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ABSTRACT 

We describe a system for maintaining useful information 
about a software project. The “software knowledge base” 
keeps track of software components and their properties; 
these properties are described through binary relations and 
the con&taints that these relations must satisfy. The 
relations and constraints are entirely user-definable, 
although a set of predefined libraries of relations with 
associated constraints is provided for some of the most 
important aspects of software development (specification, 
design, implementation, testing, project management). 

The use of the binary relational model for describing 
the properties of software is hacked by a theoretical study 
of the relations and constraints which play an important 
role in software development,. 

Keywords: Software engineering tools, configuration 
management, project management, formal description of 
software engineering concepts. 

1. INTRODUCTION 
Studies have repeatedly shown that management 

problems are one of the primary sources of delays and 
failures in large software projects (see e.g?). 

If bad management is due to bad managers, one can 
hardly expect that advances in software engineering will 
alleviate the problem. But bad management, or rather bad 
organization, often has another cause: the sheer difficulty of 
mastering the various aspects of a project, and in particular 
of controlling change. Project managers and project 
members alike have trouble keeping track 01 what is going 
on. As the project develops, its “entropy” increases and it 
becomes increasingly difficult to maintain a clear picture of 
the state of its various components. Here good tools can 
play a major role. 

The effort reported in this paper aims at providing a 
unified base of supporting tools for various aspects of 
software development. To this end, we introduce the 
notion of a software knowledge base, that is to say a 
repository of all useful project information. 

The software knowledge base is used by managers and 
programmers to keep track of all interesting properties of 
the software components and their relat.ionships. The 
software components, as defined here, include all the 
relevant project elements: program modules, data 

definitions, requirements, user manuals and other 
document.ation, specifications. design documents, test. data, 
test results, schedules, tasks, personnel data, budgets etc. 
The relationa between these components may be of diverse 
kinds: we may want to record the fact that a certain 
module of the design implements a certain module of the 
specification, that a certain program module uses a certain 
data definition module, that, a certain task is assigned to a 
certain person, etc. 

We use the expression “software knowledge base”, or 
SKU, to denote the compendium of information associated 
with a software project. The system used to record, access 
and manipulate this information, as described in this paper, 
is called the SKB system whenever there might be a 
confusion. 

Several aspects of the SKH system are present in 
previous project, management systems. The ISDOS systema 
is a set of project documentation t,ools, which make it 
possible to record project information as relations between 
entities of various prcdefined kinds; these ideas were further 

developed in the SREM system’ written at TRW, which 
particularly emphasized the notion of traceability (i.e. 
ability to locate over the whole data base the consequences 
of a change made to some element). Simpler yet very useful 
tools for configuration management and veraion 
control are gaining acceptance: Make” and SCCSJ2 on 
Unix, DEC’s CMS, Softool’s CCC, the “System Version 
Control” component of Gandal?‘, Addle’“, RCS, etc. The 
idea of collecting all uselul project documents in a single 
database is expounded in the Stoneman report”, and used 
in a current TRW development, the “Software Master 
Database”q The use of relations in software environments 
is advocated in”, which relies on general (Rary) relational 
databases;26 shows that binary relations may be applied to 
various aspects of programming. The SK9 project, builds 
on all these ideas but emphasizes some original, and in our 
view essential, design criteria, which we shall now describe. 

2. DESIGN CRITERIA 

2.1. Simplicity 

The SKB system should bc easy to learn and use. 
Managers and programmers have enough to do already; 
they should not be required to go through an extensive 
training period before they can effectively use the SK9 
system. 
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A necessary condition for ease of learning and use is to 
base the whole system on a simple and uniform conceptual 
framework. 

2.2. Method-, language- and system- independence 
The SKB system is a set of tools, not an integrated 

methodology. Although its consistent use naturally leads to 
some sound methodological practices, it should be viewed as 
a way of helping project managers and developers, not as a 
disruption of current development practices. 

