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Abstract 
An entire potpourri of ideas is listed from the past decades of Computer Science and 
Computer Technology. Widely acclaimed at their time, many have lost in splendor and 
brilliance under today’s critical scrutiny. We try to find reasons. Some of the ideas are 
almost forgotten. But we believe that they are worth recalling, not the least because one 
must try to learn from the past, be it for the sake of progress, intellectual stimulation, or 
fun. 
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1. Introduction 
The history of Computing has been driven by many good and original ideas. Not only a 
few of them turned out to be less brilliant than they appeared at the beginning. In many 
cases, and this is typical for technology, their importance was reduced by changes in the 
technological environment. Often also commercial factors influenced the importance of a 
good idea. And some ideas simply turned out to be less effective and less glorious, when 
reviewed in retrospect, or seen after proper analysis. Other ideas turned out to be 
reincarnations of ideas invented earlier and then forgotten, perhaps because they were 
ahead of their time, perhaps because they had not flattered current fashions and trends. 
And some ideas were reinvented, although they had already been bad in their first round. 

This led me to the idea of collecting a number of such good ideas which turned out to be 
less than brilliant in retrospect. The motivation to do so has been triggered by a recent 
talk of Charles Thacker about Obsolete ideas – ideas deteriorating by aging. I also 
rediscovered an article by Don Knuth titled The dangers of computer-science theory. 
Thacker’s talk was delivered behind the Chinese Wall, Knuth’s in Romania in 1970 
behind the Iron Curtain, both safe places against damaging “Western Critique”. 
Particularly Knuth’s document with its tongue in cheek attitude encouraged me to write 
down this collection of stories. No claim is made for its completeness. 

The collection starts with a few unsuccessful concepts from the area of computer 
technology, and then proceeds with questionable ideas in computer architecture. Some of 
them can well be justified in the context of their time, but are obsolete in the present. 
Then follows a collection of ideas from the realm of programming languages, particularly 
from the early proponents. And finally, we mention miscellaneous topics from 
programming paradigms to software (compiler) technology. 

2. Hardware Technology 
Speed has always been the prevalent and almost exclusive concern of computer 
engineers. Refining existing techniques has been one alley to pursue this goal, looking for 
alternative solutions the other. Some of these searches were unsuccessful, and here are a 
few of them. 

During the times when magnetic core memories were dominant, the idea of the magnetic 
bubble memory appeared. As usual, great hopes were connected to it. It was planned to 
replace all kinds of mechanically rotating devices, which were the primary sources of 
troubles and unreliability. Although magnetic bubbles would still rotate in a magnetic 
field within a ferrite material, there would be no mechanically moving part. Like disks, 
they were a serial device. But they never achieved sufficient capacity, and the progress in 
disk technology was such that not only capacity, but also the speed of the bubbles became 
inferior. The idea was quietly buried after a few years of research. 

A new technology that kept high hopes alive over decades was that of  cryogenic devices, 
particularly in the domain of supercomputers. Ultra high switching speeds were 
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promised, but the effort to operate large computing equipment at temperature close to 
absolute zero was prohibitive. The appearance of personal computers working on your 
table let cryogenic dreams either evaporate or freeze. 

Then there was the idea of using tunnel diodes in place of transistors as switching and 
memory elements. The tunnel diode (so named because of its reliance on a quantum 
effect of electrons passing over an energy barrier without having the necessary energy) 
has a peculiar characteristic with a negative segment. This allows it to assume two stable 
states. The tunnel diode is a germanium device and has no counterpart on the basis of 
silicon. This made it work over a relatively narrow temperature range only. Silicon 
transistors became faster and cheaper at a rate that let researchers forget the tunnel diode. 

The same phenomenal progress in silicon transistor fabrication never let gallium-arsenide 
transistors live up to the high expectations with which they were introduced. Silican bears 
the inherent advantage that its own oxyde is an ideal insulator, thus simplifying 
fabrication processes. Other materials such as gallium-arsenide – the 3-5 technology in 
general - are now rarely used in computer technology, but have their application in the 
niche of very high frequency communication. 

It now even appears that the once dominant bipolar transistor is counting its days, as field 
effect transistors become ever faster, smaller and cheaper, because it has become possible 
to grow extremely thin oxyde layers (gates). However, this does not mean that the bipolar 
transistor had been a bad idea. 

3. Computer Architecture 
3.1. Representation of Numbers 

A rewarding area for finding “good” ideas is that of computer architecture. A 
fundamental issue at the time was the choice of representation of numbers, in particular 
integers. The key question was the choice of their base. Virtually all early computers, 
with the exception of Konrad Zuse’s, featured base 10, that is, a representation by 
decimal digits, just as everybody was used to and had learnt in school. 

However, it is clear that a binary representation with binary digits is much more 
economical. An integer n requires log10(n) decimal digits in decimal and log2(n) binary 
digits (bits) in binary representation. Because a decimal digit requires 4 bits, decimal 
representation requires about 20% more storage than binary, showing the clear advantage 
of the binary form. Yet, the decimal representation was retained for a long time, and even 
persists today in the form of library modules. 

The reason is that people insisted in believing that all computations must be accurate. 
However, errors occur through rounding, for example after division. The effects of 
rounding may differ depending of the number representation, and a binary computer may 
yield different results than a decimal computer. Because traditionally financial 
transaction – and that is where accuracy matters! – were computed by hand with decimal 
arthmetic, it was felt that computers should produce the same results in all cases, in other 
words, commit the same errors. 

Although the binary form will in general yield more accurate results, the decimal form 
remained the preferred form in financial applications, as a decimal result can easily be 
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hand-checked if required. Although perhaps understandable, this was clearly a 
conservative idea. It is worth mentioning that until the advent of the IBM System 360 in 
1964, which featured both, binary and decimal arithmetic, manufacturers of large 
computers kept two lines of products, namely binary computers for their scientific 
customers, and decimal computers for their commercial customers. A costly practice! 

In early computers, integers were represented by their magnitude and a separate sign bit. 
In machines which relied on sequential addition digit by digit, the sign was placed at the 
low end in order to be read first. When bit parallel processing became possible, the sign 
was placed at the high end, again in analogy to the notation commonly used on paper. 
However, using a sign-magnitude representation was a bad idea, because addition 
requires different circuits for positive and negative numbers. Representing negative 
integers by their complement was evidently a far superior solution, because addition and 
subtraction could now be handled by the same circuit. Some designers chose 1’s 
complement, where –n was obtained from n by simply inverting all bits, some chose 2’s 
complement, where –n is obtained by inverting all bits and then adding 1. The former has 
the drawback of featuring two forms for zero (0…0 and 1…1). This is nasty, particularly 
if available comparison instructions are inadequate. For example, in the CDC 6000 
computers, there existed an instruction testing for zero, recognizing both forms correctly, 
but an instruction testing the sign bit only, classifying 1…1 as a negative number, making 
comparisons unnecessarily complicated. This was a case of inadequate design, revealing 
1’s complement as a bad idea. Today, all computers use 2’s complement arithmetic. 

decimal 2’s complement 1’s complement 

2 010 010 
1 001 001 
0 000 000 or 111 
-1 111 110 
-2 110 101 

Numbers with fractional parts can be represented by fixed or floating point forms. Today, 
hardware usually features floating-point arithmetic, that is, a representation of a number x 
by two integers, an exponent e and a mantissa m, such that x = Be×m. For some time, 
there was discussion about which exponent base B should be chosen. The Burroughs 
B5000 introduced B = 8, and the IBM 360 used B = 16, both in 1964, in contrast to the 
conventional B = 2. The intention was to save space through a smaller exponent range, 
and to accelerate normalization, because shifts occur in larger steps of 3 (or 4) bit 
positions only. This, however, turned out to be a bad idea, as it aggravated the effects of 
rounding. As a consequence, it was possible to find values x and y for the IBM 360, such 
that, for some small, positive ε, (x+ ε)×(y+ ε) < (x × y). Multiplication had lost its 
monotonicity! Such a multiplication is unreliable and potentially dangerous. 

