output Boolean inArea;
output SI.Distance localX;
output SI.Distance localZ;

protected
SI.Distance rectangleX;
SI.Distance rectangleZ;
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algorithm
rectX := integer(ceil(((x-OffsetX)/LengthX)*(nu-1)));
rectZ := integer(ceil(((z-OffsetZ)/LengthZ)*(nv-1)));

if rectX > nu-1 or rectX < 1 or rectZ > nv-1 or rectZ < 1 then
inArea :=false;

else
inArea :=true;

end if;

rectangleX := LengthX/(nu-1);
rectangleZ := LengthZ/(nv-1);

// getting local position
(in the rectangle the tire is in at the time of calling)
localX :=mod(x - LengthX - OffsetX, rectangleX);
localZ :=mod(z - LengthZ - OffsetZ, rectangleZ);

end get_rectangle;

protected
WheelsAndTires.Visualization.SurfaceVisualization
surfaceVisualizationNotFlat(
nu=nu,
nv=nv,
IP=IP,
PNG=PNG,
Color=Color,
SpecularCoefficient=SpecularCoefficient,
LengthX=LengthX,
LengthZ=LengthZ,
OffsetX=OffsetX,
OffsetZ=OffsetZ,
y=y,
dy_dx=dy_dx,
dy_dz=dy_dz) if visSurface and not FlatSurface;

WheelsAndTires.Visualization.SurfaceVisualization
surfaceVisualizationFlat(
nu=nu,
nv=nv,
IP=IP,
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PNG=PNG,
Color=Color,
SpecularCoefficient=SpecularCoefficient,
LengthX=LengthX,
LengthZ=LengthZ,
OffsetX=OffsetX,
OffsetZ=OffsetZ,
y=zeros(nu,nv),
dy_dx=zeros(nu,nv),
dy_dz=zeros(nu,nv)) if visSurface and FlatSurface;

end Surface;

A.2.3 WheelsAndTires.Visualization.SurfaceVisualization

model SurfaceVisualization

import SI = Modelica.SIunits;
import MB = Modelica.Mechanics.MultiBody;
import WheelsAndTires.Visualization.BaseClasses.SurfaceMaterial;

parameter Integer nu(final min=2) = 4
"Number of grid points in x direction";
parameter Integer nv(final min=2) = 4
"Number of grid points in y direction";
parameter Integer IP(final min=0) = 5
"Number of interpolation points between the grid points
(just for visualization)";

parameter Real PNG = 1
"Filename of the that shall be used as texture";
parameter MB.Types.Color Color= {255,255,255}
"Surface color (mixed with texture)";

parameter MB.Types.SpecularCoefficient SpecularCoefficient = 0.1
"Specular coefficient of the road surface without texture";

parameter SI.Length LengthX = 10
"Length of the surface area in x direction";
parameter SI.Length LengthZ = 10
"Length of the surface area in z direction";
parameter SI.Length OffsetX = -LengthX/2 "Offset in x direction";
parameter SI.Length OffsetZ = -LengthZ/2 "Offset in z direction";
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parameter SI.Distance y[nu,nv] = zeros(nu,nv)
"Matrix with the y (elevation) values at the grid points";

parameter Real dy_dx[nu,nv] = zeros(nu,nv)
"Matrix with the slope of the grid points in x direction";

parameter Real dy_dz[nu,nv] = zeros(nu,nv)
"Matrix with the slope of the grid points in y direction";

final parameter Integer nuIP = nu+(nu-1)*IP
"Number of the grid values in x direction with interpolation";

final parameter Integer nvIP = nv+(nv-1)*IP
"Number of the grid values in y direction with interpolation";

WheelsAndTires.Visualization.BaseClasses.SurfaceMaterial SM(
nu = nuIP,
nv = nvIP,
Extra = 10*(PNG+10*100),
Material=vector([Color/255;SpecularCoefficient]));

protected
outer MultiBondLib.Mechanics3D.World3D world3D;
SI.Position x "acutal x value for the interpolation";
SI.Position z "actual z value for the interpolation";
SI.Position X[4] "vector with powers of x (for the interpolation)";
SI.Position Z[4] "vector with powers of Z (for the interpolation)";
constant Real H[4,4] = [ 2,-3, 0, 1;
-2, 3, 0, 0;
1,-2, 1, 0;
1,-1, 0, 0]
"Matrix used for the interpolation";

Real G[4,4] "Matrix used for the interpolation";
SI.Length rectangleX "Scaling factor for dy_dx";
SI.Length rectangleZ "Scaling factor for dy_dz";

algorithm
when {initial() and world3D.enableAnimation} then

rectangleX := LengthX/(nu-1);
rectangleZ := LengthZ/(nv-1);

// loop for the single rectangles
(Interpolation just works within one rectangle)

for m in 1:nu-1 loop
for n in 1:nv-1 loop
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// creating the grid in x and z direction
for i in 1:nuIP loop
for j in 1:nvIP loop

SM.x[i,j] := LengthX*(i - 1)/(nuIP - 1) + OffsetX;
SM.z[i,j] := LengthZ*(j - 1)/(nvIP - 1) + OffsetZ;

end for;
end for;

