In the Nick of Time:
Proactive Prevention of Obligation Violations

David Basin Sdren Debois
Information Security
ETH Zurich, Switzerland

Email: basin@inf.ethz.ch

Abstract—We present a system model, an enforcement mech-
anism, and a policy language for the proactive enforcement of
timed provisions and obligations. Our approach improves upon
existing formalisms in two ways: (1) we exploit the target system’s
existing functionality to avert policy violations proactively, rather
than compensate for them reactively; and, (2) instead of requiring
the manual specification of remedial actions in the policy, we
automatically deduce required actions directly from the policy. As
a policy language, we employ timed dynamic condition response
(DCR) processes. DCR primitives declaratively express timed
provisions and obligations as causal relationships between events,
and DCR states explicitly represent pending obligations. As key
technical results, we show that enforceability of DCR policies
is decidable, we give a sufficient polynomial time verifiable
condition for a policy to be enforceable, and we give an algorithm
for determining from a DCR state a sequence of actions that
discharge impending obligations.

I. INTRODUCTION

Many security requirements can be decomposed into pro-
visions and obligations [4], [17], [26]. Provisions specify
conditions or properties dependent on the present and the past.
They cover most traditional access control requirements. For
example, access to customer records is granted to users in the
role of customer-relations manager, provided customer con-
sent was previously granted. Obligations, in contrast, impose
conditions on the future that an agent or process should fulfil.
For example, a hospital may need to delete patient records
within 14 days of a patient’s release.

Provisions and their enforcement by access control mech-
anisms are well understood. Obligations are less well under-
stood, and subject to active research [1], [3], [10]-[13], [18],
[20], [22]-[25], [31], [35]. Enforcement of obligations is diffi-
cult as, to be enforceable, obligations must be associated with
deadlines. A simple but limited enforcement mechanism is to
associate obligations with access control rules, whereby the
enforcement mechanism immediately takes the obliged action
when the rule grants access, e.g., logging the taken action.
Alternatively, obligations may be associated with deadlines,
whose expiration triggers remedial actions to be taken by the
access control mechanism.

The state of the art generally handles obligations in limited
ways, like those suggested above. The theory of how to
handle obligations is underdeveloped, especially when dead-
lines are involved. With few exceptions, policy violations are
not prevented, they are remediated. Namely, the enforcement

Process and System Models Group
IT University of Copenhagen, Denmark
Email: debois@itu.dk

Thomas T. Hildebrandt
Process and System Models Group
IT University of Copenhagen, Denmark
Email: hilde@itu.dk

mechanism witnesses a deadline expiring, but is powerless to
prevent the concomitant policy violation and is reduced to
taking remedial actions after the fact, such as logging, lowering
a reputation, etc. Moreover, the enforcement mechanism’s
interaction with the target system is often too limited for
effective obligation enforcement or the exact extent of the
mechanism’s control over the target system is unclear. While
an enforcement mechanism can intercept actions and prevent
them from happening, it cannot, a priori, force the target
system to take action when required. Existing mechanisms
tend to take only actions independent of the target system’s
functionality, such as logging or sending notifications. We
expand on these points and discuss exceptions in Section VI.

Approach and Results. We tackle the problem of proactive
policy enforcement and present an enforcement mechanism
that directs the target system to prevent policy violations. Not
every policy can be enforced, and enforceability depends on
the enforcement mechanism’s exact powers over the target
system. We distinguish between whether the enforcement
mechanism can (1) control an action by denying that it happens
at a given point in time, (2) proactively cause an action to
happen in the target system, or (3) merely observe that an
action happens in the target system.

The above distinctions are critical. For some actions, e.g.
a patient at a hospital dies, it is neither meaningful for an
enforcement function to deny nor cause the action to happen.
In other cases it may make sense for a mechanism to control
whether the action is allowed, but not for the mechanism to
cause the action to happen by itself. For instance, a hospital
IT system may be able to deny the immediate re-admission of
a released patient; however, it cannot outright cause a patient
to be readmitted, as that would require the patient’s consent.
Finally, some actions may be both controllable and causable,
e.g., the enforcement mechanism can both deny and proac-
tively cause the transfer of records from local data storage to
a remote archive, depending on the exact circumstances. Such
distinctions between controllable (in the sense of denying)
and uncontrollable (but observable) actions are well-known in
other areas, such as supervisory-control theory [32]. Here the
supervisor plays the role of the enforcement mechanism; how-
ever, in the classical supervisory-control theory, the supervisor
does not cause actions in the target system.

These observations motivate the following technical ques-
tions, answered in this paper. Given the ability to cause
certain actions to happen in the target system, how do we
decide whether a given policy is in fact enforceable? Can
we efficiently compute a sequence of actions sufficient to
resolve a given impending obligation violation? And in what
sense can this be done transparently in that the enforcement
mechanism alters the target system’s behaviour only when
absolutely required by the policy?

Answering these questions necessarily involves a system
model, a policy language, and an enforcement mechanism.
The system model must clarify how the target system and the
enforcement mechanism interact and what the mechanism can
and cannot cause or control in the target system. The policy
language must be expressive enough to formulate realistic
policies, yet constrained enough that we can efficiently com-
pute (1) whether a policy is enforceable and (2) which actions
are needed to avert impending obligation violations. Finally,
the enforcement mechanism connects the system model and
the policy, using the latter to compute action sequences for
execution by the former.