3.2. Data addressing 
Instructions of the earliest computers consisted simply of an operation code and an 
absolute address (or a literal value) as parameter. This made self-modification by the 
program unavoidable. For example, if numbers stored in consecutive memory cells had to 
be added in a loop, the address of the add instruction had to be modified in each step by 
adding 1 to it. Although the possibility of program modification at run-time was heralded 
as one of the great consequences of John von Neumann’s profound idea of storing 
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program and data in the same memory, it quickly turned out to enable a dangerous 
technique and to constitute an unlimited source of pitfalls. Program code must remain 
untouched, if the search for errors was not to become a nightmere. Program’s self-
modification was recognized as an extremely bad idea. 

The solution was to introduce another addressing mode which allowed one to treat an 
address as a piece of variable data rather than (a part of) an instruction in the program, 
which would better be left untouched. The solution was indirect addressing and 
modifying the directly addressed address (a data word) only. Although this removed the 
danger of program self-modification, and although it remained a common feature of most 
computers until the mid 1970s, it should be considered in retrospect as a questionable 
idea. After all, it required two memory accesses for each data access, and hence caused a 
considerable slow-down of the computation. 

The situation was made worse by the “clever” idea of multi-level indirection. The data 
accessed would indicate with a bit, whether the referenced word was the desired data, or 
whether it was another (possibly again indirect) address. Such machines (e.g. HP 2116) 
were easily brought to a standstill by specifying a loop of indirect addresses. 

The solution lay in the introduction of index registers. To the address constant in the 
instruction would be added the value stored in an index register. This required the 
addition of a few index registers (and an adder) to the accumulator of the arithmetic unit. 
The IBM 360 merged them all into a single register bank, as is now customary. 

A peculiar arrangement was used by the CDC 6000 computers: Instructions directly 
referred to registers only, of which there were 3 banks: 60-bit data (X) registers, 18-bit 
address (A) registers, and 18-bit index (B) registers. Memory access was implicitly 
evoked by every reference to an A-register (whose value was modified by adding the 
value of a B-register). The odd thing was that references to A0 – A5 implied the fetching 
of the addressed memory location into the corresponding X0 – X5 register, whereas a 
reference to A6 or A7 implied the storing of X6 or X7. Although this arrangement did not 
cause any great problems, it is in retrospect fair to classify it as a mediocre idea, because 
a register number determines the operation performed, i.e. the direction of data transfer. 
Apart from this, the CDC 6000 featured several excellent ideas, primarily its simplicity. It 
can truly be called the first RISC machine, although it was designed by S. Cray in 1962, 
well before this term became coined around 1980. 

A much more sophisticated addressing scheme was invented with the Borroughs B5000 
machine. We refer to its descriptor scheme, primarily used to denote arrays. A so-called 
data descriptor was essentially an indirect address, but in addition also contained index 
bounds to be checked at access–time. Although automatic index checking was an 
excellent and almost visionary facility, the descriptor scheme was a questionable idea, 
because matrices (multi-dimensional arrays) required a descriptor of an array of 
descriptors, one for each row (or column) of the matrix. Every n-dimensional matrix 
access required an n-times indirection. The scheme evidently did not only slow down 
access due to its indirection, but also required additional rows of descriptors. 
Nevertheless, the poor idea was adopted by the designers of Java in 1995 and of C# in 
2000. 

3.3. Expression Stacks 
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The language Algol 60 not only had a profound influence on the development of further 
programming languages, but - to a much more limited extent – also on computer 
architecture. This should not be surprising, as language, compiler and computer form an 
inextricable complex. 

The first topic to be mentioned in this connection is the evaluation of expressions which, 
in Algol, could be of arbitrary complexity, with subexpressions being parenthesized and 
operators having their individual binding strengths. Results of subexpressions have to be 
stored temporarily. As an example, take the expression 

(a/b) + ((c+d)*(c-d)) 

It would be evaluated in the following steps yielding temporary results t1 … t4: 

t1 := a/b; t2 := c+d; t3 := c-d; t4 := t2*t3; x := t1 + t4 

F. L. Bauer and E. W. Dijkstra independently proposed a scheme for the evaluation of 
arbitrary expressions. They noticed that when evaluating from left to right, obeying 
priority rules and parentheses, the last item stored is always the first to be needed. It 
therefore could conveniently be placed in a push-down list (a stack): 

t1 := a/b; t2 := c+d; t3 := c-d; t2 := t2*t3; x := t1 + t2 

It was a straight forward idea to implement this simple strategy using a register bank, 
with the addition of an implicit up/down counter holding the index of the top register. 
Such a stack reduced the number of memory accesses and avoided the explicit 
identification of individual registers in the instructions. In short, stack computers seemed 
to be an excellent idea. The scheme was implemented by the English Electric KDF-9 and 
the Borroughs B-5000 computers. It obviously added to their hardware complexity. 

How deep should such a stack be? After all, registers were expensive resources. The B-
5000 chose to use 2 registers only, and an automatic pushdown into memory, if more 
than two intermediate results had to be stored. This seemed reasonable. As Knuth had 
pointed out in an analysis of many Fortran programs, the overwhelming majority of 
expressions required only 1 or 2 registers. Still, the idea of an expression stack proved to 
be rather questionable, particularly after the advent of architectures with register banks in 
the mid 1960s. Now simplicity of compilation was sacrificed for any gain in execution 
speed. The stack organization had restricted the use of a scarce resource to a fixed 
strategy. But now sophisticated compilation algorithms proved to utilize registers in a 
more economical way, given the flexibility of specifying individual registers in each 
instruction. 

3.4. Variable length data 

Computers oriented towards the data processing market typically featured decimal 
arithmetic, and also provisions for variable length data. Both texts (strings) and numbers 
(decimal digits) are predominant in these applications. The IBM 1401 has been clearly 
oriented towards string processing, and it was manufactured in very large quantities. It 
featured not an 8-bit word length – the prevalent character size in those times was 6 bits! 
- but a 9-bit byte (the word byte was not yet common either before 1964). One of the bits 
in each word served to mark the end of the string or number, and it was called the stop-
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bit. Instructions for moving, adding, comparing and translating would process byte after 
byte sequentially and terminate when encountering a stop-bit. 

This solution of treating variable length data seems to be a fairly bad idea. After all, it 
“wastes” 11% of storage for stop-bits, whether needed or not. Later computers let this 
problem be solved by software without hardware support. Typically, either the end of a 
string is marked by a zero byte, or the first byte indicates the length. Also here, the 
information about length requires storage, but only for strings, and not for every byte in 
the store. 

3.5. Storing return addresses in the code 

The subroutine jump instruction, invented by D. Wheeler, deposits the program counter 
value in a place, from where it is restored upon termination of the subroutine. The 
question is: “Where is that location to be?” In several computers, particularly 
minicomputers, but also the CDC 6000 main frame, a jump instruction to location d 
would deposit the return address at d, and then continue execution at location d+1: 

mem[d] := PC+1; PC := d+1 

This was definitely a bad idea for at least two reasons. First, it prevented a subroutine to 
be called recursively. Recursion was introduced by Algol and caused much controversy, 
because procedure calls, as subroutine calls were now called, could no longer be handled 
in this simple way, because a recursive call would overwrite the return address of the 
previous call. Hence, the return address had to be fetched from the fixed place dictated by 
the hardware and redeposited in a place unique to the particular incarnation of the 
recursive procedure. This “overhead” appeared to be unacceptable to many computer 
designers as well as users, and hence they resorted to declare recursion as undesirable, 
useless and forbidden. They did not want to notice that the difficulty arose because of 
their inadequate call instruction. 

The second reason why this solution was a bad idea is that it prevented multiprocessing. 
Each concurrent process had to use its own copy of the code. This is a simple result from 
the mistake of not keeping program code and data separated. We leave aside the question 
of what would happen if an interrupt occurs after depositing PC and before reloading the 
PC register. 

Some later hardware designs, notably the RISC architectures of the 1990s, 
accommodated recursive procedure calls by introducing specific registers dedicated to 
stack addressing, and to deposit return addresses relative to their value. We shall return to 
this topic later, but merely mention here that depositing the return address in one of the 
general purpose registers (presuming the availability of a register bank) is probably the 
best idea, because it leaves the freedom of choice to the compiler designer while keeping 
the basic subroutine instruction as efficient as possible. 