// definition of the matrix G for the interpolation
G :=[y[m:m+1, n:n+1], dy_dz[m:m+1, n:n+1]*rectangleZ;
dy_dx[m:m+1, n:n+1]*rectangleX, zeros(2, 2)];

// interpolation of the y (elevation)
// values for the single rectangles
for i in 1:IP+2 loop
for j in 1:IP+2 loop

x := mod((SM.x[i,j] - OffsetX)/rectangleX *
* (1-(LengthX/1e6)), 1);
z := mod((SM.z[i,j] - OffsetZ)/rectangleZ *
* (1-(LengthX/1e6)), 1);
/* *(1-(LengthX/1e6)) ensures that the first argument
of the mod() will not reach one. This would cause x and
z to get 0 what is wrong as it should be 1. This is
considered the best solution as it causes invisibly
small difference in the visualization. */

X := {x^3,x^2,x,1};
Z := {z^3,z^2,z,1};
SM.y[(m-1)*(IP+1)+i, (n-1)*(IP+1)+j] := (H*X)*G*(H*Z);

end for;
end for;

end for;
end for;

end when;

end SurfaceVisualization;
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Abstract

This article introduces a new and freely available Mod-
elica library, called Wheels and Tires, for modeling
wheels and tires. The contained models are intended
to be used in vehicle simulations, where computational
performance is a major concern. Semi-empirical sin-
gle contact point models are well suited for this kind of
applications and are therefore applied in the presented
library.

The Wheels and Tires library provides a tool to
quickly build custom tire models, and allows a con-
venient customization of existing models. This is
achieved by a modular and expandable design system
utilizing well established models. In addition, a set of
ready-made models is provided to allow a quick in-
sight in the used modeling structure and to enable a
direct application in vehicle models. The final version
of the library will be published as a free library via
the Modelica website as well as the website of F. E.
Cellier.

Keywords: object-oriented tire modeling; object-
oriented tyre modelling; semi-empirical tire model;
tire decomposition

1 Introduction

During the last decades a fairly large number of tire
models of varying levels of complexity suiting basi-
cally differing fields of application have been devel-
oped. These range from simple non-slipping tires to
very complex FEA (finite element analysis) models for
performance prediction [6].

The library developed is intended to be used in sim-
ulations that cover entire vehicles, therefore compu-
tational effort is an important issue. Hence, the selec-
tion of the appropriate level of detail for the used mod-
els is essential for the overall simulation performance.
Semi-empirical single contact point models provide a

very good trade-off between accuracy and computa-
tional effort. Such models are based on physical con-
siderations, like those emerging from multibody dy-
namics. These physical aspects get enhanced with
empirical formulas representing measurement results
that cover e.g. friction and slip characteristics. Two of
these semi-empirical models are commonly accepted
and widely used. These are TMeasy by G. Rill [11]
and the magic-formula model by H. B. Pacejka [10].
However, both are often implemented in a flat and
mainly unstructured fashion, which makes them dif-
ficult to understand and maintain. Customizing these
models for particular situations or expanding them in
order to cover new aspects of tires can be cumbersome
and is often error-prone.

A paper by D. Zimmer and M. Otter [14] builds
on the previously mentioned models and demonstrates
how models of varying levels of complexity can be in-
tegrated within the object-oriented framework of Mod-
elica. However, the object orientation in these models
limits itself primarily to their external interfaces. The
models themselves continue to be mostly flat. For in-
stance the most complex tire model created, defines
approximately 200 equations [14] and is a good exam-
ple showing the difficulties that arise from the com-
mon flat structure.

Another example for a quite flat structure can be
found in the freely available but outdated Vehicle Dy-
namics library [2]. There, a wheel-base model gets
extended with friction models of [11] and [10], but
not much further effort was spent regarding object-
orientation.

In [1], a tire model is modularized in hub, belt and
road elements. A further enhancement is made in [5]
by redesigning the model’s structure as well as en-
abling uneven road surfaces and losing contact to the
ground due to enhanced vertical dynamics. This mod-
ularization is well defined, but still the different as-
pects of friction are summarized in the Tyre-Road class



and can not be customized easily. Moreover the li-
braries presented in [14], [1] and [5] are not freely
available.

The newly developed library takes the object-orien-
tation even further than in [5]. Therefore the focus
of this research effort concerns itself less with mod-
eling new tire properties, but more with an improved
organization of existing knowledge. This will enable
future modelers to conveniently customize the models
to their own purposes.

2 Basic Considerations

2.1 A Closer Look at Tires

In motion dynamics of vehicles the forces exerted by
the tire-road contact are of major importance. This
section is intended to provide basic knowledge about
tires buildup. For a more detailed information the
reader is referred to [8], [9], [10] or [11].

The modern tire is a complex construction result-
ing from clashing requirements. They basically have
to carry the vertical load, transmit forces to accelerate
(and slow down) the vehicle and generate cornering
forces to guide the vehicle through curves securely.
This has to be fulfilled under a large variety of envi-
ronmental conditions with a long life time ensured.
The rolling resistance has to be as small as possible,
with damping and acoustic properties suiting modern
demands. As one can imagine there is no optimal so-
lution to this problem resulting in a large variety of
different tires for varying demands.