Thus the SKR system should not concept.ually imply 
the use of any particular methodology, programming 
language, computer or operating system. It should blend 
well with other software engineering tools. 

We will refer to this criterion as the “independence” 
critc#rion (as a shorthand for method-, language- and 
system-independence). 

2.3. Adaptability 

Not only should the syslem be compatible with 
existing methods or languages: it should bc able to provide 
efficient support for specific methods or languages in use in, 
say, a company. 

Thus the natural counterpart of independence is the 
ability to parameterize. 

2.4. Whole life-cycle coverage 

The SKB system should provide benefits across the 
entire life-cycle of a software project. Although this 
criterion may restrict the power of SKB tools as applied to 
a specific life-cycle stage, it is essential in view of the fact 
that non-trivial projects usually have a long history. A 
system that would only apply to, say, the initial phases of 
specification and design, would st,and little chance of 
playing a significant role: so much of the software process is 
evolution, refinement and extension of systems occurring 
after the first “cycle” has been completed. 

2.5. Support for system semantics 

Many of the systems quoted in section I have little, if 
any, notion of what the objects bring manipulated really 
“arc”. Most configuration msnagemcnt systems, for 
example, focus on just one attribute of objects, their time 
stnqp, and know of just one relation, the drpendency 
rel,i Con (there is usually also the notion of a “permission” 
at!ribute in the systems which support probection). These 
syslerna are not equipped to deal with other properties of 
the objects such as the “A is an implementation o/ B 
relation quoted above. 

On the oLher hand, some of the more complex systems 
do know about. “types” of objects (e.g. specification, test 
data set, etc.), but then they violate the independence 
criterion since these types are defined once and for all. The 
prohlem is thus to be able to record semantic properties of 
software objects while retaining flexibility. 

2.6. Formal analysis 

The design of the SKB system was based on a 
systematic analysis of the properties of software project 
elements; some elements of this ans.lysis are given below 
(seption 5), in the form of a review of software relations and 
Lheir abstract properties (constraint,r), 
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This approach contrasts with most published work on 
soft.ware engineering tools: although bhe necessity for a 
systtmatic requirements analysis is one of the tenets of 
sof!.ware engineering, it, seems to have seldom been applied, 
let alone in a formal way, to software engineering tools and 
environment.s. The formal specifications we kuow in this 
fichf8are a posteriori exercises applied to existing ,$signs, 
e.g. ) which describes some aspects of ISDOS, and which 
doscribes the system version control component of Gandalf. 
The analysis outlined in section 5 is not a complete 
specification of the SKB system, but provides a sound (we 
hope) theoretical basis for the system. 

2.7. Object-independence 
A software knowledge base is a model of a certain set 

of software objects and their relations. The model is 
conceptually and physically distinct from the objects 
themselves; this is in contrast with systems that essentially 
add project and configuration management information to 
the object representations (usually files on a conventional 
host system). In our approach, the SKB is a separate entity; 
objects are modeled by SKB elements, called “atoms” below. 

Thus a reference to the object modeled by an SKB 
atom (e.g. the file containing a program or other software 
object) will merely be considered as one of the attributes of 
the atom (the notion of attribute is made more precise 
below). 

Such an approach has advantages and drawbacks. 
The advantages are simplicity and portability; the SKB 
system can be built on top of any operating system without 
undue modification to this operating system. The approach 
also makes it possible to keep the model (the SKB) on one 
computer and the objects themselves on another if it is 
deemed preferable to separate the development machine 
from the management machine. 

On the other hand, the approach taken makes it 
impossible to ensure consistency: one cannot prevent users 
from modifying the objects without making the 
corresponding changes in the model. However, regardless of 
the decision taken, it is hard to ensure consistency anyhow 
unless one is to build a management system that replicates 
most of the functions of an operating system. For example, 
if one wants to guarantee that the management system 
knows about all changes brought to the objects, then the 
management system should include such utilities as text 
editors and the like. We did not want to follow this path. 