In our policy language, it must be possible to express
declaratively timed properties of both the past and the future,
close to their natural-language formalisation. Moreover, we
need a run-time representation that can be updated as events
occur, and we must also be able to plan the actions to be taken
to avoid violating obligations. Standard approaches, based on
metric temporal logics for specifications and automata for the
run-time representation, depend on a translation from formu-
las into automata, which suffers from state-space explosion.
The formalism that we will use, Timed Dynamic Condition
Response Processes (DCR processes, for short), combines the
declarative specification and run-time representation, avoiding
this translation. As we will show, this allows us to compute
plans and enforce policies at run-time based directly on the
declarative specification, avoiding translation to an exponen-
tially larger operational model.

Untimed DCR processes were introduced in [8] as a process
language for describing DCR graphs [15], a declarative graph-
ical process notation. DCR processes are expressive enough
for many security applications: For untimed properties they are
equivalent in their expressivity to Biichi automata [8], but their
language primitives are rather different. Instead of specifying
processes in terms of states and transitions, a DCR process
describes the causal relationships between events declaratively
in terms of conditions and responses, and describes dynamic
conflict relationships between events in terms of exclusions
and inclusions. To allow for the specification of timed polices,
we conservatively extend the DCR process language intro-
duced in [8] to allow for describing timed DCR graphs [16].

Contributions. Conceptually, we present a system model, a
policy language, and an enforcement mechanism for timed
provisions and obligations. Our enforcement mechanism de-
duces those actions necessary to avert policy violations and
proactively causes the target system to take these actions in

request @
Target System .| Enforcement
get Sy inform " | Mechanism

cause

Fig. 1. System Model

the nick of time, that is, whenever a deadline is about to be
missed.

This approach improves upon existing formalisms in two
ways: (1) we exploit the target system’s existing functionality
to avert proactively policy violations, rather than to compen-
sate reactively for them, and, (2) rather than requiring the
manual specification of remedial actions in the policy, we
automatically deduce relevant actions directly from the policy.

Technically, we show that the enforceability of policies
expressed as timed DCR processes is decidable but NP-hard.
We then give a sufficient polynomial time verifiable condition
for a DCR policy to be enforceable. Moreover, we give an
algorithm that, given a DCR state of an enforceable DCR
policy, computes a sequence of actions that, when executed
on the target system, will discharge impending obligations.

As proof-of-concept, we have built a prototype implemen-
tation of the algorithms in this paper. The implementation
is available on-line at http://dcr.itu.dk/obligations along with
simulations of the examples presented in this paper.

Scope. We focus exclusively on policies governing the se-
quencing of actions. This approach plays to the strengths of
the DCR formalisms and helps focus the presentation on the
central issue of proactive policy enforcement. We leave open
extensions to the policy language, like the addition of events
dependent on data, and the question of whether and how
comparable enforcement mechanisms can be realised in other
formalisms.

Overview. In Section II we present our system model and
define enforcement. We present timed DCR processes in
Section III, and give examples of policies in Section IV. We
show in Section V when and how a DCR policy is enforceable
and report briefly on a prototype implementation of a DCR
policy enforcement point. Finally, in Sections VI and VII we
discuss related work and draw conclusions. Proofs and most
lemmas have been relegated to Appendix A.

II. SYSTEM MODEL AND ENFORCEMENT
A. System Model

Our system model is depicted in Figure 1. The target
system and the enforcement mechanism (also called a Policy
Enforcement Point, or simply PEP) are independently running
processes, which interact in three distinct ways:

1) Whenever the target system wishes to undertake some

controllable action, it requests permission from the en-
forcement mechanism (upper arrow, left to right), which

will return either “grant” or “deny” (upper arrow, right to
left). The target system actually undertakes the requested
action iff the enforcement mechanism responds “grant”.

2) Whenever the target system performs an uncontrollable
action, it informs the enforcement mechanism that it
does so (middle arrow).

3) Finally, a subset of actions of the target system, its
causable actions, are available to be triggered by the
enforcement mechanism, as indicated by the bottom
arrow labelled “cause”.

(1) and (2) ensure that the target system and the enforcement
mechanism are synchronised. (1) makes it possible to suppress
controllable actions, thereby enforcing provisions. Through
(3), the architecture supports the proactive policy enforcement.
Note that the target system may take internal actions not
observable by the enforcement mechanism; the policy enforced
must be independent of such internal actions.

In this paper we will restrict our attention to discrete time
systems (as in, e.g., [S], [27]) and assume that enforcement
mechanisms can only proactively cause actions within a time-
step, just before a tick of time. For example, if the target
system needs to undertake action a within deadline d, the
enforcement mechanism can, before some tick within the
deadline d, force the system to undertake action a, using
the lower arrow. Note that the enforcement mechanism relies
only on its own clock (indicated by the clock symbol in
the diagram). The model does not stipulate synchronisation
between the clocks of the enforcement mechanism and the
target system.

In practice, there are various ways that the abstract com-
munication in the above model can be realised. For example,
suppose the target system is an HTTP/REST component
within a larger system, and that “actions” are the external
invocation of its own APIs, or its own invocation of other
components’ APIs. The upper arrow can simply and crudely be
implemented by the enforcement mechanism intercepting and
selectively dropping incoming and outgoing requests; TCP’s
failure semantics will handle the rest. The middle arrow is
just listening to messages representing uncontrollable actions.
The lower arrow is the enforcement mechanism issuing HTTP
requests against the target system’s API. A more relaxed im-
plementation might see the enforcement mechanism realising
the upper arrow as its own HTTP/REST APL

B. Target System and Policies

Prior to formalising systems and policies, we first introduce
relevant notation. For a finite alphabet 3 of actions, we write
3* for the set of finite words over X, X“ for the infinite
words, and let ¥°° = ¥* U X“. As usual, we refer to a set
L of words as a language. We write concatenation of words
w and v as w - v and write v C w iff v is a prefix of w, i.e.
w = v - v for some word v'. We write w \ z for the word w
with every occurrence of the symbol = € ¥ removed. Finally,
we let prefixes(L£) be the prefix closure of the language £ and
write € for the empty word.

