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ABSTRACT

We describe a system for maintaining useful information
about a software project. The “software knowledge base”
keeps track of software components and their properties;
these properties are deseribed through binary relations and
the constraints that these relations must satisfy. The
relations and constraints are entirely user-definable,
although a set of predefined libraries of relations with
associated constraints is provided for some of the most
important aspects of software development (specification,
design, implementation, testing, project management).

The use of the binary relational model for describing
the properties of software is backed by a theoretical study
of the relations and constraints which play an important
role in software development.

Keywords: Software engineering tools, configuration
management, project management, formal description of
soft ware engineering concepts.

1. INTRODUCTION

Studies have repeatedly shown that management
problems are one of the primary sources of delays and
failures in large software projects (see e.g.”).

If bad management is due to bad managers, one can
hardly expect that advances in software engineering will
alleviate the problem. But bad management, or rather bad
organization, often has another cause: the sheer difficulty of
mastering the various aspects of a project, and in particular
of controlling change. Project managers and project
members alike have trouble keeping track of what is going
on. As the project develops, its “entropy” increases and it
becomes increasingly difficult to maintain a clear picture of
the state of its various components. Here good tools can
play a major role.

The effort reported in this paper aims at providing a
unified base of supporting tools for various aspects of
software development. To this end, we introduce the
notion of a software knowledge base, that is to say a
repository of all useful project information.

The software knowledge base is used by managers and
programmers to keep track of all interesting properties of
the software components and their relationships. The
software components, as defined here, include all the
relevant project elements: program modules, data
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definitions, requirements, user manuals and other
documentation, specifications, design documents, test data,
test results, schedules, tasks, personnel data, budgets ete.
The relations between these components may be of diverse
kinds: we may want to record the fact that a certain
module of the design implements a certain module of the
specification, that a certain program module uses a certain
data definition module, that a certain task is assigned to a
certain person, ete.

We use the expression "software knowledge base”, or
SKB, to denote the compendium of information associated
with a software project. The system used to record, access
and manipulate this information, as described in this paper,
is called the SKB system whenever there might be a
confusion.

Several aspects of the SKHB system are present in
previous project management systems. The ISDOS sysl,em‘H
is a set of project documentation tools, which make it
possible to record project information as relations between
entities of various predefined kinds; these ideas were further

developed in the SREM sysstem3 written at TRW, which
particularly emphasized the notion of traceability (i.e.
ability to locate over the whole data base the consequences
of a change made to some element). Simpler yet very useful
tools for configuration management and version
control are gaining acceptance: Make'® and SCCS*2 on
Unix, DEC's CMS, Softool's CCC, the "System Version
Control" component of Gandalf*®, Adéle!!, RCS, ete. The
idea of collecting all useful project documents in a single
database is expounded in the Stoneman report °, and used
in 8 current TRW development, the “"Software Master
Database™. The use of relations in software environments
is advocated in'!, which relies on general (n-ary}) relational
databases;”" shows that binary relations may be applied to
various aspects of programming. The SKB project builds
on all these ideas but emphasizes some original, and in our
view essential, design criteria, which we shall now describe.

2. DESIGN CRITERIA

2.1. Simplicity

The SKB system should be easy to learn and use.
Managers and programmers have enough to do already;
they should not be required to go through an extensive
training period before they can effectively use the SKB
system.



A necessary condition for ease of learning and use is to
base the whole system on a simple and uniform conceptual
framework.

2.2. Method-, language- and system- independence

The SKB system is a set of tools, not an integrated
methodology. Although its consistent use naturally leads to
some sound methodological practices, it should be viewed as
a way of helping project managers and developers, not as a
disruption of current development practices.

Thus the SKB system should not conceptually imply
the use of any particular methodology, programming
language, computer or operating system. It should blend
well with other software engineering tools.

We will refer to this criterion as the "independence”
criterion (as a shorthand for method-, language- and
system-independence).

2.3. Adaptability

Not only should the system be compatible with
existing methods or languages: it should be able to provide
efficient support for specific methods or languages in use in,
say, a company.

Thus the natural counterpart of independence is the
ability to parameterize.