Thus we prefer to stick to the more modest goal of 
providing a set of management tools on top of a.n existing 
operating system, with an open architecture which makes it 
possible to combine these tools with other software tools. 
It is the responsibility of the project members to maintain 
an accurate SKB about the project. ln otber words, we 
accept the possibility that the SKB system may be fooled, 
as a price to pay for the simplicity, flexibility and 
independence (in the above sense) of that system. 

Obviously, efforts should be made to improve the 
consistency of the SKBs. In particular, specific interfaces 
may be built between the SKB system and the host system 
so that information may be entered automatically into the 

SKB, as a result of operations performed in the host system 
(e.g. a compilation or an editing session). 



Our approach thus follows the example set by the 
Make system”, which achieves simplicity by relying on 
dependency information provided explicitly by 
programmers; this system having proved to be useful, 
eIIicient and easy to use, other researchers have been able 
to come up with tools3’ that automatically feed dependency 
information into Make for specific cases (source programs in 
C, Pascal, Fortran, Lex and Yacc in the reference cited). 

3. THEORETICAL BASIS 

The notion of software knowledge base is based on a 
small number of concepts: atoms, attributes, relations, 
constraints and actions. 

3.1. Atoms 

The objects in the knowledge base, associated with 
physical objects of the software project, are called atoms. 
As implied by the “object-independence” criterion discussed 
above, the atoms have no immediate connection with the 
objects they represent; they are meaningful for the SKB 
operations only, and their properties are only defined 
through their attributes, relations with other atoms, and 
constraints on these relations. 

3.2. Attributes 

Atoms may have attributes. Attributes are user- 
definable, although some predefined attributes are 
available. The value of an attribute may only belong to one 
of a small number of predefined types such as Integer, 
String, Time, File. The values of the last type are are 
references to files supported by the operating system (in a 
non-standard system that does not have files, we may have 
to replace this by a more general notion of “object”). 

Typical predefined atom attributes are 
time,of,laat,changs, yielding values of type Time; 
atom-type, yielding values of type String (some possible 
types for atoms are predefined, e.g. “procedure”, 
“requirement”, * test data”, etc., but new ones may freely be 
added); and representation, yielding values of type Fife. 

Attributes may not be of complex types; in particular, 
they cannot yield atoms. For anything but simple 
properties of atoms, relations should be used instead (see 
below). 

3.3. Relations 

The heart of an SKB consists of a series of facts about 
the software project, expressed as links between atoms. 
Each of these links expresses the fact that a certain relation 
holds between two atoms o and b. Examples 
(compkmenting those in the introduction) are “a is defined 
in b” (where s is a procedure and b a package in Ada), “a is 
a member of b” (where a is a person and b a project), “a is 
the formal expression of b” (where o is a module in a 
specification and b a paragraph of the requirements 
document). More examples will be found in section 5. 

The SKB system only uses binary reIat,ions; the reason 
is that binary relations are mathematically simple, have 
nice propcrtics, and provide an intuitively appealing way to 
describe structural properties of systems. Prom the 
theoretical standpoint, any system t,hat can be described 
using general relations (as e.g. with a relational data base 
matmgement 
relationss, 

system) can be described with binary 
and algorithms have been proposed to cfticientlv 

translate a binary schema into a more eflieicnt n-ary one 
31 - . 

In practice, we have indeed found binary relations to 
be adequate for modeling properties of software objects. 
This is illustrated by the analysis in section 5 - where it will 
be seen that we did find one case where a ternary relation 
seems necessary. 

3.4. Constraints 

Attributes and relations constitute by themselves an 
empty shell; they describe the structural connections 
between software objects (the “syntax” of the project), but 
not their deeper properties (the “semantics”). The latter 
may be expressed by defining conslraints, or conditions on 
the relations and attributes, which must be satisfied for the 
SKB to be in a consistent state. A simple and important 
example of constraint is the “dependency” constraint 
maintained by toots such as Make, which expresses that the 
value of the time,o/,losf,ehange attribute should be greater 
(i.e. more recent) for every atom than for every atom to 
which it is connected by any relation that may be 
characterized as a “dependency” relation. But many other 
useful const,raints may be defined on software systems: some 
will be given below. 

