
The Allure and Risks of a Deployable Software Engineering Project:
Experiences with Both Local and Distributed Development

Bertrand Meyer Marco Piccioni
Department of Computer Science Department of Computer Science

Clausiusstrasse 59 Clausiusstrasse 59
8092 Zurich, Switzerland 8092 Zurich, Switzerland

+41 44 632 0410 +41 44 632 6532
Bertrand.Meyer@inf.ethz.ch Marco.Piccioni@inf.ethz.ch

Abstract
The student project is a key component of a software engineering course. What exact goals
should the project have, and how should the instructors focus it? While in most cases projects
are artificially designed for the course, we use a deployable, realistic project. This paper
presents the rationale for such an approach and assesses our experience with it, drawing on
this experience to present guidelines for choosing the theme and scope of the project,
selecting project tasks, switching student groups, specifying deliverables and grading scheme.
It then expands the discussion to the special but exciting case of a project distributed between
different universities, the academic approximation of globalized software development as
practiced today by the software industry.

1. Introduction
An undergraduate computer science or IT curriculum should and often does include a
“software engineering” course, typically 3rd- or 4th-year. One component seems to be
accepted as essential: a course project where students have the opportunity to try out some of
the principal concepts and techniques taught in the lectures. This software engineering course
project — its purpose, its constraints, the issues it raises, how best to set it up — is the focus
of the present paper. In particular we suggest that in a software engineering course, as
distinguished from programming, design or analysis courses, it is desirable to use a realistic
and deployable software project. We describe in detail our experience of applying this
principle at ETH in two settings:

• A traditional software engineering course, with ETH students only.

• A more radical experiment involving several universities, with a multi-site project
emulating some (but, on purpose, not all) aspects of global development projects
as increasingly practiced by industry.

Section 2 presents the course’s scope and emphasis, and the first project’s goals, scope
and setup. Section 3 describes the specifics of the corresponding course and section 4
the details of the project. Section 5 assesses that project’s outcome from both the
students’ and instructors’ perspectives. Section 6 describes our next, still tentative
experience: global development in an academic context.

2. The software engineering course and its project

We start with the “traditional” software engineering course, including, as is overwhelmingly
the case, students from just one university.

2.1. Course scope and emphasis

To discuss the project it is necessary first to define what the Software Engineering course as a
whole is attempting to achieve. There is no absolute consensus on this point. Professional
groups have come up with very useful recommendations through the SWEBOK project
(Software Engineering Body of Knowledge) [14], and also the curriculum guidelines drawn
up by ACM SIGSOFT [9]. In practice, however, curricula still vary widely, as we can see
almost daily from examining the academic records of students from diverse universities who
apply for a software engineering master’s at ETH. In a surprisingly large number of
institutions, the course mainly teaches UML, which clearly is not enough. In others, it is
devoted to design patterns, a very important topic but not in our opinion suited as the focus of
a software engineering course. A more appropriate approach is to follow standard textbooks
in the area [2, 6, 7, 10], which cover a wide range of topics such as the software lifecycle,
requirements, design, implementation, testing, metrics, project management. The danger with
such breadth, however, is to turn the course into a catalog description that sacrifices depth for
coverage.

Here is our own view. We define software engineering as covering all activities
involved in producing and operating software, with five major dimensions captured by
the acronym DIAMO: Describe (specification); Implement (design and programming);
Assess (testing and other a posteriori quality assurance techniques, metrics); Manage
(project management, software process); and Operate (software deployment and
operation). The second dimension, covering design and programming, should in our
experience be de-emphasized in the lectures — although not in the project — of the
software engineering course; in a normal computer science curriculum students have
had other courses focused on programming and design and will have more. The lectures
of the Software Engineering course are for most students the only opportunity they will
have, in the curriculum, to hear about non-programming aspects of software, with a
special emphasis on such topics of great importance to industrial practice as
requirements, quality assurance, process organization (conventional and agile).

