
A Monad-based Modeling and Verification Toolbox with
Application to Security Protocols?

Christoph Sprenger and David Basin

Department of Computer Science, ETH Zurich, Switzerland
{sprenger,basin}@inf.ethz.ch

Abstract. We present an advanced modeling and verification toolbox for func-
tional programs with state and exceptions. The toolbox integrates an extensible,
monad-based, component model, a monad-based Hoare logic and weakest pre-
condition calculus, and proof systems for temporal logic and bisimilarity. It is im-
plemented in Isabelle/HOL using shallow embeddings and incorporates as much
modeling and reasoning power as possible from Isabelle/HOL. We have validated
the toolbox’s usefulness in a substantial security protocol verification project.

1 Introduction

The choice of a specification formalism with supporting verification methods and tools
is critical to the success of substantial verification projects. In order to obtain manage-
able proofs, models and their properties must be formulated at an appropriate level of
abstraction and verification methods and tools must be available for reasoning at that
abstraction level. In this paper, we present a comprehensive formalism providing such
abstractions for the specification and verification of functional programs with non-pure
features, namely state and exceptions. It consists of the following elements: (1) a mod-
eling language capturing the computational structure of the systems under study, (2)
a notion of component for structuring models, (3) a notion of component abstraction,
including a proof method to establish an abstraction relation between two components,
and (4) property specification languages and proof methods. We have implemented this
toolbox in Isabelle/HOL [18]. Our aim is to provide a set of practically useful tools
rather than to develop meta-theoretical studies about programming languages and log-
ics. Therefore, we work with shallow embeddings and exploit Isabelle/HOL’s expres-
sive specification language (for 1–2) and powerful reasoning tools (for 3–4) as much as
possible. We now discuss (1)–(4) in turn.

Ad 1. Modeling state and exception handling directly in HOL results in models that
are cluttered with additional state parameters and error-handling branches. This situa-
tion calls for an additional layer of abstraction, which can be elegantly modeled using
monads [15]. In our case, the monad of choice is a deterministic state-exception monad,
which extends HOL with operations for sequential composition, state manipulation, and
exception handling. All other control structures, such as pattern matching, if-then-else

? This work was partially supported by the Zurich Information Security Center. It represents the
views of the authors.

and function definitions, are borrowed directly from Isabelle/HOL. We would like to
stress that most of our method and tools can be easily adapted to other monads.

Ad 2. We take a simple view of components as modules encapsulating a state
with interface functions that manipulate this state. We represent the state in an object-
oriented style as an extensible record and component composition as record extension
and function composition. Using extensible records allows the extended component to
automatically inherit properties proved for the base component.

Ad 3. We compare (abstract or refine) components using bisimilarity. Two compo-
nents are bisimilar if all pairs of equally named interface functions are bisimilar. To
show this, we have developed a compositional proof system to establish the bisimilarity
of programs. Its judgments and rules resemble those of Hoare logic except that pre- and
post-conditions are relations between pairs of states of two programs.

Ad 4. In order to state and prove properties about components, we have embed-
ded several logics in Isabelle/HOL: a weakest pre-condition (WP) calculus, a Hoare
logic, and linear-time temporal logic (LTL). All these logics rely on HOL’s set theory
as their underlying assertion language. The WP calculus is derived from Pitts’ evalua-
tion logic [20] and provides the basis for the definition of the Hoare logic. Both of these
are tailored to the state-exception monad, whereas the temporal logic is interpreted over
standard transition systems. The benefit of embedding these logics in Isabelle/HOL is
that this enables the use of the corresponding, well-established proof methods. We re-
duce the verification of temporal properties to pre-/post-condition and assertional rea-
soning using standard proof rules [14]. The resulting Hoare triples are proved using a
combination of Hoare logic and the underlying WP calculus. While Hoare logic pro-
vides the full flexibility of interactive proofs, we may unfold Hoare triples at any point
during a proof and invoke the WP calculus, using Isabelle’s efficient simplifier to auto-
matically reduce the resulting weakest pre-conditions into simpler HOL assertions.

Our contribution is two-fold. First, we show how to leverage the rich modeling
and reasoning infrastructure provided by a theorem prover like Isabelle/HOL for se-
mantic embeddings of various modeling, specification, and verification concepts. This
allows us to model, specify and reason at an adequate level of abstraction. We adapt
and integrate well-known techniques with less standard and new ones to build a unique,
comprehensive, and modular modeling and verification toolbox. Second, we provide
a ready-to-use verification toolbox with a wide scope of application. This toolbox has
proved its effectiveness in a substantial cryptographic protocol verification project [21].
For a rough idea of the size of the theories involved, our development spans more than
22k lines of Isabelle/HOL sources, organized into more than 50 theories. The toolbox
accounts for about 20% of these figures. In particular, the combination of Hoare logic
and the WP calculus offers a good degree of proof automation, which was crucial to the
successful completion of the sizable verification effort involved. We use examples from
our project [21] to illustrate the application of the concepts presented in this paper.

2 Background

Isabelle/HOL notation In Isabelle/HOL, t :: T denotes a term t of type T. The ex-
pression c x ≡ t defines the constant c with the parameter x as the term t . Definitions

constitute the principal mechanism for producing conservative extensions of HOL. Type
variables are denoted by lowercase Greek letters. Given types α and β, α⇒ β is the
type of (total) functions from α to β, α × β is the product type, and α set is the type of
sets of elements of type α. The type unit contains a single element. There are several
mechanisms to define new types. A datatype declaration introduces an inductive data
type. For example, the polymorphic option type is defined by datatype α option =
None | Some α. Functions of type α⇒ β option are used to model partial functions
from α to β. The declaration types T1= T2 merely introduces a new name for the type
T2, possibly with parameters, as in types α ⇀ β = α⇒ β option.

