
Finding Implicit Contracts in .NET Libraries

Karine Arnout1 Bertrand Meyer1, 2

1 Chair of Software Engineering, Swiss Federal Institute of Technology (ETH)
CH-8092 Zurich, Switzerland

2 Eiffel Software, 356 Storke Road, Santa Barbara CA 93117, USA

Karine.Arnout@inf.ethz.ch
http://se.inf.ethz.ch http://www.eiffel.com

Keywords: Design by Contract™, Library design, Reuse, Implicit contracts,
.NET, Metadata, Contract Wizard, Eiffel.

Abstract. Are contracts inherent in reusable libraries, or just one design
technique among others? To help answer this question, we performed an
empirical study of library classes from the .NET Collections library, which
doesn’t use Design by Contract™, to look for unexpressed contracts. This
article reports on the buried contracts we have found, and discusses
improvements to the architecture ─ especially to the libraries’ ease of learning
and ease of use ─ that may result from making the contracts explicit. It extends
previous reports [3] [4] [5] [6] with an analysis of the benefits of an a posteriori
addition of contracts for the library users.

1 Introduction

Equipping libraries with contracts has become a second nature to designers working
with Eiffel. Many commonly used libraries, however, don’t show any contracts at all.
The resulting style is very different, and, to someone used to Design by Contract [21]
[23] [25] [31], deficient.

Because the benefits of contracts are so clear to those who use them, it’s natural to
suspect that non-Eiffel programmers omit contracts because they have no good way to
express them, or haven’t even been taught the concepts, but that conceptually
contracts are there all the same: that inside every contract-less specification there is a
contract wildly signaling to be let out.

For an Eiffel programmer this is the natural interpretation. But when you are doing
something different from the rest of the world, it’s good to check your own sanity.
Are we wrong in seeing contracts around libraries, and the rest of the world ─
including the most recent general-purpose development frameworks ─ right in
continuing to act as if contracts had never been invented?

This article is such a sanity check. The basic conjecture that it explores may be
stated more precisely:

Cite this article as follows: Karine Arnout, Bertrand
Meyer, Finding Implicit Contracts in .NET components,
to appear in Formal Methods and Components (FMCO),
eds. Frank de Boer et al., Springer-Verlag, 2003

Box 1. The Closet Contract Conjecture

Eiffel libraries have contracts; most others don’t. Which is the right explanation?

− The contract-rich style of Eiffel libraries is but an artefact of the support for
contracts in the Eiffel method, language and tools. Remove contract
mechanisms, and the contracts just go away.

− Contracts are inherent in library design; if not explicitly stated, as in
C++/Java/.NET libraries, they are lurking anyway under the cover, either
suppressed or replaced by comments in the program, explanations in the
documentation, exceptions and other ersatz techniques.

Resolving the Closet Contract Conjecture is interesting for several reasons:

− The answer can shed light on important issues of reusable component design, one
of the keys to progress in software engineering.

− An answer can help library users (application programmers) choose between
competing libraries.

− On a more specific point, the answer would help ascertain the potential usefulness
of a “Contract Wizard”. Such a tool, of which a first version has been implemented
by Eiffel Software [1], takes advantage of the reflection facilities of .NET —
“Metadata” — to let its users work interactively on compiled classes, coming from
any non-contracted language such as C#, C++, Visual Basic, Cobol or Java, and
add contracts to them a posteriori. But this is only interesting if the second answer
holds for the Closet Contract Conjecture. If not, the Wizard’s user wouldn’t find
any interesting contracts to add.

− If that second answer indeed holds, we may use it to improve our understanding of
the libraries, and even to improve the library themselves by turning the implicit
contracts that we have elicited into explicit elements of the software.

To help answer the conjecture, we have started a study of non-contracted libraries to
see if we could spot implicit contracts. The .NET collection library [27], a
comprehensive set of data structure implementations, has been one of the first targets.
We examined some commonly used .NET collection classes, sleuthing around for
hidden contracts, and trying to uncover language or documentation techniques used to
make up for the absence of proper contract mechanisms such as precondition clauses,
postcondition clauses and class invariants.

Where we spotted closet contracts, we proceeded to out them, by producing class
variants that retain the original APIs but make the contracts explicit. We compared
the result both with the originals and with some of the classes’ closest counterparts in
the EiffelBase library.

The rest of this presentation describes the analysis and its outcomes:

− Section 2 provides more details on why we have engaged in this study and explains
the method of analysis.

− Section 3 recalls the principles of Design by Contract and their application to
library design.

− Section 4 summarizes the contributions of .NET and its Collections library.
− Section 5 presents the results of analyzing an important .NET collection class:
ArrayList [28].

− Section 6 introduces a variant of ArrayList where the implicit contracts
detected in the official version have been made explicit, and gives measurements
of properties of the contracted class.

− Section 7 extends the analysis to some other classes and interfaces to assess the
consistency of the results across the library.

− Section 8 compares the effect of the two design styles, with and without contracts,
on the development of applications using a library: ease of use, ease of learning,
bug avoidance.

− Section 9 presents related work about contract extraction and evaluates the
possibility of automating the extraction of hidden preconditions by analyzing the
CIL code.

− Section 10 concludes with an assessment of the lessons learned.

The focus of this work is on design and programming methodology, in particular
design methodology for the construction of libraries of reusable components; we are
looking for techniques that help component producers turn out better components,
help component consumers learn to use the components, and reduce the potential for
errors arising from incorrect, incomplete or misunderstood specifications. We were
surprised, when presenting early versions, that some listeners were mostly interested
in possibilities of extracting the contracts automatically from non-contracted
components. Although section 9 indeed describes possibilities in this direction,
building on earlier work on contract extraction, we must warn the reader not to expect
any miracles; no computer tool can divine the intent behind a programmer’s work
without some help from the programmer. The potential for automatic contract
inference should not obscure the concrete and immediate benefits that good design
methodology can bring to both the producers and consumers of reusable software.

2 The Context

2.1 A Distinctive Design Style

Applying to reusable libraries the ideas of Design by Contract [21] [23] [25] [31]
means equipping each library class with precise specifications, or “contracts”,
governing its interaction with the library's clients. Contracts include the class

invariant, stating general consistency conditions to be maintained by every exported
routine of the class, and, for every routine, preconditions stating the clients'
obligations, and postconditions stating guarantees to the clients.

Systematic application of these principles leads to a distinctive design style,
immediately visible in Eiffel frameworks such as EiffelBase [10] [22] covering
fundamental data structures and algorithms, EiffelVision for portable graphics, and
others. These Eiffel libraries have been in wide use for many years and seemingly
appreciated by their users as easy to learn, convenient to use, and beneficial to the
reliability of applications built with them. A recent report by the Software
Engineering Institute [37] confirms that for components in general — not just classes
— the use of contracts appears to be a key condition of any effort to improve
“composability” and scale up the application of component-based technology.

Design by Contract as it has been applied to libraries so far, mostly in Eiffel, is not
an a posteriori addition to the design of a library; it is an integral part of the design
process. The resulting contract-rich library APIs are markedly different from more
traditional, contract-less designs. One might argue that criticism of current libraries
[38] becomes partly unjustified when libraries are built according to this style. The
difference is clear, for example, in a comparison of two libraries that cover some of
the same ground: EiffelBase [10] [22], which is based on Design by Contract, and the
.NET Collections library [27], which is not. Most non-Eiffel libraries, such as the
.NET framework's libraries, have indeed been built without explicit consideration to
the notion of contract. Three possible explanations come to mind:

− The library authors do not know about Design by Contract.
− They know about the concepts, but don’t find them particularly useful.
− They know about the concepts and find them interesting but too cumbersome to

apply without built-in Eiffel-style support in the method, language and supporting
tools.