2.2. Project goals

In this view of the software engineering course the project occupies a central place,
reflected by its weight in the final grade (currently 50%) and its share of the exercise
sessions. The project is not just an expanded exercise but also a central component of
the course, along with the lectures. Like any educational technique, the project should
have clearly defined pedagogical goals:

- As can be expected of a project in any course, it provides a testbed for applying
the concepts introduced in the course.

- Another objective is to give the students a clear understanding of the challenges
of actual software development in industry. To qualify this goal we note both
that many students (78% in our case) have some industry programming
experience, either because they are older students coming back to school or
simply because they took internships, and that a university is not a company and
should not try to be: we provide a controlled environment mimicking some but
not all of the conditions of industry. As an obvious example of condition not
mimicked, students are not paid for their work and cannot be fired (although
failing the course may eventually lead to an equivalent result). An example of
constraint that is actually stronger in academia than in most industrial

environments is the inexorable time limit, in our case a 14-week semester:
shifting the deadline and delivering late, an unfortunate but common occurrence
in industry, is in a university simply not a possibility.

- Beyond an understanding of the challenges, we of course teach state-of-the-art
answers to these challenges; the project prompts the students to learn and apply
these techniques.

- Specific challenges and solutions that are important in industry and hard to teach
in university curricula involve requirements engineering and testing, especially
test plan preparation. The project emphasizes these goals, as discussed below.

- The project also emphasizes group work. This goal is useful in environments
where previous software projects have been individual. It is not critical in our
case since our students have already done several group projects.

Our course adds another goal: to produce a system that fills some of our own needs. This
builds on and goes beyond the idea of developing an application for students in other
departments [1]. As explained below, this goal, while self-serving, also follows from
pedagogical considerations.

2.3. Project scope

Designing the project is a delicate matter. The first question is whether to include
implementation. One may be lured by either of two opposite answers:

- The project might not include an implementation, limiting the students’ work to
requirements and design, perhaps a test plan. This would be in line with the
course’s emphasis on non-programming aspects. It also makes it easier to fit the
project in the stranglehold of a 14-week semester, but it does not serve the
purpose of the course. It is just too easy for a project that does not ask for an
implementation to result in hand waving. As an example, the main criterion for
judging requirements is whether they can be implemented at reasonable cost.
There is essentially no way to judge this except by requiring students to
implement them. A similar observation applies to test plans.

- At the other extreme, it is easy to give just a programming project. But if it’s only
about programming, even if this is taken to include design, it misses the point.
Students need such programming projects, but in other courses. In software
engineering they should also work on the non-programming aspects listed above. So
even if the lectures themselves spend relatively little time on implementation the
course should, in our opinion, include implementation.

2.4. Project tasks

The following tasks each corresponds to a milestone in the project: requirements; test
plan; design and implementation; deployment and test.

Requirements are a key step in industrial software development. It’s one of the skills
that are often not acquired in university education. It is difficult to teach, and its
absence in new graduates is most bemoaned by industry. The software engineering
course and its project are the right place to teach it. Successful requirements
engineering requires a good computer science basis (otherwise, one just does not know
what among user requests is trivial, easy, expensive, hard or infeasible), and so cannot
be taught at the introductory level; once students have that basis, they need to be
introduced to the challenges of requirements: identifying stakeholders, getting them to
state their requests, understanding and qualifying these requests, separating them into
categories — essential, desirable, moved to second release, discarded —, turn them into
a cogent requirements document, getting buy-in from managers, users and developers.

Along with technical knowledge this requires communication skills and an engineer’s
sense of the possible.

Writing a test plan is for most students a novel exercise; they are used to testing their
own programs, but not to devising acceptance tests for a program that does not yet
exist, on the sole basis of requirements. This experience is again of high value to
industry. The exercise is also useful to highlight the importance and difficulties of the
previous task, requirements: a requirements document is little more than wishful
thinking unless it is precise enough to enable a QA team to write a test plan
independently of the development team.

Design and implementation are, as noted, a required part of a credible project. As the
main emphasis of the course lies elsewhere it is acceptable to treat these two tasks as a
single step. The students taking our course at ETH have already had challenging
projects involving design and implementation.

Running the test is an easier task than the previous three if the test plan is good
enough, but an indispensable part of the task package, as it makes it possible to check
both the test and the implementation.