Const,rainbs will be expressed as mathematical 
relational predicates involving relations, attributes and 
atoms. The abstract formalism used to construct and 
manipulate a software knowledge base is called the 
Catculus of Relations, Attributes and Constraints (CRAC). 

3.5. Actions 

An action is associated with a constraint and specifies 
steps to be taken when the constraint is violated by certain 
objects, following manipulations of the SKB. Actions are 
not strictly part of the SKB system since they may involve 
commands to the operating system; the SKB system 
provides the interface, and ways to pass attributes of the 
atoms (e.g. file names) to the host system. 

4. STRUCTURE OF THE SYSTEM 

The structure of the SKR system follows from the 
design criteria of section 2 and t.he Lheoretical basis 
described in section 3. It is represented in liguro 1 

I CRAG lnlerlsce I 

&face 
Daemons Actions 
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The kernel of the SKB system provides the basic 
mechanisms for creating, accessing and updating t,he SKB 
entities: atoms, attributes, relations and constraints. 

In connection with constraints, we introduce the 
cone+ of d8emon. A daemon is a mechanism associated 
with -a constraint, which monitors the SKI3 in order to 
detect possible violations of the constraint as the 
information in the SKB is being updat.ed (i.e. links between 
at,oms are modified, new atoms are entered, attributes are 
changed, etc..). When it finds that such a violation has been 
made, t,he daemon will report the inconsistency and trigger 
the s.ction associated with the constraint, if there is one. 

Daemons raise an interesting implementation problem: 
in a large SKB involving many atoms, attributes and 
relations, it is essential to find ways to avoid searching the 
whole structure (mathematically, a. multigraph) for the 
consequences or a simple change. Work on related topics 
has been $ne previously in conne$on with artificial 
intelligence - and interactive graphics . 

The. SKR kernel is arcessible through a set of 
primitives. the “CRAC primitives”, which implement the 
calculus of relations and constraints, i.e. all the useful 
oper:htions on the knowledge base. These opemtions are 
made available through a uniform interface, the “CXAC 
interface”; the idea here is that the SKB functions (like 
those of any good data base management system, or more 
gpnrra1l.v of any good softwar*: engineering tool) should be 
equally accessible to interactive users. non-interactive users, 
and ot,her programs (this is an implementation of what may 
be ralled “Strachey’s principle” from the qllotation of 
(*hri&,opher St.rarhey in Scott’s preface to 8’: “decide what 
you are going to say hefore you decide how YOU are going to 
say it.“). 

Thus the CRAU interface does not favor any of these 
types of access. Several higher-level interfaces should be 
provided; figure 1 lists three: 

8 the procedure library, which makes CRAC primitives 
usable from programs (e.g. other software tools), 
written in ordinary programming languages; 

l the CRAC language, which makes it possible to 
express CRAC manipulations in an sppropriste 
notation; 

l the Designer’. Sketchpad, a graphical interface to 
the calculus, allowing for intersctive description of the 
atoms snd reiations with 8 graphical display and a 
mouse, The aim here is to avoid the gap between 
high-level design decisions, which are often best 
expressed in pictures, and the rest of the software 
development process. 
Finally, figure 2 includes 8 set of “CmC Libra&s”, 

each of which provides a set of predefined relations, 
8ttribUtes and constraints corresponding to an important 
aspect of software engineering. Examples are project 
management (scheduling, personnel management etc.); 
design (a library might provide support for a specific ~DL); 
implementation (an .Ada library manager would fit here); 
and testing. This last point is particularly important in our 
view and we see test management as one of the main 
benefits of the SKB system: although there is an extensive 
literature on Program testing, very little seems to have been 
published on the management of the testing process: how to 
keep track of test data sets for each module, record test 
results, etc. 