We account for time by requiring a special symbol tick
in our alphabets; the passage of time is indicated by the
occurrence of this tick action. We say that a word is non-
Zeno if it is finite or contains infinitely many tick actions; a
language £ is non-Zeno if every word in it is non-Zeno.

Now, following the system model, a target system is a lan-
guage over an alphabet of uncontrollable actions, controllable
actions, causable actions, and time.

Definition 1: A target system (S,%,T,A) comprises a
prefix-closed language S C X* with tick € X; controllable
actions T' C X\ {tick}; and causable actions A C X\ {tick}.

In this definition, prefix-closure ensures that the target
system S produces actions consecutively. Time is considered
neither controllable nor causable: it can be neither suppressed
nor caused. We consider only the finite behaviour of the
target system due to our focus on the enforcement of safety
properties in the form of provisions and deadlines. Still,
timed security policies may speak of safety properties that
are never fulfilled for finite sequences, such as the property,
that “an examination must be performed every other month”.
Consequently, we define policies as non-Zeno languages over
both finite and infinite sequences.

Definition 2: A security policy ‘P over an alphabet X with
tick € X is a non-Zeno language P C »°°,

Example 3: As a running example, consider a target system
t = (S,%,T,A) with alphabet ¥ = {a, b}, causable actions
A = {a}, controllable actions I" = {b}, and language S
defined by the regular expression (a + b + tick)*, i.e., any
finite sequence over a, b, and tick. We want to enforce the
policy P defined by the w-regular expression (a* tick)“, i.e.,
b is never allowed, and every tick is preceded by at least one a.

C. Enforcement Mechanisms

Now, what should an enforcement mechanism accomplish?
We define here abstractly the requirements for such a mech-
anism. Later, in Section V, we give a concrete instance.

Following [24], [31], the result of enforcement should be
a stream of actions performed jointly by the target system
and the enforcement mechanism. Clearly, the mechanism
should ensure that this stream complies with the policy being
enforced. However, rather than retroactively translating the
output of the target system as done in most previous work,
our focus is on proactive enforcement: the enforcement mech-
anism directs the target system by suppressing and causing
actions. It cannot cause actions not enabled in the target system
to happen, i.e., it does not add to the possible behaviours.

To capture what it means to direct the target system,
we define the directed language of a monotone, idempotent
function m : § — § as the least fixed point of “directed steps”
extending the execution of an already directed trace w by an
action a into m(w - a).

Definition 4: Let (S,%,T',A) be a target system, and let
m : S — S be a monotone and idempotent function. Define
the directed language D,, of m inductively by

1) m(e) € Dy,

2) m(w-a) € D,, whenever w € D,,,, a € X, and w-a € S.

Note that monotonicity (i.e. if v C w then m(v) C m(w)) and
idempotency (i.e. m(m(v)) = m(v)) means respectively, that
the function m does not retroactively change its past decisions
and it agrees with its own directives.

An enforcement mechanism for a target system can now be
defined as a function m : § — S for which the directed steps
respect the constraints of controllable and causable actions,
and only cause actions immediately before a tick action.

Definition 5: An enforcement mechanism for a target system
(S8,%,T, A) is a recursive, monotone, and idempotent function
m:S — S satisfying:

1) m(e) =€

2) for all v € D,, and a € ¥ with v-a € S, we have

m(v-a) =m(v) - w where w satisfies:
a) if a = tick then w € A* - tick;
b) if a €T then w € {¢,a}; and
c) otherwise w = a.
When m is an enforcement mechanism, we will call D,,, the
enforcement language.

The conditions on the function m formalise that: (1) m will
wait for time to pass or the target system to take an action
before acting; (2a) m cannot stop the passage of time, but
may cause actions in A to be taken just before a tick; (2b) m
may either suppress or preserve controllable actions; and (2c)
m must preserve uncontrollable actions.

Example 6: We define a function m : S — S for the target
system t of Example 3. The function m removes all bs and
inserts a before tick when necessary.

m(w) = n(w\ b)

€ when w = ¢

a - tick when w = tick
n(w) =< n(w - tick) - a-tick when w = w’ - tick - tick
n(w') - x otherwise, assuming wlog

w=uw-x

It is straightforward to verify that both m and n are recursive,
monotone, and idempotent functions, and to prove by induc-
tion on w that the directed language D,, of m is exactly the
set Dy, = prefixes((a™ tick)). Moreover, it is easy to see
that m satisfies the remaining conditions of Definition 5.

We proceed to consider correctness and transparency. Our
notion of correctness necessarily deviates from standard no-
tions. In the presence of pending obligations, the current
(corrected) output m(v) might not be a word of the policy.
However, it must be extensible to one that is. Intuitively, the
extension w discharges pending obligations, taking the output
string m(v) - w back into the policy language.