Regardless of the reason, the difference in styles is so stark that we must ask what
happened, in these contract-less libraries, to the properties that the Eiffel designer
would have expressed in preconditions, postconditions and class invariants. It’s this
question that leads to the Closet Contract Conjecture: are the contracts of Eiffel
libraries a figment of the Eiffel programmer’s obsession with this mechanism? Or are
they present anyway, hidden, in non-Eiffel libraries as well?

The only way to find out is to search contract-less libraries for closet contracts. In
performing this search we have been rummaging through interface specifications,
source code when available, documentation, even ─ since any detective knows not to
overlook the household’s final output ─ generated code, which in .NET and Java still
retains significant high-level information.

2.2 .NET Libraries and the Contract Wizard

A property of the .NET libraries that makes them particularly interesting for such a
study is the flexibility of the .NET component model, which has enabled the
development of a “Contract Wizard” [1], a tool that enables a user to examine a
compiled module (“assembly” in .NET), typically coming from a contract-less

language such as C#, Visual Basic, C++, Cobol etc., and interactively add contracts to
its classes and routines, producing a proxy assembly that is contracted as if it had
been written in Eiffel, but calls the original.

The Contract Wizard relies on the reflection capabilities provided in .NET by the
metadata that every assembly includes, providing interface information such as the
signature of each routine, retained from the source code in the compiling process.

By nature, however, the Contract Wizard is only interesting if the Closet Contract
Conjecture holds. This observation provides one of the incentives for the present
study: as we consider further developments of the Contract Wizard, we must first
gather empirical evidence confirming or denying its usefulness. If we found that .NET
and other non-contracted libraries do very well without contracts, thank you very
much, and that there are no useful closet contracts to be added, it would be a waste of
time to continue working on the Contract Wizard.

2.3 Method of Work

Our library analyses have so far not relied on any automatic tools. Because we are
looking for something that officially isn’t there, we have to exercise our own
interpretation to claim and authenticate our finds. It’s incumbent on us to state why
we think a particular class characteristic, such as an exception, is representative of an
underlying contract.

Having to rely on a manual extraction process puts a natural limit on future
extensions of this article’s analysis to other libraries. Beyond facilitating the analysis,
automated extraction tools could help users of the Contract Wizard by suggesting
possible contract additions. The results of this article indeed suggest certain patterns,
in code or documentation, that point to possible contracts, as certain geological
patterns point to possible oil deposits. However, the final process of contract
elicitation, starting from non-contracted libraries, requires subjective decisions.

3 Building Libraries with Design by Contract

The ideas of Design by Contract are inspired by commercial relationships and
business contracts, which formally express the rights and obligations binding a client
and a supplier. Likewise, software contracts are a way to specify the roles and
constraints applying to a class as a whole (class invariants) or to the routines of the
class (preconditions and postconditions).

3.1 Why Use Contracts?

Many programmers who have heard of contracts think they are just a way to help test
and debug programs through conditionally compiled instructions of the form

if not “Some condition I expect to hold here” then

“Scream”

end

where “Scream” might involve triggering an exception, or stopping execution
altogether. Such a use — similar to the “assert” of C — is only a small part of the
application of contracts, and wouldn’t by itself justify special language constructs.
Contracts address a wider range of issues in the software process, for general
application development as well as library design:

− Correctness: Contracts help build software right in the first place by avoiding bugs
rather than correcting once they are there. Designing with contracts encourages the
designer to think about the abstract properties of each software element, and build
the observance of these properties into the software.

− Documentation: From contracted software, automatic tools can extract
documentation that is both abstract and precise. Because the information comes
from the software text, this approach saves the effort of writing documentation as a
separate product, and lowers the risk of divergence between software and
documentation. It underlies the basic form of Eiffel documentation for Eiffel
software: the contract form, produced by tools of the Eiffel environment and
retaining interface information only.

− Debugging and testing: Run-time monitoring of contracts permits a coherent,
focused form of quality assurance based on verifying that the run-time state of the
software satisfies the properties expected by the designers.

− Inheritance control: Design by Contract principles provide a coherent approach to
inheritance, limiting the extent to which new routine definitions may affect the
original semantics (preconditions may only be weakened, postconditions
strengthened).

− Management: Contracts allow project managers and decision makers to understand
the global purpose of a program without going into the depth of the code.

The principles are particularly relevant to library design. Eiffel libraries are
thoroughly equipped with contracts stating their abstract properties, as relevant to
clients.

3.2 Kinds of Contract Elements

Contracts express the semantic specifications of classes and routines. They are made
of assertions: boolean expressions stating individual semantic properties, such as the
property, in a class representing lists stored in a container of bounded capacity, that
the number count of elements in a list must not exceed the maximum permitted,
capacity.

Uses of contracts include:

− Preconditions: Requirements under which a routine will function properly. A
precondition is binding on clients (callers); the supplier (the routine) can turn it to
its advantage to simplify its algorithm by assuming the precondition.

− Postconditions: Properties guaranteed by the supplier to the client on routine exit.
− Class invariants: Semantic constraints characterizing the integrity of instances of a

class; they must be ensured by each constructor (creation procedure) and
maintained by every exported routine.

− Check instructions: “Assert”-like construct, often used on the client side, before a
call, to check that a precondition is satisfied as expected.

− Loop variants and invariants: Correctness conditions for a loop.

Check instructions, loop variants and loop invariants address implementation
correctness rather than properties of library interfaces and will not be considered
further here.

Although preconditions and postconditions are the best known forms of library
contracts, class invariants are particularly important in an object-oriented context
since they express fundamental properties of the abstract data type (ADT) underlying
a class, and the correctness of the ADT implementation chosen for the class
(representation invariant [9]). We must make sure that our contract elicitation process
doesn’t overlook them.

3.3 Contracts in Libraries

Even a very simple example shows the usefulness of contracts in library design.
Consider a square root function specified, in a first approach, as
sqrt (x: REAL): REAL

This specification tells us that the function takes a REAL argument and returns a
REAL result. That is already a form of contract, specifying the type signature of the
function. We can call it a signature contract. (Regrettably, some of the Java and .NET
reference documentation uses the term “contract”, without qualification, for such
signature contracts, creating confusion with the well established use of the term as
used in the rest of this article.) A more complete contract — semantic contract if we
need to distinguish it from mere signature contracts — should also specify properties
of the argument and result that can’t just be captured by type information, but is just
as important to the library client. The most obvious example is what happens for a
negative argument, with at least four possible answers:

− The function might silently return a default value, such as zero. (Not very good!)
− It might return a default value, and set a special flag that it is the caller’s

responsibility to examine after a call.
− It might trigger an exception, which it is the caller’s responsibility to handle

(otherwise execution will probably terminate abnormally).
− It might produce aberrant behavior, such as entering an infinite loop or crashing the

execution. (Not good in the absence of contracts.)

A fifth would be to return a COMPLEX result, but that is not permitted by statically
typed languages if the specification, as above, declares the type of the result as REAL.

A contract — here a precondition and a postcondition — will express which of
these specifications the function implements. In Eiffel the function would appear as
sqrt (x: REAL): REAL is

-- Mathematical square root of x, within epsilon

require

non_negative: x >= 0

do

... Square root algorithm here ...

ensure

good_approximation:

abs (Result ^2 – x) <= 2 * x * epsilon

end

where epsilon is some appropriate value expressing the requested precision, abs
gives the absolute value, and ^ is the power operator. The assertion tags
non_negative and good_approximation are there for documentation
purposes and will also appear in error messages if the contracts are checked at run
time during debugging and testing.

The contract form of the enclosing class, as produced by the environment tools,
will show the above without the do… part and the is keyword (but with the header
comment). This is the basic documentation that any application programmer wishing
to use an Eiffel class will receive. That documentation is, essentially, the set of
contracts associated with the class.