6. A TAXONOMY OF SOFTWARE RELATIONS 
AND CONSTRAINTS 

6.1. Overview 

The fact that useful relations exist among components 
of software systems has been pointed out by many authors. 
For example, Parnas3’ describes the “uses” and “invokes” 
relations among modules; systematic methodologies for 
software design have introduced the “abstraction” relation 
between a specification (e.g. an abstract data type) and an 
implementation21; the “isa” relation’ is used in Al systems; 
the development of software development environments has 
recently led several researchers to consider using relational 
databases to keep track of the relations between the 
various objects needed in a software project”‘24; at the 
program level, control and data dependencies play in 
important role in studies about code generatiog3 pZnd 
optimization fi compilers2, program vectorization ’ , 
static analysis . 

Despite this frequent use of relations for software- 
related issues, there have been very few systematic studies 
of these relations; moat works dealing with relations just 
assume that they are there, and go on using them or 
discussing wa s 
exception is2’ 

to compute or implement them (an 
which introduces zome program-level 

relations and studies their properties). 

The absence of a precise definition of software 
relations and their formal properties is regrettable, since 
relations are not just vague connections between objects, 
nor just “tables” as in simplistic presentations of the 
relation81 database theory, but useful mathematical objects 
.with interesting properties. We feel that 8 systematic study 
of software relations is essential to advances in software 
configuration management. We have started such a study2*; 
some elements from thst study will now be reported. The 
aim of this section is to present some interesting relations 
and the associated constraints, giving support to our 
decision to base the design of the SKB system on binary 
relations. 

Of course, the relations presented here are only some 
of the important relations that occur in software; the SKB 
system is an open system and the user may introduce any 
relations and attributes that may be needed for a 
particular application, together with the associated 
constraints. The normal way to do this is to define CRAC 
“libraries”; the relations and constraints presented below 
would normally be part of some basic, ptedefined libraries. 

6.2. Bz&c Atom Typer 
As mentioned above, SKI3 atoms are not strictly 

typed; they simply have “atom type” as one of their 
attributes. Examples of atom types are “Requirement”, 
“Specification”, “Design”, 
“Variable”, 

“Program”, “Test-data”, 
“Statement”, .“Module”, “Project”, “Milestone”, 

“Staff member”, “Unit cost”, etc. In the spirit of the theory 
of abstract data types, these types are only “defined” 
through the relations which may hold between the 
corresponding atoms and the associated constraints. 

In the analysis that follows, we shall be talking about 
types of softwsre objeeta and relations between these 
objects. For the SKB project, this analysis is only 
interesting insofar as these properties of objects can be 
modeled by properties of the corresponding atoms. 
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6.3. Relatione between atoms of different typee 

l a contains b 

This relation holds if and only if the object represented by b 
is a constituent of a. Typically, a will be a system, described 
at a certain level of abstraction (specification, design, code, 
documentation etc.) and b will be a component (module, 
chapter etc.) of .that description. We call part-d the 
inverse relation contains-‘. 

l a models b 

This relations holds if and only if o includes a description of 
what b does, that is to say if 6 is one way to do what is 
prescribed by a We call instances the inverse relation. 

Examples: the user manual for a machine models that 
machine; an abstract data type description of a type 
models an implementation of that type as a class in Simula 
or Smalltalk, a package in Ada etc. 

6.4. Relations between atoms of the same type 

l a complements b 

This relation holds if and only if a and b cooperate towards 
the achievement of some higher aim. For example, various 
procedures in the implementation of the same data type 
(class, package) complement each other; so do various 
subroutines in a numerical library, or 1Jnix programs 
commonly used in a “pipe” fashion, e.g. for text processing 
the programs refer, tbl, cqn, trofl 

Constraints: complements is a symmetric relation; 
part-of; contains C complements 

In this notation, the semicolon denotes the composition of 
relations: part-of; contains is the relation which holds 
between any two elements a and c if and only if, for some 
b, a is part-of b and b contains e. Also, if r and a are 
two relations, then r C 8 (r is a subset of 8) means that 
any pair of elements connected by r is also connected by s. 
The appendix describes these and other notations. 

l a epecializea b 

This relation holds if and only if anything which is 
described by a is also described by b (but some things may 
be described by b which are not described by a). The 
inverse relation, specializes-‘, may be written generalizes. 