3.6. Virtual addressing 
Just as compiler designers had asked hardware architects to provide features catering to 
their needs, so did operating system designers put forward their favorite ideas. Such 
wishes appeared with the advent of multi-processing and time-sharing, the concepts that 
gave birth to operating systems in general. The guiding idea was to use the processor in 
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an optimal way, switching it to another program as soon as the one under execution 
would be blocked by, for example, an input or output operation. The various programs 
were thereby executed in interleaved pieces, quasi concurrently. As a consequence, 
requests for memory allocation (and release) occurred in an unpredictable, arbitrary 
sequence. Yet, individual programs were compiled under the premise of a linear address 
space, a contiguous memory block. Worse, physical memory would typically not be large 
enough to accommodate sufficiently many processes to make multi-processing beneficial. 

The clever solution out of this dilemma was found in indirect addressing, this time hidden 
from the programmer. Memory would be subdivided into blocks or pages of fixed length 
(a power of 2). A (virtual) address would be mapped into a physical address by using a 
page table. As a consequence, individual pages could be placed anywhere in store and, 
although spread out, would appear as a contiguous area. Even better, pages not finding 
their slot in memory could be out placed in the backyard, on large disks. A bit in the 
respective page table entry would indicate, whether the data were currently on disk or in 
main memory. 

This clever and complex scheme was useful in its time. But it displayed its difficulties 
and problems. It practically required all modern hardware to feature page tables and 
address mapping, and to hide the cost of indirect addressing – not to speak of disposing 
and restoring pages on disk in unpredictable moments – from the unsuspecting user. Even 
today, most processors use page mapping, and most operating systems work in the multi-
user mode. But today it has become a questionable idea, because semiconductor 
memories have become so large, that the trick of mapping and outplacing is no longer 
beneficial. Yet, the overhead of indirect addressing and the complex mechanism still 
remain with us. 

Ironically, the mechamism of virtual addressing keeps being used for a purpose for which 
it had never been intended: Trapping references to non-existant objects, against use of 
NIL pointers. NIL is represented by 0, and the page at address 0 is never allocated. this 
dirty trick is a misuse of the heavy virtual addressing scheme, and it should have been 
solved in a straight-forward way. 

3.7. Memory protection and user classes 
There is one concept which at first sight may still justify the mapping mechanism: 
Protection. Every system allowing several concurrent users must provide a safeguard 
against mutual interferences. Mutual protection of program and data of one user from the 
other users must be guaranteed. Such a scheme inherently requires a distinction between 
users with different rights, called privileges. In principle, two classes suffice, one for the 
“regular” user programs subjected to access restrictions, and the other for a “supervisor” 
program with unlimited access rights in order to be able to allocate and mark memory 
blocks to new user programs and to recycle them after a program had terminated. If a 
user program tried to access memory beyond its allocated part, presumably because of an 
error, then it would be trapped and control returned to the supervisor program which, 
supposedly, was free of errors. Access rights were easily registered in page tables. 

On closer inspection one realizes that the need for protection and classes of programs 
arises from the fact that programs are possibly erroneous in the sense of issuing requests 
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for memory outside their allocated memory space, or accessing devices that should not be 
directly manipulated. If all programs were written in a proper programming language, 
this should not even be possible, because – if the language is correctly implemented – no 
reference to resources not named in the program would be possible. Protection must be 
implicit in compiled programs; it should be guaranteed by software. 

Readers who doubt the sensibility of this postulate, must be reminded that modern 
programming systems rely on automatic garbage collection for storage management. A 
garbage collector requires exactly the same access safety as a multi-user system does. 
Without this safety, a garbage collector may destroy “accidentally” any information even 
in a single-user system at any moment. A truly safe system would have to require that all 
code be produced by correct compilers, and that they and all generated code would be 
immutable. We notice that this requirement almost completely renounces von Neumann’s 
glorious idea of programs being accessible as data in their common store. 

Hence, hardware protection appears as a crutch, covering only a small part of possible 
transgressions, and dispensable if software were implemented safely. It appears now as 
having been a good idea at its time that should have been superceded in the meantime. 

3.8. Complex Instruction Sets 
Early computers featured small sets of simple instructions, because they had to operate 
with a minimal amount of expensive circuitry. With hardware getting cheaper, the 
temptation rose to incorporate instructions of a more complicated nature, such as 
conditional jumps with three targets, instructions that incremented, compared, and 
conditionally branched all in one, or complex move and translate operations. With the 
advent of high-level languages, the desire arose to accommodate certain language 
constructs with correspondingly tailored instructions. A good example is Algol’s for 
statement, or instructions for (recursive) procedure calls. Feature-tailored instructions 
were a smart idea, because they contributed to code density, which was important at a 
time when memory was a scarce resource, consisting of 64 KByte or less. 

This trend had set in as early as 1963. The Burroughs B5000 machine not only 
accommodated many complicated features of Algol – more about it later – but it 
combined a scientific computer with a character string machine, it included two 
computers with different instruction sets. Such an extravagance had become possible with 
the technique of microprograms stored in fast read-only memories. This feature also 
made the idea of a computer family feasible: The IBM Series 360 consisted of a set of 
computers, all with the same instruction set and architecture, at least as far as it was 
visible to a programmer. However, internally the individuals differed vastly. The low-end 
machines were microprogrammed, the genuine hardware executing a short microprogram 
interpreting the instruction code. The high-end machines, however, implemented all 
instructions directly. This technology continued with single-chip microprocessors like 
Intel’s 8086, Motorola’s 68000, and National’s 32000. 

The NS processor is a fine example featuring a complex instructions set (CISC). 
Congealing frequent instruction patterns into a single instruction improved code density 
by a significant factor and reduced the number of memory accesses, increasing execution 
speed. 
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The NS processor accommodated, for example, the new concept of module and separate 
compilation with an appropriate call instruction. Code segments were linked when 
loaded, the compiler having provided tables with linking information. It is certainly a 
good idea to minimize the number of linking operations, which replace references to the 
link tables by adsolute addresses. The scheme, which simplifies the task of the linker, 
leads to the following storage organization for every module. 

 

Fig. 1. Module layout in store 

A dedicated register MOD points to the descriptor of module M, which contains the 
procedure P currently being under execution. Register PC is the regular program counter. 
Register SB contain the address of M’s data segment, containing M’s static, global 
variables. All these registers change their values, whenever an external procedure is 
called. To speed up this process, the processor offers the CXP (call external proceure) in 
addition to the regular BSR (branch subroutine). Of course, also a paor of corresponding 
returns is available: RXP, RTS. 

Assume now that a procedure P in a module M is to be activated. The CXP instruction’s 
parameter d specifies the entry in the current link table. From this is obtained the address 
of M’s descriptor, and also the offset of P within M’s code segment. from the descriptor, 
then, the address of M’s data segment is obtained and loaded into SB. All this with a 
single, short instruction! However, what had been gained in linking simplicity and in 
code density, must be paid somewhere, namely by an increased number of indirect 
references, and, incidentally, by additional hardware, the MOD and SB registers. 
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A second, similar example was an instruction to check array bounds. It compared an 
array index against the array’s lower and upper bounds, and it caused a trap, if the index 
did not lie withing the bounds, thereby combining two comparsion and two branch 
instructions in one. 

Several years after our Oberon compiler had been built and released, new, faster versions 
of the processor appeared. They went with the trend to implement frequent, simple 
instructions directly by hardware, and to let the complex ones be interpreted by an 
internal microcode. As a result, those language-oriented instructions became rather slow 
compared to the simple operations. So I decided to program a new version of the 
compiler which refrained from using the sophisticated instructions. The result was 
astonishing! The new code was considerably faster than the old one. It seems that the 
computer archictect and we as compiler designers had “optimized” in the wrong place.  