Definition 7: Let P be a policy over ¥. An enforcement
mechanism m is correct for P iff for all v € D,,, there exists
some w € X such that v-w € P.

A violation of the policy P is a word u that has no possible
extension to a word in the policy: no matter what the target
system subsequently does, it will never get u back within
the bounds of the policy. This situation would arise if, for
example, an impermissible action was executed, or a deadline

was missed. Our notion of correctness is such that a correct
enforcement mechanism will tolerate no such finite violations

Lemma 8: Define the finite violations language P of a policy
P over X by P = X* \ prefixes(P). If m is correct for policy
P then for all v € D,,, we have m(v) ¢ P.

Note that this language is closely related to the notion of
bad prefixes for languages over infinite words, defined in [21].

We now formulate transparency in terms of the finite
violations language:

Definition 9: Let m be an enforcement mechanism for a
target system (S,3, ', A). We say that m is transparent iff
for all v € D,, and a € ¥ such that v -a € S, whenever
m(v-a) #m(v) - a then m(v) -a € P.

That is, a transparent enforcement mechanism modifies an
action a iff taking the action would violate the policy.

Example 10: Continuing Example 6, we saw that the
enforcement language of D,, is exactly the prefixes of the
policy P = (a™ tick)“ and hence m is a correct enforcement
mechanism. It is straightforward to verify by cases on the last
symbol of w that it is also transparent. Note that while the
policy language P contains no finite words, the enforcement
language D,, does: prefixes(P) = D,,.

The question remains of how to construct useful enforce-
ment mechanisms and build practical, running PEPs based on
them. In the coming sections, we will show how timed DCR
processes can be used for this purpose.

III. POLICY SPECIFICATION LANGUAGE

We present here timed DCR processes, the semantics of
which defines a security policy over an alphabet Y in the sense
of Definition 2. The language is closely based on the core
DCR process language [8], conservatively extended to make
it possible to express timed DCR graphs as introduced in [16].

DCR processes are about events £ and constraints between
events. Constraints define under what circumstances (1) events
may or may not happen, and (2) under what circumstances they
may be required to happen in the future or be dynamically
excluded from (or re-included to) the process.

In general, each event e € £ has an associated label £(e) €
¥\ {tick}. The set ¥ (which includes tick) will be used as
the (finite) alphabet for defining the language recognised by
a timed DCR process. For simplicity, we restrict our attention
to DCR processes where £ = 3\ {tick} and £(e) = e.

A. Syntax

A DCR process P = [M] T comprises a marking M and a
term T'; the full syntax is given in Figure 2. Here N is the set
of natural numbers, excluding 0. The marking M specifies the
state of events; the term 7' specifies both constraints between
events, and the effects on that state of executing events. We
explain terms and markings separately.

Terms. Terms describe constraints and effects between events
as follows.

o A condition e e« f imposes the constraint that for the
event e to happen, the event f must either previously

condition, k € N U {0}

| e N f response, d € N U {w}
|e =+ f inclusion
e =% f exclusion
| eo— f milestone
|T|U parallel
|0 unit
O = (h,i,r) event state
M,N = M,e:® marking
| €
P,Q:=[M|T process

Fig. 2. DCR Process Syntax.

have happened at least k£ time units ago, or currently be
excluded. Note that k is a natural number or zero.

o A response e e f imposes the effect that when e
happens, f becomes pending (obliged) and must happen
within d time units or be excluded. Note that the deadline
d is a natural number or infinity (“eventually”), but cannot
be zero—one cannot require things to happen “now”.

e An exclusion e —% f imposes the effect that when e
happens, it excludes f. An excluded event cannot happen;
it is ignored as a condition. Moreover, it need not happen
if pending, unless it is subsequently re-included.

e An inclusion e —+ f imposes the effect that when the
event e happens, it re-includes the event f.

o A milestone e o< f imposes the constraint that for the
event e to happen, the event f must be either not pending
or excluded.

If several condition (response) constraints are defined be-
tween the same two events in 7', the process will have the
maximal delay (minimal deadline). An untimed process [8]
corresponds to a timed process with all delays 0 and all
deadlines w, so we write ¢ e f for ¢ @ f and f e« e
for f o .

Example 11: Recall the obligation of the hospital given in
the introduction, where the event delete (“the patient’s record
is deleted”’) must happen within 14 days after the event release
(“a patient is released from the hospital”). We specify this
obligation with a timed response relation:

14d
release &#—— delete.

If we instead wish to model the provision that the event archive
(““archiving data) cannot be followed by the event unarchive
(“delete archived data™) for at least 8 years, we use a timed
condition:
. 8y .
unarchive e<— archive.

Markings. The marking M is a finite map from events to
triples (h,4,7), called the event state. The first component,

h € N U {0, L}, indicates whether the event happened, and
if so how many ticks ago, i.e., the event’s age. Namely, h €
N U {0} represents that the event happened h ticks ago and
1 represents that it did not happen. Note that an event may
happen several times, and the state only records the age of
the last occurrence. The second component, i € {1, T}, is a
boolean indicating whether the event is currently (i)ncluded.
Finally, the third component, » € N U {0,w, L}, indicates
whether the event is a pending (r)esponse, that is, obliged
to happen in the future, and if so a possible deadline. Here
r = L represents that it is not pending, a natural number
r € NU{0} represents an unfulfilled obligation that the event
should happen within 7 time steps, and w represents that the
event is obliged to happen eventually, i.e. without any fixed
deadline. We write dom(M) for the domain of the marking
M and take dom([M] T') = dom(M). As is commonly done
for environments, we write markings as finite lists of pairs
of events and states, e.g., M = e; : ®1,...,ex : Pp. We
understand the extension M, e : ® of such an environment M
to be undefined when e € dom(M).