Examples: In other branches of science, the Linnaean 
classification of living beings is based upon this relation. In 
software, a particular elegant implementation of this 
remtion is the prefixing mechanism of Simula and 
Smalltalk: if a is a class whose declaration is prefixed by the 
name of b, then any property which has been given in the 
declaration of 6 applies ipso facto to all objects of class 6, 
but this does not prevent the declaration of a to add any 
further properties which may be needed; the mechanism can 
be iterated. A similar mechanism exists in the Z 
specification language’. 

Constraints: “linear” or “hierarchical” inheritance, as in 
Simula and Smalltalk, means that the relation is a lorest. 
In Smalltalk, the introduction of the “metaclass” Class 
makes it a tree. “Multiple mnerrcance woum mean that a 
dag is acceptable. 

An interesting variant of this relation occurs in many 
practical cases; it may be written a specializes b ezeept /or e 
(e.g., bats have all the properties of mammals except that 
they can fly). This seems very useful to model many aspects 

of software, e.g. Fortran 77 is “upward-compatible” with 
Fortran 66 (except for a few “minor” details), version 4.2 of 
the Xxx operating system is almost compatible with 
version, say, 7, etc. This relation is also important h 
connection with modular, reusable system specifications . 
It is a ternary relation. 

l e refere-to b 
This relation holds if and only if a refers to b by its name. 
Jt can happen in a variety of ways: a and b can be objects 
of the same type (i.e. procedures, where a eallr~ b) but this is 
not necessary. In programming languages, a module can 
refer-to objects belonging to other modules (e.g. variables, 
etc.) either through the mechanism of block structure or 
sharing of data, or by special facilities which enable e 
module to “peep*’ into the names of entities belonging to 
another (inspect in Simula, UM in Ada). We call 
is,rejerredby the inverse relation. 

l a needs b 

This relation holds if and only if a cannot be understood 
(or, if a program element, executed) without b. 

Constraint: we venture the following rule: 

needs E is-rejerreclby * ; refers-to + 
meaning that a possibly needs b if and only if some module 
c (which could be a itself) refers to both a end b directly or 
indirectly (the asterisk and plus sign denote transitive 
closures; see the appendix). 

l a declared-in b 

This relation holds in block-structured languages ilf a is 
declared inside b. 

Constraint: declared-in c part-o/ 

l a shares&formation-with b 

This symmetric relation holds if and only if a and b may 
access some common information. In block-structured 
languages such as Algol 60 end Pascal, this is done through 
the block structure mechanism, as defined by the following 
constraint (valid for these languages): 

shares,in/ormatioLwith E declare4in * ; 
has-declaration l 

where has-declaration is the inverse of declared-in. 

0.3. Kelations between program modules 

The following relations apply to modules of programs 
(procedures, classes, packages etc.). 

l a calls b 

This is the standard relation between procedures, 
which holds if and only if a may call b. 

l a creates b 

This relation holds if and only if a may create b. It exists 
in a language or systems where processes can st.art ot.her 
Processes (e.g. Ada tasks, (Jnix processes, I$/1 tasks, Simula 
classrs). The same relation also applies to the case where b 
is a data. structure in languages where data can be 
allocated dynamically (e.g. new in [‘ascal). 

l a activates b 

This relation holds in systems supporting coroutines (e.g. 
Simula) or parallel processes (Ada) if and only if if a may 
re-start a suspended execution of b. 