Indeed, advanced microprocessors in the early 1980s started to compete with old main 
frames, featuring very complex and irregular instruction sets. In fact, instruction sets had 
become so complex that most programmers could use only a small fraction of them. Also 
compilers selected only from a subset of the available instructions, a clear sign that 
hardware architects had gone overboard. The reaction became manifest in the form of  
the reduced instruction set computers (RISC), notably the Arm, Mips and Sparc 
architectures around 1990. They featured a small set of simple instructions, all executing 
in a single clock cycle, a single addressing mode, and a fairly large, single bank of 
registers, in short: a highly regular structure. They debunked the CISCs as a bad idea! 

3.9. Register windows 
When a procedure is called, a block of storage for its local variables must be allocated. 
When the procedure is terminated, this storage is to be released. A most convenient 
scheme for this purpose is the stack, because release is for free and involves merely the 
resetting of an address (stack pointer) in a register. 

An often used technique for code optimization is to allocate the most frequently accessed 
variables in registers. Ideally, all variables would reside in registers. However, if only a 
few in each procedure block would remain in registers, a substantial gain in speed could 
already be achieved. This led to the idea of register windows: Upon call of a procedure, 
the current set of registers is pushed down, and a new set becomes available for the new 
block. As it was foreseeable that memory would become faster, larger, and cheaper in the 
future, more and more of these registers would be placed in real fast storage without the 
programmer having to adapt his programs. This was the idea of scalability. It led to the 
Sparc Processor with the built-in mechanism of register windows: Of the entire stack of 
registers, only those on top – in the window – are accessible. Every procedure call opens 
a new window, every termination pops it off the stack. 

This seemed like a rather clever idea. But it turned out to be a questionable one, although 
the Sparc architecture survived as one of the successful examples of RISCs, and it was 
later copied by Intel’s Itanium processor. The reason why it must be considered as 
questionable, is that at any moment only the top registers, those in the most recently 
opened window, are under direct use and are therefore frequently accessed. The others 
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are quasi dormant, yet consume a scare, expensive resource. Thus, register windows 
imply a poor utilization of the most expensive resource. 

4. Programming Language Features 
A fertile ground for controvercial ideas is the subject of programming languages. Here, 
some of the ideas were not only questionable, but known to be bad from the outset. We 
try to avoid discussing the merits and atrocities of individual languages. We will rather 
concentrate our attention to individual concepts and constructs that have possibly 
appeared in several languages. We shall mostly base our discussion on features proposed 
by Algol in 1960 and by some of its successors [1]. 

Before starting to list individual features, it seems necessary to explain on which basis to 
assess them. Most people consider a programming language merely as a code with the 
sole purpose of constructing software to be “run” by computers. We consider a language 
as a model of computation and programs as formal texts amenable to mathematical 
reasoning. The model must be defined in such a way that its semantics are defined 
without reference to an underlying mechanism, be it physical or abstract. This evidently 
lets a complex set of features and facilities explained in large volumes of manuals appear 
as a patently bad idea. Actually, a language is not so much characterized by what it 
allows to program, but more so by what it prevents from being expressed. Quoting the 
late E. W. Dijkstra, the programmer’s most difficult, daily task is to not mess things up. It 
seems to me that the first and noble duty of a language is to help in this eternal struggle. 

4.1. Notation and Syntax 

It has become fashionable to regard notation as a secondary issue depending purely on 
personal taste. This may partly be true; yet the choice of notation should not be 
considered an arbitrary matter. It has consequences, and it reveals the character of a 
language. 

A notorious example for a bad idea was the choice of the equal sign to denote 
assignment. It goes back to Fortran in 1957 and has blindly been copied by armies of 
language designers. Why is it a bad idea? Because it overthrows a century old tradition to 
let “=” denote a comparison for equality, a predicate which is either true or false. But 
Fortran made it to mean assignment, the enforcing of equality. In this case, the operands 
are on unequal footing: The left operand (a variable) is to be made equal to the right 
operand (an expression). x = y does not mean the same thing as y = x. Algol corrected 
this mistake by the simple solution: Let assignment be denoted by “:=”. 

Perhaps this may appear as nitpicking to programmers who got used to the equal sign 
meaning assignment. But mixing up assignment and comparison is a truly bad idea, 
because it requires that another symbol be used for what traditionally was expressed by 
the equal sign. Comparison for equality became denoted by the two characters “==” (first 
in C). This is a consequence of the ugly kind, and it gave rise to similar bad ideas using 
“++”, “--“, “&&” etc. 

Some of these operators exert side-effects (in C, C++, Java, and C#), a notorious source 
of programming mistakes. It might be acceptable to let, for example, ++ denote 
incrementation by 1, if it would not also denote the incremented value (or the value to be 
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incremented?), thereby allowing expressions with side-effects. The heart of the trouble 
lies in the elimination of the fundamental distinction between statement and expression.  
The former is an instruction, and it is executed; the latter stands for a value to be 
computed, and it is evaluated. 

The ugliness of a construct usually appears in combination with other language features. 
In C, we may write, for example, x+++++y, a riddle rather than an expression, and a 
challenge for a sophisticated parser! Guess what? Is its value is equal to ++x+++y+1? Or 
is the following correct? 

x+++++y+1==++x+++y x+++y++==x+++++y+1 

One is tempted to postulate a new algebra! It is indeed absolutely surprising with which 
eqanimity this notational monster was accepted by the world-wide programmer’s 
community. 

A similar break with established convention was the postulation of operators being right-
associative in the language APL in 1962. x+y+z now suddenly stood for x+(y+z), and x-
y-z for x-y+z. What a treacherous pitfall! 

A case of unfortunate syntax rather than merely poor choice of a symbol was Algol’s 
conditional statement. It was offered in two forms, S0, S1 being statements: 

if b then S0 
if b then S0 else S1 

This definition has given rise to an inherent ambiguity and became known as the 
dangling else problem.. For example, the statement 

if b0 then if b1 then S0 else S1 

can be interpreted in two ways, namely 

if b0 then (if b1 then S0 else S1) 
if b0 then (if b1 then S0) else S1 

possibly leading to quite different results. The next example appears even graver: 

if b0 then for i := 1 step 1 until 100 do if b1 then S0 else S1 

because it can be parsed in two ways, yielding quite different computations: 

if b0 then [for i := 1 step 1 until 100 do if b1 then S0 else S1] 
if b0 then [for i := 1 step 1 until 100 do if b1 then S0] else S1 

The remedy, however, is quite simple: Use an explicit end symbol in every construct that 
is recursive and begins with an explicit start symbol, like if, while, for, case: 

if b then S0 end 
if b then S0 else S1 end 

4.2. The GO TO statement 
Which other feature could serve better as a starting point for a list of bad ideas? The go to 
statement has been the villain of many critics. It is the direct counterpart in languages to 
the jump in instruction sets. It can be used to construct conditional as well as repeated 
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statements. But it also allows to construct any maze or mess of program flow. It defies 
any regular structure, and makes structured reasoning about such programs difficult if not 
impossible. 

Let us explain why the go to statement became the prototype of a bad idea in 
programming languages. The primary tools in our struggle to comprehend and control 
complex objects are structure and abstraction. An overly complex object is broken up into 
parts. The specification of each part abstracts from aspects that are irrelevant for the 
whole, whose relevance is local to the object itself. Hence, the design of the whole can 
proceed with knowledge limited to the object’s specifications, to its interface. 

As a corollary, a language must allow, encourage, or even enforce formulation of 
programs as properly nested structures, in which properties of the whole can be derived 
from properties of the parts. Consider, for example, the specification of a repetition R of a 
statement S. It follows that S appears as a part of R. We show two possible forms: 

R0: while b do S end 
R1: repeat S until b 

The key behind proper nesting is that known properties of S can be used to derive 
properties of R. For example, given that a condition (assertion) P is left valid (invariant) 
under execution of S, we conclude that P is also left invariant when execution of S is 
repeated. This is formally expressed by Hoare’s rules 

{P & b} S {P} implies {P} R0 {P & ¬b} 
{P} S {P} implies {P} R1 {P & b} 

If, however, S contains a go to statement, no such assertion is possible about S, and 
therefore neither any deduction about the effect of R. This is a great loss. Practice has 
indeed shown that large programs without go to are much easier to understand, and that it 
is very much easier to give any guarantees about their properties. 