Here we find direct support for the contract clauses — require, ensure, and
the yet to be encountered invariant — in the language and the associated
documentation standard, but the contract is inherent to the routine, regardless of its
language of implementation. If a library is to provide a usable square root routine it
must be based on such a contract. Unless you know under what conditions a square
root function will operate and what properties you may expect of its result, you
couldn’t use it properly.

The general questions are:

− If there is no explicit contract discipline, comparable to the Eiffel practice of
documenting all libraries through their contract form, where will we find the
implicit contract?

− Will, as in this example, a contract always exist, whether expressed or not?
The rest of this study provides material for answering these questions.

4 Why .NET Libraries?

.NET libraries suggested themselves for our study not only because they are one of
the most recent and widely publicized collections of general-purpose reusable
components, but also because the innovative .NET concept of metadata equips them
with specification information that appears directly useful to contract elicitation.

4.1 The Scope of .NET

The .NET libraries are part of the .NET framework [24], a major Microsoft
endeavor. Overall, .NET addresses the needs of companies and the general public
through advances in Web services infrastructure, new tools for business-to-business
and business-to-consumer interactions (Universal Description, Discovery and
Integration, MyServices, Biztalk), advanced Web mechanisms (through the ASP.NET
framework), new security mechanisms and other innovations.

In support of these goals, .NET includes new techniques and products of direct
interest to developers. The most significant advance here is extensive support for
multi-language programming with full interoperability between languages. Beyond
Microsoft’s own languages, C# and Visual Basic .NET, implementations exist for
third-party languages, in particular Eiffel. (The Eiffel implementation on .NET
includes the full language as on other platforms; in particular it supports Design by
Contract, genericity and multiple inheritance without restrictions [2] [36].) All such
language implementations benefit from common mechanisms including a versioning
scheme, an extensive security framework, a component model considerably simpler to
use than Microsoft’s previous COM technology, facilities for memory management,
debugging and exception handling, a multi-language development environment
(Visual Studio .NET), all supported by a Common Language Runtime. They also
benefit from a set of libraries covering many areas of applications, which the
interoperability infrastructure makes available to programs written in all languages
supported on .NET.

4.2 The Role of Metadata

The basic compilation unit in .NET, covering for example a library or a section of a
library, is the assembly. The key to the framework’s support for component-based
development is the presence, in every assembly, of documentary information known
as metadata, making the assembly self-describing in accordance with the self-
documentation principle [23].

The metadata of an assembly — accessible to programs through the Reflection
library, to users through various tools, and to the world at large in XML — provides
information on the assembly’s contents, including:

− A “manifest” describing the assembly name, version, culture and public key (if the
assembly is signed).

− The list of dependencies on other .NET assemblies.
− For each class, the list of its parents (interfaces, and at most one class) and of its

features (routines, attributes, properties and events).
− For each class member, the signature (including arguments and return type).

In addition to these predefined categories, developers can define, assuming proper
source language support, their own specific kinds of metadata in the form of custom
attributes.

Metadata of both kinds — predefined and custom — opens attractive new
possibilities. The Contract Wizard is one of them: by relying on the metadata, it
enables users to examine a class and its features interactively, and add any appropriate
contracts ─ all without having access to the source code.

5 Analysis of a Collection Class

Our first search for closet contract will target the class ArrayList [28], part of the
core .NET library (mscorlib.dll). This choice of class is almost arbitrary; in particular
it was not based on any a priori guess that the class would suggest more (or fewer)
contracts than any other. Rather, the informal criteria were that the class, describing
lists implemented through arrays:

− Is of obvious practical use.
− Seems typical, in its style, of the Collections library.
− Has a direct counterpart, ARRAYED_LIST, in the EiffelBase library, opening the

possibility of comparisons once we’ve completed the contract elicitation process.

5.1 Implicit Class Invariants

Documentation comments first reveal properties of ArrayList that fall into the
category of class invariants.

We find our first leads in the specification of class constructors, which states that

“The default initial capacity for an ArrayList is 16”

This comment implies that the capacity of the created object is greater than zero.
Taking up this lead, we notice that all three constructors of ArrayList set the
initial list’s capacity to a positive value. This suggests an invariant, since it is part of
the Design by Contract rules that an invariant property must be guaranteed by all the
creation procedures of a class.

To test our intuition, we examine the other key property of an invariant: that it
must be preserved by every exported routine of the class. Examining all such routines

confirms this and suggests that we indeed have the germ of an invariant, which in
Eiffel would be expressed by the clause
invariant

positive_capacity: capacity >= 0

Continuing our exploration of the documentation, we note that two of the three
constructors of ArrayList

“initialize a new instance of the ArrayList class that is empty”.

The count of elements of an array list created in such a way must then be zero. The
third constructor, which takes a collection c as parameter

“initializes a new instance of the ArrayList class that contains elements copied
 from the specified collection”

So the number of elements of the new object equals the number of elements in the
collection received as parameter, expressed by the assertion count = c.count
(which in Eiffel would normally appear in a postcondition). Can then c.count be
negative? Most likely not. Checking the documentation further reveals that the
argument c passed to the constructor may denote any non-void collection, represented
through one of the many classes inheriting from the ICollection interface [29]:
arrayed list, sorted list, queue etc. Without performing an exhaustive examination, we
note a hint in ArrayList itself, in the specification of routine Remove:

“The average execution time is proportional to Count. That is, this method is an
 O(n) operation, where n is Count”

which implies that count must always be non-negative. This evidence is enough to
let us add a clause to the above invariant:
positive_count: count >= 0

These first two properties are simple but already useful. For our next insights we
examine the specification of class members. Documentation on the Count property
reveals interesting information:

“Count is always less than or equal to Capacity”.

The self-assurance of this statement indicates that this property of the class always
holds, suggesting that it is a class invariant. Hence a third invariant property for class
ArrayList yielding the accumulated clause
invariant

positive_capacity: capacity >= 0
 positive_count: count >= 0
 valid_count: count <= capacity

5.2 Implicit Routine Preconditions

Aside from implicit class invariants, the documentation also suggests preconditions.
To get our clues we may look at documented exception cases.

The specification of the routine Add of class ArrayList states that Add throws
an exception of type NotSupportedException if the arrayed list on which it is
called is read-only or has a fixed size. This suggests that the underlying
implementation of Add first checks that the call target is writable (not read-only) and
extendible (does not have a fixed size) before actually adding elements to the list.

Such a requirement for having the method do what it is expected to is the definition
of a routine precondition in terms of Design by Contract. An Eiffel specification of
Add would then include the following two preconditions:
require
 writable: not is_read_only
 extendible: not is_fixed_size

is_read_only and is_fixed_size are the Eiffel counterparts of the .NET
properties IsReadOnly and IsFixedSize of class ArrayList.

This example — one of many to be found in the reference documentation of the

.NET Framework — suggests a scheme for extracting preconditions, applicable
systematically, with some possibility of tool support:

− Read the exception condition; e.g. the array list is read-only.
− Take the opposite; for ArrayList the condition would be

not is_read_only

− Infer the underlying routine precondition; here:
writable: not is_read_only

5.3 Implicit Routine Postconditions

Does the .NET documentation also reveal closet postconditions? For an answer we
consider the example of the query IndexOf. More precisely, since it is an
overloaded method, we choose a specific version identified by its signature:
public virtual int IndexOf (Object value);

The documentation explains that the return value is

“the zero-based index of the first occurrence of value within the entire
 ArrayList, if found; otherwise, -1”.

We may rephrase this specification more explicitly:

− If value appears in the list, the result is the index of the first occurrence, hence
greater than or equal to zero (.NET list indexes are indexed starting at zero) and
less than Count, the number of elements in the list.

− If value is not found, the result is –1.