Tread

Belt

Carcass

Side Wall

Bead

Tread

Belt

Carcass

Side Wall

Bead

Figure 1: Basic structure of a tire.

A quite basic design example for a tire is depicted
in Figure 1. For today’s passenger cars steel-belt tires
are used exclusively, which differ in construction only
marginally, when treated from such a basic point of

view. On the inside of the tire a coating (not depicted
in Figure 1) inherits the function of the tube, prevent-
ing the over-pressurized air to leak to the outside. The
Bead is usually built of steel wire with synthetic rubber
components, ensuring a tight fit of the tire on the rim,
allowing a reliable operation under difficult conditions
e.g. when driving over a curbstone. The rubber ele-
ments building the sidewall strongly affect the vertical
dynamics of the tire and are important when it comes
to handling precision and stability. The carcass is the
element absorbing the tension from the inflation pres-
sure. Therefore, it has to be protected from damage,
which is ensured by the side wall. The tread is respon-
sible for the force generation by establishing a reliable
contact to road and is therefore a very central element
of the tire. Its composition is a major factor when it
comes to the frictional properties of the tire. The tread
is reinforced by the steel belt that enhances mileage
and reduces the rolling resistance. Overall a mixture of
more than 20 rubber composites form the tire, which
makes them quite difficult to describe as well as en-
abling the tire engineer to adjust the tire properties to
different needs.

2.2 Definition of Coordinate Systems

Figures 2 to 5 are intended to present basic as-
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vLong
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tLong
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tN

Figure 2: The unitary vectors of the tire without a lean
angle and the vector rCP pointing from the rim’s center
to the contact point.

sumptions made. Figure 2 shows the two coordinate
systems used to describe the orientation of a wheel.
The contact point’s coordinate system is described by
eLong, eLat and eN , whereas eLong, eAxis and ePlane

1 form
the rim’s system. Figure 4 shows the standardized

1Pointing in the opposite direction of eN in Figure 2 and shown
in Figure 3 and 4.
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Figure 3: The unitary vectors of the tire with a lean
angle ϕ of 10◦.
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Figure 4: Standardized names of the angles and angu-
lar velocities.

names of the angels and their corresponding angular
velocities.

An enlarged view of the contact point is depicted
in Figure 5. It shows important properties like the
translational velocity of the contact point in longitu-
dinal (vLong) and lateral (vLat) directions, the overall
velocity v and the slip angle α . The sliding veloc-
ity in longitudinal vSlipLong direction is calculated by
(ω× rCP) · eLong + vLong.

3 Object-oriented Tire Modeling

Section 3.1 is intended to demonstrate the considera-
tions that lead to the actual structure of the tire model.
Afterwards Section 3.2 explains the resulting structure
from the modeler’s point of view. Sections 3.3 to 3.10
shallowly introduce the classes forming the tire.
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rCP
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Figure 5: An enlarged view of the contact point with
sliding velocities.

3.1 Decomposition into Objects

Thinking about wheels, the first division of the model
is quite obvious, as there are two physical components:
the rim and the tire. The rim does not need to be split
up into further objects, as its properties can be mod-
eled in a quite simple fashion in a semi-empirical tire
model. This and the main properties of tires regarding
modeling are shown in Figure 6.

Wheel

Rim Tire

Subareas: 
Contact Patch, Parts without Contact
Subareas: 

Geometry:
Diameter, Cross-Section, Tread
Geometry:

Build-Up:
Side-Wall, Bead, Carcass, Tread, Belt
Build-Up:

Duties:
Carrying normal Load, Force Generation, Torque 
Generation, Damping of Surface Unevenness,  Stability 
and Precision

Duties:

Requirements:
  Rolling Resistance, Driving Noise, Milage, Reliability

Requirements:

Influences:
Weather Conditions, Surface Properties, 

Deformation, Losses, 
 Slip, Velocity, Load, dynamic Forces,

Inflation Pressure

Temperature, 
Wear, Pressure Distribution in 

the Tread Area,  

Influences:

Properties:
Weight, Inertia Tensor, 
Geometry

Properties:

Figure 6: Composition of wheels and properties of
tires. Properties depicted in gray are neglected in the
presented tire model.

The tire does require a much closer look concerning
its properties. Modeling every single of the properties
shown in Figure 6 by a class of its own is an infeasible
task, suggesting a certain grouping of properties. Due
to the semi-empirical single contact point model one
constraint is fixed. There has to be a model describ-
ing the contact point. It is named the Contact Physics
model.

One of the most challenging tasks when modeling
a tire, is to calculate the forces the tire excites in dif-



ferent driving situations. There are several different
models trying to describe the relations resulting in the
forces that act on the contact point. Hence a decision
was made to create a class that gathers the different ef-
fects that are responsible for the generation of forces
and torques acting on the contact point. Due to its ori-
gin it is called the Friction class, resulting in Figure 7.

Friction
Tire Diameter

Cross-Section

Force Generation

Torque Generation

Carrying normal Load

Stability and Precision

Damping of Surface Unevenness 

 Rolling Resistance

Velocity

Slip

Load

Dynamic Forces

Weather Conditions

Surface Properties 

Losses

Deformation

Inflation Pressure

Contact 
Physics

has influence on is modeled by Classinner Class[...] ...