Enough has been said and written about this non-feature to convince almost everyone that 
it is a primary example of a bad idea. The designer of Pascal retained the goto statement 
(as well as the if statement without closing end symbol). Apparently he lacked the 
courage to break with convention and made wrong concessions to traditionalists. But that 
was in 1968. By now, almost everybody has understood the problem, but apparently not 
the designers of the latest commercial programming languages, such as C#. 

4.3. Switches 
If a feature is a bad idea, then features built on top of it are even worse ideas. This rule 
can well be demonstrated by the switch concept. A switch is essentially an array of 
labels. Assuming, for example, labels L1, … L5, a switch declaration in Algol may look 
as follows: 

switch S := L1, L2, if x < 5 then L3 else L4, L5 

Now the apparently simple statement goto S[i] is equivalent to 

if i = 1 then goto L1 else 
if i = 2 then goto L2 else 
if i = 3 then 
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if x < 5 then goto L3 else goto L4 else 
if i = 4 then goto L5 

If the goto is suitable for programming a mess, the switch makes it impossible to avoid it. 

A most suitable replacement of the switch was proposed by C.A.R.Hoare in 1965: The 
case statement. This construct displays a proper structure with component statements to 
be selected according to the value i: 

case i of 
 1: S1 | 2: S2 | ……….. | n: Sn 
end 

However, modern programming language designers chose to ignore this elegant solution 
in favor of a formulation that is a bastard between the Algol switch and a structured case 
statement: 

switch (i) { 
case 1: S1; break; 
case 2: S2; break; 
… ; 
case n: Sn; break; } 

Either the break symbol denotes a separation between consecutive statements Si, or it acts 
as a goto to the end of the switch construct. In the first case, it is superfluous, in the 
second a goto in disguise. A bad concept in a bad notation! The example stems from C. 

4.4. Algol’s complicated for statement 
Algol’s designers recognized that certain frequent cases of repetition would better be 
expressed by a conciser form than in combination with goto statements. They introduced 
the for statement, which is particularly convenient in use with arrays, as for example in 

for i := 1 step 1 until n do a[i] := 0 

If we forgive the rather unfortunate choice of the words step and until, this seems a 
wonderful idea. Unfortunately, the good idea was infected with a bad idea, the idea of 
imaginative generality. The sequence of values to be assumed by the control variable i 
can be specified as a list: 

for i := 2, 3, 5, 7, 11 do a[i] := 0 

Furthermore, these elements could be general expressions: 

for i := x, x+1, y-5, x*(y+z) do a[i] := 0 

Not enough, also different forms of list elements were to be allowed: 

for i := x-3, x step 1 until y, y+7, z while z < 20 do a[i] := 0 

Naturally, clever minds would quickly concoct pathological cases, demonstrating the 
absurdity of the concept: 

for i := 1 step 1 until i do a[i] := 0 
for i := 1 step i until i do i := - i 
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The generality of Algol’s for statement should have been a warning signal to all future 
designers to always keep the primary purpose of a construct in mind, and to be weary of 
exaggerated generality and complexity, which may easily become counter-productive. 

4.5. Own variables 

Algol had introduced the concept of locality. Every procedure spans its own scope, 
implying that identifiers declared in the procedure would be local and invisible outside 
the procedure. This was probably the most significant innovation introduced by Algol. 
Yet, it turned out to be not quite right in certain situations. Specifically, when entering a 
procedure, all local variables are fresh variables. This implies that new storage must be 
allocated upon entry and released upon exit of the procedure. So far, so good. However, 
in some cases it might be desirable to have the value of a variable upon exit remembered 
when the procedure is reentered the next time. Evidently, its storage could then not be 
released. Algol provided for this option by simply letting the variable be declared as own. 
A popular example for this case is a procedure for generating pseudo-random numbers: 

  real procedure random; own real x; begin x := (x*a + b) mod c; random := x end 

Already this simple example exhibits the crux buried in this concept: How is the initial 
seed assigned to the variable x owned by random? Any solution turns out to be rather 
cumbersome. A further unresolved question is the meaning of own in the case of 
recursion. Evidently, the problem lay deeper. The simple introduction of the symbol own 
had evidently created more problems than it had solved. 

The problem lay in Algol’s clever notion of tying together the concepts of scopes of 
identifiers with that of lifetime of objects. An identifier became visible when the 
identified object came into existence (at block entry), and became invisible, when it 
ceased to exist (at block exit). The close connection between visibility and existence had 
to be broken up. This was done later (in Mesa, Modula, Ada) by introducing the concept 
of module (or package). A module’s variables are global, but accessible only from 
procedures declared within the module. Hence, when a procedure (local to and exported 
from the module) is terminated, the module’s variables continue to exist, and when the 
procedure is called again, the old values reappear. The module hides the variables 
(information hiding), which are initialized either when the module is loaded or by an 
explicit call of an initialization procedure. 

This example displays the problems that appear when different concepts – here 
information hiding and liveness – are represented by a single language construct. The 
solution is to use separate constructs to express the separate concepts, the module for 
information hiding, the procedure for liveness of data. A similar case of an unfortunate 
marriage is given by some object-oriented languages, which tie together (1) objects with 
pointers, and (2) modules with types, called classes. 

4.6. Algol’s name parameter 
Algol introduced procedures and parameters in a much greater generality than was known 
in older languages (Fortran). In particular, parameters were seen as in traditional 
mathematics of functions, where the actual parameter textually replaces the formal 
parameter [3]. For example, given the declaration 
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real procedure square(x); real x; square := x * x 

the call square(a) is to be literally interpreted as a*a, and square(sin(a)*cos(b)) as 
sin(a)*cos(b) * sin(a)*cos(b). This requires the evaluation of sine and cosine twice, 
which in all likelihood was not the intention of the programmer. In order to prevent this 
frequent, misleading case, a second kind of parameter was postulated in addition to the 
above name parameter: the value parameter. It meant that a local variable (x’) is to be 
allocated that is initialized with the value of the actual parameter (x). With 

real procedure square(x); value x; real x; square := x * x 

the above call was to be interpreted as  

x’ := sin(a) * cos(b); square := x’ * x’ 

avoiding the wasteful double evaluation of the actual parameter. The name parameter is 
indeed a most flexible device, as is demonstrated by the following examples. 

Given the declaration 

real procedure sum(k, x, n); integer k, n; real x; 
begin real s; s := 0; 
 for k := 1 step 1 until n do s := x + s; 
 sum := s 
end 

Now the sum a1 + a2 + … + a100 is written simply as sum(i, a[i], 100), the inner product 
of vectors a and b as sum(i, a[i]*b[i], 100) and the harmonic function as sum(i, 1/i, n). 
But generality, as elegant and sophisticated as it may appear, has its price. A little 
reflection reveals that every name parameter must be implemented as an anonymous, 
parameterless procedure. Will the unsuspecting programmer gladly pay for the hidden 
overhead? Of course, a cleverly designed compiler might “optimize” certain cases. The 
smart designer will rejoyce about the challenge presented by such a wonderful feature! 

The reader will perhaps ask at this point: “Why all this fuss?” Perhaps he will come 
forward with the suggestion to simply drop the name parameter from the language. 
However, this measure would be too drastic and therefore unacceptable. It would, for 
example, preclude assignments to parameters in order to pass results back to the caller. 
The suggestion, however, led to the replacement of the name parameter by the reference 
parameter in later languages such as Algol W, Pascal, Ada, etc. For today, the message is 
this: Be skeptical towards overly sophisticated features and facilities. At the very least, 
their cost to the user must be known before a language is released, published, and 
propagated. This cost must be commensurate with the advantages gained by the feature. 