“Deployment” in this project meant deployment on the student machines.
Deployment for the world at large, on a publicly accessible server, had to be done after
the course.

In the scheme we propose, the project description provided at the beginning of the
semester [13] clearly lists these four tasks, with due dates of 5, 7, 12 and 14 weeks into the
semester, and grading weights as in Table 1 (see 4.6).

2.5. Switching: when and how

It is often interesting in a multi-stage software engineering project to switch tasks
between groups at specified stages, for example to have one group test another group’s
implementation. Such an approach exposes students to the needs of making their work
usable and assessable by others. It has its roots in Horning’s early “Software Hut”
technique [4], where student groups had to bid on components developed by other
groups. Instead of putting money into the picture, we foster cross-group interaction by
switching tasks at two specified stages.

 A common strategy is to ask each group to hand over its requirements to another
group for design and implementation. It is not pedagogically appropriate, however,
because it removes one of the principal issues of requirements: striking a proper
balance between the desirable and the possible. If you do not have to live with the
results of your requirements imagination, why restrain yourself? The result is that some
groups will produce pie-in-the-sky requirements, which others are then unfairly
required to implement, taking the blame if they miss some of the functionality, however
outlandish.

 Instead, one should make sure that each group implements its own requirements. In
grading the Software Requirements Specification (25% of the project grade), we assign
30% to “Extent and usefulness of functionality”; in grading the implementation (40% of
the project grade) we assign 30% to “SRS coverage”. So the students must make a
tradeoff between writing requirements that are ambitious enough, to maximize the first
criterion, and not too ambitious, to be able to implement them and avoid losing points
on the second criterion. The place to switch groups is, in our view, between
requirements and test plan. Each group is asked to review another group’s requirements
and devise from it a test plan, which it will be asked to run in the last step of the
project. Among other benefits this makes it possible to highlight important software

engineering principles about testing, quality assurance in general and, as noted, the
necessity and difficulty of devising tests uninfluenced by an existing implementation.
The assignment of one group’s requirements to another for test plan preparation should
be anonymous, to preserve the soundness of the process. We make it clear that
revealing identifying information would be considered cheating and lead to failing the
course immediately. Note, however, that inadvertently identifying a particular group,
while undesirable, would not destroy the overall setup.

3. Specific context
The software engineering course at ETH (a surprisingly recent addition to the
curriculum) is taught in the third year. It is one of 7 “core courses” of which all CS
students must take at least 4; in practice most select it. A typical class size is 100-120
students. The course is worth 6 credits; per week over a semester (14 weeks) it has
three hours of full-class lectures and two of exercise sessions in small groups. In the
course iteration reported here the exercise sessions were partly devoted to the project,
which was introduced at the very beginning of the semester. The grading was 50% for
the project and 50% for the exam, held in the following semester break. There were no
graded homework or midterms, allowing students to devote full attention to the project.
For the exercise sessions and in general for course organization, we had at our disposal
a group of 7 assistants. One of the assistants did not have an exercise group but served
as “back-office assistant” in charge of the course Web site and overall organization.

For the project theme, we chose something that would be useful if it succeeded: a
computer science position advertising service. For Informatics Europe
(www.informatics-europe.org) , the CRA-like association of European Computer
Science Departments, we had previously developed the Computer Science Event List
(CSEL [12]), which registers and advertises CS events worldwide
(events.informatics.europe.org); the course project, dubbed CSÁRDÁS for Computer
Science Academic & Research Daily Advertising Service, was designed to extend this
to an advertising site for academic positions in computer science in Europe, to be
deployed at positions.informatics-europe.org. This is a non-trivial endeavor involving a
database engine, significant processing, several interfaces (for submitters, for
administrators), and some Web design.

The course page is available at http://se.ethz.ch/teaching/ss2007/252-0204-00/.

4. Project details

4.1. Project start-up

The students were asked to aggregate in teams of 3 people in each of the 6 exercise
groups. As in an industry project we imposed the technologies: MySQL as the database,
Eiffel as the design and programming language, the EiffelWeb library as the web
framework. The CSEL project’s source code was provided for guidance. The different
projects were to be deployed on an Apache server under Linux. As Eiffel technology
and the EiffelStudio IDE are available on Windows as well as on Linux, the students
were free to choose their own environment and set up a local server for testing.