l a sendsinformation-to 6 

This relation holds if and only if a may pass information to 
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b. Let rccciues,informationJrom be the inverse relation. 
The following constraint holds for common programming 
languages: 

scnda,injormation-to U receives-informationJrom c 
calls LI ia,callcdby 

However, this is not the case in CSP, for example, where 
information may also be passed through the “rendez-vous” 
mechanism; bhus in these systems: 

sends,injormation-to U reccives,injormation&om z 
calls U ia~callc~by u activates 

More Conatrainte 
ltfany features of programming languages may be 

rharseterided as properties of the above relations. For 
example, defining 

aamc,scope = declared-in ; ho,s,declaration 

t.bcn in block-structured languages such as Algol 60: 

refers-to E declared-in ’ U same,mvJe 

but in Ada: 

refersJo E declared3 l IJ same,scope U 
(dccfarcain ; rejets,to) 

111 a!1 common languages, we have 

roll3 U creates U activates c uses etc. 

6.0. Time and eyetem consistency 

For the purpose of this study, only one property of the 
basic type Time matters: the fact that it is totally ordered 
by a relation which we call before. The inverse relation is 
predictably called ajter. 

As mentioned in section 3.2, we define 
time-of,last-change as an attribute rather than a relation. 
This is merely for convenience; mathematically, an 
attribute is a (possibly partial) function, thus a special case 
of a relation anyway. Let changed-at be the inverse of 
time-of-last,change. 

Part of the problem of configuration management is 
due to the fact that no element in a system should be 
younger than any element which depends on it. This is 
expressed by the following constraint, which we may call 
the fundamental law of system consistency: 

changed-at ; depends-on ; time~oj~last~change 5 after 

where relation depends-on is defined as: 

depends-on = contains u instances U generalizes U 
refers-to U needs 

5.7. Relations between program elements 

Our last set of relations will contain relations between 
objects of a program. These relations play an essential role 
in static program analysis, whether it ,i\3for compiler 
optimization, supercomputer programming ’ , or program 
debugging. 

l a follows b 

This relation holds if and only if a is a statement whose 
execution may be immediately followed by that of 
statement b. It describes the Row of control. 

l a accesses b 

This relation holds if and only if o is a statement or a 
program module, b is a program object (variable, etc.), and 
the value of 6 is needed for the execution of a. For example, 

if a is an assignment statement, it ~CCWW~ the objects on 
the right-hand side. 

l a modifies 6 

This relation holds if and only if a is a statement or a 
program module, b is a program object (variable, etc.), and 
the value or b may be modified during the execution of 0. 
For example, if o is an assignment statement, it m0difia 
the variable on the left-hand side. 

. a needs-value-of b 

This relation holds if and only if Q and b are objects of a 
program (e.g. variables), and the value of a may be modified 
by a computation which uses the value of be 

The following constraint may be called the 
fundamental law of static analysis: 

nccds,value,oj C (modiJie8 -l ; (jollow~ ; modifies) IT 
acceabed)* ; mod~fics *I ; dCCCdSe8 

To understand this constraint, it may be useful to look 
at figure 2, where i and j are statements, and a, b, e are 
program objects, and to note that the solution of 

d=r U (t;d) 

is 

d=r IJ (t;r) U (t;t;r) LJ (t;t;t;r) IJ . . . 

i.e 

6. STATE OF THE SYSTEM 

After the initial’ specification and design phase, the 
SRR project currently (June 1985) pursues the following 
tasks: 

l The CRAC calculus has been defined preciseIy’3 and 
is being further refined to include diverse kinds of 
object manipulation and user queries. 

l A prototype has been implemented in Prolog”; an 
alternative approach, using the relational data base 
management system Ingres, is pursued concurrently. 
An experimental graphical interface (the “designer’s 
sketchpad” mentioned in section 4) is also being 
implemented. 

a The study of useful software relations outlined in 
section 5 of this paper is being further refined. 

l Two unrelated software projects, one at UC Santa 
Barbara and one in ,i;dustry, have been the object of 
an in-depth analysis with two complementary aims: 
to assess practitioners’ needs from their current. 
Practices, and to evaluate the CRAC as a modeling 
toot. 