B. Enabledness and effects

A process [M] T has some subset of its events enabled.
Enabled events can be executed and will, when executed, apply
an effect to the marking M, yielding a new marking M’. We
shall use these notions in Section III-C to define a timed
labelled transition system (LTS) for a given DCR process
[M] T, which has markings as states and event executions
and time steps as transitions. Given this LTS, we can then
define the language accepted by [M] T.

The notions of enabled events and effects are given by
the judgement [M] T + e : E,I, R, defined in Figure 3.
The judgement should be read: “in the marking M under the
constraints 7', e is enabled and will when executed have the
effect of excluding events E, including events I, and recording
the pending responses R, possibly with deadlines.”

Rules 1-2 formalise constraints between events. The first
rule says that if f is a condition for e, then e can happen only
when (1) it is itself included, and (2) if f is included, then f
previously happened at least & steps ago. The second says that
if f is a milestone for e, then e can happen only if (1) it is
itself included, and (2) if f is included, then it is not pending.

Rules 3-5 formalise the effects an event might have on other
events (and itself). The third rule says that if f is a response
to e with deadline d and e is included, then e can happen with
the effect of making f pending with deadline d. The fourth
(respectively fifth) rule says that if f is included (respectively
excluded) by e and e is included, then e can happen with the
effect of including (respectively excluding) f.

Rules 6-8 formalise the composition of rules. The sixth rule
says that for the completely unconstrained process 0, an event
e can happen if it is currently included. The seventh rule says
that a relation allows any included event e to happen without
effects when e is not constrained by that relation; that is, when
e is not the relation’s left-hand—side event. Finally, the last rule
accounts for compositionality: it says that if both 77 and T5

i=h>k 0
M, f: (hyi,_),e: (T, eo&f%e:@,(/),@
t=r=_1 @)
M, f:(i,r)e: (T,)] e fre:0,0,0
.)
[Mye: (_,T,)]ees fle:0,0,{f:d}
- - 4
Mye: (LT,)]e—=+ fre:0,{f}0
) X)
(M,e: (LT,)] e—=%fFe:{f},0,0
Me: (L T.0]0F e:0,0,0 ©
e f 7
(Mye: (LT,)l fRfEe:0,0,0
[M] T1 Fe: E17113R1 [M} T2 FGZEQ,IQ,RQ (8)

[M] Ty ‘TQFGZEl UFEy, I[1UIy, Ry URy

Fig. 3. Enabling and effects. We write “_” for “don’t care” and write R for
. k d
any of the relations e<—,o<—, e—, —+, or —%.

allow an event to execute, then so does T} | T, with the effect
of the event being the union of the component effects.

We proceed to define how the effects derived in Figure 3
affect a marking. Suppose e is enabled in the process [M] T
with the effect 6 = (F, I, R). We first register in the state
of e that it happened now (setting the age to 0) and that
it is no longer pending (setting the response deadline to
1). Formally, we define e(M) inductively by e(e) = e and
e(M, f: (h,i,r)) =e(M),f: (Wi "), where (h',i',7") =
(0,4, L) if e = f and otherwise (', %', 1") = (h,4,r). We then
apply the effect § = (E, I, R) of the event, that is, excluding
the events in FE, including the events in I and registering
response deadlines given in R. Formally, we inductively define
d(M) by 6{(e) = € and

(M, f: (h,i,7))
=6(M),f:(h,(infEE)V fEL,r), (9

included?

where v’ = min{d | f :d € R} if f:d€ Rand v =1
otherwise. That is, if f : d € R then f is marked pending
with the minimal deadline d for which f : d € R; otherwise,
it keeps the deadline recorded in the current state. Note that if
an event is both excluded and included by the effect, inclusion
takes precedence.

Example 12: Consider the process

[release : (L, T, L),delete: (L, T, L)] release % delete .
(10)

Both events have the same state: they have not been previously
executed, they are included, and they are not pending, i.e., have
no obligation to eventually execute. Following Figure 3, we
find that both events are enabled with the following effects:

release : (), 0, {delete : 14d} delete : 0,0,0.

Applying first the event release to the marking of (10), we
obtain the following (where we highlight changes in grey):

and

release(release : (L, T, L), delete: (L, T, 1))
=release: (|0, T, L),delete: (L, T,L1).
Now applying the effect (0, 0, {delete : 14d}) we get

(0,0, {delete : 14d})(release : (0, T, L),delete : (L, T, 1))
= release : (0, T, L), delete: (L, T, 14d).

That is, release is registered as having happened now (age 0)
and delete is registered with deadline 14d. A second example:

[archive : (L, T,w), unarchive : (L, T, L)]
. 8y .
unarchive e<— archive.

This process has only the single enabled and pending event
archive : (0, @, . The unarchive event is not enabled, as it has
an unfulfilled condition. Executing archive yields the following
marking (this time skipping the intermediate steps):

archive: (0, T, L), unarchive: (L, T,1).