4.2. Assignment 1: requirements elicitation

The initial description of the expected CSÁRDÁS system was intentionally loose, to
stimulate questions from students. A Wiki page was set up to provide interaction in
question-and-answer format between the groups and the stakeholders, a role played by
the course assistants. Some questions realistically elicited different and sometimes
contradictory answers from the stakeholders. This had been foreseen and led to setting
up a second page for the project leader, in this case the professor, to provide
authoritative answers. The deliverables included a requirements document following the
IEEE standard structure (IEEE-STD-830/1998) for a Software Requirements
Specification (SRS), an Object Oriented Requirements Specification (OORS), meant as
a graphical O-O requirements description in Eiffel or UML, and anything else that they
find useful, e.g. screenshots or use cases. Since in the second assignment these products
were handed over to another group, the students had to ensure that they were usable in
the absence of any contact with their original developers.

4.3. Assignment 2: test plan & specification
For the second assignment, groups were swapped randomly. Every group was asked to
develop the tests from the requirement produced by another group, without knowing the
identity of its members. The deliverables of the second assignment included a Test Plan
following the IEEE standard structure (IEEE-STD-829/1998) and a Test Specification
with a structure defined by the same standard. To allow everybody to accomplish the
task in the allotted time, we asked each group to focus on a set of 10 core functional
requirements from the target SRS.

4.4. Assignment 3: design, implementation and documentation
The purpose of the third assignment was for each group to design, implement, document
and deploy the CSÁRDÁS system for which it had been devising the requirements in
the first assignment. The deliverables included the source code, the Software Design
Description (SDD) and release notes. We also provided students with instructions to
deploy the compiled binaries to the target server via FTP and to manage the databases
assigned for testing.

4.5. Assignment 4: test execution & reporting
The purpose of the fourth assignment was to test the CSÁRDÁS candidate system. Each
group was given the URL and release notes for the system under test, developed by the
same group for which they devised a test plan in the assignment 2. It was allowed to
suggest changes to the previous test plans. In line with the IEEE standard structure
(IEEE-STD-829/1998), the deliverables included a test log, a test incident report and a
test summary report. To limit the test effort we asked each group to focus on a subset of
the features developed, devising and executing at least one test case to demonstrate the
usual expected behavior and three test cases to test exceptional behavior if applicable.

4.6. Grading scheme

The project grade was half of the final course grade. Table 1 shows the detailed grading
scheme used for the project.

Table 1. Detailed project grading scheme
Assignments assignment grade % project grade %

Requirement document and OORS 100 25
Readability 20 5
Testability 30 7.5
Precision and detail of description 20 5
Extent and usefulness of functionality 30 7.5
Test plan and test specification 100 25
Readability 30 7.5
Precision and detail of description 30 7.5
Test coverage 40 10
Design, implementation, documents 100 40
Implementation: coverage of the SRS 30 12
Implementation: quality 30 12
Design: quality documented in SDD 30 12
Precision and detail of documentation 10 4
Test execution and reporting 100 10
Chosen test cases 30 3
Precision and detail of documentation 70 7

5. Outcome and evaluation

5.1. Project outcome

The project outcomes are remarkably good, especially if considering the installation
and setup issues faced along the way. The overall project grades were uniformly
distributed in a range between 60% and 96%. Every assistant selected the best solution
from his own group. The best indicator of success is that CSÁRDÁS is now deployed
on the Informatics Europe server.

5.2. Project evaluation: the student view

To get specific feedback on the project the students were asked to fill in a questionnaire
based on the Questionnaire on Current Motivation (QCM), which in turn relies on a
well-known model of motivational psychology [8]. We have experience with QCM-
based evaluation from a previous, unrelated course [5]. We took as a sample all the 45
students that answered the questionnaire; this constitutes half of the course population.
To provide a reasonable qualitative insight into the result, we have selected the mode as
a statistical measure of central tendency. It represents the highest point in each
distribution of answer scores for each question, and in our case provides a better
description of the results than the mean, which is influenced by extreme scores. Table 2
only shows the questions for which answers reached a significantly high mode.