Application: Cryptographically Sound Protocol Verification In our security pro-
tocol verification project [21], we work with the protocol model proposed by Backes,
Pfitzmann, and Waidner [2], henceforth called the BPW model. This model is substan-
tially more complex than standard Dolev-Yao models (e.g., [19]), but has the advantage
of being cryptographically sound, which means that properties proven of protocols hold
with respect to standard cryptographic definitions of security (defined in probabilistic
and complexity-theoretic terms). Roughly speaking, the BPW model can be viewed as
a centralized cryptographic library component: it has an encapsulated state, where it
tracks which principals know which messages, and a collection of interface functions
for constructing, decomposing, and transmitting messages. Principals (and the attacker)
use the interface functions when executing (respectively attacking) protocols. We model
not only the BPW model, but also protocols defined on top of it, as components. We
have constructed a second formalization of the BPW model, which abstracts the rep-
resentation of protocol messages from DAGs to inductive terms, and we have proved
its bisimulation equivalence with the first formalization. Finally, we have modeled the
Needham-Schroeder-Lowe authentication protocol [12] on top of the second formaliza-
tion and proved various security (secrecy and authentication) properties.

We refer the interested reader to [21] for more details about this application as well
as for a detailed comparison with related work on security protocol verification.

3 Monads and Components

In this section, we describe a monad-based hierarchical component model. Components
are formalized as an encapsulated state manipulated by a set of interface functions.
Our formalization of components is extensible, whereby properties proved for a given
component remain valid for all extensions.

3.1 State-exception monad

Monads are a concept from category theory introduced in programming language se-
mantics by Moggi [15] to model different computational phenomena in a functional
setting, including exceptions, state, non-determinism, and input/output. From a pro-
gramming perspective, a monad is a type constructor with a unit and a binding op-
eration enjoying unit and associativity properties. In our case, we are working with a
state-exception monad with just a single type of exception:

datatype α result = Exception | Value α −− result type
types (α, σ) S = σ ⇒ α result × σ −− monad type

return :: α⇒ (α, σ) S −− monad unit
return a ≡ λs. (Value a, s)

bind :: (α, σ) S ⇒ (α⇒ (β, σ) S) ⇒ (β, σ) S −− monad bind
bind m k ≡ λs. let (a, t) = m s in

case a of Exception ⇒ (Exception , t) | Value x ⇒ k x t

A term of type (α, σ) S is called a computation. Computations act on a state of type σ
and either result in an exception or a result value of type α. The monad unit, which we
call return , embeds a value into a computation. Binding acts as sequential composition
with value passing in the style of a let-binding. We write do x ← m; k x for bind m k.
The monad unit and associativity laws are easily proved in Isabelle/HOL:

lemma bind_left_unit : do x ← return a; k x = k a
lemma bind_right_unit: do x ← m; return x = m
lemma bind_assoc: do y← (do x← m; k x); h y = do x ← m; (do y← k x; h y)

The monad-specific operations are concerned with state transformations and ex-
ception handling. State extraction and update are handled by the functions distill and
xform, respectively.

distill :: (σ ⇒ α) ⇒ (α, σ) S −− return transformed state
distill f ≡ λs. return (f s) s

xform :: (σ ⇒ σ) ⇒ (unit , σ) S −− set transformed state as new state
xform f ≡ do t ← distill f ; λs. return () t

Exception handling is achieved by the functions throw and try_catch , which are duals
of return and bind with respect to the type of result.

throw :: unit ⇒ (α, σ) S
throw x ≡ λs. (Exception , s)

try_catch :: (α, σ) S ⇒ (α, σ) S ⇒ (α, σ) S
try_catch k h ≡ λ s . let (r , t) = k s in

case r of Exception ⇒ h t | Value b ⇒ (Value b, t)

We write try k catch h instead of try_catch k h and we call h the exception handler.
Exception handling can easily be generalized to handle multiple types of exceptions. In
this case, the exception would be passed to the exception handler h.

We borrow control structures such as if -then-else and pattern matching (case)
from the Isabelle/HOL meta-language. We do not need iteration and recursion in our
application, but these can also be borrowed from Isabelle/HOL to a certain extent, which
we discuss below. Summarizing, we use the state-exception monad to add a layer of
abstraction to Isabelle/HOL that is appropriate to specify our models.

Generality of our approach Ideally, we would like to define monads and the monad
laws abstractly and instantiate them to the concrete monads of interest. This could be

achieved by using axiomatic constructor classes in the style of Haskell, but Isabelle’s
type system only supports the less axiomatic type classes. The latter do not support type
constructors and the axioms may only contain a single free type variable. Thus, we can
only define concrete monads. There are also restrictions concerning the definition of
recursive functions. Only terminating functions can be defined and the corresponding
Isabelle/HOL packages are pushed to their limits when termination not only depends on
the explicit function arguments, but also on the implicit state argument of the monad.
One possible solution is to define and prove specialized fixed point theorems as in [11].

A different, more elaborate solution to both problems above is proposed by Huff-
man, Matthews, and White [6]. They formalize axiomatic constructor classes in Is-
abelle/HOLCF, an extension of Isabelle/HOL with domain theory. By a clever construc-
tion, they are able to represent HOLCF domains in a universal domain and reflect repre-
sentable domains as values and type constructors as continuous functions. This allows
them to define axiomatic constructor classes in terms of axiomatic type classes and ap-
ply them to realize an abstract definition of monads. Moreover, in the domain-theoretic
context, fixed points can be used to define recursive functions given any continuous
functional. However, for our toolbox, we have chosen to live with the restrictions im-
posed by the simpler, direct formalization of concrete monads in Isabelle/HOL.