2.4, Whole life-cycle coverage

The SKB system should provide benefits across the
entire life-cyele of a software project. Although this
criterion may restrict the power of SKB tools as applied to
a specific life-cycle stage, it is essential in view of the fact
that non-trivial projects usually have a long history. A
system that would only apply to, say, the initial phases of
specification and design, would stand little chance of
playing a significant role: so much of the software process is
evolution, refinemenl and extension of systems occurring
after the first "cyele” has been completed.

2.5. Support for system semantics

Many of the systems quoted in section 1 have little, if
any, notion of what the objects being manipulated really
"ar2"., Most configuration management systems, for
example, focus on just one attribute of objeets, their time
stamp, and know of just one relation, the dependency
relition (there is usually also the notion of a "permission”
atiribute in the systems which support protection). These
systems are not equipped to deal with other properties of
the objects such as the "A is an implementation of B’
relation quoted above.

On the other hand, some of the more complex systems
do know about "types" of objects (e.g. specification, test
data set, etc.), but then they violate the independence
criterion since these types are defined once and for all. The
problem is thus to be able to record semantic properties of
software objects while retaining flexibility.

2.8. Formal analysis

The design of the SKB systemm was based on a
systematic analysis of the properties of software project
clements; some elements of this analysis are given below
{section 5), in the form of a review of software relations and
their abstract properties (constraints},
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This approach conérasts with most published work on
software engincering tools: atthough the necessity for a
systematic requirements analysis is one of the tenets of
sofiware engineering, il seems to have seldom been applied,
let alone in a formal way, to software engineering tools and
environments, The formal specifications we know in this
ficld are @ posteriori exercises applied to existing designs,
e.g.m, which describes some aspeets of ISDOS, and'? which
deseribes the system version control component of Gandalf.
The analysis outlined in section 5 is not a complete

specification of the SKB system, but provides a sound (we
hope) theoretical basis for the system.

2.7. Object-independence

A software knowledge base is a model of a certain set
of software objects and their relations. The model is
conceptually and physically distinct from the objects
themselves; this is in contrast with systems that essentially
add project and configuration management information to
the object representations (usually files on a conventional
host system). In our approach, the SKB is a separate entity;
objects are modeled by SKB elements, called “"atoms” below.

Thus a reference to the object modeled by an SKB
atom (e.g. the file containing a program or other software
object) will merely be considered as one of the attributes of
the atom (the notion of attribute is made more precise
below).

Such an approach has advantages and drawbacks.
The advantages are simplicity and portability; the SKB
system can be built on top of any operating system without
undue modification to this operating system. The approach
also makes it possible to keep the model (the SKB) on one
computer and the objects themselves on another if it is
deemed preferable to separate the development machine
from the management machine.

On the other hand, the approach taken makes it
impossible to ensure consistency: one cannot prevent users
from modifying the objects without making the
corresponding changes in the model. However, regardless of
the decision taken, it is hard to ensure consistency anyhow
unless one is to build a management system that replicates
most of the functions of an operating system. For example,
if one wants to guarantee that the management system
knows about all changes brought to the objects, then the
management system should include such utilities as text
editors and the like. We did not want to follow this path.

Thus we prefer to stick to the more modest goal of
providing a set of management tools on top of an existing
operating system, with an open architecture which makes it
possible to combine these tools with other software tools.
It is the responsibility of the project members to maintain
an accurate SKB about the project. In other words, we
accept the possibility that the SKB system may be fooled,
as a price to pay for the simplicity, flexibility and
independence (in the above sense) of that system.

Obviously, efforts should be made to improve the
consistency of the SKBs. In particular, specific interfaces
may be built between the SKB system and the host system
so that information may be entered automatically into the

SKB, as a result of operations performed in the host system
{e.g. a compilation or an editing session).



Our approach thus follows the example set by the
Make systemls, which achieves simplicity by relying on
dependency information provided explicitly by
programmers; this system having proved to be useful,
efficient and easy to use, other researchers have been able
to come up with tools % that automatically feed dependency
information into Make for specific cases (source programs in
C, Pascal, Fortran, Lex and Yace in the reference cited).

3. THEORETICAL BASIS

The notion of software knowledge base is based on a
small number of concepts: atoms, attributes, relations,
constraints and actions.