4.7. Incomplete parameter specifications 
This issue is almost a continuation of the previous one, as it concerns parameters. It so 
happened that the language failed to require complete type specifications for parameters. 
It now almost appears as an oversight, but one with grave consequences. Algol permitted, 
for example, the following declaration: 

real procedure f(x, y); f := (x-y)/(x+y) 
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Given variables  

integer k; real u, v, w 

the following calls are possible: 

u := f(2.7, 3.14); v := f(f(u+v), 10); w := f(k, 2) 

So far, so (more or less) good. More problematic is the following: 

real procedure g; g := u*v + w; 
u := f(g, g) 

Apparently, one cannot deduce from the declaration of f, whether a variable, an 
expression, or a function will be substituted for a given formal parameter, nor whether the 
function’s parameters are of the correct number and types. When such a formal parameter 
is accessed, a test at run-time must first determine, whether the corresponding actual 
parameter is a variable, an expression, or a function. This is an overhead unacceptable in 
most practical applications. 

The story might end here, being of academic interest only, that is, without consequences. 
But it does not. After all, the challenge was issued to fulfill the postulated language rules, 
and quite obviously the question arose, whether hardware support might provide the 
remedy. The Burroughs Corporation went farthest along this path with its B5000 
computer. We have already mentioned the introduction of data descriptors to access 
arrays, and now we follow with the program descriptor for procedures. Data and program 
descriptors differed from data words by their tag field values. If a program descriptor was 
accessed by a regular load instruction, not only a simple memory access was performed, 
but a procedure call. In short, what cannot be decided by inspection of the program, i.e. at 
compile-time, has to be done at run-time. Proper hardware support was the last resort. It 
was found in an instruction that can either be a simple data fetch or a complex procedure 
call, depending on a tag in the accessed word. 

But was this a good or a bad idea? Rather the latter, not only because the mentioned 
computer was complicated, expensive, and therefore less than successful in the market, 
but because it is not wise to include very complex instructions, whose benefit is marginal. 
After all, the language feature that led to these complications must be considered a 
mistake, a design flaw, and competent programmers would provide complete parameter 
specifications anyway in the interest of program clarity. The urge to obey the Algol 
specification to its last letter was an idea of questionable wisdom. 

In closing this topic, we present a short procedure declaration, simply to show how a 
combination of features, apparently innocent in isolation, can turn into a puzzle. 

procedure P(Boolean b; procedure q); 
begin integer x; 
 procedure Q; x := x+1; 
 x := 0; 
 if b then P(¬b, Q) else q; 
 write(x) 
end 

Which values will be written by calling  P(true, P)? Is it 0, 1, or 1, 0? 
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4.8. Loopholes 
One of the worst features ever is the loophole. This author makes this statement with a 
certain amount of tongue in cheek and uneasiness, because he infected his languages 
Pascal, Modula, and even Oberon with this deadly virus. 

The loophole lets the programmer breach the type checking by the compiler. It is a way 
to say: “Don’t interfere, as I am smarter than the rules”. Loopholes take many forms. The 
most common are explicit type transfer function, such as 

x := LOOPHOLE[i, REAL] Mesa 
x := REAL(i) Modula 
x := SYSTEM.VAL(REAL, i) Oberon 

But they can also be disguised as absolute address specifications, or by variant records as 
in Pascal. In the examples above, the internal representation of integer i is to be 
interpreted as a floating-point (real) number. This can only be done with knowledge 
about number representation, which should not be necessary when dealing with the 
abstraction level provided by the language. In Pascal and Modula [4], loopholes were at 
least honestly displayed, and in Oberon they are present only through a small number of 
functions encapsulated in a pseudo-module System, which must be imported and is thus 
explicitly visible in the heading of any module in which such low-level facilities are used. 
This may sound like an excuse, but the loophole is nevertheless a bad idea. 

Why, then, was it introduced? The reason was the desire to implement total systems in 
one and the same (system programming) language. For example, a storage manager must 
be able to look at storage as a flat array of locations without data types. It must be able to 
allocate blocks and to recycle them, independent of any type constraints. Another 
example where a loophole is required is the device driver. In earlier computers, devices 
were accessed by special instructions. Later, devices were instead assigned specific 
memory addresses. They were “memory-mapped”. Thus arose the idea to let absolute 
addresses be specified for certain variables (Modula). But this is a facility that can be 
abused in many clandestine and tricky ways. 

Evidently, the “normal” user will never need to program a storage manager nor a device 
driver, and hence has no need for those loopholes. However – and this is what really 
makes the loophole a bad idea – also the “normal” programmer has the loophole at his 
disposal. Experience showed that he will not shy away from using it, but rather 
enthusiastically grab the loophole as a wonderful feature and use it wherever possible. 
This is particularly so, if manuals caution against its use! 

It remains to say, that the presence of a loophole facility usually points to a deficiency in 
the language proper, it reveals that certain things could not be expressed that might be 
important. An example of this kind is the type address in Modula, which had to be used 
to program data structures with different types of elements. This was made impossible by 
the strict, static typing strategy, which demanded that every pointer was statically 
associated with a fixed type, and could only reference such objects. Knowing that 
pointers were addresses, the loophole in the form of an innocent looking type transfer 
function would make it possible to let pointer variables point to objects of any type. Of 
course, the drawback was that no compiler could check the correctness of such 
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assignments. The type checking system was overruled, and might as well not have 
existed. Remember: A chain is only as strong as its weakest member. 

The clean solution given in Oberon [6] is the concept of type extension, in object-oriented 
languages called inheritance. Now it became possible to declare a pointer as referencing 
a given type, and it would be able to point to any type which was an extension of the 
given type. This made it possible to construct inhomogeneous data structures, and to use 
them with the security of a reliable type checking system. An implementation must check 
at run-time, if and only if it is not possible to check at compile-time,. 

Programs expressed in languages of the 1960s were full of loopholes. They made these 
programs utterly error-prone. But there was no alternative. The fact that a language like 
Oberon lets you program entire systems from scratch without use of loopholes (except in 
the storage manager and device drivers) marks the most significant progress in language 
design over 40 years. 

5. Miscellaneus techniques 
The last section of bad ideas stems from the wide area of software practice, or rather from 
the narrower area of the author’s experiences. Some of the latter were made 40 years ago, 
but what can be learnt from them is still as valid today as it was then. Some reflect more 
recent practices and trends, mostly supported by the abundant availability of hardware 
power. 

5.1. Syntax analysis 
The 1960s were the decade of syntax analysis. The definition of Algol by a formal syntax 
provided the necessary underpinnings to turn language definition and compiler 
construction into a field of scientific merit. It established the concept of the syntax-driven 
compiler, and it gave rise to many activities for automatic syntax analysis on a 
mathematically rigorous basis. The notions of top-down and bottom-up principles, of the 
recursive descent technique, of measures for symbol look-ahead and backtracking were 
created. This was also accompanied with efforts to define language semantics more 
rigorously by piggybacking semantic rules onto corresponding syntax rules. 

As it happens with new fields of endeavor, research went rather beyond the needs of the 
first hour. More and more powerful parser generators were developed, which managed to 
handle ever and ever more general and complex grammars. Albeit this was an intellectual 
achievement, the consequence was less positive. It led language designers to believe that 
no matter what syntactic construct they postulated, automatic tools could surely detect 
ambiguities, and some powerful parser would certainly cope with it. A misled idea! No 
such tool would give any indication how that syntax could be improved. Not only had 
designers ignored the issue of efficiency, but also the fact that a language serves the 
human reader, and not only the automatic parser. If a language poses difficulties to 
parsers, it surely does so for the human reader too. Many languages would be clearer and 
cleaner, had their designers been forced to use a simple parsing method. 

I can strongly support this statement by my own experiences. After having contributed in 
the 1960s to the development of parsers for precedence grammars, and having used them 
for the implementation of the languages Euler and Algol W, I decided to switch to the 
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simplest parsing method for Pascal, the method of top-down, recursive descent. The 
experience was most encouraging, and I stuck to it up to this day with great satisfaction. 

The drawback, if one wants to call so this advantage, is that considerably more careful 
thought has to go into the design of the syntax prior to publication and any effort of 
implementation. This additional effort will be more than compensated in the later use of 
both language and compiler. 