3.2 Hierarchical component model

Our components consist of a state that is manipulated by a set of interface functions.
For reasons that will become clear shortly, we model a state as a record and consider its
individual fields to be the state variables. For example, record point = x :: nat y :: nat
defines a record type for points, of which the record (|x=1, y=2|) is an element.

Example 1 (BPW model). We start by briefly describing the BPW model and refer the
reader to [2] for full details. The BPW model constitutes a library of cryptographic
operations, which keeps track of, and controls access to, the messages known by each
party. The BPW model provides local functions for operating on messages and send
functions for exchanging them between an arbitrary, but fixed, number N of honest
users and the adversary (which we identify with the network). The state of our abstract
formalization of the BPW model is defined as:

record δ mLibState = knowsM :: party ⇒ hnd ⇀ δ msg

There is a single state variable called knowsM, which defines for each party a partial
function mapping handles to protocol messages. Here, the type δ of payload data is
polymorphic, since it depends on the concrete protocol built on top of the BPW model.

The interface functions refer to messages indirectly using handles, which are a form
of pointer required for reasons of cryptographic soundness. As an example of an inter-
face function, we show here the function for generating fresh nonces.

gen_nonceM :: party ⇒ (hnd, (δ , σ) mLibState_scheme) S
gen_nonceM u ≡ do n← distill (λs. freshTagM s); newmsgM u (mNonce n)

The function freshTagM returns a fresh tag, which has not been used so far, i.e. is not
part of any known message. Then newmsgM u (mNonce n) creates a fresh handle h and
updates the knowledge map knowsM for user u with the new mapping h 7→ mNonce n.

For hierarchical model construction and proofs we rely on record extensibility:
record cpoint = point + c :: color extends points with a color field. Behind the scenes,
the definition of a record type r creates a record scheme α r_scheme, which extends
the declared type r with a polymorphic field more of type α. The type r is derived as
unit r_scheme. Record extensibility is based on the instantiation of the record scheme
parameter α with additional fields, which induces a subtyping relation between record
schemes and their instantiations [16]. For example, point and cpoint are both subtypes
of α point_scheme (but cpoint is not a subtype of point).

We exploit record subtyping to construct new components from existing ones. Given
an existing component C with a state of type, say, C_scheme, we construct a new com-
ponent D by extending the state of C with additional variables and defining a new set
of interface functions. This construction has the advantage that any invariant I (in fact,
any property) we have proved for component C still holds when C’s interface functions
operate on the extended state; since the latter is just an instance of C_scheme, there is
no need for an explicit proof of this fact. This explains why the function gen_nonce
in Example 1 operates on the record scheme (δ , σ) mLibState_scheme instead of the
plain record δ mLibState. Moreover, if the component D only uses C’s interface func-
tions to manipulate C’s part of the state (as sound engineering practice dictates), then a
straightforward proof shows that the invariant I lifts to D.

Observe that record extension is linear and neither associative nor commutative.
Therefore, this is a hierarchical method rather than a compositional one. Although this
is adequate in our case, it may be too restrictive for other applications. Without using
record subtyping, we would have to explicitly embed the state of each component into
a global system state and prove that properties of individual components can be lifted
to the composed system. The benefit of such additional work would be a compositional
method, where properties of individual components can be proved separately.

Example 2 (Generic protocols). Security protocols are modeled on top of the BPW
model. Each user A runs a protocol component PA, which maintains its own local state
and provides a user and a network handler, which respond to input from the user and
the network, respectively. The local state of each user is modeled as an extension of the
state of the BPW model with a new polymorphic field loc type user ⇒ σ. The type
variable σ will be instantiated by concrete protocols.

record (δ , σ) globState = δ mLibState +
loc :: user ⇒ σ −− local state of each protocol machine

The protocol handlers invoke the local BPW functions to parse and construct protocol
messages. The output of either handler may go to the user or the network (i.e., the
adversary). A protocol component is a record type, whose fields are the two protocol
handlers. A protocol is a function assigning a protocol component to each honest user.
Concrete protocols inhabit instances of the type (ι , o , δ , σ) protocol , where ι and o
are the types of user input and output.

datatype o proto_out = pToUser o | pToNet netmsg

record (ι , o , δ , σ) proto_component =
proto_user_handler :: ι ⇒ (o proto_out , (δ , σ) globState) S

proto_net_handler :: user ⇒ hnd⇒ (o proto_out , (δ , σ) globState) S

types (ι , o , δ , σ) protocol = user ⇒ (ι , o , δ , σ) proto_component

The complete protocol system provides (1) local BPW model functions used by the
adversary to parse and construct messages and (2) system-level user and network han-
dlers, which are parametrized by the protocol. These handlers connect the protocol-level
handlers to the BPW-model send functions in order to exchange messages with the ad-
versary. A message transfer corresponds to updating the recipient’s knowledge map.

Example 3 (NSL protocol). We now give an instance of the above protocol type: the
Needham-Schroeder-Lowe (NSL) protocol [12], a well-studied, three-step protocol for
mutual authentication. In our setting, the local state of each protocol component consists
of a variable nonces, which is a function mapping each user to a set of nonce handles
that were created in protocol sessions with that user. Below, we show the protocol user
handler in some detail, but we only sketch the protocol network handler.

record ustate = nonces :: user ⇒ hnd set

NeedhamSchroederLowe :: (user, user , user , ustate) protocol
NeedhamSchroederLowe A ≡ (|

proto_user_handler = λB. −− construct the first NSL message
do na ← gen_nonce (User A); do z ← add_nonce A B na;
do nameA← store (User A) A; do m← pair (User A) (na, nameA)
do em← encrypt (User A) (pke (User A) B) m;
return (pToNet (A, B, em))

proto_net_handler = λB m. −− respond to incoming NSL messages
do pm← parse_msg A B m;
case pm of

msg1 nb nameB⇒mk_msg2 A B nb
| msg2 na nb nameB⇒mk_msg3 A B nb
| msg3 nb⇒ return (pToUser B)

|)

The protocol user handler for user A initiates the protocol with another user B by con-
structing, stepwise, the first protocol message (whose form is {NA, A}K(B), i.e., the
public-key encryption of a nonce and user name) using the interface functions of the
BPW model. The auxiliary function add_nonce adds the freshly generated nonce han-
dle na to the set of nonces that A has created in runs with B (stored in variable nonces).
The protocol network handler receives a message (at handle m), parses it, and, depend-
ing on the result, reacts by constructing a reply message (mk_msg2 or mk_msg3) or
returning to the user at the end of the protocol run (the third case).