In the new marking, archive is registered as having just
happened (age 0) and no longer pending (response deadline
1). The event unarchive is still not enabled, as the age of
archive must be at least 8y for unarchive to be enabled.
Example 13: Returning to the running example, we rep-
resent that the event a should happen before every tick by
making it initially pending and having itself as a response with
deadline 1, and we suppress b by making it initially excluded:

(1)

When applying the event a to the marking, a gets the state
(0, T, L), ie. age 0 and no longer pending, but when we
subsequently apply the effect (0, 0, {a : 1}), the deadline is set
to 1 thus yielding the marking [a: ({0, T, 1),b: (L, L, 1)].

[a: (L, T,0),b: (L, 1, 1) aesa.

C. Transition semantics

Prior to defining the LTS of a DCR process [M] T, we
must account for time. First, we define the function deadline
inductively on markings:

deadline(e) = w
deadline(M, e : (h,i,7)) = min{r’, deadline(M) }

where ' = r if ¢ = T, else ' = w. That is, deadlines of
excluded events are ignored. We use the deadline function to
ensure that time cannot progress beyond any deadline of an
included event. When time advances, we update the marking
by incrementing histories (“it is now k + 1 steps since the

[M]|Tke:0
THFMS §(e(M))

deadline(M) > 0

tick

T+ M 25 tick(M)

[EVENT] [TIME]

Fig. 4. Transition semantics.

event e happened”) and decrementing deadlines (“there are
now k — 1 steps left before we must do event €”). Formally,
we inductively define the effect of tick on a marking:

tick(e) = ¢,
tick(M, e : (hyi,7)) = tick(M),e: (h+ 1,4, max{0,r — 1}),

where L +1=1, 1 —1= 1 and w— 1 = w. Using tick(—)
and deadline, we give timed transition semantics to processes
in Figure 4. The event transition M <> M’ applies the effect
of an enabled event e to the marking M. Note that in general
more than one event e might be enabled. The time transition

M 5% A7 advances the time by one in the marking M. In
examples so far, we have given relative time with units like 14d
or 8y. These units are just a convenience; one may normalise
them to seconds, in which case they would be 1209600 or
252460800 respectively.

The transitions give rise to a timed event labelled transition
system (LTS).

Definition 14: A timed DCR process [M] T defines a
timed event LTS, Its([M] T) = (M, &', —, M, {', %), where
the components are: events £ = & W {tick}; transitions
— C M xE x M, where M = M'iff T - M = M’
states M = {M' | M —* M'}; initial state M and labelling
defined by ¢'(e) = {(e) for e € £ and ¢ (tick) = tick.

Definition 15: A run of Its([M] T) is a finite or infinite
sequence of transitions starting from the initial state M =
My 22 ..., for a; € E'.

The LTS has a notion of acceptance: a run is accepting iff
it is non-Zeno and every response is eventually discharged.
Recall that we write “_” for “don’t care”.

Definition 16: A run is live iff for every state M;, if
whenever an event e is pending in M;, i.e., M;(e) = (_, T, d)
for d # L, then there exists some j > ¢ such that either
M; < Mj or e is excluded in Mj, ie., M;(e) = (_, L,).
A run is accepting iff it is live and non-Zeno. A trace of a
process [M] T is a possibly infinite word s = (s;);cs such that
[M] T has an accepting run M; Ly Mgy with s; = ().
The timed language lang(P) of a process P is the set of traces
of P, which defines a security policy according to Definition 2.

Note that the set of traces is not necessarily prefix-closed,
e.g. the timed language of the running example process (11)
is indeed the policy (a™ tick)~.

Example 17: The following is a run of the process of (10):

release : (L, T, L), delete: (L, T,L1)
elease, release (0,T,L1),delete: (L, T, 14d)

tick

— release: (1, T,L),delete: (L, T, 13d)

delete

—— release : (1, T, L),delete: (0, T, L).

This run is non-Zeno and accepting. Other runs exist:

o release - tick is a non-accepting finite run.
o release - release - ... is an infinite Zeno run.
e tick - tick - ... is an infinite, non-Zeno, accepting run.

IV. DCR PoLicY EXAMPLES

We now illustrate the mechanics of specifying provisions
and obligations in a DCR process. We use these examples to
clarify the subsequent discussion and results about the proac-
tive enforceability of obligations. We consider a typical health-
care data retention policy like [19] from [2, Section 3.3].

A. Data protection in hospitals

Hospitals balance the dual requirements of protecting pa-
tients’ privacy while documenting treatments given and pro-
cedures followed. This tension is resolved by retaining patient
records in a central hospital database during the treatment and
moving the records to a restricted-access archive shortly after
the patient’s release. In practice, a policy might look like this:

1) Records must be deleted within 14 days of release.

2) Records must not be deleted if archival is pending.

3) Records must be archived for at least 8 years.

4) Records must not be deleted should the patient be re-
admitted within the 14 days.

We formalise this policy as a DCR process. For clarity, we
consider only a single fixed patient and set of records. The
events are as follows:

release The patient is released.

delete The patient’s records are deleted from the cen-
tral database.
The patient’s records are copied from the central
database to the restricted long-term archive.
The archived records are deleted.
The patient is re-admitted.

archive

unarchive
readmit

We formalise next the constraints 7, and effects. We model
the obligation 1) that records must be deleted within 14 days
of the patient’s release using a response.

14d
release e— delete
The provision in (2) is modelled using a milestone relation.
delete o< archive

Recall that a milestones means (in this case) that as long as we
have an unfulfilled obligation to execute archive, we cannot
execute delete.

Next, we model the retention requirement in (3) that records
must be archived by an (unbounded) response

release e— archive

and we model the timed provision that they should remain
for 8 years after archival by a condition relation with a time
constraint.
. 8y .
unarchive e<— archive

Note, this rule says that 8 years must pass before archived
records can be deleted, not that they must in fact be deleted.