3.1. Atoms

The objects in the knowledge base, associated with
physical objects of the software project, are called atoms.
As implied by the "object-independence” criterion discussed
above, the atoms have no immediate connection with the
objects they represent; they are meaningful for the SKB
operations only, and their properiies are only defined
through their attributes, relations with other atoms, and
constraints on these relations.

3.2. Attributes

Atoms may have attributes. Attributes are user-
definable, although some predefined attributes are
available. The value of an attribute may only belong to one
of a small number of predefined types such as Integer,
String, Time, File. The values of the last type are are
references to files supported by the operating system (in a
non-standard system that does not have files, we may have
to replace this by a more general notion of "object”).

Typical predefined atom attributes are
time_of_last_change, yielding values of type Time;
atom_type, yielding values of type String (some possible
types for atoms are predefined, e.g. “procedure”,
“requirement”, “test data”, etc., but new ones may freely be
added); and representation, yielding values of type File.

Attributes may not be of complex types; in particular,
they cannot yield atoms. For anything but simple
properties of atoms, relations should be used instead (see
below).

3.3. Relations

The heart of an SKB consists of a series of facts about
the software project, expressed as links between atoms.
Each of these links expresses the fact that a certain relation
holds between two atoms e and . Examples
(complementing those in the introduction) are "a is defined
in b" (where a is a procedure and b a package in Ada), "a is
a member of b” (where ¢ is a person and b a project), "a is
the formal expression of 6" (where a is a module in a
specification and b a paragraph of the requirements
document). More examples will be found in section 5.

The SKB system only uses binary relations; the reason
is. that binary relations are mathematically simple, have
nice ;_)roperties, and provide an intuitively appealing way to
describe structural properties of systems. From the
thfa()retical standpoint, any system that can be described
using general relations (as e.g. with a relational data base
management system) ean be deseribed with binary
relations”, and algorithms have been proposed to efliciently
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transiate a binary schema into a more eflicient n-ary one”".

In practice, we have indeed found binary relations to
be adequate for modeling properties of software objects.
This is illustrated by the analysis in section 5 - where it will
be seen that we did find one case where a ternary relation
seems necessary.

3.4. Constraints

Attributes and relations constitute by themselves an
empty shell; they deseribe the structural connections
between software objects (the "syntax” of the project), but
not their deeper properties (the “semantics™). The latter
may be expressed by defining constraints, or conditions on
the relations and attributes, which must be satisfied for the
SKB to be in a consistent state. A simple and important
example of constraint is the “"dependency” constraint
maintained by tools such as Make, which expresses that the
value of the time_of_last_change attribute should be greater
{i.e. more recent) for every atom than for every atom to
which it is connected by any relation that may be
characterized as a “"dependency” relation. But many other
useful constraints may be defined on software systems; some
will be given below.

Constraints will be e¢xpressed as mathematical
relational predicates involving relations, attributes and
atoms. The abstract formalism used teo construct and
manipulate a software knowledge base is called the
Calculus of Relations, Attributes and Constraints (CRAC).

3.5. Actions

An action is associated with a constraint and specifies
steps to be taken when the constraint is violated by certain
objects, following manipulations of the SKB. Actions are
not, strictly part of the SKB system since they may involve
commands to the operating system; the SKB system
provides the interface, and ways to pass attributes of the
atoms (e.g. file names) to the host system.

4. STRUCTURE OF THE SYSTEM

The structure of the SKB system follows from the
design criteria of section 2 and the theoretical basis
described in section 3. It is represented in figure 1.

Specific |L Proced Designer's
Interfaces | Interface Library Sketchpad
| CRAC  Interface I
CRAC
[Primitives
Atoms
SKB Attributes
Kernel Relations Operating
Constraints System
Interface
Daemonsl | Actions
Libmries[ Test J Managementl I DesignJ Ilmplementntion

Figure 1: Structure of the SKB System



The kernel of the SKB system provides the bas’ic
mechanisms for creating, accessing and updahr}g the SKB
entities: atoms, attributes, relations and constraints.

In connection with constraints, we introduce. the
concept of daemon. A daemon is & mechanisn'_z associated
with 'a constraint, which monitors the SKB in order to
detect possible violations of the constraint as the
information in the SKB is being updated (i.e. links between
atoms are modified, new atoms are entered, a.t'tributes are
changed, etc.). When it finds that such a-violatlon has .becn
made, the daemon will report the inconsistency apd trigger
the action associated with the constraint, if there is one.