Component behavior We give an operational semantics to components in terms of a
derived transition system. A transition system σ trsys is a record with two fields: the set
init of initial states of type σ set and the transition relation trans :: (σ × σ) set . A
computation m gives rise to a transition relation tr m ≡ {(s, snd (m s)) | s . True}.
The transition relation of a component is the union of the transition relations of its

interface functions. By adding a set of initial states, we obtain the transition system
associated with a component. The runs of a transition system are defined as infinite
sequences of states, σ run = nat ⇒ σ, starting in an initial state and where successive
states are related by transitions. The runs will serve as models for LTL formulas.

4 Program and Temporal Logics

In this section, we describe the weakest pre-condition calculus and the Hoare logic,
which we use for pre-/post-condition reasoning, and the linear-time temporal logic used
for temporal reasoning. All these logics use HOL sets (of states) as their basic assertions
and set operations as boolean connectives. Hence, when we say that a state s satisfies
a basic assertion P, we mean s ∈ P. The WP calculus and the Hoare logic are both
tailored to our state-exception monad, whereas the temporal logic is interpreted over
standard transition systems and linked to the other logics via gluing lemmas. We first
present the logics and then illustrate their combined application in Section 4.4.

4.1 Weakest pre-condition calculus

Our weakest pre-condition calculus is inspired by Pitts’ evaluation logic [20], which
generalizes first-order dynamic logic by interpreting it over monads. We present a se-
mantic embedding of a variant of evaluation logic, instantiated to the state-exception
monad. We have two box modalities: [x ← m]Q x for normal termination and [@ m]Q
for exceptional termination. These correspond to the weakest pre-condition of the com-
putation m with respect to the post-condition Q. We do not need the dual diamond
modalities for our purposes (these could be defined directly or using set complement).

[x ← m]Q x ≡ {s. ∀ x t . (m s) = (Value x , t) −→ t ∈ Q x}
[@ m]Q ≡ {s. ∀ t . (m s) = (Exception , t) −→ t ∈ Q}

Note the dependence of the assertion Q on the result value x in [x ← m]Q x. The fol-
lowing general properties of the WP calculus follow directly from the definition.

lemma BoxN_true: [x← p] true = true
lemma BoxN_conj: [x← p]((P x) ∩ (Q x)) = [x ← p](P x) ∩ [x ← p](Q x)
lemma BoxN_monotone: ∀ x. P x ⊆ Q x =⇒ [x← p] P x ⊆ [x ← p] Q x

Analogous results can be shown for the exception modality [@ p]. We also prove prop-
erties related to the monad operations. For the basic monad operations we have:

lemma BoxN_return: [x← return a] Q x = Q a
lemma BoxE_return: [@ return a] P = true

lemma BoxN_bind: [y← (do x← p; q x)] Q y = [x ← p][y← q x] Q y
lemma BoxE_bind: [@ do x← p; q x] Q = [x ← p][@ q x] Q ∩ [@ p] Q

The first lemma reflects the fact that the return value a is bound to x and the state remains
unchanged. The second lemma expresses that return never produces an exception. The
third lemma decomposes the modality for the binding operator into two modalities. The
fourth lemma states that the weakest pre-condition of do x ← p; q x with respect to

exceptions and Q is composed of two conditions: (1) if p terminates with value x and
(q x) results in an exception then the resulting state satisfies Q, and (2) whenever p
directly produces an exception then the resulting state also satisfies Q.

Similar equations hold for the exception operations, where throw and try_catch are
dual (with respect to the type of result) to the cases for return and bind, respectively.

lemma BoxN_throw: [z← throw ()](P z) = true
lemma BoxE_throw: [@ throw ()]P = P

lemma BoxN_try_catch: [x← try p catch q](P x) = [x ← p](P x) ∩ [@ p][x ← q](P x)
lemma BoxE_try_catch: [@ try p catch q]Q = [@ p][@ q]Q

The weakest pre-conditions of the state-manipulation operations satisfy the follow-
ing equations. The cases for exceptions equal true and are therefore not shown.

lemma BoxN_distill: [x ← distill f](P x) = {s . s ∈ P (f s)}
lemma BoxN_xform: [z← xform f](P z) = f−1 (P ())

The first equation describes that distill f returns the result of applying f to the current
state, but does not modify the state itself. The second equation states the weakest pre-
condition for state update consists of exactly those states that are elements of P () under
f , where f−1 denotes the inverse image of f .

4.2 Hoare logic

We construct our Hoare logic on top of the WP calculus. This is reflected in the follow-
ing definitions of Hoare triples:

{P} m {> Q} ≡ P ⊆ [x← m](Q x) {P} m {@ Q} ≡ P ⊆ [@ m]Q

Again, we have one type of triple for each kind of termination, where the assertion Q in
{P} m {> Q} depends on the value returned by computation m.

By defining the Hoare triples in terms of the WP calculus, we can switch from
Hoare logic to the WP calculus at any point simply by unfolding the definition of Hoare
triples. Typically, we start non-trivial proofs using the rules of Hoare logic. Later, we
switch to the WP calculus and automatically rewrite the resulting goals into assertions
of HOL’s set theory, using the equations of Section 4.1. The resulting assertions are
often automatically solved using standard reasoning tools provided by Isabelle/HOL.