5.2. Extensible languages 
The phantasies of computer scientists in the 1960s knew no bounds. Spurned by the 
success of automatic syntax analysis and parser generation, some proposed the idea of the 
flexible, or at least extensible language. The notion was that a program would be 
preceded by syntactic rules which would then guide the general parser while parsing the 
subsequent program. A step further: The syntax rules would not only precede the 
program, but they could be interspersed anywhere throughout the text. For example, if 
someone wished to use a particularly fancy private form of for statement, he could do so 
elegantly, even specifying different variants for the same concept in different sections of 
the same program. The concept that languages serve to communicate between humans 
had been completely blended out, as apparently everyone could now define his own 
language on the fly. The high hopes, however, were soon damped by the difficulties 
encountered when trying to specify, what these private constructions should mean. As a 
consequence, the intreaguing idea of extensible languages faded away rather quickly. 

5.3. Nested procedures and Dijkstra’s display 
Local variables for every procedure! That was one of the greatest inventions of Algol. 
The idea to declare other procedures along with variables local to procedures was only 
natural and straight-forward. It was a natural consequence for any mathematically trained 
mind. But sometimes even straight-forward concepts cause substantial complications for 
their implementation. The nesting of procedures is such an example. The problem lies in 
the addressing of variables (or objects more generally). To understand it, we need some 
preliminaries. 

Let us assume the following constellation of three nested procedures P, Q, and R: 

procedure P; 
begin integer i;  
 procedure Q; 
 begin integer j; 
  procedure R; 
  begin integer k; (*P, Q, R, i, j, k visible here*) 
  end of R; 
  (*P, Q, R, i, j visible here*) 
 end of Q; 
 (*P, Q, i visible here*) 
end of P 

How are i, j, and k addressed in the body of R? The possibility of recursion prevents 
static addressing. Every procedure call establishes a frame for its own local variables. 
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They are addressed relative to the frame’s base address, preferably located in a register. 
Typically, these frames are placed in a stack (the procedure stack in contrast to the 
expression stack), and the frames are linked. Therefore, every access is preceded by 
descending along this link chain by a number of steps which is given by the difference in 
nesting levels between the accessed variable and the accessing procedure. In the example 
above, in the body of R the base of k is found by descending 0 steps, the base of j by 
descending 1 step, and the base of i by descending 2 steps in the link. 

This simple scheme is, unfortunately, wrong. In addition to the mentioned dynamic link 
also a static link must be maintained. The static link always points to the block of the 
static environment of a procedure. Even if this chain is usually quite short, variable 
access is slowed down, if previously a linked chain has to be traversed. E. W. Dijkstra 
therefore proposed to circumvent the traversal of a list by mapping the links into an array 
of contiguous memory cells (or registers) called the display, and to use the block level as 
index. 

The crux of the scheme lies in the fact that the display has to be updated every time a 
procedure is called and, unfortunately, sometimes also when it is terminated. Such 
updates may well involve several registers, as the following pathological example shows: 

procedure A(procedure X); 

C 

B 

A(R) 

Q 

P 

R 

begin integer x;  
 procedure B; dynamic link static link 
 begin integer y; 
  procedure C; 
  begin integer z; X 
  end of C; 
  C 
 end of B; 
 B 
end of A; 

procedure P; 
begin integer i;  
 procedure Q; 
 begin integer j; 
  procedure R; 
  begin integer k;  
  end of R; 
  A(R) 
 end of Q; 
 Q 
end of P 

Fig. 2. Procedure frame stack with links 

A call of P will evoke the sequence of subsequent activations of  P, Q, A, B, C, R. Within 
R only the blocks of R, Q and P are accessible with respective variables k, j, i. Upon exit 
from R visibility switches back to blocks C, B, A with respective variables z, y, x. It 
turned out that the good idea had aggravated rather than solved the problem. 
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It is indeed difficult to estimate in such complex situations, whether the introduction of a 
display makes programs more efficient due to faster memory access (no chain traversals), 
or whether it slows them down because of the overhead of display updates. This strongly 
depends on the frequency of variable access versus procedure call. In 1970 we had 
implemented Pascal for the CDC 6000 computer, and it occurred to the author that indeed 
procedure calls became slower and code longer due to the presence of a display. 
Therefore, we tried to do without display and found that the compiler itself had become 
faster and shorter. The display was a disputable idea. 

However, as so often with “optimizations”, the benefit varies among different programs. 
Obviously, the display does not affect at all programs without nested procedures. Indeed, 
we have here an optimization that seldom can be applied, as intermediate level variables 
are relatively rare. The Burroughs Algol compiler did not cater for such variables. All 
accesses had to be either global or strictly local. This was probably a good idea, also with 
respect to programming clarity. 

The main lesson here is that when implementing an optimization facility, one must first 
find out whether it is worth while. Usually, it is worth while only for frequently used 
constructs. 

5.4. Tree-structured symbol tables 

Compilers construct symbol tables. They are built up while processing declarations, and 
they are searched during the processing of statements. In languages that allow nested 
scopes, every scope is represented by its own table. 

Traditionally these tables are binary trees in order to allow fast searching. Having also 
quietly followed this long-standing tradition, the author dared to doubt the benefit of trees 
when implementing the Oberon compiler. As soon as doubts occur, one is quickly 
convinced that tree structures are not worth while for local scopes. In the majority of 
cases, procedures contain a dozen or even fewer local variables. The use of a linked 
linear list is then both simpler and more effective. 

In programs 30 and 40 years ago, most variables were declared globally. So perhaps a 
tree structure was justified for the global scope. In the meantime, however, skeptizism 
against the value of global variables had been on the rise. Modern programs do not 
feature many globals, and hence also in this place a tree structured table is hardly 
recommendable. 

Modern programming systems are compositions of many modules, each of which 
probably contains some globals (mostly procedures), but not hundreds. The many globals 
of early programs have become distributed over many modules and are referenced not by 
a single identifier, but by a name combination M.x defining the initial search path. 

The use of sophisticated data structures for symbol tables had evidently been a poor idea. 
Once we had even considered balanced trees! 

5.5. Using wrong tools 

Using the wrong tools is obviously an intrinsically bad idea. The trouble is that often one 
discovers a tool’s inadequacy only after having invested a substantial amount of effort to 



 24

build and understand it, and the tool thus having become “valuable”. This happened to 
the author and his team when implementing the first Pascal compiler in 1969. 

The tools available for writing programs were an assembler, a Fortran and an Algol 
compiler. The latter was so poorly implemented that we did not dare rely on it, and work 
with assembler code was considered dishonorable. There remained only Fortran. 

Hence our naïve plans were to construct a compiler for a substantial subset of Pascal 
using Fortran, and when completed, to translate it into Pascal. Afterwards, the classical 
bootstrapping technique would be employed to complete, refine, and improve the 
compiler. 

This plan, however, crashed in the face of reality. When step one was completed after 
about one man-year’s labor, it turned out that translation of the Fortran code into Pascal 
was quite impossible. That program was so much determined by Fortran’s features, or 
rather its lack of any, that there was no other option than to write the compiler afresh. 
Fortran did not feature pointers and records, and therefore symbol tables had to be 
squeezed into the unnatural form of arrays. Fortran did not feature recursive subroutines. 
Hence the complicated table-driven bottom-up parsing technique had to be used with 
syntax represented by arrays and matrices. In short, the advantages of Pascal could only 
be employed by a completely rewritten and restructured, new compiler. 

This “incident” revealed, that the apparently easiest way is not always the right way, but 
that difficulties also have their benefits: This new compiler, written in Pascal, could not 
be tested during development, because no Pascal compiler was available yet. The whole 
program for compiling at least a very substantial subset of Pascal, had to be written 
without feedback from testing. This was an exercise that was extremely healthy, and it 
would be even more so today, in the era of quick trial and interactive error correction. 
After we believed that the compiler was “complete”, one member of the team was banned 
to his home to translate the program into a syntax-sugared, low-level language, for which 
a compiler was available. He returned after two weeks of intensive labor, and a few days 
later the first test programs were compiled correctly by the compiler written in Pascal. 
The exercise of conscientious programming proved to have been extremely valuable. 
Never contain programs so few bugs, as when no debugging tools are available! 