Daemons raise an interesting implementation problem:
in a large SKB involving many atoms, _attribut?s and
relations, it is essential to find ways to avoid searching the
whole structure (mathematically, a multigraph) for t,.he
consequences of a simple change. Work on r('alat,ed t,.opfcs
has been done previously in connection with artificial
intelligence 2 and interactive graphics

The. SKB kernel is accessible through a set of
primitives, the "CRAC primitives”, which implement the
caleulus of relations and constraints, i.e. all the useful
operations on the knowledge base. These opera.tyi?'ns arc:
made available through a uniform interface, th? CRJ'\C
interface”; the idea here is that the SKB functions (like
those of any good datu base management system, or wnore
generally of any good software engincering tool) s'hould be
equally accessible to interactive users, non-interactive users,
and other programs (Lhis is an implementation of wh:.;t. may
be called "Strachey’s principle” from th% ?'uotz.atlon of
Christopher Strachey in Scott's preface to ™ demde.what
you are going to say before you decide how you are going to
say it").

Thus the CRAC interface does not favor any of these
tvpes of access. Several higher-level interfaces should be
provided; figure 1 lists three:

¢ the procedure library, which makes CRAC primitives
usable from programs (e.g. other software tools),
written in ordinary programming languages;

e the CRAC language, which makes it possible to
express CRAC manipulations in an appropriate
notation;

o the Designer’s Sketchpad, a graphical interface to

the calculus, allowing for interactive description of the

atoms and relations with a graphical display and a

mouse. The aim here is to avoid the gap between

high-level design decisions, which are often best
expressed in pictures, and the rest of the software
development process. )

Finally, figure 2 includes a set of "CRAC Libraries”,
each of which provides a set of predefined relations,
attributes and constraints corresponding to an important
aspect of software engineering. Examples are project
management (scheduling, personnel management etc.);
design (a library might provide support for a specific PDL);
implementation (an. Ada library manager would fit here);
and testing. This last point is particularly important in our
view and we see test management as one of the main
benefits of the SKB system: although there is an extensive
literature on program testing, very little scems to have been
published on the management of the testing process: how to

keep track of test data sets for each module, record test
results, ete.
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5. A TAXONOMY OF SOFTWARE RELATIONS
AND CONSTRAINTS

5.1. Overview

The fact that useful relations exist among components
of software systems has been pointed out by many authors.
For example, Parnas” describes the "uses" and "invokes"
relations among modales; systematic methodologies for
software design have introduced the "abstraction” relation
between a specification (e.g. an abstract data type) and an
implementation®’; the "isa” relation” is used in Al systems;
the development of software development environments has
recently led several researchers to consider using relational
databases to keep track of the relations between the
various objects needed in a software project"'?‘; at the
program level, control and data dependencies play in
important role in studies about code generation and
optimization in compilers®, program vectorization®”
static analysis™ .

Despite this frequent use of relations for software-
related issues, there have been very few systematic studies
of these relations; most works desling with relations just .
assume that they are there, and go on using them or
discussing wag's to compute or implement them (an
exception is®° which introduces some program-level
relations and studies their properties).

The absence of a precise definition of software
relations and their formal properties is regrettable, since
relations are not just vague connections between objects,
nor just "tables” as in simplistic presentations of the
relational database theory, but useful mathematical objects
with interesting properties. We feel that a systematic study
of software relations is essential to advances in software
configuration management. We have started such a study28;
some elements from that study will now be reported. The
aim of this section is to present some interesting relations
and the associaled constraints, giving support to our
decision to base the design of the SKB system on binary
relations.

Of course, the relations presented here are only some
of the important relations that oeeur in software; the SKB
system is an open system and the user may introduce any
relations and attributes that may be needed for a
particular application, together with the associated
constraints. The normal way to do this is to define CRAC
“libraries”; the relations and constraints presented below
would normally be paré of some basic, predefined libraries.