Next, we present the set of proof rules of our Hoare logic. In a deep embedding of
Hoare logic in HOL, we would inductively define a derivability relation (and a program
syntax) as in [17]. Here, we are working with a shallow embedding and therefore we
represent proof rules semantically as Isabelle/HOL rules. Deriving these rules in Is-
abelle corresponds to proving their soundness. The two rules for return follow directly
from the WP calculus by unfolding the definitions of Hoare triples.

·
{P x} return x {> P}

returnN
·

{P} return x {@ Q}
returnE

The first rule expresses that the state and the value x are invariant in return x. The
second rule captures the fact that the return statement never produces an exception and
therefore vacuously establishes an arbitrary post-condition (including false).

The two rules for bind are proved using the lemma BoxN_monotone above.

{P} p {> Q}
^

x. {Q x} q x {> R}
{P} do x← p; q x {> R}

bindN

{P} p {@ R} {P} p {> Q}
^

x. {Q x} q x {@ R}
{P} do x← p; q x {@ R}

bindE

In the last premise of these rules, the symbol
∧

denotes the universal quantifier of
Isabelle’s meta-logic. Thus, the corresponding Hoare triple must hold for all possible
inputs to computation q. In the rule bindE, we distinguish two cases: the first premise
covers the case where computation p terminates with an exception, while the other two
deal with the case where p terminates with a value x, but q x results in an exception.

The proof rules for the try_catch construct are dual to the rules for bind and can be
proved using the lemma BoxE_monotone:

{P} p {> R} {P} p {@ Q} {Q} q {> R}
{P} try p catch q {> R}

try_catchN

{P} p {> Q} {Q} q {@ R}
{P} try p catch q {@ R}

try_catchE

The rules for the state manipulation functions distill and xform directly reflect their
WP calculus characterization in the lemmas BoxN_distill and BoxN_xform.

·
{{t. t ∈ P (f t)}} distill f {> P}

distillN
·

{f−1(P ())} xform f {> P}
xformN

Finally, we have proved various additional rules, such as the consequence rule of Hoare
logic, which is used to strengthen preconditions and weaken postconditions.

Following the classical argument (e.g., [23]), we have proved the completeness of
our Hoare logic rules relative to the HOL assertion language in Isabelle/HOL. The core
of the argument is an induction on computations m, which establishes the derivability of
{[x ← m]Q x} m {> Q}, for all Q. Since we are working with a shallow embedding, we
have not formalized the program syntax, so we prove each case of the induction sepa-
rately. Additionally, we must ensure that [x ← m]Q x can be expressed in our assertion
language (HOL set theory), which is the case by construction in our setting.

4.3 Linear-Time Temporal Logic

We now briefly sketch our embedding of LTL with past operators in Isabelle/HOL. We
have chosen to keep this embedding independent of monads, so that it can be reused
independently in different contexts. We interpret LTL formulas over runs and transi-
tion systems, in the standard way (see, e.g., [14]). Hence, we restrict ourselves to a
summarized account.

We have formalized the syntax of LTL formulas in Isabelle/HOL as an inductive
data type σ ltl parametrized by a type of states σ. Here we deviated from our principle
of working with shallow embeddings. Since LTL does not have binding operators, the

overhead associated with a deep embedding was small and allowed us to prove some
meta-theoretical results about LTL by induction on the syntax. We note however that
a shallow embedding would have also been sufficient for our work. LTL formulas are
interpreted in the standard way at positions of runs: (r , i) |= f means that formula f
holds at position i of run r. A transition system T satisfies a formula if all of its runs at
position 0 do, which is written T |= f. A component, in the sense of Section 3.2, satisfies
a LTL formula if its derived transition system does.

Proof rules Following the approach of [14], we derive a set of proof rules to reduce
temporal reasoning to pre-/post-condition reasoning. The most important rule that we
have derived is the following one for establishing an invariant P of a transition system
T using an inductive invariant I and a previously proved auxiliary invariant J.

T |= 2J (init T) ⊆ I I ∩ J ⊆ P {I ∩ J} (trans T) {I}
T |= 2P

INV

The Hoare triple appearing in this rule is defined over a transition relation.

{P} tran {Q} ≡ ∀ s t . s ∈ P ∧ (s , t) ∈ tran → t : Q

To enable structured reasoning about components in our Hoare logic, we prove a gluing
lemma for each component that reduces Hoare triples about the component’s transition
relation to a set of Hoare triples over the component’s interface functions. Here is an
example of such a gluing lemma.

Example 4 (Hoare triples for protocol system). We define a notion of Hoare triple for
the global protocol system component and link it to the Hoare triples for the transition
relation derived from that component. The definition overloads the notation {_} _ {_}
and uses {P} m {& Q} for the conjunction of {P} m {> λx. Q} and {P} m {@ Q}.

{P} proto {Q} ≡ ∀ h im nm pkh skh u
{P} sys_user_handler proto u im {& Q} ∧
{P} sys_net_handler proto nm {& Q} ∧
{P} gen_nonceM Adv {& Q} ∧ {P} encryptM Adv pkh h {& Q} ∧
{P} decryptM Adv skh h {& Q} ∧ ...

lemma HoareSys_decomposition: {P} (glob_trans proto) {Q} = {P} proto {Q}

The relation glob_trans proto denotes the transition relation derived from the entire
protocol system. Triples of the form {P} (glob_trans proto) {Q} arise as subgoals,
when rule INV is applied to prove protocol invariants. Using the above lemma, these
are rewritten to a set of Hoare triples over the protocol system interface functions.