If the patient is re-admitted, we must remove the obligation
to delete records (4). We model this using exclusion.

readmit —% delete

Once the patient is (re-)released, we must reinstate the obli-
gation to delete records. We model this using inclusion.

release —+ delete

Putting these rules together and re-arranging them for clarity,
we obtain the following set of rules:

14d .
To = release &+ delete | release e— archive
| release —+ delete | delete o+ archive

12
| readmit =% delete (12)

: 8 ,
| unarchive o< archive.

As for markings, we assume that initially, the patient is already
admitted. Although the textual description of the model above
does not say so explicitly, it stands to reason that it should not
be possible to delete patient records prior to release. Hence,
for our initial marking, we leave that event excluded:

My =release : (L, T, 1),
delete : (L, L, 1), archive: (L, T, 1),
unarchive : (L, T, L), readmit: (L, T, 1).

Altogether, our model is Py = [My] Tp.

B. Example runs

We consider a few runs of this model, presenting them as
tables. Each row starts with the event leading to the current
marking, which is represented by the rest of the row.

The common case: provisions and obligations. Refer to
Figure 5. The first row describes the initial marking M. No
event is previously executed as all h (happened) columns are
L. All events but delete are included as can be seen from
the ¢ (included) columns. No events are pending since all r
columns are 1. We walk through the sequence of events.

1) release is executed. The age of release is set to “just
executed” (h = 0). Looking at our constraints 7j in (12),
we see that executing release imposes obligations to
delete within 14 days and to eventually archive; these
obligations are reflected in the marking by the change
to r = 14d for the former and r = w for the latter.
Moreover, Tj also stipulates that delete is now included,
which is reflected in the marking by the changetoi = T.

2) 4d passes. The age of release and the deadline for delete
are respectively incremented and decremented by 4 days.
Note that the “eventual” deadline w for archive remains
as w—4d = w.

3) archive is executed. This meets the deadline of archive,
which is then cleared.

4) 1d passes. The age and deadlines are updated.

5) delete is executed. The deadline for delete is cleared.
Note that unarchive still cannot execute as it is con-
ditional on archive having happened at least 8y in the
past.

... . 8 .
6) 10y passes. The condition unarchive o2 archive is now
fulfilled, hence unarchive is now executable.
7) unarchive is executed.

An attempted violation. Will records be deleted? Consider the
run in Figure 6. The event delete has deadline 0 at the end
of the run and is still included. That means that the minimum
response deadline, deadline(M) is now 0, and so the tick-
transition cannot fire, that is, time cannot advance. (Obviously,
an enforcement mechanism cannot rely on stopping time;
rather, it must take care to avoid finding itself in a situation
where advancing time would violate the policy. We will
return to this in Section V-A.) Hence, the model prevents this
potential policy violation by refusing to let time pass in this
state. To allow time to pass again, we must either re-admit the
patient (thereby excluding the pending delete event), releasing
the patient again (thereby extending the deadline of delete by
another 14 days), or delete the records. Neither re-admitting
nor releasing the patient again make sense as a general way to
enforce the policy. And we cannot delete the records straight
away since, because of the milestone delete ¢<— archive and
the fact that archive is pending, we must first archive the
records—see Figure 7.

As we will see in Section V, this policy is enforceable
only if either the event readmit, the event release, or both the
events archive and delete can be executed by the PEP. Also
note that if, for instance, only archive but not delete can be
controlled by the PEP, then one can consider policy redesign.
For instance, one can introduce an event notify (notifying the
IT Department’s Data Retention Officer of undeleted data) that
is controllable by the PEP, is enabled when the deadline of
delete is met, and cancels the delete event by excluding it.

14d . . 14d .
release e— notify | notify e<— release | notify —% delete.

This is an instance of a general escalation pattern for dealing
with uncontrollable events with deadlines. It is suggestive
of the way obligations are often traditionally treated: rather
than preventing the original policy from being violated, the
enforcement mechanism triggers remedial actions such as
notifications or logging information for subsequent audits.

Re-admission—dynamic exclusion of obligations. Figure 8
presents the case where a patient is readmitted. The initial
markings in the first two events follow the first example: the
patient is release’ed, and four days pass (row 4d). The patient
is readmit’ted. Following the rules Tj, readmit excludes the
delete event (¢ =). Ten days pass (row 10d). Notice that the
deadline for delete reaches zero. However, this zero-deadline
does not prevent time from progressing further: because delete
is excluded, this zero does not contribute to the computation
of the minimum deadline deadline(M). So another four days
pass (row 4d). By the definition of tick(—), the deadline for