About what caused trouble during development, the three top answers were server
downtime (80%), EiffelWeb support (76%) and deployment to target server (58%).

Table 2. Questions with answers that reached a significantly high mode
1. I consider myself as a proficient or excellent programmer 78 %
2. I have already worked in a job which involved programming 78 %
3. I considered the project uninteresting after reading the description 59 %
4. I experienced pressure having to perform well solving the project 69 %
5. I believed to have been able to tackle the difficulties of the tasks
involved in the project 60 %

6. I have worked very hard for the project 91 %
7. I am very curious about how well I have done in the project 63 %
8. I think that devising an implementation for the project application
was tough 64 %

9. I would have preferred a tighter integration between the project and
the exercise sessions 62 %

10. I have managed to test my application locally before deploying it on
the target server 78 %

5.3. Project outcome: the instructors’ view

The answers shown to the selected questions are representative of the general feelings
of the students about the project. Items 1, 2 suggest that the majority of students in the
sample are confident in their skills and have part-time jobs related to their studies.
Items 4, 6 and 8 indicate that the project was difficult, that it generated pressure and
that students worked very hard at it, a message emphatically confirmed by direct
feedback. Yet items 5 and 7 suggest that the students have mostly been able to cope
with the issues faced and were curious about the result. A possible interpretation is that
in spite of the initial low expectations, (item 3) the project generated interest along the
way, probably when it raised real challenges to students. Item 9 suggests that we should
prepare more project-focused exercise sessions, to provide more guidance and
mentoring. Item 10 confirms that although most of the students deployed and tested
their applications locally in advance, the few that didn’t caused problems to all the
others by repeatedly killing the server. Also note that while the project work was
organized in groups, the questionnaire collected single answers, so the good overall
quality of group projects does not express anything about possible frustrations of
individuals in these groups. This matches industry situations, where the interest of the
company (project delivered in time) typically prevails over the interest of any specific
individual. Overall, the questionnaire therefore has helped us in getting some feedback
and insights on how to improve the project’s management. It will be interesting to
compare future results.

5.4. Consequences of using a real project

It was noted that a consequence of choosing a real project, and even more challengingly
a web project, is to raise the deployment issue. After testing their system on their own
machines, students were required to install it on a shared server accessible only within
ETH. This turned out to be one of the most delicate parts of the project. Apart from
some server setup issues, it happened that some groups (as we found out, only a small
number, but this did not make things any better) had not properly tested their programs,
which either took up all memory or entered infinite loops, preventing others from
testing on the server. Although some of the problems will go away with better planning

and the benefit of this first experience, it is clear that any deployment on shared
resources carries such risks.

 The choice of an Internet-oriented application carries other risks that we had not
envisioned. For example when testing their applications students used emails with
addresses such as, naturally enough, some_name@csardas.org. The assistants noticed
this pattern early enough to stop it before the site administrators of the unsuspecting
(and charming) Hungarian dance site had time to complain or — we hope — notice.
This illustrates a general lesson: using a real-life project topic forces the instructor to
consider, and if possible anticipate, risks that would not arise otherwise, including the
risks of devising all-too-clever acronyms.

5.5 Lessons

The technical issues that arose during the deployment and testing of the project can and
should be solved. They had a negative impact on the general student satisfaction and led
to underestimate the weight effectively assigned to the development phase. We are
therefore repeating the experience for this year (2008) course. We also hope that other
universities will try a similar set up for their software engineering courses.

6. A distributed project: DOSE
To complement the experience described in our core software engineering course, it is
interesting to discuss a more tentative effort, DOSE (Distributed and Outsourced
Software Engineering) tried experimentally in 2007, on which we hope to build in
future years, and for which we are inviting collaboration from new universities.