4.4 Example: Nonce secrecy invariant for the NSL protocol

To illustrate the use of our reasoning tools, we state and prove an invariant of the NSL
protocol: the nonces created in sessions between two honest users remain secret.

nonceSecrecy ≡ {s. ∀ A B n.
n ∈ Nonces s A B −→ secret s (mNonce n) {User A, User B} }

theorem nonceSecrecy_invariant : NSLtrsys |= 2nonceSecrecy

Here, Nonces s A B is the set of nonces that A has created in runs with B (these are
accessible via the handles in the set nonces s A B). The predicate secret s m U ex-
presses that in state s message m can be derived by at most the parties A ∈ U from their
knowledge in knowsM s A. The theorem states that nonceSecrecy is an invariant of the
transition system derived from the NSL protocol system (2 denotes “always” in LTL).
The proof proceeds in several stages.

1. Apply rule INV and lemma HoareSys_decomposition to reduce the temporal state-
ment to a set of preservation lemmas over the NSL system interface functions.

2. Prove the preservation of the invariant by each BPW model interface function.
Here, we automate most proofs using the WP calculus.

3. Lift the previous preservation results to the NSL protocol level by automatically
applying Hoare logic rules to “pull” the invariant through the protocol handlers.

4. Lift these results to the system level by applying Hoare logic rules interactively
with user-supplied assertions.

We provide an example of the last point. At the NSL system level, the main cases
concern the system user and network handlers. Roughly speaking, these compose the
respective protocol-level handler with the user send function, which transmits network
messages to the adversary. The user send function requires an additional pre-condition
to preserve the invariant, which simply states that adding the sent message to the ad-
versary knowledge does not compromise nonce secrecy. We manually apply the bindN
rule, which separates the respective protocol handler from the user send function. As the
intermediate assertion Q, we use the conjunction of the invariants (main and auxiliary)
with a previously established strong post-condition of the respective protocol handler,
which states that the relevant nonces are fresh and encrypted and thus inaccessible to the
adversary. Since these postconditions imply the pre-condition of the user send function,
we use the consequence rule to complete the proof.

5 Bisimulation

Abstracting components (e.g. the state representation) can substantially improve proof
automation. When doing this, we must ensure that the behavior of the abstracted compo-
nent is equivalent to the original one. We use bisimilarity as our notion of equivalence.
We first define bisimulation in the context of the state-exception monad and then give
compositional proof rules for establishing the bisimilarity of two components. Finally,
we present an example from our formalization of the BPW model.

5.1 Bisimilar components

The state-exception monad is deterministic. Therefore, two computations m1 and m2

are bisimilar, with respect to a witnessing relation R, if they produce a (unique) pair of
bisimilar states and identical results, whenever started in a pair of bisimilar states.

bisim R m1 m2 ≡ ∀ s t s’ t’ x y.
(s , t) ∈ R ∧ m1 s = (x, s’) ∧ m2 t = (y, t ’) −→

(∃ v. x = Value v ∧ y = Value v ∧ (s ’, t ’) ∈ R)
∨ (x = Exception ∧ y = Exception ∧ (s ’, t ’) ∈ R)

This notion is lifted pointwise to functions and afterwards to components by requiring
that corresponding pairs of functions in both components match up1. Note that, since
we are working with shallow embeddings of components and bisimulation, the notion
of bisimilar components is not formalized itself in Isabelle/HOL. Instead, the proof that
two components C and C’ are bisimilar consists of a collection of lemmas of the form
bisim R f f ’, one for each pair of associated interface functions f of C and f ’ of C’.

We would like to prove such judgments compositionally by following the structure
of the computations m1 and m2. The idea is to consider the statement bisim R m1 m2 as
a Hoare-like tuple of the form {R} m1 m2 {R}, where the bisimulation relation R acts
as both the pre- and postcondition. For compositional proofs, we need to generalize
these judgments, as we can neither expect that intermediate pairs of states arising from
program decomposition are in the bisimulation relation nor that intermediate outputs
are identical. Therefore, we obtain the definition of bisim R m1 m2 as an instance of a
generalized notion of a bisimulation tuple:

{R} m1 m2 {λ a b. S a b | T} ≡ ∀ s t s’ t ’ x y .
(s , t) ∈ R ∧ m1 s = (x, s’) ∧ m2 t = (y, t ’) −→

(∃ a b. x = Value a ∧ y = Value b ∧ (s ’, t ’) ∈ S a b)
| (x = Exception ∧ y = Exception ∧ (s ’, t ’) ∈ T)

bisim R m1 m2 ≡ {R} m1 m2 {(λ a b. {p. a = b} ∩ R) | R}

Bisimulation tuples have two postconditions. The first postcondition is a parametrized
relation S a b, required to hold whenever the computation m1 returns the value a and
m2 returns the value b. The second postcondition T covers the case where both compu-
tations terminate with an exception. Note that {R} m1 m2 {λa b. true | true} expresses
the property that both computations terminate with the same type of result. We call this
property equi-termination.

5.2 Compositional proof rules for bisimulation

Since proving a bisimulation tuple {R} m1 m2 {S |T} requires compositional reasoning
about two computations simultaneously, we need O(n2) proof rules to cover all cases,
where n is the number of constructs of our “programming language”. We can distin-
guish rules for pairs of computations with (1) identical top-level constructors from (2)
those with different ones. As for (2), many combinations are only bisimilar in restricted
or trivial cases. For instance, return and throw are only bisimilar, if the precondition is
equivalent to false. A simple example of (1) is the return rule.

R ⊆ Sn a b

{R} (return a) (return b) {Sn | Se}
bisim_return

More interesting are the rules for composed computations. The basic rule for the
case where both computations are sequential compositions is stated as follows.