Such a property is a guarantee on routine exit, a condition incumbent on the supplier
on completion of the task — the definition of a postcondition. In Eiffel we would add
the corresponding clause to the routine:
ensure
 valid_index_if_found:

contains (value) implies Result>0 and Result<count

correct_index_if_found:
contains (value) implies item (Result) = value

minus_one_if_not_found:
not contains (value) implies Result = –1

This simple analysis suggests that routine postconditions do exist in .NET libraries,
although not explicitly expressed because of the lack of support from the underlying
environment. Unlike preconditions — for which it may be possible to devise
supporting tools — postconditions are likely to require case-by-case human
examination since they are scattered across the reference documentation.

5.4 Contracts in Interfaces

Class ArrayList implements three interfaces (completely abstract specification
modules) of the .NET Collections library: IList, ICollection, and
IEnumerable. It is interesting to subject such interfaces to the same analysis as we
have applied to the class.

This analysis (see sections 6 and 7 for general statistics about the contract rates of
.NET collection classes and interfaces) indicates that IList, ICollection,
IEnumerable, and IEnumerator (of which IEnumerable is a client), do have
routine preconditions and postconditions similar to those of ArrayList.

We have not, however, found class invariants in these interfaces. This is probably
because of the more limited scope of interfaces in .NET (coming from Java) as
compared to “deferred classes”, their closest counterpart in the object-oriented model
embodied by Eiffel. Deferred classes may have a mix of abstract and concrete
features; in particular, they may include attributes. Interfaces, for their part, are purely
abstract and may not contain attributes. The Eiffel policy provides a continuous
spectrum from totally deferred classes, the equivalent of .NET and Java interfaces, to
fully implemented classes, supporting the aims of object-oriented development with a
seamless process from analysis (which typically uses deferred classes) to design and
implementation (which make the classes progressively more concrete). Class
invariants in the Eiffel libraries [22] often express consistency properties binding
various attributes together.

One can imagine, however, finding properties that hold for all the classes
implementing the interface and that would be relevant candidates for “interface
invariants”. But our non-exhaustive analysis of the .NET Collections library did not
reveal such a case.

6 Adding Contracts a Posteriori

The discovery of closet contracts in the .NET arrayed list class suggests that we
should build a “contracted variant” of this class, ARRAY_LIST, that has the same
interface as the original ArrayList plus the elicited contracts. We now present a
sketch of this class and compare it with its EiffelBase counterpart: ARRAYED_LIST.

Rather than modifying the original class we may produce the contracted variant —
here in Eiffel — as a new class whose routines call those of the original. This is the
only solution anyway when one doesn’t have access to the source code. The Contract
Wizard is intended to support such a process, although for this discussion we have
produced the result manually.

6.1 A Contracted Form of the .NET Arrayed List Class

The original class, ArrayList, has 57 features (members in the .NET terminology).
In presenting the contracted version we limit ourselves to 12 features, discussed in the
preceding analysis of the class.

The notation

require -- from MY_CLASS

or
ensure -- from MY_CLASS

shows that the assertion clauses that follow (respectively preconditions or
postconditions) are inherited from the parent class MY_CLASS. This is the
convention applied by EiffelStudio documentation tools when displaying the
assertions of a class, for the parts inherited from ancestors. The difference is that in
Eiffel assertions clauses are automatically inherited from parents; in .NET there is no
such convention, so the .NET documentation has to repeat the same comments and
exception conditions for an ancestor class or interface and all its descendants.

The feature keyword introduces a “feature clause”, which groups a set of

features (members) that have a common purpose. For example, the feature clause
feature -- Initialization lists all the creation procedures of class
ARRAY_LIST: make, make_from_capacity and make_from_collection.

indexing

description: "[

 Implementation of a list using an

 array, whose size is dynamically

 increased as required.

]"

class interface ARRAY_LIST

create

-- Note for non-Eiffelists: This is the list of

-- creation procedures (constructors) for the

-- class; the procedures’ definitions appear below.

make,

make_from_capacity,

make_from_collection

feature -- Initialization

make

-- Create empty list with capacity

-- Default_capacity.

ensure

empty: count = 0

default_capacity_set: capacity = Default_capacity

writable: not is_read_only

extendible: not is_fixed_size

make_from_capacity (a_capacity: INTEGER)

-- Create empty list with capacity a_capacity.

require

positive_capacity: a_capacity >= 0

ensure

empty: count = 0

positive_capacity_implies_capacity_set:

a_capacity > 0 implies capacity = a_capacity

capacity_is_zero_implies_default_capacity_set:

a_capacity =0 implies capacity =Default_capacity

writable: not is_read_only

extendible: not is_fixed_size

make_from_collection (c: ICOLLECTION)

-- Create list containing elements copied from c

-- and the corresponding capacity.

require

collection_not_void: c /= Void

ensure

capacity_set: capacity = c.count

count_set: count = c.count

writable: not is_read_only

extendible: not is_fixed_size

feature -- Access

capacity: INTEGER

-- Number of elements the list can store

count: INTEGER

-- Number of elements in the list

Default_capacity: INTEGER is 16

-- Default list capacity

index_of (value: ANY): INTEGER

-- Zero-based index of the first occurrence of

-- value

ensure -- from ILIST

not_found_implies_minus_one:

not contains (value) implies Result = - 1

found_implies_valid_index:

contains (value) implies

Result >= 0 and Result < count

found_implies_correct_index:

contains (value) implies item (Result) = value

item (index: INTEGER): ANY

-- Entry at index

require -- from ILIST

valid_index: index >= 0 and index < count

feature -- Status report

contains (an_item: ANY): BOOLEAN
-- Does list contain an_item?

is_fixed_size: BOOLEAN
-- Has list a fixed size?

is_read_only: BOOLEAN
-- Is list read-only?

feature -- Status setting

set_capacity (value: like capacity)

-- Set list capacity to value.

require

valid_capacity: value >= count

ensure

capacity_set: value > 0 implies capacity = value

default_capacity_set:

value = 0 implies capacity = Default_capacity

feature -- Element change

add (value: ANY): INTEGER

-- Add value to the end of the list (double list
-- capacity if the list is full) and return the
-- index at which value has been added.

require -- from ILIST

writable: not is_read_only

extendible: not is_fixed_size

 ensure -- from ILIST

value_added: contains (value)

updated_count: count = old count + 1

valid_index_returned: Result = count - 1

 ensure then

capacity_doubled: (old count = old capacity)

implies (capacity = 2 * (old capacity))

invariant

positive_capacity: capacity >= 0

positive_count: count >= 0

valid_count: count <= capacity

end

6.2 Metrics

Fig. 1 shows measurements of properties of the contracted class ARRAY_LIST,
produced with by the Metrics Tool of EiffelStudio. The measurements apply to the
full class, with all 57 features, not to the abbreviated form shown above. A feature is
“immediate” if it is new in the class, as opposed to a feature inherited from a parent
(and possibly redefined in the class).

Fig. 1. Metrics about the contracted arrayed list class

The Eiffel metric tool’s output uses the following terminology:

− Feature is the general name for class members. Features include attributes (“fields”) and
routines (“methods”). A routine is a computation (algorithm) applicable to instances of the
class; an attribute is stored in memory. If a routine returns a result, it is called a procedure;
otherwise, it is a function.

− Eiffel also distinguishes between commands and queries: A command returns no result; a
query returns a result. If a query is computed at run time, it is a function; if it is stored in
memory, it is an attribute.

We note the following conclusions from these measurements:

− 62% of the routines now have a contract (a precondition or a postcondition, usually
both): 33 out of 52.

− The 33 routines with preconditions tend to have more than one precondition
clause: 2.5 on the average (82 total).

− The 33 routines with postconditions tend to have more than one postcondition
clause: 2 on average (67 total).

7 Extending to Other Classes and Interfaces

Equipped with our first results on ArrayList and its contracted Eiffel counterpart
ARRAY_LIST, we now perform similar transformations and measurements on a few
other classes and interfaces, to probe how uniform the results appear to be across the
.NET Collections library. Since the assumptions and techniques are the same, we
won’t repeat the details but go directly to results and interpretations.