We briefly report on the 2007 experiment and describe the setup for future sessions.
The http://docs.google.com/View?docid=dfcdrdwg_26fcpdjsc3 site for these sessions,
from which some of the remaining material is drawn, contains more details as well as
contact information for those colleagues who may be interested in joining the project in
some way,

6.1 DOSE background
The observation behind the DOSE course and project is that software construction is,
increasingly, a distributed activity. The scenario of a single team working in a single location
for a set period, once the norm, is fast becoming the exception. Several factors push for more
decentralized forms of development:

• The growth of offshoring, pioneered by India and now provided by many other
lower-cost countries.

• The older but continuing trend for companies to outsource part or all of their IT to
specialized providers.

• Users' and other stakeholders' demands for more direct involvement in Closer
integration of the software aspects of product development with other aspects of
engineering and manufacturing, already affected by decentralization and
globalization .

• Workforce shortages, leading companies to seek talent wherever it may be available.

• Improvements in higher education in many countries not previously considered top
players in technology.

• New aspirations on the workers' part: working from home, telecommuting.

• Political developments limiting the immigration of skilled workers, either because of
restrictions in the immigration country or out of workers’ personal preferences.

• Improvements in communication technology, making distributed software processes
a more realistic proposition.

Distributed development, however, raises considerable problem. Software engineering is
difficult; if it is hard to make a project succeed when everyone is in the same building,
splitting the team across continents, time zones, languages and cultures does not help. Hence
the many failures reported in outsourced and offshore projects.

Universities, in their software engineering education, should teach the principles and
techniques that will avoid such failures, and more generally emphasize distributed
development as a key component of modern software engineering, not likely to go away in
any near future. The standard curriculum does not yet, however, cover it, in particular because
it is difficult to organize project work that mimics the conditions of distributed projects.

The DOSE course provides a controlled environment for such a project.

6.2 Previous course

Since 2004 our chair has been conducting a Fall Semester course on Software Engineering for
Outsourced and Offshore Development, taught by Bertrand Meyer and Peter Kolb. As far as
we know this was the first course anywhere to concentrate on the technical software
engineering aspects — rather than the economic or political circumstances — of outsourcing.
Since the fundamental issues are those of project distribution, rather than outsourcing or
offshoring, the course has increasingly focused on this aspect and is being renamed, for Fall
2008, "Distributed and Outsourced Software Engineering". The course page at
se.ethz.ch/teaching/2007-F/outsourcing-0273/index.html gives information on the course as
taught in 2007.

For the first time in 2007 the course project involved student groups from other universities:
Odessa National Polytechnic in Ukraine and the State University of Nizhny-Novgorod in
Russia, as well as (closer to ETH) the University of Zurich. Other universities expressed
interest but were not able to participate because of lack of preparation time. The project theme
was a fairly sophisticated system, whose purpose is to process announcements and, after
natural language analysis tuned by human editing, feed them into the Computer Science
Events List. This system is, again, meant for deployment.

Projects were developed concurrently by three consortia, with each consortium made of three
student groups, one from each of the three locations. All consortia produced satisfactory
results; one of them actually delivered a working system (which still requires some rework for
full deployment). This is a remarkable result given the scope of the task, the novelty of the
approach, the short time allocated to the project, and the difficulties of distributed
development.

This first attempt at a distributed course, meant as a proof of concept, not only benefited the
students (who said they learned a lot about challenges and techniques of software
construction) but also gave the teaching team experience that will be essential to scale up the
effort as we will now do. The intent for the 2008 Fall semester course is to involve five to ten
universities with provisions for scaling up if necessary.

The remaining sections describe the setup of this next course. Professors interested in
participating should contact one of the references listed at the end.

6.3 Principles

The following guidelines shape the DOSE project.

6.3.1 Objective
The main objective of the course is to teach students principles and practices of distributed
software engineering, based on sound, modern software engineering concepts.

6.3.2 Focus
This is an applied course. Whenever possible and relevant, the project rules simulate the
conditions of development in actual industry projects.
6.3.3 Industry vs university

As noted above, every condition of industry can or should be simulated.

6.3.4 Deliverables

Again as discussed in the context of our software engineering course, we believe that good
projects should attempt to deliver deployable systems. Of course this is harder in a distributed
setting. To account for insurmountable difficulties and the possibility of a remote group
dropping out the final assessment can give partial credit to a project that has not been fully
implemented.