{R} m1 m2 {Sn | Te}
^

a b. {Sn a b} (k1 a) (k2 b) {Tn | Te}
{R} (do a← m1; k1 a) (do b← m2; k2 b) {Tn | Te}

bind_sym

1 This definition can be seen as an instantiation of the coalgebraic definition of bisimulation [10]
when the component is viewed as a coalgebra [9].

|
m2

m1

m2

m1

R Tn c d Te

k a

Val a

Val b

Sn a b R Te

Exc

Exc
2

Val c Exc

Val d Exc

k b

1

|
|

Fig. 1. Bisimulation for bind , symmetric case

This rule only covers the well-behaved case where the first parts of both sequential
compositions equi-terminate. This situation is depicted in Figure 1, where computations
are shown above the arrow and their results below. The rule bind_sym does not cover
the case where m1 and m2 do not equi-terminate or where the second computation has
a different structure. For such asymmetric cases, we derive the rule bind_left (below)
and bind_right (symmetric, not shown).

{R} m1 m2 {λa b. false | Te}
{R} (do a← m1; k1 a) m2 {Tn | Te}

bind_left

When read backwards, this rule allows us to cut off the second part k1 of a sequential
composition with m1, which is never invoked, in case both m1 and m2 always equi-
terminate with an exception (and establish Te).

In general, when we prove a subgoal whose form matches the conclusion of rule
bind_sym we must partition the relation R into two relations Ra and Rb, according to
whether or not m1 and m2 equi-terminate on a pair of states in R. We then apply rule
bind_sym in the former case and rules bind_left and bind_right in the latter case.

We have derived similar rules for the exception handling constructs. Again, all other
control flow constructs including recursion are borrowed directly from HOL. All rules
are sound by construction. Their completeness has not yet been investigated.

Using component invariants In non-trivial bisimulation proofs we usually need in-
variants of both components to strengthen the bisimulation relation. We have derived
a specialized rule for sequential composition from rule bind_sym , which allows us to
use invariants in bisimulation proofs.

{R ∩ I × J} m1 m2 {Sn | Te}^
a b. {Sn a b ∩ I × J} (k1 a) (k2 b) {Tn | Te}
{I} m1 {> λz. I} {J} m2 {> λz. J}

{R ∩ I × J} (do a← m1; k1 a) (do b← m2; k2 b) {Tn | Te}
bind_sym_inv

The Hoare triples in premises 3 and 4 express that I and J are indeed invariants of
m1 and m2, respectively. This rule allows us to “pull” the invariants over sequential
compositions and carry them along in the proof.

Example 5 (Bisimulation of BPW model interface functions). Recall from the introduc-
tion that we have formalized two versions of the BPW model: a first one with DAG-
based messages and a second one, where these messages are abstracted into inductively

defined terms. In order to allow us to work with the more abstract second formalization
for concrete protocol verification, we have proved its bisimilarity with the first one. The
state of the DAG-based version is a record containing a knowledge map knowsI of type
user ⇒ hnd ⇀ ind, which maps handles to indices for each user, and a table db of
type ind ⇒ ’d entry , which maps indices to message entries. The latter correspond to
message constructors, which may contain indices themselves. The bisimulation relation
I2M expresses that for a given user and handle, the DAG-based message i in knowsI is
abstracted to the message term m in knowsM.

I2M ≡ { (s , t). (∀ u. dom (knowsI s u) = dom (knowsM t u)) ∧
(∀ u h i m. knowsI s u h = Some i ∧ knowsM t u h = Some m −→ message s i m) }

We prove bisimilarity for each pair of matching BPW model interface functions. Let us
consider the case of the length query function. There we must show that the bisimulation
relation is preserved and that both versions return the same message length. We obtain
the subgoal below after unfolding the definitions of the length query functions.

{I2M Int (finiteKnowsI Int lengthInv) × finiteKnowsM}
(do (i , e) ← lookupI u h; return (len e))
(do m← lookupM u h; return (len_ofM m))

{λla lb . {p. la = lb} Int I2M | I2M}

Note the auxiliary invariants in the pre-condition of the bisimulation tuple. In particular,
the invariant lengthInv of the DAG-based formalization states that a concrete message
i and its abstract counterpart m (related by message s i m) have identical lengths. We
apply the rule bisim_sym_inv to separate the message lookup operation from the return
statements. The intermediate relation Sn in this rule is instantiated to the following
relation, which states that the index i pointing to entry e as returned by lookupI is
abstracted to the term-based message m returned by lookupM.

λ(i , e) m. I2M
T

{(s, t). knowsI s u h = Some i ∧ db s i = e ∧ message s i m}

The first premise of the rule bisim_sym_inv is covered by a previously proved lemma
about the lookup functions. Thanks to the intermediate relation above, we can easily
derive the second premise using the rule bisim_return and the invariant lengthInv . The
remaining premises are discharged by previously proved invariant preservation results.

In summary, the rules allow compositional bisimulation proofs. They capture repet-
itive reasoning patterns and thus help us to concentrate on the essential aspects of the
proofs, namely the invariants and intermediate relations.

6 Conclusions and Related Work

We have presented a general-purpose toolbox for modeling state-based components
using monads, for reasoning about their properties using program and temporal logics,
and for reasoning about their equivalence using a compositional proof system for bisim-
ulation. Since our principal motivation was pragmatic rather than meta-theoretical, we
have used shallow embeddings and introduced new concepts and proof rules only where
we deemed them necessary to raise the level of abstraction. This allows us to exploit
Isabelle/HOL’s specification language, its extensive libraries, and its reasoning tools as

much as possible. For example, we have only formalized sequential composition and
exception handling, while all further control structures are borrowed from HOL. Our
experience in a substantial case study showed that this provides appropriate abstraction
in modeling component-based systems and in proving complex theorems about them.