Event release delete archive unarchive readmit
h i h) r h i T h i r|h 1 r
- 1 T 1 L L 1 1 T 1 L T L] L T L
release 0 T 1 1 T 14d 1 T |w 1 T L] L T L
4d 4d T 1 L T 10d L T w L T L] L T L
archive 4d T 1 L T 10d 0 T L L T L] L T L
1d 5d T 1 1 T 9d 1d T 1 L. T L] L T L
delete 5d T 1 0 T 1 1d T 1 L T L|]L T L
10y 10y5d T L | 10y T 1 10yld T L 1 T L|]L T L
unarchive 10ysd T L | 10y T 1 0oyld T L o T L|L T L
Fig. 5. “Common case” run.
Event release delete archive unarchive readmit
h i r | h) r h i r h i r | h i r
— L T 1] 1L L1 1 <. T L |L T L|L T L
release 0 T L L T 14d | L T w |L T L |L T L
14d l4d T L | L T 0 1L T w|L T L |L T L
Fig. 6. “Attempted violation” run.
archive | 14d T L | L T 0 o T L |L T L|L T L
delete 144 T L]0 T L o T L |L T L|L T L
Fig. 7. Continuation of the “attempted violation” run.
Event release delete archive unarchive readmit
h i r | h) T h 1+ r | h 1 r h i
- 1 T 1|14 L1 L L T L|L T L1 1L T 1
release 0 T 1| L T 14d | L T w/| L T L 1 T L
4d 4d T 1|14 T 1d | L T w| L T L L T 1
readmit 4d T 1] 1L L 1d | L T w| L T L 0 T 1
10d l4d T L1 | 1L L 0 L T w|L T L1 10d T L
4d 18d T L | L L 0 L T w|L T L1 1l4d T L
release 18d T L | L T 14d | L T w| L T L 4d T L
Fig. 8. “Dynamic exclusion of obligations” run.

the excluded delete event cannot become negative and thus
remains zero. When the patient is finally again release’ed,
release has its usual effects: it includes delete, and resets its
deadline to 14d. Note the semantics: an event can have only
one response deadline; setting a new response deadline cancels
the previous one.

V. PROACTIVE ENFORCEMENT OF DCR POLICIES

We now consider what is necessary for a DCR policy to
be proactively enforceable. That is, under what circumstances
does an enforcement mechanism exist for the policy?

A. Enforceability and Time-locks

It might happen that the deadline for meeting an obligation
has arrived, but the action required to meet the obligation
would violate the (overall) security policy.

Example 18: Suppose we were to add the constraints

ly . .
early & unarchive | archive =% early

to the data retention policy 7j given previously in (12). These
new constraints model that the patient can request that his
records are unarchived early, no later than a year after the
request, but this request can only be made before archival.
These new constraints would contradict the old constraint that
unarchival cannot happen before 8§ years after archival:

release unarchive archive
h i r | h i r h i r
- LT L|L T L 1 T L
release 0 T L|L T 1 1 T |lw
early o T L|L T Ily 1 T w
archive 0 T 1L]L1L T 1y 0 T L
ly ly T L |1 T 0 ly T L

In the last state, the event unarchive must happen now, but it
cannot due to the required delay of 8 years since archive. The
deadline would be extended by re-executing early, but early
is excluded. This process is not deadlocked: release can still
happen. It is, however, time-locked: it has reached a marking

from which time cannot possibly advance.

Definition 19 ([16]): A process [M] T is fime-locked iff no
marking M’ reachable from M has T+ M’ LNy VLS

We conclude that a DCR policy is not necessarily enforce-
able, even if all events are controllable and causable: If there
is a time-lock in a policy, then there are target systems for
which no correct transparent enforcement mechanism exists,
since one cannot prevent time from advancing.

Theorem 20: Let P be the language of a DCR process P
that has a time-lock. Assume that P non-empty and take as tar-
get system (prefixes(P), dom(P) U {tick},dom(P),dom(P)).
Then no transparent enforcement mechanism m is correct
for P.

We can decide whether a DCR policy has a time-lock, using
that its LTS is extended bisimilar [14] to a finite one (see the
Appendix).

Proposition 21: It is decidable whether a DCR process P
is time-lock free.

But decidable is not the same as feasible:

Definition 22: Let P = [M;] T be a DCR process, and let
e be an event of P. We say that e is eventually executable in
P iff there is a transition sequence M; 2N Mo N
M,i1 = N.

Lemma 23: There exists an NLOGSPACE-reduction from
boolean satisfiability to eventual executability for time-lock—
free DCR processes.

Theorem 24: (a) Deciding eventual executability of any e in
any DCR process P is NP-hard; and (b) deciding time-lock—
freedom for DCR processes is NP-hard.

B. Avoiding Time-locks

We have just seen that the existence of an enforcement
mechanism for a DCR policy depends at least on the policy’s
time-lock—freedom. We now give a polynomial-time com-
putable sufficient condition for a DCR policy to be time-
lock free, which also supports the effective computation of
a sequence of events that averts violating a given deadline.
We call such a DCR policy “resolvable”. In Section V-C, we
use this notion to define a correct, transparent enforcement
mechanism for resolvable DCR policies.

Definition 25 (Resolvability): Let P = [M] T be a DCR
process and S C dom(M) a subset of events. We say that
P is S-resolvable iff for any marking M’ reachable from M
with deadline(M’) = 0, there exists a {ej,...,e,} C .S such
that (1) the following is a transition sequence:

M M2 S M
and (2) deadline(M),) > 0. Assume a particular choice of
such a sequence and define resolve([M’] T') to be the (partial)
function that exhibits this choice.

That is, in any reachable state with one or more deadlines
about to be missed, one may execute some sequence of the
events in the set S to avoid missing those deadlines.

Lemma 26: A DCR process P is time-lock—free iff it is
S-resolvable for some S.

Example 27: 1t is easily verified that the policy T given
in Section IV is S-resolvable for S = {release}, or S =
{readmit}, or S = {delete, archive}.

Note that a DCR process P can be time-lock—free and
yet have no way to accept, e.g., [e: (L, T,w)] e oL . This
lemma has the subtle consequence that resolvability does not
entail that any trace of P can be ext