a Finally, efficient multigraph algorithms for the 
incrementa) monitoring of constraints have been 
investigated”. 
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APPENDIX 

RELATIONS 
Let, X and Y be two sets. The set of binary relations 

(or just relations) between X and Y, denoted Xo Y, is 
defined as the powerset (set of subsets) of the Cartesian 
product X x Y: 

Xc*Y=P(XX Y) 

In other words, a relation r between X and Y, i.e. an 
rlemcnL of X0 Y, is a set of pairs 

i l+ Y,b 122, Y$? 4 
with zi E Xand yi E Yfor all i. 

As a notational convention, the sets of interest (those 
IwLwcen which relations are defined) will have names 
beginning with upper-case letters, e.g. X, Specification, etc. 
Names of set elements and those of relations will be written 
in lower-case, e.g. z, r, part,oj. To express that a certain 
pair of elements z f X, y E Y belongs to a relation r, i.e. 
that 

15 d E r 
it is often convenient to use an infix notation, as in 

iuseay 
(where z and g might be program modules), rather t:han 

12, y] E U6C.S 

We will use the convention that the name of a relation, 
written in boldface as in this example, may be used as an 
infix operator. 

Since any relation in X*-r Y is a subset of X X Y, 
we can talk about. the intersection of two relations, denoted 
r n s, and their union, denoted r U 8. We may also 

express that a relation is included in (is a subset of) 
another, by writing r C s. 

The inverse of relation r E X H Y is the relation r -’ 
in Yo Xsuch that) 

Yr -I2 h-3- zry 
The domain of r E XV Y, written domain (r), is the 

subset of X containing all element,s z for which z r Y holds 
for some y E Y. The range of r, written range (r), is domain 
(r “). 

The r,omposition of two relations r E X * Y and 8 E 
YW 2, written s . r, is Ihat, relation in X++ 2 which 
holds betwcon elements z and z if and only if 

z r y and y l z for some y E Y 
The order of the a.rguments to the composition operator is 
traditional in ma(,hematies and has some justification; to 
many people, however, iL is less confusing to write the 
relations in the order in which they are “applied”; thus 
rather than the dot notalion we use Lhe semi-color 
not,at.ion, with r f u being defined as s l r (the use of the 
semi-colon is justified by the close connection which exists 
betwren statement sequencing in programs and composition 
of relations; see4). 

For any eel X, the identity relation on X, denoted id 
(XJ. or just id when there is no ambiguity, is the “diagonal” 
rel:km which holds only between each element and itself. 
We call null the empty relation. 

Let r E XC-, X(source and target seb identical). The 
successi! c powers of r are defined as fotlows: 

r”= id 

r’= r;r Cl (i > 0) 

A relation r E X++ X h,as a transitive closure, 
denoted r + , and a reflexive transitive closure, denoted r * , 
deBned as follows: 

r+ =r U r2 Ur3 U . . . 

r’=id u r” 

A relation r E X w Xis: 

l Transitive iff r ’ C r (or equivalently r + = r) 

8 Reflexive iff id C_ r 

0 Symmetric iff c -’ = r 

l Antisymmetric iff r f~ c ml E id 

l Functional iff r -I ; r C id (note that this 
characterizes partial functions) 

l Total iff id C r ; r -’ 

A (partial) order is a transitive, antisymmetric and 
reflexive relation. Such an order relation is total if and only 
if r IJ r -’ =xxx. 

A dag (directed acyclic graph) is a relation I such that 
r* is a partial order. A dag is rooted if and only if, for any 
y E X, the set of t E X such that t t* y is finite; a root is 
then an element of X - domain (r -I ). It is easily shown 
that in a rooted dag, for any y E X, there is at least one 
root, z such t.hat z r* y. 

A forest is a rooted dag r such that I -I is functional 
(note that r represents the relation between parent and 
child). It is easily shown that+ a non-empty forest has at 
least one root. A tree is a forest with at most one root. 

. 
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