Thereafter, new versions, handling more and more of Pascal’s constructs, and producing 
more and more refined code, could be obtained by bootstrapping. Immediately after the 
first bootstrap, we discarded the translation written in the auxiliary language. Its character 
had been much alike that of the ominous low-level language C, published a year later. 
After this experience, it was hard to understand that the software engineering community 
did not recognize the benefits of adopting a high-level, type-safe language instead of C. 

5.6. Wizards 
We have discussed the great leaps forward in parsing technology originating in the 1960s. 
The results are ever-present since those years. Hardly anybody now constructs a parser by 
hand. Instead, one buys a parser generator and feeds it the desired syntax. 

This brings us to the topic of automatic tools, now being called wizards. The idea is that 
they are to be considered as black boxes, and that the user would not have to understand 
their innards, as they were optimally designed and laid out by experts. The idea is that 
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they automate simple routine tasks, relieving computer users from bothering about them. 
Wizards supposedly help you – and this is the key – without your asking, as a faithful, 
devoted servant. 

Although it would be unwise to launch a crusade against wonderful wizards, this author’s 
experiences with wizards were largely unfortunate. He found it impossible to avoid 
confronting them in text editors. Worst are those wizards that constantly interfere with 
one’s writing, automatically indenting and numbering lines when not desired, capitalizing 
certain letters and words at specific places, combining sequences of characters into some 
special symbol, ☺, automatically converting a sequence of minus signs into a solid line, 
etc. If at least they could easily be deactivated, but typically they are obstinate and 
immortal like devils. So much for clever software for dummies: a bad idea! 

6. Programming paradigms 

6.1. Functional programming 

Functional languages had their origin in Lisp [2]. They have undergone a significant 
amount of development and change, and they have been used to implement small and 
large software systems. This author has always maintained a critical attitude towards such 
efforts. Why? 

What is, or what characterizes a functional language? It has always appeared that it was 
their form, the fact that the entire program consists of function evaluations, nested, 
recursive, parametric, etc. Hence the term functional. However, the core of the idea is 
that functions inherently have no state. This implies that there are no variables and no 
assignments. The place of variables is taken by immutable function parameters, variables 
in the sense of mathematics. As a consequence, freshly computed values cannot be 
reassigned to the same variable, overwriting its old value. This is why repetion must be 
expressed with recursion. A data structure can at best be extended, but no change is 
possible in its old part. This yields an extremely high degree of storage recycling; a 
garbage collector is the necessary ingredient. An implementation without automatic 
garbage collection is unthinkable. 

To postulate a state-less model of computation on top of a machinery whose most 
eminent characteristic is state, seems to be an odd idea, to say the least. The gap between 
model and machinery is wide, and therefore costly to bridge. No hardware support 
feature can wash this fact aside: It remains a bad idea for practice. This has in due time 
also been recognized by the protagonists of functional languages. They have introduced 
state (and variables) in various tricky ways. The purely functional character has thereby 
been compromised and sacrificed. The old terminology has become deceiving. 

Looking back at the subject of functional programming, it appears that its truly relevant 
contribution was certainly not its lack of state, but rather its enforcement of clearly nested 
structures, and of the use of strictly local objects. This discipline can, of course, also be 
practiced using conventional, imperative languages, which have subscribed to the notions 
of nested structures, functions and recursion long ago. Of course, functional 
programming implies much more than avoiding goto statements. It also implies 
restriction to local variables, perhaps with the exception of very few global state 
variables. It probably also considers the nesting of procedures as undesirable. The B5000 
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computer apparently has been right, after all, in restricting access to strictly local and 
strictly global variables. 

Are functional languages thus a category of their own merely due to terminology? Are 
their functions functions by form only, but not by substance? Or is the substance of the 
functional paradigm expressed by simply saying: “No side-effects”? 

Many years ago, and with increasing frequency, it is claimed that functional languages 
are the best vehicle to introduce parallelism. It would be more to the point to say: To 
facilitate compilers to detect opportunities for parallelizing a program. After all, it is 
relatively easy to determine which parts of an expression may be evaluated concurrently. 
More important is that parameters of a called function may be evaluated concurrently, 
provided, of course, that side-effects are banned (which cannot occur in a truly functional 
language). As this may be true and perhaps of marginal benefit, this writer believes that a 
more effective way to let a system make good use of parallelism is provided by object-
orientation, each object representing its own behaviour in the form of a “private” process. 

6.2. Logic programming 
Another instance of programming paradigm that has received wide attention is that of 
logic programming. Actually, there is only a single well-known language representing 
this paradigm: Prolog. Its principal idea is that the specification of actions, such as 
assignment to variables, is replaced by the specification of predicates on states. If one or 
several of a predicate’s parameters are left unspecified, the system searches for all 
possible argument values satisfying the predicate. This implies the existence of a search 
engine looking for solutions of logic statements. This mechanism is complicated, often 
time-consuming, and sometimes inherently unable to proceed without intervention. This, 
however, requires that the user must support the system by providing hints (cuts), and 
therefore must understand what is going on, must understand the process of logic 
inference, the very thing that he had been promised to be able to ignore. 

One must suspect that an interesting intellectual exercise was sold to the public by raising 
great expectations. The community was in desperate need for ways to produce better, 
more reliable software, and was glad to hear of a possible panacea. But the promises 
never materialized. We sadly recall the exaggerated hopes that fueled the project of the 
Japanese Fifth Generation Computer, Prolog’s inference machines. Large amounts of 
resources were sunk into it. That was an unwise and now forgotten idea. 

6.3. Object-oriented programming 
In contrast to functional and logic programming, object-oriented programming (OOP) 
rests on the same priciples as conventional, procedural programming. Its character is 
imperative. A process is described as a sequence of transformations of a state. The 
novelty is the partitioning of a global state into individual objects, and the association of 
the state transformers (called methods) with the object itself. The objects are seen as the 
actors, causing other objects to alter their state by sending messages to them. The 
description of an object template is called a class definition. 

This paradigm closely reflects the structure of systems “in the real world”, and it is 
therefore well suited to model complex systems with complex behaviour. Not 
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surprisingly, oop has its origins in the field of system simulation (Simula, Dahl and 
Nygaard, 1966). Its success in the field of software system design speaks for itself. Its 
career started with the language Smalltalk [5] and continued with Object-Pascal, C++, 
Eiffel, Oberon, Java, C#. The original Smalltalk implementation provided a convincing 
example of its suitability. It was the first to feature windows, menues, buttons and icons, 
perfect examples of (visible) objects in the sense outlined above. These examples were 
the carriers to success and wide acceptance. The direct modelling of actors diminished 
the importance of proving program correctness analytically, because the original 
specification is one of behaviour, rather than a static input-output relationship. 

Nevertheless, the careful observer may wonder, where the core of the new paradigm 
would hide, what was the essential difference to the traditional view of programming. 
After all, the old cornerstones of procedural programming reappear, albeit embedded in a 
new terminology: Objects are records, classes are types, methods are procedures, and 
sending a method is equivalent to calling a procedure. True, records now consist of data 
fields and, in addition, methods; and true, the feature called inheritance allows the 
construction of heterogeneous data structures, useful also without object-orientation. Was 
this change of terminology expressing an essential paradigm shift, or was it a vehicle for 
gaining attention, a “sales trick”? 

7. Concluding remarks 
A collection of ideas has been presented, stemming from a wide spectrum of computing 
science, and having been widely acclaimed at their time. For various reasons a closer 
inspection reveals certain weaknesses. Some of the ideas are hardly relevant now, due to 
changes and advances in the underlying technology, some others have been clever ideas 
solving a local problem no longer important, and some have received attention and 
success for various non-technical reasons. 

We believe that we can learn not only from bad ideas and past mistakes, but even more 
from good ideas, analysing them from the distance of time. This collection of topics may 
appear as accidental, and it is certainly incomplete. Also, it is written from an 
individual’s perspective, with the feeling that Computing Science would benefit from 
more frequent analysis, critique, particularly self-critique. After all, thorough self-critique 
is the hallmark of any subject claiming to be a science.  
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