7.1 Interfaces

First, consider Eiffel deferred classes obtained by contracting the .NET interfaces
from which ArrayList inherits:

− ILIST, ICOLLECTION, IENUMERABLE, from which ARRAY_LIST inherits.
− IENUMERATOR, of which IENUMERABLE is a client.
Table 1 shows some resulting measurements.

Table 1. “Contract rate” of some .NET collection interfaces

 ILIST ICOLLECTION IENUMERABLE IENUMERATOR

Routines 11 4 1 6
Routines with
preconditions 7 1 0 3

Routines with
postconditions 7 1 1 3

Number of
preconditions 14 7 0 4

Number of
postconditions 11 1 2 3

Precondition
rate 64 % 25 % 0 % 50 %

Postcondition
rate 64 % 25 % 100 % 50 %

Class
invariants 0 0 0 0

The statistics highlight three trends:

− Absence of class invariant in these .NET interfaces, as already noted.
− Presence of routine contracts: both preconditions and postconditions. The figures

about IENUMERABLE and ICOLLECTION involve too few routines to bring
valuable information — only one for class IENUMERABLE and four for
ICOLLECTION. The figures about ILIST and IENUMERATOR are more
significant in that respect — class ILIST has eleven routines and IENUMERATOR
has six. Both classes (ILIST and IENUMERATOR) have at least one half of their
routines with contracts.

− Presence of multiple routine contracts: most routines have several preconditions
and postconditions.

The last two points are consistent with the properties observed for class
ARRAY_LIST.

7.2 Other Classes: Stack and Queue

To test the generality of our first results on ArrayList, we consider two other
classes of the Collections library. We choose Stack and Queue because they:

− Are concrete collection classes.
− Have no relation to ArrayList, except that all three implement the .NET

interfaces ICollection and IEnumerable.
− Have a direct counterpart in the EiffelBase library.

Three classes is still only a small sample of the library. Any absolute conclusion
would require exhaustive analysis, and hence a larger effort than the present study
since the analysis is manual. So we have to be careful with any generalization of the
results. We may note, however, that none of the three choices has been influenced by
any a priori information or guess about the classes’ likelihood of including contracts.

The same approach was applied to these classes as to ArrayList and its parents.
Fig. 2 shows some of the resulting measurements for classes Stack and Queue.

Fig. 2. Metrics about the contracted stack and queue classes

The figures confirm the trends previously identified:

− Preconditions and postconditions are present. Class STACK has a 29%
precondition rate (17 routines, of which 5 have preconditions) and a 59%
postcondition rate (10 postcondition-equipped out of 17); class QUEUE has 42%
and 58%.

− Preconditions and postconditions usually include several assertions. For example,
STACK has 16 postcondition assertions for 10 contract-equipped routines.

− Concrete classes have class invariants. For example, all three classes ArrayList,
Stack, and Queue have an invariant clause
positive_count: count >= 0

involving one attribute: count.

This case-by-case analysis of 3 concrete classes and 4 interfaces of the .NET
Collections library (out of 13 concrete classes and 8 interfaces) supports the second
answer of the “Closet Contract Conjecture” ─ that contracts are inherent. We will
now explore the benefits and limitations of such an a posteriori addition of contracts.

8 Effect on Library Users

To appreciate the value of the results of the preceding analysis, we should assess their
effect on the only constituency that matters in the end: library users ─ application
developers who take advantage of library classes to build their own systems. This
issue is at the core of the Closet Contract Conjecture, since it determines whether we
are doing any good at all by uncovering implicit contracts in contract-less libraries.
By producing new versions of the library that make the contracts explicit, are we
actually helping the users?

To answer this question, we may examine the effect of the different styles on the
library user (in terms of ease of learning and ease of use) and on the likely quality of
the applications they develop. We take arrayed lists as an example and consider three
variants:

− The original, non-contracted class ArrayList from the .NET Collections library.
− The contracted version ARRAY_LIST discussed above.
− Finally, the corresponding class in the EiffelBase library, called ARRAYED_LIST,

which was built with Design by Contract right from the start, rather than contracted
a posteriori, and uses some other design ideas as well.

8.1 Dealing with Abnormal Cases in a Contract-less Style

The chapter in the .NET documentation devoted to class ArrayList provides a
typical example of dealing with arrayed lists in that framework:
using System;

using System.Collections;

public class SamplesArrayList {

public static void Main() {

// Creates and initializes a new ArrayList.

ArrayList myAL = new ArrayList();

myAL.Add("Hello");

myAL.Add("World");

myAL.Add("!");

// Displays the properties and values of the

// ArrayList.

Console.WriteLine("myAL");

Console.WriteLine("\tCount: {0}",myAL.Count);

Console.WriteLine("\tCapacity: {0}",myAL.Capacity);

Console.Write ("\tValues:");

PrintValues (myAL);

}

public static void PrintValues (IEnumerable myList) {

System.Collections.IEnumerator myEnumerator =

myList.GetEnumerator();

while (myEnumerator.MoveNext())

Console.Write("\t{0}", myEnumerator.Current);

Console.WriteLine();

}

}

Running this C# program produces the following output:
myAL

Count: 3

Capacity: 16

Values: Hello World !

One striking point of this example is the absence of any exception handling — not
even one if instruction in the class text — although our analysis of class
ArrayList (see section 5) has revealed a non-trivial number of implicit contracts.

For example, we have seen that the .NET method Add can only work properly if
the targeted arrayed list is writable and extendible. But there is no such check in the
class text above. This is likely to be on purpose since the property always holds at this
point of the method execution: the .NET constructor ensures that the created list is not
read-only and does not have a fixed size (see the contracted version of class
ArrayList introduced in section 6), which allows calling the method Add on it.

ArrayList myAL = new ArrayList();

/* Implicit check:

(!myAL.IsFixedSize) && (!myAL.IsReadOnly)

*/

myAL.Add ("Hello");

myAL.Add ("World");

myAL.Add ("!");

If harmless in this simple example, such code may become dangerous if part of a
reusable component. As a matter of fact, a novice programmer may overlook such a
subtlety and reuse this code to create and add elements to a fixed-size arrayed list,
which would cause the program execution to terminate on an unhandled exception of
type NotSupportedException.

This becomes even clearer if we encapsulate the calls to Add in a separate method
FillArrayList that would look like the following:
public void FillArrayList(ArrayList AL){

AL.Add ("Hello");

AL.Add ("World");

AL.Add ("!");

}

and use FillArrayList in the Main routine:
public static void Main() {

ArrayList myAL = new ArrayList();

/* Implicit check:

(!myAL.IsFixedSize) && (!myAL.IsReadOnly)

*/

FillArrayList (myAL);

}

The previous program would work; the following one would not:

public static void Main() {

ArrayList myAL = new ArrayList();

ArrayList.FixedSize (myAL);

// The following call would throw an exception

// because myAL is now a fixed-size arrayed list,

// to which no element can be added.

FillArrayList (myAL);

}

Having Design by Contract support would be the right solution here (as discussed in
the next sections). But because the .NET Common Language Runtime does not have
native knowledge of contracts, .NET users have to rely on other techniques:

− Using a “defensive” style of programming: checking explicitly for the routine
requirements even if it can be inferred directly from the previous method
statements (relying on the motto: “better check too much than too less”), hence
adding redundant checking:
ArrayList myAL = new ArrayList();

if ((!myAL.IsFixedSize) && (!myAL.IsReadOnly))

FillArrayList (myAL);

with:
public void FillArrayList (ArrayList AL){

if ((!myAL.IsFixedSize) && (!myAL.IsReadOnly)){

AL.Add ("Hello");

AL.Add ("World");

AL.Add ("!");

}

}

This style, however, leads to needless complexity by producing duplicate error-
checking code. The Design by Contract method goes in the opposite direction by
avoiding redundancy and needless (Non-Redundancy principle, [20] p 343).