6.2. Basic Atom Types

As mentioned above, SKB atoms are not strictly
typed; they simply have "atom type” as one of their
attributes. Examples of atom types are "Requirement”,
"Specification”,  "Design”,  "Program”,  “Test_data",
"Variable”, "Statement”, ."Module”, "Project”, "Milestone”,
"Stafl member”, "Unit cost”, etc. In the spirit of ihe theory
of abstract data Lypes, these types are only “"defined”
through the relations which may hold between the
corresponding atoms and the associated constraints.

In the analysis that follows, we shall be talking about
types of software objects and relations between these
objects. For the SKB project, this analysis is only
interesting insofar as these properties of objects can be
modeled by properties of the eorresponding atoms.



5.3. Relations between atoms of different types

e a contains b

This relation holds if and only if the object represented by &
is a constituent of a. Typically, a will be a system, deseribed
at a certain level of abstraction (specification, design, code,
documentation etc.) and & will be a component (module,

chapter ete.) of that description. We call part_of the

inverse relation containa™!,

¢ a models b

This relations holds if and only if ¢ includes a description of
what b does, that is to say if b is one way to do what is
prescribed by a. We call snstances the inverse relation.

Examples: the user manual for a machine models that
machine; an abstract data type description of a type
models an implementation of that type as a class in Simula
or Smalltalk, a package in Ada etc.

5.4. Relations between atoms of the same type
¢ ¢ complements b

This relation holds if and only if a and b cooperate towards
the achievement of some higher aim. For example, various
procedures in the implementation of the same data type
(class, package) complement each other; so do various
subroutines in a numerical library, or Unix programs
commonly used in a "pipe" fashion, e.g. for text processing
the programs refer, thi, eqn, troff.

Constraints: complements is a symmetric relation;

parl_of ; contains C complements

In this notation, the semicolon denotes the composition of
relations: part_of ; contains is the relation which holds
between any two elements @ and ¢ if and only if, for some
b, a is part_of b and & contains ¢. Also, if r and s are
two relations, then r C s (r is a subset of s) means that
any pair of elements connected by r is also connected by s.
The appendix describes these and other notations.

¢ a specializes b

This relation holds if and only if anything which is
described by 6 is also described by b (but some things may
be described by b which are not described by a). The
inverse relation, specializes™!, may be written generalizes.

Examples: In other branches of seience, the Linnaean
clagsification of living beings is based upon this relation. In
software, a particular elegant implementation of this
relation is the prefixing mechanism of Simula and
Smalltalk: if ¢ is a class whose declaration is prefixed by the
name of b, then any property which has been given in the
declaration of b applies ipso facto to all objects of class §,
but this does not prevent the declaration of a to add any
further properties which may be needed; the mechanism can
be iterated. A similar mechanism exists in the Z
specification language .

Constraints: "linear” or “hierarchical" inheritance, as in
Simula and Smalltalk, means that the relation is a forest.
In Smalltalk, the introduction of the "metaclass" Class
makes it a tree. "Multiple inneritance woutd mean that a
dag is acceptable.

An interesting variant of this relation occurs in many
practical cases; it may be written @ specializes b ezcept for ¢
(e.g., bats have all the properties of mammals except that
they can fly). This seems very useful to model many aspects
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of software, e.g. Fortran 77 is "upward-compatible” with
Fortran 66 (except for a few "minor” details), version 4.2 of
the XXX operating system is almost compatible with
version, say, 7, etc. This relation is also important in
connection with modular, reusable system specifications™.
It is a ternary relation.

o a refers_to b

This relation holds if and only if @ refers to b by its name.
It can happen in a variety of ways: @ and b can be objects
of the same type (i.e. procedures, where a calls b) but this is
not necessary. In programming languages, a module can
refer_to objects belonging to other modules (e.g. variables,
etc.) either through the mechanism of block structure or
sharing of data, or by special facilities which enable a
module to "peep” into the names of entities belonging to
another (inspect in Simula, use in Ada). We call
1s_referred_by the inverse relation.

e g needs b

This relation holds if and only if a eannot be understood
(or, if a program clement, executed) without 5.
Constraint: we venture the following rule:

needs C is_referred_by * ; refers_to ©
meaning that a possibly needs b if and only if some module
¢ (which could be a itself) refers to both & and b directly or
indirectly (the asterisk and plus sign denote transitive
closures; see the appendix).

o a declared_in b

This relation holds in block-structured languages iff a is
declared inside b.