6.4 Roles

6.4.1 Decision structure

One characteristic of industry projects that we retain is clear management responsibility: the
leadership of the project is at ETH Zurich (although it could change in future years). As in
any well-managed project, discussion and questioning are welcome but there is a single point
of final decision to ensure coherence and success.

6.4.2 Distribution of project work

A distributed project splits work among teams. There are essentially two orthogonal ways to
make this division:

• Process-based, according to the traditional division of the software process into
successive activities: one site does the requirements, another the design, a third the
implementation, yet another the testing.

• Cluster-based, using the concept of "cluster" (also called "subsystem") from object-
oriented development. In this approach the system is decomposed into a number,
typically small, of clusters, and each team is responsible for a subsystem.

While a process-based division perhaps suggests itself more naturally at first, it is in fact not
desirable:

• It is not adapted to the context of a semester-long course. Each group would be idle
most of the time.

• It does not convey the right software engineering principles. In the Eiffel method that
we use, development is seamless, with close links between successive activities such
as specification, design and implementation.

• The difficulty of software construction is in carrying out ideas all the way from
inception to successful realization. Student groups doing only specification, only
design or only implementation would miss much or most of the learning experience.

• Whatever oratory precautions the teaching team may take, a process-based
decomposition would create an undesirable impression of ranking between
universities, with students from one of the participating universities (e.g. ETH)
"outsourcing" the result of their specification work to be "coded" by other
universities. There is no such hierarchy, real or implied. All student groups are
considered equal at the start and all should engage in similar activities.

The DOSE project relies instead on a cluster-based division of work. Each student group from
a given university is responsible for an entire cluster, from beginning to end. More precisely:

• A set of students from one university forms a group. A typical group size is 2 to 4
students.

• A set of groups, each from different universities, forms a consortium.

• Each consortium undertakes the entire project. (It is important that all consortia have
the same charter, to ensure fair and meaningful comparative assessment.)

• Within each consortium, each group is normally assigned a cluster.

This approach has a major pedagogical benefit: it forces the groups, in their work and
especially their interactions with other groups, to focus on interfaces (in the sense of program
interfaces, also knows as APIs). This is a key software engineering concept; the best way to
teach it is by experience, as students discover the essential role of high-quality interface
descriptions, in particular contracts, and realize the extreme degree of precision required to
avoid mishaps. The pedagogical value is higher and the lessons deeper than what can be
learned from the experience of implementing someone else's blueprint in the process-based
approach (although that experience is also useful).

To assign responsibilities:

• Within each university, students normally assemble in groups as they please,
although the local teaching team may define specific rules.

• Consortia are formed through a simple process managed by the assistant team; they
can be imposed, or the assistants may organize some kind of bidding process.

Although the basic rule for consortia, as noted above, is one group per cluster, it is possible to
form slightly bigger consortia with, for example, a group in charge of quality assurance
throughout the project.

6.4.3 Communication

Groups within a cluster communicate in any way they like: email, Skype, Wiki pages, forums,
Google Docs... The teaching team, in particular the assistants, advises students on this matter,
critical to the success of the project.

Any advanced means of communication, such as videoconferencing, may be used if available;
consortia will have to adapt, however, to any infrastructure limitations that may be applicable
to some of their groups.

6.5 Technology

While a number of technologies may be used as required by the application, in particular Web
tools if the chosen development is to be deployed on the Web, the main toolset for analysis,
design and implementation is Eiffel, as used at the Chair of Software Engineering at ETH.
The open-source EiffelStudio environment is available for download.

For universities that do not yet include Eiffel in their curriculum, ample teaching material
available from the teaching pages at the Chair of Software Engineering's site se.ethz.ch and
also from Eiffel Software. Eiffel is easy to learn for students who already know an object-
oriented language. The ETH team can help the process through various means; for example
assistants from other universities may come and take a compact Eiffel course at ETH (as
occasionally organized in the Summer semester), or it may be possible to arrange from a
member of the ETH team to come to a participating university and give such a course to the
local teaching team. The 2007 experience showed that initial reservations about using a
method and language not initially known by some students quickly evaporated when the
students realized they could program in Eiffel almost right away.