Contact Patch/Point

Figure 7: Properties from Figure 6 shown in relation to
the corresponding Tire Component classes which are
closely related with the semi-empirical contact point
model. Properties depicted in gray are considerably
simplified in the model.

Still, absolutely basic properties of the tire are not
yet part of the model as shown in Figure 7. The proba-
bly most obvious are the Tire Diameter and the Cross-
Section. These properties basically define the geome-
try of the tire, which shall be changeable conveniently
in the final tire model, allowing basically different ge-
ometric properties of the tire. Therefore a Geometry
class is introduced, defining the positional relation be-
tween the tire hub and the contact point and some other
properties.

The next very basic duty the tire has to fulfill, is the
Carrying of normal Load resulting in a normal force.
Due to the changing requirements to these aspects, the
effects are described in a class named Vertical Dynam-
ics.

Until now, all possible tire models would be totally
rigid. To enable a certain deformation of the tire, the
Belt Dynamics class is introduced. It allows a flexibil-
ity of the still rigid tire, defined by the Geometry class,
related to the tire’s hub.

The wheel is now modularized into six classes in-
cluding the Rim class which is not depicted in Fig-
ure 8, as it was shown in Figure 6. Section 3.2 ex-
plains the implemented version of these classes from
the modeler’s point of view. It also explains why the
final model of the tire contains seven classes, introduc-

Friction

Contact Patch/Point

Diameter

Cross-Section

Force Generation

Torque Generation

Carrying normal Load

Stability and Precision

Damping of Surface Unevenness 

 Rolling Resistance

Velocity

Slip

Load

Dynamic Forces

Weather Conditions

Surface Properties 

Losses

Deformation

Inflation Pressure

Contact 
Physics

Vertical 
Dynamics

Geometry

Belt 
Dynamics

[Surface]

has influence on is modeled by Classinner Class[...] ...

Figure 8: Final decomposition of the tire.

ing a Center to Contact Point class.
Still there is one class found in Figure 8 that has

not been introduced until now. This is justified as it is
an inner model and does not form a part of the actual
tire model. It realizes uneven surfaces and allows a
position-depending friction coefficient. This model is
described in Section 5.

3.2 The Tire Model’s Structure

The tire is split up into seven objects shown in Fig-
ure 9. It consists of objects modeling

• Vertical Dynamics,

• Friction,

• Geometry,

• Contact Physics,

• the translation from Center to Contact Point,

• Belt Dynamics and

• the Rim.

The single classes are described in the following sec-
tions. Here the relations between the classes shall be
illustrated.

The connection to the superordinate vehicle model
is established by the three-dimensional frame named
Tire Hub depicted in Figure 9. The Tire Hub, a stan-
dard element of the MultiBondLib [13], is rigidly con-
nected to the model of the Rim. The rim’s frame con-
nected to the Tire Hub therefore models the center-
point of the rim. The “output” of the Rim again mod-
els the center-point of the Rim, and is connected to
the Belt Dynamics model. In this model the relative
movement between the rigid belt and the rim can be
described. The “output” of the Belt Dynamics is again
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Figure 9: Model of the ideal tire showing the seven
used objects and the communication structure on the
top level. The Tire Bus is colored red whereas the Con-
tact Point Connector is green.

positioned at the center-point of the belt. Therefore an
element is needed to realize the translation from this
point to the contact point. As this cannot be mod-
eled by a standard element, the Center To Contact
Point model has been created. It connects the Contact
Physics model that applies forces and torques to the
contact point. This lower part of the model represents
the mechanically connected part of the model. The up-
per three classes are not directly connected by a me-
chanical connector, although the Contact Point Con-
nector implies kind of a mechanical connection. The
Vertical Dynamics class determines if and how the tire
is able to lift from the ground and how it responds to
normal load. The Friction class determines the longi-
tudinal and lateral forces as well as the torques that act
on the contact point. Finally, the Geometry class de-
termines the unitary vectors shown in Figure 2 and the
position of the contact point depending on the actual
geometry, position and orientation of the tire.

The visualization is implemented in the correspond-
ing object, e.g. the rim is visualized in the Rim ob-
ject and the tire is visualized in the Geometry class.
This makes it possible to recognize basic changes to
the models in the animation directly.

All of the featured classes that model a certain type
of effect are extended from the corresponding base
class, ensuring that the necessary output is calculated.
This guarantees also that all models stay exchangeable
not depending on the implementation of the class. In
this way, the user can add new classes or adapt existing
ones being sure that the other elements stay unchanged
and remain exchangeable.

3.3 Rim Class

The Rim Class is a rather simple model, as the rim can
be modeled ideally just consisting of a body that has a
mass and an inertia tensor.

3.4 Friction

For the sake of object oriented modeling, the different
modeled effects are put into subclasses (see Figure 10
as an example) that are of varying complexity. The

SlipProperties

Combined

BoreTorque

Combined

CamberForce

phi

Flat

Combined

SelfAligningTorque

lTrail

Rill

RollResistance

velocityDepending

LoadInfluence
mu

fN

quadratic

OverturningTorque

tOver

phi

linear

U
V

C
P

S
V

RBelt wBeltrCPlCRbCReLong ContacteAxisePlaneeNeLatfLong fLat fN

vLong vLat

tLong tLat tN

xCP

Figure 10: Model of the advanced friction.

communication between the classes is established us-
ing inner/outer statements. Therefore no connections
between the sub-models are visible in Figure 10.