− Relying on the exception handling mechanism of the .NET Common Language
Runtime (typically, by using try…catch...finally… clauses):
public static void Main() {

try {

// Creates and initializes a new ArrayList.

ArrayList myAL = new ArrayList();

FillArrayList (myAL);

// Prints list values.

}

catch (NotSupportedException e) {

Console.WriteLine (e.Message);

}

}

with:
public void FillArrayList (ArrayList AL)

throws NotSupportedException {

AL.Add ("Hello");

AL.Add ("World");

AL.Add ("!");

}

− Adding comments in the code to make implicit checks explicit and avoid
misleading the library users:
public static void Main() {

ArrayList myAL = new ArrayList();

/* Implicit check:

(!myAL.IsFixedSize) && (!myAL.IsReadOnly)

*/

FillArrayList (myAL);

}

with:
/* This method can only be called if AL does not

 * have a fixed size and is not read-only.

 */

public void FillArrayList (ArrayList AL) {

AL.Add ("Hello");

AL.Add ("World");

AL.Add ("!");

}

Such an approach is efficient in the sense that there is no redundant check, thus no
performance penalty, which gets closer to the ideas of Design by Contract, but it is
not enforced at run time since it just relies on comments. This suggests the next
approach, a posteriori contracting of classes.

8.2 Dealing with Abnormal Cases in a Contract-rich Style

A posteriori addition of contracts to a .NET component is likely to simplify the task
of clients: rather than testing for a routine’s successful completion, they can just rely
on the contracts, yielding to a lighter programming style (no redundant checking):
indexing

description: "[

 Typical use of contracted class

 ARRAY_LIST

]"

class ARRAY_LIST_SAMPLE

create

make

feature -- Initialization

make is

-- Create an arrayed list, fill it with
-- Hello World!, and print its content.

local

my_list: ARRAY_LIST

do

create my_list.make

fill_array_list (my_list)

print_values (my_list)

end

feature -- Element change

fill_array_list (an_array_list: ARRAY_LIST) is

-- Fill an_array_list with Hello World!.

require

an_array_list_not_void: an_array_list /= Void

is_extendible: not an_array_list.is_fixed_size

is_writable: not an_array_list.is_read_only

local

index: INTEGER

do

index := an_array_list.add ("Hello ")

index := an_array_list.add ("World”)

index := an_array_list.add (“!")

ensure

array_list_filled: an_array_list.count = 3

end

feature -- Output

print_values (an_array_list: ARRAY_LIST) is

-- Print content of an_array_list.

require

an_array_list_not_void: an_array_list /= Void

local

my_enumerator: IENUMERATOR

do

from

my_enumerator := an_array_list.enumerator

until

not my_enumerator.move_next

loop

print (my_enumerator.current_element)

end

end

end

Since we know from the postconditions is_extendible and is_writable of
creation procedure make of ARRAY_LIST that the preconditions of
fill_array_list will be satisfied at this point of the routine execution, we do
not need to add tests before calling the procedure.

For readability or to facilitate debugging — when executing the software with
assertion monitoring on — we might want to use an additional check instruction:

create my_list.make

check

non_void: my_list /= Void

is_extendible: not my_list.is_fixed_size

is_writable: not my_list.is_read_only

end

fill_array_list (my_list)

print_values (my_list)

although this is not required.
If the creation routine make of class ARRAY_LIST had no such postconditions as

is_extendible and is_writable, an explicit if control would have been
needed in the client class ARRAY_LIST_SAMPLE to guarantee that the requirements
of feature fill_array_list actually hold:
create my_list.make

if not my_list.is_fixed_size

and not my_list.is_read_only then

fill_array_list (my_list)

end

But this is different from the “defensive” programming style used in a contract-less
environment, since the test only affects the client side, not both client and supplier;
the latter simply has preconditions.

We call such a use of routine preconditions the a priori scheme: the client must act
beforehand — before calling the routine — and ensure that the contracts are satisfied
(either by testing them directly with an if control, or by relying on the postconditions
of a previously called routine or on the class invariants). With this approach, any
remaining run-time failure signals a design error.

Such a design may not always be applicable in practice for either of three reasons:

− Performance: Testing for a precondition before a routine call may be similar to the
task of the routine itself, resulting in an unacceptable performance penalty.

− Lack of expressiveness of the assertion languages: The notation for assertions
might not be powerful enough.

− Dependency on external events: It is impossible to test for requirements if a routine
involves interaction with the outside world, for example with a human user: there
is no other choice than attempting to execute it, hence no way to predict abnormal
cases.

To address these limitations of the a priori scheme, it is possible to apply an a
posteriori scheme — try the operation first and find out how it went — if a failed
attempt has no irrecoverable consequences.

Performance overhead ─ the first case above ─ is not a problem when the test
being repeated is checking that a number is positive or a reference is not void. But the
inefficiency might be more significant. An example from numerical computation [23]
is a matrix equation solver: an equation of the form AX = B, where A is a matrix, and
X (the unknown) and B are vectors, has a unique solution of the form X = A•¹ B
only if matrix A is not singular. (A matrix is singular if one of the rows is a linear
combination of others.) Applying the a priori scheme would lead the client to write
code looking like the following:
if a.is_singular then

-- Report error.

else

x := a.inverse (b)

end

using a function inverse with precondition non_singular_matrix:
inverse (b: VECTOR): VECTOR

-- Solve equation of the form ax = b.

require

non_singular_matrix: not is_singular

This code does the job but is inefficient since determining whether a matrix is
singular is essentially the same operation as solving the associated linear equation.
Hence the idea of applying the a posteriori scheme; the client code would be of the
form:
a.invert (b)

if a.inverted then

x := a.inverse

else

-- Process erroneous case.

end

Procedure invert replaces the previous function inverse. A call to this procedure
(for which a more accurate name might be attempt_to_invert) sets a boolean
attribute inverted to True or False to indicate whether inverting the matrix was
possible, and if it was, makes the result available through attribute inverse. (A
class invariant may state that inverted = (inverse /= Void).)

This technique, which splits any function that may produce errors into a procedure
that attempts to perform an operation and two attributes, one reporting whether the
operation was successful and the other giving access to the result of the operation if
any, is compliant with the Command-Query Separation principle ([23], p 751).

This example highlights one basic engineering principle for dealing with abnormal
cases: whenever available, a method for preventing failures to occur is usually
preferable to methods for recovering from failures.

The techniques seen so far do not, however, provide a solution in three cases:

− When abnormal events — such as a numerical failure or memory exhaustion —
can cause the hardware or the operating system to interrupt the program execution
abruptly (which is intolerable for systems with continuous availability
requirements).

− When abnormal situations, although not detectable through preconditions, must be
diagnosed at the earliest possible time to avoid disastrous consequences — such as
destroying the integrity of a database or even endangering human lives, as in an
airplane control system. (One must keep in mind that such situations can appear in
a contract-rich environment as well, since the support for assertions may not be
rich enough to express complex properties.)

− When there is a requirement for software fault tolerance, protecting against the
most dramatic consequences of any remaining errors in the software.

8.3 “A Posteriori Contracting” vs. “Contracting from the Start”

We have seen that clients of a .NET library are likely to benefit from an a posteriori
addition of contracts: instead of having to test whether a routine successfully went to
completion (with the risk of forgetting to check and getting an exception at run time),
they could just rely on the contracts.

What about contracting “from the start” now? Is the EiffelBase class
ARRAYED_LIST more convenient to use than the contracted class ARRAY_LIST?