To host their projects, students may use the Origo framework, developed at ETH as an
general-purpose open-source project hosting framework; see origo.ethz.ch. Creating a project
on Origo immediately provides forums for discussions (users, developers, project owners),
Wiki pages, configuration management support (Subversion) etc. The Origo mechanisms are
also available through an API, so that projects can programmatically start Origo actions, such
as a check-in.

6.6 The vision
A distributed software project as described here is an ambitious endeavor requiring both
teachers and students to go beyond the usual framework of academic education. The first
experience of 2007 confirms that, in spite of the difficulties, this is a thrilling endeavor full of

rewards for the participants. Any reader who would like to be part of this effort is welcome to
contact the authors to discuss and organize a possible participation.

8. Acknowledgments

In both our local course and its more tentative distributed cousin, we endeavor to present the
fundamental issues of developing software engineering today and describe some of the best
known methods to tackle these issues. One of the principal challenges is to know when to
emulate the conditions of industry, and when to retain the specificity of an academic
environment. In all cases, however, we have become convinced that the course project, an
integral part of any such course, should not just look like real projects: it should be a real
project. Only by taking this gamble, with its allure and its risk, can we discharge our duty to
the students: teaching them what it takes to develop software for good.

7. Acknowledgments
Our thanks go to all the students of the ETH Software Engineering course, Spring
Session 2007, who put all their efforts in achieving a remarkable result, and to Michela
Pedroni for help preparing the project questionnaire. The authors of the group project
retained for deployment were Lucas Serpa Silva, Sandeep Bharwaj and Christian Regg.

For the distributed course, we are particularly grateful to our co-instructor, Dr. Peter
Kolb; to the two ETH assistants, Martin Nordio and Roman Mitin, who were
exceptionally helpful; to our colleagues Prof. Victor Gergel from the State University
of Nizhny Novgorod and Prof. Victor Kasyanov from Odessa National Polytechnic,
who took the risk to try out an unproven concepts; and to the students at ETH and in
these universities to rose to the challenge and surmounted great practical difficulties to
produce excellent results.

8. References
[1] Ali, Muhammad Raza. Imparting effective software engineering education, ACM SIGSOFT Software

Engineering Notes, v.31 n.4, July 2006.
[2] Ghezzi, C., Jazayeri, M., and Mandrioli, D. Fundamentals of Software Engineering. Prentice Hall, 2002.
[3] Jaccheri, M. L. and Lago, P. How Project-based Courses face the Challenge of educating Software

Engineers. Proceedings of the joint World Multiconference on Systemics, Cybernetics and Informatics (SCI
’98) and the 4th International Conference on Information Systems Analysis and Synthesis (ISAS ’98),
Orlando, USA, 1998.

[4] Horning, J. J. The Software Project as a Serious Game. In Wasserman, A. I. and Freeman, P. editors.
Software Engineering Education: Needs and Objectives, 71-77. Springer Verlag, 1976.

[5] Pedroni M., Bay T. G., Oriol M. and Pedroni A., Open Source Projects in Programming Courses, in SIGCSE
2007, ACM, Covington, Kentucky, USA.

[6] Pfleeger, S. L., and Atlee J. M., Software Engineering. Third edition. Prentice Hall, 2005.
[7] Pressman, R. S. Software Engineering. A practitioner approach. Sixth edition. McGraw-Hill 2005.
[8] Rheinberg, F., Vollmeyer, R. and Burns, B. D. QCM: A questionnaire to assess current motivation in learning

situations. Diagnostica, 47: 57-66, 2001.
[9] SIGSOFT Software Engineering 2004. Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering. Downloadable at http://sites.computer.org/ccse/
[10] Sommerville, I. Software Engineering. Addison-Wesley, 2004.
[11] http://www.informatics-europe.org/
[12] http://www.informatics-europe.org/cgi-bin/informatics_europe.cgi
[13] http://se.inf.ethz.ch/teaching/ss2007/252-0204-00/project.html
[14] http://www.swebok.org