To use a certain combination of frictional effects in
a tire model, a class gathering these effects has to be
created as shown in Figure 10. This class can then e.g.
replace the Ideal Friction depicted in Figure 9. In the
library three different combinations of Friction classes
are composed, forming an Ideal Friction, one simple
Dry Friction With Rolling Resistance but without e.g.
Bore Torque or Camber Force and one Advanced Fric-
tion that is shown in Figure 10. New frictional models
can be created easily, which is the reason why only
three frictional classes were included in the library.

3.5 Geometry

All geometric classes have two main tasks to fulfill.
The first is to determine the contact point properties
including the vector rCP that points from the center of
the rim to the contact point and the penetration depth.



Secondly the unit vectors shown in Figure 2 get com-
puted by the Geometry class. To enable that func-
tionality it utilizes the Surface’s functions get_eN and
get_elevation establishing the connection from the tire
to the surface.

Three different Geometry classes are provided for
ideally Slim, Circular tires with cross-section being
modeled as a semi-circle, and a “Belt” profile with side
walls and a sector of a circle modeling the tread area.

3.6 Contact Physics

The Contact Physics model applies forces and torques
on the contact point, as well as measuring its veloc-
ities. All these physical quantities are connected to
the models determining frictional and vertical dynamic
properties via the Contact Point Connector. Measur-
ing and setting of speeds and forces has to be done in
an a-casual way as ideal models set velocities rather
then apply forces.

The second property determined by the Contact
Physics class is the dynamic behavior of the contact
point. It can introduce flexibility of the contact point
in longitudinal and lateral direction.

3.7 Center to Contact Point

The Center To Contact Point class is a model with-
out a nice physical interpretation. It is kind of a Fixed
Translation element known from the Modelica Stan-
dard Library. The model is built using multi-bond
graphs and therefore derived from the Fixed Transla-
tion in the MultiBondLib [13]. It describes the con-
nection between the contact point and the belt’s center
point.

3.8 Vertical Dynamics

The models in the Vertical Dynamics package deter-
mine the behavior of the tire normal to the surface. The
normal force is related to the penetration depth com-
puted in the Geometry class. The Vertical Dynamics
models can either set the penetration depth to a cer-
tain value, or use it as a base for the calculation of the
normal force fN .

There are basically three different approaches to
model vertical dynamics in the library. One is to not al-
low any elevation from the ground or penetration into
it introducing a holonomic constraint. The second uti-
lizes an ElevationGap model that compensates forces
of a attached 1D mechanical model when the tire lifts
from the ground. It is a derivation from the ElastoGap

model found in the BondLib [7]. It makes the vertical
dynamics easily changeable by a modification of the
1D mechanical system. The third is a derivation of the
ElastoGap model of the Modelica Standard Library
3.0. It overcomes the sticking effect of the Elevation-
Gap but is harder to adapt to different dynamics.

3.9 Belt Dynamics

The models described in this section allow the tire to
have a certain flexibility. This is realized by connect-
ing an ideal (virtual) belt to the ideal rim in a flexi-
ble fashion. All models except the Rigid Belt model
add a considerable amount of complexity to the sim-
ulation. Different models are provided to realize the
dynamic behavior. One allows translation of the belt
in longitudinal and lateral direction, another models
a rotational degree of freedom around the axis of ro-
tation, both defining the dynamics by 1D mechanical
elements. The last model is the most complex with the
dynamics defined by four ideally stiff translational el-
ements for rim and belt respectively, connected by 3D
spring damper systems.

3.10 Communication Structure

The tire’s objects compute a bunch of different vari-
ables, some of which are used in different objects as
well. The Tire Bus, with a connector as shown in
Figure 11, gathers the variables used in most of the
objects. Additionally a division into records of sim-
ilar variables ensures a better overview and allows a
more convenient graphical connection. For each of
these sets of variables separate inputs and outputs have
been created. This makes it possible to show, in which
objects variables are computed or just used (see Fig-
ure 11). The second communication structure is the
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Figure 11: Separation of the Tire Bus connector (lower
quadratic element) within the Geometry Class in an in-
put for Sensor Values (SV) and outputs for Contact
Properties (CP) and Unit Vectors (UV). The rhom-
buses define protected variables used in the model.

connector that contains the velocities as well as the
forces and torques that act on the contact point. It



is named Contact Point Connector. This connector
is implemented in an a-causal manner due to the re-
quirements of this connection. It can be found con-
necting Contact Physics, Vertical Dynamics and Fric-
tion. Both bus connectors are illustrated in Figure 9.

4 Provided Tire Models

All tires are basically built up like the ideal tire in Fig-
ure 9. In the library eleven ready-made tires are pro-
vided for a quick application and a better understand-
ing of the model structure. Four models of slim tires
include three rigid versions and one with a dynami-
cally behaving contact point. Two tires with semi-
circular cross section are provided, one rigid and the
other having rotational dynamics. The so-called belted
tires feature three rigid models differing in frictional
behavior. The other two belted tires behave dynami-
cally.