Constraint: declared_in C part_of

o a shares_information_with b
This symmetric relation holds if and only if ¢ and b may
access some common information. In  block-structured
languages such as Algol 60 and Pascal, this is done through
the block structure mechanism, as defined by the following
constraint (valid for these languages):

shares_information_with - declared_in *

has_declaration *
where has_declaration is the inverse of declared_in.
0.0. Kelations between program modules

The following relations apply to modules of programs
(procedures, classes, packages etc.).

eacalls b

This is the standard relation between procedures,
which holds if and only if @ may call .

® g creates b
This relation holds if and only if a may create b. It exists
in a language or systems where processes can start other
processcs {e.g. Ada tasks, Unix processes, PL/I tasks, Simula
classes). The same relation also applies to the case where b
is a data structure in languages where data can be
allocated dynamically (e.g. new in Pascal).

e ¢ activates b
This relation holds in systems supporting coroutines (c.g.
Simula) or parallel processes (Ada) if and only if if a may
re-start a suspended execution of b.

o a sends_information_to b

This relation holds if and only if a may pass information to



b. Let receives_information_from be the inverse relati?n.
The following constraint holds for common programming
languages:
sends_tnformation_to U recesves_information_from C
calls U 1is_called by
However, this is not the case in CSP, for example, where
information may also be passed through the “rendez-vous"
mechanism; thus in these systems:
sends_tnformation_to U receives_information_from C
ealls U is_called_by U activates

More Constraints
Many features of programming languages may be
characterized as properties of the above relations. For
example, defining
same_scope = declared_in ; has_declaration
then in block-structured tanguages such as Algol 60:
refers_to C declared_in * | same_scope
but in Ada:

refers_to  C  declaredin * U
{declared_in ; refers_to)

In a!l common languages, we have
calls U creates U activates C uses

same_scope U

etc.
5.6. Time and system consistency

For the purpose of this study, only one property of the
basic type Time matters: the fact that it is totally ordered
by a relation which we call before. The inverse relation is
predictably called after.

As  mentioned in section 3.2, we define
time_of _last_change as an attribute rather than a relation.
This is merely for convenience; mathematically, an
attribute is a (possibly partial) function, thus a special case
of a relation anyway. Let changed_at be the inverse of
time_of_last_change.

Part of the problem of configuration management is
due to the fact that no element in a system should be
younger than any element which depends on it. This is
expressed by the following constraint, which we may call
the fundamental law of system consistency:

changed_at ; depends_on ; time_of. last_change C after
where relation depends_on is defined as:

depends_on = contains U instances U generalizes \U
refers_to {4 needs

5.7. Relations between program elements

Our last set of relations will contain relations between
objects of a program. These relations play an essential role
in static program analysis, whether it is for compiler
optimization, supercomputer programming’’”, or program
debugging.

¢ g follows b

This relation holds if and only if a is a statement whose
execution may be immediately followed by that of
statement b. It describes the flow of control.

e a accesses b

This relation holds if and only if ¢ is a statement or a
program module, b is a program object (variable, etc.), and
the value of & is needed for the execution of a. For example,
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if @ is an assignment statement, it accesses the objects on
the right-hand side.

¢ ¢ modifies b
This relation holds if and only if ¢ is a statement or 2
program module, b is a program object (variable, e.tc.), and
the value of b may be modified during the execution ctf a.
For example, if ¢ is an assignment statement, it modifies

the variable on the left-hand side.

o a needs_value_of b
This relation holds if and only if ¢ and b are objects ?f a
program (e.g. variables), and the value of ¢ may be modified
by a computation which uses the value of &.

The following constraint
fundamental law of static analysis:

needs_value_of C (modifies "1 ; (follows ; modifies) N
accesses)* ; modifies ! ; accesses

may be calied the

To understand this constraint, it may be useful to look
at figure 2, where ¢ and j are statements, and a, b, ¢ are
program objects, and to note that the solution of

d=r U (t;d)

d=r U @;r) U t;t;r) U (t;t;t;7) U ...

needs_velue_of
_ —_— T - L
— - -~ ~

modifies RN

aceernes
Zero or more times
—

Figure 2: The Static Analysls Constraint

8. STATE OF THE SYSTEM

After the initial specification and design phase, the

SKB project currently (June 1985) pursues the following
tasks:

e The CRAC calculus has been defined precisely'® and
is being further refined to include diverse kinds of
object manipulation and user queries.