Related Work Filiâtre [5] appears to be the first to use monads to formalize an ML-
like imperative language in the proof assistant Coq. He gives a functional translation
of this language and generates proof obligations from pre-/post-condition annotations.
Krstić and Matthews [11] interpret BDD algorithms written in C in a state-exception
monad isomorphic to ours. They verify the functional correctness of these algorithms
directly in Isabelle/HOL without additional program logics. In fact, they state that the
complexity of the BDD programs forced them to use the monadic approach as a more
flexible alternative to Hoare logic. However, our work shows that monads and Hoare
logic can be combined to take advantage of features of both.

There is a sizable body of work on modeling Java(-like) languages and associated
Hoare logics, including the Bali [22] and the LOOP [7] projects. The latter is most
closely related to our work. They have formalized a coalgebraic semantics of Java and
a corresponding Hoare logic in PVS. These handle non-termination, normal termina-
tion, and several forms of abrupt termination. In [9], the connection to monads is in-
vestigated. We do not model partiality, but we treat normal termination and exceptions
similarly. Jacobs [8] develops WP calculi to improve proof automation and implements
two of them as new PVS commands. In contrast, our Hoare logic is directly formulated
in terms of the WP calculus and we use the standard Isabelle simplifier to rewrite WP
expressions. Our approach is simpler, but does not admit alternative search strategies.

Nipkow has formalized Hoare logics for a family of while-languages and proved
soundness and completeness results for each of them [17]. He models exceptions by
adding an error flag to the state. As a consequence, most proof rules require pre-
conditions depending on this flag. In contrast, in the state-exception monad, exceptions
are more akin to values, which makes the rules for exception handling duals of those
for return and bind and leads to a more abstract and modular treatment.

There exist several shallow embeddings of temporal logics in HOL. Långbacka has
formalized the temporal logic of actions (TLA) in the HOL prover [13]. The Isabelle
distribution [1] contains an axiomatization of TLA in HOL by Merz and a formalization
of a temporal logic for I/O automata by Müller in HOLCF.

Benton [3] has proposed a relational Hoare logic (RHL) related to our bisimula-
tion proof system to prove the correctness of optimizing program transformations for a
while-language. He shows how to embed standard Hoare logic, as well as other logics,
into RHL. We have chosen to follow a pragmatic approach and integrate our separate
Hoare logic into the bisimulation proof system, which allows us to use the underlying
WP calculus for automating proofs.

Future Work One direction for future work is to extend the modeling language, e.g. by
adding object-oriented features such as inheritance, overriding and late binding along
the lines of [16, 4] or by lifting the limitations on the definition of monad-based general
recursive functions. Another interesting topic is the completeness of the bisimulation
proof system and the possibility of adapting it to different kinds of monads.

References
[1] Isabelle home page. http://isabelle.in.tum.de, 2007.
[2] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.

IACR Cryptology ePrint Archive 2003/015, Jan. 2003.
[3] N. Benton. Simple relational correctness proofs for static analyses and program transfor-

mations. In Proc. of Principles of Programming Languages (POPL), 2004.
[4] A. Brucker and B. Wolff. A package for extensible object-oriented data models with an

application to IMP++. In International Verification Workshop (VERIFY), August 2006.
[5] J.-C. Filliâtre. Proof of imperative programs in type theory. In International Workshop,

TYPES ’98, volume 1657 of Lecture Notes in Computer Science. Springer, 1998.
[6] B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes in Isabelle/HOLCF.

In Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 2603 of Lecture
Notes in Computer Science, pages 147–162, 2005.

[7] M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt termi-
nation. In Fundamental Approaches to Software Engineering (FASE’00), volume 1783 of
Lecture Notes in Computer Science, pages 284–303. Springer, 2000.

[8] B. Jacobs. Weakest precondition reasoning for Java programs with JML annotations. Jour-
nal of Logic and Algebraic Programming, 58:61–88, 2004.

[9] B. Jacobs and E. Poll. Coalgebras and monads in the semantics of Java. Theoretical
Computer Science, 291(3):329–349, 2003.

[10] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
6:222–259, 1997.

[11] S. Krstić and J. Matthews. Verifying BDD algorithms through monadic interpretation. In
Proceedings of VMCAI 2002, volume 2294 of LNCS, pages 182–195. Springer, 2002.

[12] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
Software - Concepts and Tools, 17:93–102, 1996.

[13] T. Långbacka. A HOL formalisation of the temporal logic of actions. In Theorem Proving
in Higher Order Logics (TPHOL), volume 859 of LNCS, pages 332–345. Springer, 1994.

[14] Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer Science,
83(1):97–139, 1991.

[15] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

[16] W. Naraschewski and M. Wenzel. Object-oriented verification based on record subtyping
in higher-order logic. In Theorem Proving in Higher Order Logics, volume 1479 of Lecture
Notes in Computer Science, pages 349–366, 1998.

[17] T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and R. Steinbrüggen,
editors, Proof and System-Reliability, pages 341–367. Kluwer, 2002.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

[19] L. Paulson. The inductive approach to verifying cryptographic protocols. J. Computer
Security, 6:85–128, 1998.

[20] A. M. Pitts. Evaluation logic. In G. Birtwistle, editor, IVth Higher Order Workshop, Banff
1990, Workshops in Computing, pages 162–189. Springer, Berlin, 1991.

[21] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically sound
theorem proving. In 19th IEEE Computer Security Foundations Workshop, Venice, Italy,
pages 153–166. IEEE Computer Society, July 2006.

[22] D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects
and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay, editors, Formal Methods
– Getting IT Right (FME’02), volume 2391 of LNCS, pages 89–105. Springer, 2002.

[23] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993.

http://isabelle.in.tum.de

	A Monad-based Modeling and Verification Toolbox with Application to Security Protocols