5 Environment

The Environment in the current version of the library
is limited to even or uneven but slowly changing sur-
faces, which is a limitation arising from the single con-
tact point model. Basically the method to be imple-
mented has to be able to compute elevation (the y co-
ordinate shown in Figure 12) and the normal vector on
the surface. There are many significantly different ap-
proaches, whereas the one chosen is rather simple but
still conveniently configurable.

5.1 Surface Base

The Surface Base (Section 5.1) class ensures compat-
ibility with future enhancements. This partial inner
model defines the functions necessary to calculate the
behavior of the tire. These include the following func-
tions.

• get_eN_Base – returning the normal vector of the
surface with the actual x and z coordinates as in-
puts.

• get_elevation_Base – returns the y coordinate of
the surface (x and z are inputs again).

• get_mu_Base – returns the frictional coefficient
at the x and z coordinates of the contact point.

5.2 Surface Class

The implemented version of the Surface in the Wheels
and Tires library is based on the method shown in [4].
It is an interpolation in a unit square based on four
y values and the eight corresponding partial deriva-
tives. A sketch of the unit square is shown in Fig-
ure 12. To enable the user to define more complex
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Figure 12: The basis for the interpolation used to find
the elevation y and normal vector in one square.

surfaces an arbitrary amount of interpolated elements
can be combined to one surface of definable size. The
only fact limiting the amount of rectangles is simula-
tion time, especially the time consumed for compila-
tion that rises quickly with growing surfaces.

6 Simulation Results

The following sections are intended to give an impres-
sion of what the simulation results look like. There-
fore, results from the Test Bench package and from the
Example package are depicted.

6.1 Test Bench

Figures 13 to 16 show results from different models in
the Test Bench package. The models are used to test
basic functionalities of the tire and the surface classes.

6.2 Examples

Six examples are included in the library demonstrat-
ing the application of the models in vehicles. Five of
the Examples are two-wheeled (single-track) vehicles



Figure 13: Tire elevating from the ground while driv-
ing a curve.

Figure 14: Tire’s overturning torque Test Bench result.

that are provided by [12] and copied to the Used Mod-
els in the Examples package of the Wheels and Tires
library. Three of the five examples are unsprung bi-
cycle models composed of rigid elements exclusively.
The other two models are sprung motorcycles includ-
ing front and rear suspension. For both vehicles, mod-
els are provided to analyze the uncontrolled stability,
e.g. with different tire properties for geometry and fric-
tion as shown in Figures 17 and 18.

The other two models are “nice to show” models
with the bicycle being accelerated by a strong torque
to make the front wheel lift from the ground as shown
in Figure 19 and the motorcycle jumping over a gap as
depicted in Figure 20.

The last example is a very basic unsprung model of
a four-wheeled vehicle with a predefined steering an-
gle profile and driving torques acting on the rear tires.
An impulse in the driving torque makes the vehicle-
model slide after a certain simulation time, with the

Figure 15: A tire rolling up an uneven surface with an
initial lean angle.

Figure 16: Tire dropping on an uneven surface.

Figure 17: Two similar bicycles with non-slipping
tires differing in their geometric properties. The upper
bicycle is equipped with ideally slim tires, whereas the
lower one driving a narrowing curve has a belted tire
with a width of 2cm.

model “reacting” by a full breaking, which makes the
wheels slide to a standstill of the vehicle.

Regarding the simulation speeds of the examples it
can be stated, that the bicycle models take about half
of the simulated time for the computation of the re-
sult. The motorcycle jumping over the gap takes about
250s of calculation time for 16s of actual simulation.
The reason for that is the more complex structure of
the motorcycle in comparison with the bicycle. The
again undamped four-wheeled models compute the re-
sults in a little less time than the simulation time. All
models used non-dynamic tires either with slipping or
the advanced friction models. The simulations have

Figure 18: Two similar bicycles with slipping tires dif-
fering in their frictional properties. The one driving
the inner circle is equipped with the Advanced Fric-
tion class, whereas the outer bicycle is equipped with
the Dry Fricition with Constant Roll Resistance class.



Figure 20: A motorcycle jumping over a gap.

Figure 19: A bicycle with non-ideal tires accelerated
by a torque on the rear tire, with the front tire lifting
from the ground.

been carried out on a Intel Core2Duo clocked at 2GHz
and equipped with 4GB RAM, computing 250 output
intervals per second. It has to be mentioned that no
big effort was spent regarding the optimization of sim-
ulation speed of the overall models. A more suitable
combination of state variables would most likely lead
to a considerable enhancement in speed.

7 Library Structure

This section introduces the top level packages that are
contained in the Wheels and Tires library and are de-
picted in Figure 21.

The Tire Components package covers the classes
that the Tires are built of. The contained sub-packages
are described in Sections 3.3 to 3.10. These classes
form the ready-made tires contained in the Tires pack-
age as one example shows for the Ideal Tire as de-
picted in Figure 9.