To help answer this question, let’s consider a variant of the previous class

ARRAY_LIST_SAMPLE, representing a typical client use of arrayed lists, this time
using the EiffelBase ARRAYED_LIST:

indexing

description: "Typical use of EiffelBase ARRAYED_LIST"

class ARRAYED_LIST_SAMPLE

create

make

feature -- Initialization

make is

-- Create a list with two elements and print the
-- list contents.

local

my_list: ARRAYED_LIST [STRING]

do

create my_list.make

my_list.extend ("Hello ")

my_list.extend ("World”)

my_list.extend (“!")

from

my_list.start

until

my_list.after

loop

io.put_string (my_list.item)

my_list.forth

end

end

end

This example highlights three characteristics of the EiffelBase ARRAYED_LIST:

− A clear separation between commands and queries: the routine extend returns no
result (on the contrary to the .NET feature Add, which returns an integer, yielding
a useless local variable index in the ARRAY_LIST code example).

− The usefulness of genericity: we know that my_list.item is of type STRING,
thus we can use a more appropriate I/O feature to print it: put_string, rather
than the general print.

− A user-friendly interface to traverse the list through features start, after,
item, and forth, relying on an internal cursor stored in class ARRAYED_LIST.

Another interesting property to look at is the easiness of switching to other list
implementations. As shown on Fig. 3, ARRAYED_LIST inherits from both ARRAY
and DYNAMIC_LIST. It suffices to remove the relationship with class ARRAY to
obtain a LINKED_LIST.

Fig. 3. Inheritance hierarchy of the EiffelBase arrayed list class

The a-posteriori-contracted class ARRAY_LIST (section 6) just mapped the original
.NET hierarchy, which makes extensive use of interfaces to compensate the lack of
multiple inheritance (Fig. 4).

Effective class

*

+

Deferred class Interfaced class
(calling non-Eiffel features)

Inherits from

Fig. 4. Inheritance hierarchy of the .NET arrayed list class

Not surprisingly in light of how it was obtained, this class does not fully benefit from
the power of Eiffel, in matter of design, reusability, and extendibility.

Another obvious difference between ARRAY_LIST (the contracted class) and
ARRAYED_LIST (the EiffelBase class) is the use of genericity in the Eiffel version.
Although this falls beyond the scope of the present discussion, we may note that the
lack of genericity in the current .NET object model leads to code duplication as well
as to run-time check (casts) that damage both the performance and the reliability of
the software. Future versions of .NET are expected to provide genericity [17] [18].

The next difference is the use of enumerators in ARRAY_LIST whereas

ARRAYED_LIST stores a cursor as an attribute of the class.

− In the first approach, enumerators become irrecoverably invalidated as soon as the
corresponding collection changes (addition, modification, or deletion of list
elements). The approach, on the other hand, allows multiple concurrent traversals
of the same list through multiple cursors.

− The EiffelBase approach solves the problem of invalid cursors: addition or deletion

of list elements change the cursor position, and queries before and after take
care of the cursor position’s validity. But the use of internal cursors requires care to
avoid endless loops.

These differences of style should not obscure the fundamental difference between a
design style that has contracts from the start and one that adds them to existing
contract-less library components. The examples illustrate that the right time to put in
the contracts is during design.

When that is not possible, for example with a library produced by someone who
didn’t trouble himself with contracts, it may still be worthwhile to add them a
posteriori, as a way to understand the library better, improve its documentation, and
make it safer to use.

9 Automatic Extraction of Closet Contracts

Our analysis of the .NET Collections library has shown interesting “patterns” about
the nature and location of hidden contracts. In particular, routine preconditions tend to
be buried under exception conditions. Our goal is to estimate the highest degree of
automation we can achieve in extracting closet contracts from .NET libraries.

We first report on the technique of dynamic contract detection and then describe
our approach of inferring preconditions from the CIL code [32] of .NET assemblies.

9.1 Dynamic Contract Inference

Dynamic contract inference, working from source code, seeks to deduce assertions
from captured variable traces by executing the program with various inputs, relying
on a set of possible assertions to deduce contracts from the execution output. The next
step is to determine whether the detected assertions are meaningful and useful to the
users, typically by computing a confidence probability.

Ernst’s Daikon tool discovers class invariants, loop invariants and routine pre- and
postconditions. Its first version [11] was limited to finding contracts over scalars and
arrays; the next one (Daikon 2) [14] enables contract discovery over collections of
data, and computes conditional assertions.

Daikon succeeds in finding the assertions of a formally-specified program, and can
even find some more, revealing deficiencies in the formal specification. Daikon also
succeeds in inferring contracts from a C program, which helps developers performing
changes to the C program without introducing errors [12]. It appears that the large
majority of reported invariants are correct, and that Daikon extracts more invariants
from high-quality programs [11]. Daikon still needs improvement in terms of:

− Performance: “Invariant detection time grows approximately quadratically with
the number of variables over which invariants are checked” [12]. Some
experiments using incremental processing have shown promising results in
improving Daikon’s performance [14].

− Relevance of the reported invariants: Daikon still reports irrelevant — meaning
useless, but not necessary incorrect — invariants. Polymorphism can help increase
the number of desired invariants reported to the users [14].

− Richness of inferred invariants: Currently, most cover simple properties.

Ernst et al. suggest examining the techniques and algorithms used in the research
fields of artificial intelligence [12] and information retrieval [13] to improve dynamic
inference of invariants for applications in software evolution.

The Daikon detector is not the sole tool available to dynamically extract contracts.
Some Java detectors also exist; some of them do not even require the program source
code to infer contracts: they can operate directly on bytecode files (*.class).

9.2 Extracting Routine Preconditions from Exception Cases

“Human analysis is sometimes more powerful than either, allowing deep and
insightful reasoning that is beyond hope for automation” [16]. When comparing static
and dynamic techniques of program analysis, Ernst et al. admit that automatic tools
fail in some cases where a human being would succeed.

Does extraction of closet contracts fall into the category of processes that cannot be
fully automated? If so, can we at least automate part of the effort?

The analysis reported in this article has shown some regularity in the form and
location of the closet contracts we can find in existing .NET components. In
particular, preconditions tend to be buried in exception cases. Since method exception
cases are not kept into the assembly metadata, we are currently exploring another
approach: inferring routine preconditions from a systematic analysis of the CIL
(Common Intermediate Language) code [32] of the .NET assemblies provided as
input. More precisely, we are parsing the CIL code of .NET libraries — using Gobo
Eiffel Lex and Gobo Eiffel Yacc [9] — to list the exceptions a method or a property
may throw to infer the corresponding routine preconditions. The first results are
promising.

10 Conclusion

This discussion has examined some evidence from the .NET libraries relevant to our
basic conjecture: do existing libraries designed without a clear notion of contract
contain some “contracts” anyway?

This analysis provides initial support for the conjecture. The contracts are there,
expressed in other forms. Preconditions find their way into exceptions; postconditions
and class invariants into remarks scattered across the documentation, hence more
difficult to extract automatically.

The analysis reported here provides a first step in a broader research plan, which

we expect to expand in the following directions:

− Applying the same approach to other .NET and non-.NET libraries, such as C++
STL (a first informal look at [26] suggests that there are contracts lurking there
too).

− Investigating more closely the patterns that help discover each type of contract —
class invariants, routine preconditions and postconditions — to facilitate the work
of programmers interested in adding contracts a posteriori to existing libraries, with
a view to providing an interactive tool that would support this process.

− Turning the Eiffel Contract Wizard into a Web service to allow any programmers
to contribute contracts to .NET components.

This area of research opens up the possibility of various generalizations of this work
in a broad investigation of applications of Design by Contract. (We are looking
forward to seeing the evolution of the project conducted by Kevin McFarlane and
aiming at providing a Design by Contract framework for use in .NET projects [19], of

a current project at Microsoft Research about adding contracts into the C# language
— see the “Assertions” section of [30] — and also of the new eXtensible C#© [35];
the outcome of these projects are likely to influence our research direction.)