e A prototype has been implemented in Prolog”; an
alternative approach, using the relational data base
management system Ingres, is pursued concurrently.
An experimental graphical interface (the “designer’s
sketchpad” mentioned in section 4) is also being
implemented.

e The study of useful software relations outlined in
section 5 of this paper is being further refined.

e Two unrelated software projects, one at UC Santa
Barbara and one in industry, have been the object of
an in-depth analysis’ wilth two complementary aims:
to assess practitioners’ needs from their ecurrent
practices, and to evaluate the CRAC as a modeling
tool.

o Finally, efficient multigraph algorithms for the
incremental monitoring of constraints have been
investigated >,
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APPENDIX

RELATIONS

Let X and Y be two sets. The set of binary relations
(or just relations) between X and Y, denoted X «— Y, is
defined as the powerset (set of subsets) of the carlesian
product X X Y:

X Y=P(X X Y)
In other words, a relation r between X and Y, ie. an
clement of X «— Y, is a set of pairs

{ IZ‘, yt/r /22, y;J: ‘"}
with z; € X and y; € Y for all .

As a notational convention, the sets of interest (those
between which relations are defined) will have names
beginning with upper-case letters, e.g. X, Specification, etc.
Names of set elements and those of relations will be written
in lower-case, e.g. z, r, part_of. To express that a certain
pair of elements £ € X, y € Y belongs to a relation v, ie.
that

[z, yj€r
it is often convenient to use an infix notation, as in

zuses y
(where z and y might be program modules), rather than

[z, yf € uses.
We will yse the convention that the name of a relation,
written in boldface as in this example, may be used as an
infix operator.
Since any relation in X ++ Y is a subset of X X Y,
we can talk about the intersection of two relations, denoted
r N s and their union, denoted r U s We may also

express that a relation is included in (is a subset of)
another, by writing r C s.

The inverse of relation r € X = Y is the relation r~
in Y« X such that

yr Vs <> zry

The domain of r € X « Y, written domain (7), is the
subset of X containing all elements r for which z r y holds
for some y € Y. The range of r, writien range (r), is domain
(r').

The composition of two relations r € X+ Yand s €
Y «— Z, written s o r, is that relation in X «— Z which
holds between elements z and zif and only if

1

zryand ysz forsome y€Y
The order of the arguments to the composition operator is
traditional in mathematics and has some justilication; to
many people, however, it is less confusing to write the
relations in the order in which they are “applied”; thus
rather than the dot notation we use the semi-color
notation, with r ; s being defined as s ¢ ¢ {the use of the
semi-colon is justified by the close connection which exists
between statement sequencing in programs and composition
of relations; see”).

For any set X, the identity relation on X, denoted id
{X}, or just id when there is no ambiguily, is the "diagonal”
relation which holds only between each element and itsell.
We call null the empty relation.

Let r € X « X (source and target set identical). The
successive powers of r are defined as follows:

r0=id

'«=r,.'v-1 (i>0)

A relation r € X+ X has a transitive closure,
denoted r * | and a reflexive transitive closure, denoted r * y
defined as follows:

r+=r U r2 Ur‘g U ..

r*=did U r¥t

A relation r € X« Xis:

o Transitiveiff r? C r (or equivalently r+ = r)

® Reflexive iff id C

o Symmetric iff r L=y

o Antisymmetric iff r N el C id

e Functional iff ¢ 1 ; r (-

characterizes partial functions)

o Total iff id C r;r~!

A (partial) order is a transitive, antisymmetric and
reflexive relation. Such an order relation is total if and only
fruri=XxX

A dag (directed acyclic graph) is a relation r such that
r*is a partial order. A dag is rooted if and only if, for any
¥ € X, the set of z € X such that z r* yis finite; a root is
then an element of X - domain {r *! ). It is easily shown
that in a rooted dag, for any g € X, there is at least one
root z such that zr* y.

A forest is a rooted dag r such that r *! is functional
(note that r represents the relation between parent and
child). It is easily shown that a non-empty forest has at
least one root. A tree is a forest with at most one root.

id (note that this
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