The Environment package contains the Surface Base
as well as a possible implementation for even and un-
even surfaces. It is described in Section 5. The Test
Bench and the Example Package are top-level pack-
ages as well. They are provided to test the tire mod-
els’ functionality and get an insight into the usage of
the models. A short description can be found in Sec-
tions 6.1 and 6.2 respectively. Finally the Visualization
package gathers a few models used to enable the ani-
mation of all necessary parts of the library.

8 Conclusion

To sum up, the library enables a quick and convenient
building of easily customizable tire models. There are
some further enhancements possible but the structure
of the tire models should persist as it is well expand-
able, fulfilling the major requirements that were de-
manded at the beginning of the work. Still the lack of
comparison to real applications and measurement data
is considered to be a drawback as some minor mal-
functions could probably not be identified.

For the use of the models in real-time applications
a further optimization of the computational efficiency
would be desirable to ensure quick enough simula-
tion. Furthermore a prediction of the influences that
different objects have on the computational effort of
the overall tire would be of advantage.

A more detailed description of the library can be
found in the corresponding master’s thesis [3].

References

[1] J. Andreasson and J. Jarlmark. Modularised
tyre modelling in modelica. In Proceedings
of the Second International Modelica Confer-
ence, Oberpfaffenhofen, Germany, pages 267–
274, 2002.

[2] Johan Andreasson. Vehicledynamics library. In
Proceedings of the Third International Model-
ica Conference, Linköping, Sweden, pages 11–
18, 2003.

[3] Markus Andres. Object-oriented modeling of
wheels and tires in dymola/modelica. Master’s
thesis, Vorarlberg University of Applied Sci-
ences, 2009.

[4] G. Aumann and K. Spitzmüller. Computerorien-
tierte Geometrie. BI-Wiss.-Verl, 1993.

[5] Mats Beckmann and Johan Andreasson. Wheel
model library for use in vehicle dynamic studies.
In Proceedings of the third Modelica Conference,
Linköping, Sweden, pages 385–392, 2003.



Wheels and 
Tires

Tire 
Components Tires Environment Test Bench Examples Visualization

Figure 21: The library’s top level packages.

[6] P. Bohara, A. Saha, P. Ghosh, and M. Roopak.
Tyre perfomance prediction through fea. Hasetri
- Hari Shankar Singhania Elasotmer and Tyre
Research Institute, 2008.

[7] F. E. Cellier and À. Netbot. The modelica bond-
graph library. In Proceedings of the 4th Inter-
national Modelica Conference, Hamburg, pages
57–65, 2005.

[8] John C. Dixon. Tires, Suspension and Handling.
Cambridge University Press, 1996. Second Edi-
tion.

[9] Günter Leister. Fahrzeugreifen und Fahrwerk-
entwicklung. Vieweg + Teubner, 2009. 1. Au-
flage.

[10] Hans B. Pacejka. Tyre and Vehicle Dynamics.
Butterworth-Heinemann, 2006. Second Edition.

[11] Georg Rill. Simulation von Kraftfahrzeugen.
Vieweg-Verlag, 2007. genehmigter Nachdruck.

[12] Thomas Schmitt. Modeling of a motorcycle in
dymola/modelica. Master’s thesis, Vorarlberg
University of Applied Sciences, 2009.

[13] Dirk Zimmer. A modelica library for multibond
graphs and its application in 3d-mechanics. Mas-
ter’s thesis, ETH Zürich, 2006.

[14] Dirk Zimmer and Martin Otter. Real-time mod-
els for wheels and tires in an object-oriented
modeling framework. Accepted for publication
in Vehicle Dynamics, 2009.



A.4 Paper submitted to “Tag der Mechatronik 2009”

A.4 Paper submitted to “Tag der Mechatronik 2009”

The following pages contain the paper submitted to “Tag der Mechatronik 2009” in
the Vorarlberg University of Applied Sciences, Dornbirn.

xxxiii



ARBEITSGEMEINSCHAFT MECHATRONIK PLATTFORM
Tag der Mechatronik
FH Vorarlberg, Dornbirn, 22. September 2009

FH VORARLBERG: OBJECT-ORIENTED MODELING OF
WHEELS AND TIRES IN DYNOMLA/MODELICA

Markus Andres

Abstract: The Master’s Thesis introduces a new Modelica
library designed for modeling and simulation of wheels and
tires as part of a complete vehicle model. The library is created
in a fully object-oriented fashion with a modular and expand-
able design system. This enables a more flexible and maintain-
able modeling and simulation of wheels and tires utilizing well
established models. It will be made freely available.
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1. INTRODUCTION

During the last decades a fairly large number of tire mod-
els of varying complexity levels suiting strongly differing fields
of application have been developed. These range from simple
non-slipping tires to very complex FEA (finite elements analy-
sis) models for performance prediction.

The library developed is intended to be used in simula-
tions that cover entire vehicles, therefore computational effort
is an important issue. Hence, the selection of the appropriate
level of detail for the used models is essential for the overall
simulation performance. Semi-empirical single contact point
models provide a very good tradeoff between accuracy and
computational effort. Such models are based on physical con-
siderations, like those emerging from multi-body dynamics.
These physical aspects get enhanced with empirical formulas
representing measurement results that cover e.g. friction and
slip characteristics.

Two of these semi-empirical models are commonly ac-
cepted and widely used. These are TMeasy by G. Rill (Rill,
2007) and the magic-formula model by H. B. Pacejka (Pacejka,
2006). However, both are often implemented in a flat and
mainly unstructured fashion, which makes them difficult to
understand and maintain. Customizing these models for par-
ticular situations or expanding them in order to cover new
aspects of tires can be hard and is often error-prone.

A paper by (Zimmer & Otter, 2009) builds on the previ-
ously mentioned models and demonstrates how varying levels
of complexity can be integrated within the object-oriented
framework of Modelica. However, the object orientation in
these models limits itself primarily to their external interfaces.
The models themselves continue to be mostly flat. For instance
the most complex tire model created, defines approximately
200 equations (Zimmer & Otter, 2009) and is a good example
showing the difficulties arising from the common flat structure.

In (Andreasson & Jarlmark, 2002) a tire model is modular-
ized in hub, belt and road elements. A further enhancement is
made in (Beckmann & Andreasson, 2003), enabling uneven
road surfaces and loosing of contact to the ground. This modu-
larization is well defined, but still the frictional properties are
summarized in the road class and can not be customized easily.

The newly developed library takes the object-orientation
further than in (Beckmann & Andreasson, 2003). Therefore the
focus of this research effort concerns itself less with modeling
new tire properties, but more with an improved organization of

existing knowledge utilizing established models developed by
other researchers. This will enable engineers to conveniently
customize the free models to their own purposes and add fur-
ther tire models and additional properties of tires.

2. OBJECT-ORIENTED TIRE MODELING

Figure 1 shows the most important properties of wheels
and tires regarding modeling, demonstrating that a gathering of
tire properties is necessary to design a manageable model. The
result of this aggregation is shown in Figure 2, depicting five of
the seven objects forming the final wheel model. The inner
Surface is disregarded as it is not part of the tire model directly.

Figure 1: Properties of a Wheel split in Rim and Tire, whereas
the gray properties are not covered in the resulting model.

Figure 2: Aggregation of modeled tire properties.

Figure 3 shows the implementation of the structure devel-
oped in Figure 2 in the simulation environment Dymola. It
includes the Rim class from Figure 2 and a Center to Contact
Point class which is necessary due to the structure of the model.

Looking at Figure 3 the connection to the super-ordinate
vehicle model is established by the three dimensional frame
named Tire Hub. The Rim’s right frame is rigidly connected to
the Tire Hub, therefore modeling its center-point. The “output”
of the Rim again models its center-point, which is connected to
the Belt Dynamics model. In this model the relative movement



between the rigid belt and the rim can be described. The “out-
put” of the Belt Dynamics is again positioned at the center-
point of the belt. Therefore an element is needed to model the
translation from this point to the contact point. This is realized
by the Center To Contact Point class, which connects the Con-
tact Physics model that applies forces and torques to the con-
tact point, as well as measuring its velocities. The latter both
elements are modeled utilizing multi bond graph techniques
(Zimmer, 2006). This lower part of the model represents the
mechanically connected part of the model. The Vertical Dy-
namics class determines if and how the tire can lift from the
ground and how it responds to normal load. The Friction class
computes the longitudinal and lateral forces as well as the
torques which act on the contact point. Finally, the Geometry
class provides the unitary vectors and the position of the con-
tact point depending on the actual geometry.

Figure 3: Model of the ideally slim slipping tire showing the
seven used objects and the communication structure.

Figure 3 also shows the specifically developed Communi-
cation Structure, tailored to the special needs and user friendli-
ness. It features the Tire Bus connecting all classes and the
Contact Point Connector which can be found connecting Con-
tact Physics, Vertical Dynamics and Friction models.

Figure 4: Model of the Advanced Friction from Figure 3

As an example, the model of the Friction class depicted in
Figure 3, is expanded in Figure 4. For the sake of object ori-
ented modeling, the effects are put into objects of varying
complexity. The internal Communication is realized by in-
ner/outer statements, therefore no connections are visible.

The connection to other objects is realized by the shaded part of
the model, where the busses are split into single variables. As
throughout the whole library, all featured classes modeling a
certain type of effect extend the corresponding base classes.
This ensures that the necessary output is calculated and that
models are exchangeable independent of their implementation.

3. RESULTS

All of the library’s tires build upon the same structure as
the slim slipping tire in Figure 3. In the library eleven ready-
made tires are provided for a quick application and understand-
ing of the model's structure. Additionally Test Bench models
(e.g. Figure 5) are provided to check the basic functionality of
tires and the Surface package. Latter one enables the simulation
of conveniently definable uneven road profiles. To get an im-
pression of how to use the tires in vehicle simulations, six
models are gathered in the Examples package including single
track vehicles (e.g. Figure 6) and a four-wheeled vehicle.

Figure 5: Result of the Camber Force Test Bench.

Figure 6: Identical uncontrolled bicycles from (Schmitt, 2009)
with tires differing in frictional properties (Examples package).

9. CONCLUSION

To sum up the library enables a convenient building of
easily customizable tire models. There are some further en-
hancements possible, but the structure of the tire models should
persist as it is well expandable, fulfilling the requirements
which were demanded at the beginning of the work.
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