Acknowledgements

This paper takes advantage of extremely valuable comments and insights from Éric
Bezault (Axa Rosenberg), Michael D. Ernst (MIT), Tony Hoare (Microsoft) and
Emmanuel Stapf (Eiffel Software). Opinions expressed are of course our own.

References [3] to [6] are previous versions of this work. Reference [7] is a
summary version.

References

[1] Karine Arnout, and Raphaël Simon. “The .NET Contract Wizard: Adding Design
by Contract to languages other than Eiffel”. TOOLS 39 (39th International
Conference and Exhibition on Technology of Object-Oriented Languages and
Systems). IEEE Computer Society, July 2001, p 14-23.

[2] Karine Arnout. “Eiffel for .NET: An Introduction”. Component Developer
Magazine, September-October 2002. Available from
http://www.devx.com/codemag/Article/8500. Accessed October 2002.

[3] Karine Arnout, and Bertrand Meyer. “Extracting implicit contracts from .NET
components”. Microsoft Research Summer Workshop 2002, Cambridge, UK, 9-
11 September 2002. Available from
http://se.inf.ethz.ch/publications/arnout/workshops/microsoft_summer_research_
workshop_2002/contract_extraction.pdf. Accessed September 2002.

[4] Karine Arnout. “Extracting Implicit Contracts from .NET Libraries”. 4th
European GCSE Young Researchers Workshop 2002, in conjunction with
NET.OBJECT DAYS 2002. Erfurt, Germany, 7-10 October 2002. IESE-Report
No. 053.02/E, 21 October 2002, p 20-24. Available from http://www.cs.uni-
essen.de/dawis/conferences/Node_YRW2002/papers/karine_arnout_gcse_final_c
opy.pdf. Accessed October 2002.

[5] Karine Arnout. “Extracting Implicit Contracts from .NET Libraries”. OOPSLA
2002 (17th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications), Posters. Seattle USA, 4-8 November 2002.
OOPSLA'02 Companion, ACM, p 104-105.

[6] Karine Arnout, and Bertrand Meyer. “Contrats cachés en .NET: Mise au jour et
ajout de contrats a posteriori”. LMO 2003 (Langages et Modèles à Objets).
Vannes, France, 3-5 February 2003.

[7] Karine Arnout, and Bertrand Meyer. “Spotting hidden contracts: the .NET
example”. Submitted for publication.

[8] Mike Barnett, and Wolfram Schulte. “Contracts, Components, and their Runtime
Verification on the .NET Platform”. Microsoft Research Technical Report TR
2002-38, April 2002. Available from ftp://ftp.research.microsoft.com/pub/tr/tr-
2002-38.pdf. Accessed April 2002.

[9] Éric Bezault. Gobo Eiffel Lex and Gobo Eiffel Yacc. Retrieved September 2002
from http://www.gobosoft.com.

[10] Eiffel Software Inc. EiffelBase. Retrieved October 2002 from
http://docs.eiffel.com/libraries/base/index.html.

[11] Michael D. Ernst. “Dynamically Detecting Likely Program Invariants”. Ph.D.
dissertation, University of Washington, 2000. Available from
http://pag.lcs.mit.edu/~mernst/pubs/invariants-thesis.pdf. Accessed August 2002.

[12] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
“Dynamically Discovering Likely Program Invariants to Support Program
Evolution”. IEEE TSE (Transactions on Software Engineering), Vol.27, No.2,
February 2001, p: 1-25. Available from
http://pag.lcs.mit.edu/~mernst/pubs/invariants-tse.pdf. Accessed August 2002.

[13] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.
“Quickly Detecting Relevant Program Invariants”. ICSE 2000 (International
Conference on Software Engineering), Limerick, Ireland, 4-11 June 2000;
Available from http://pag.lcs.mit.edu/~mernst/pubs/invariants-icse2000.pdf.
Accessed August 2002.

[14] Michael D. Ernst, William G. Griswold, Yoshio Kataoka, and David Notkin.
“Dynamically Discovering Program Invariants Involving Collections”, Technical
Report, University of Washington, 2000. Available from
http://pag.lcs.mit.edu/~mernst/pubs/invariants-pointers.pdf. Accessed August
2002.

[15] C.A.R. Hoare. “Proof of Correctness of Data Representations”. Acta Infomatica,
Vol. 1, 1973, p: 271-281.

[16] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin:
“Automated Support for Program Refactoring using Invariants”. ICSM 2001
(International Conference on Software Maintenance), Florence, Italy, 6-10
November 2001. Available from: http://pag.lcs.mit.edu/~mernst/pubs/invariants-
refactor.pdf. Accessed August 2002.

[17] Andrew Kennedy, and Don Syme. “Design and Implementation of Generics for
the .NET Common Language Runtime”. PLDI 2001 (Conference on
Programming Language Design and Implementation). Snowbird, Utah, USA, 20-
22 June 2001. Available from
http://research.microsoft.com/projects/clrgen/generics.pdf. Accessed September
2002.

[18] Andrew Kennedy, and Don Syme. Generics for C# and .NET CLR, September
2002. Retrieved September 2002 from
http://research.microsoft.com/projects/clrgen/.

[19] Kevin McFarlane. Design by Contract Framework for .Net. February 2002.
Retrieved October 2002 from
http://www.codeproject.com/csharp/designbycontract.asp and
http://www.codeguru.com/net_general/designbycontract.html.

[20] Bertrand Meyer: Object-Oriented Software Construction (1st edition). Prentice
Hall International, 1988.

[21] Bertrand Meyer. “Applying ‘Design by Contract’”. Technical Report TR-EI-
12/CO, Interactive Software Engineering Inc., 1986. Published in IEEE
Computer, Vol. 25, No. 10, October 1992, p 40-51. Also published as “Design by
Contract” in Advances in Object-Oriented Software Engineering, eds. D.
Mandrioli and B. Meyer, Prentice Hall, 1991, p 1-50. Available from
http://www.inf.ethz.ch/personal/meyer/publications/computer/contract.pdf.
Accessed April 2002.

[22] Bertrand Meyer: Reusable Software: The Base Object-Oriented Component
Libraries. Prentice Hall, 1994.

[23] Bertrand Meyer: Object-Oriented Software Construction, second edition.
Prentice Hall, 1997.

[24] Bertrand Meyer, Raphaël Simon, and Emmanuel Stapf: Instant .NET. Prentice
Hall (in preparation).

[25] Bertrand Meyer: Design by Contract. Prentice Hall (in preparation).

[26] Scott Meyers: Effective STL. Addison Wesley, July 2001.

[27] Microsoft. .NET Collections library. Retrieved June 2002 from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemcollections.asp.

[28] Microsoft. .NET ArrayList class. Retrieved June 2002 from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemcollectionsarraylistclasstopic.asp.

[29] Microsoft. .NET ICollection interface. Retrieved October 2002 from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfsystemcollectionsicollectionclasstopic.asp.

[30] Microsoft Research. Current research, Programming Principles and Tools.
Retrieved November 2002 from http://research.microsoft.com/research/ppt/.

[31] Richard Mitchell, and Jim McKim: Design by Contract, by example. Addison-
Wesley, 2002.

[32] NET Experts. ECMA TC39 TG2 and TG3 working documents. Retrieved
September 2002 from http://www.dotnetexperts.com/ecma/index.html.

[33] Jeremy W. Nimmer, and Michael D. Ernst. “Invariant Inference for Static
Checking: An Empirical Evaluation”. FSE ’02 (10th International Symposium on
the Foundations of Software Engineering). Charleston, SC, USA. November 20-
22, 2002. Proceedings of the ACM SIGSOFT. Available from
http://pag.lcs.mit.edu/~mernst/pubs/esc-annotate.pdf. Accessed October 2002.

[34] Jeremy W. Nimmer, and Michael D. Ernst. “Automatic generation of program
specifications”. ISSTA 2002 (International Symposium on Software Testing and
Analysis). Rome, Italy, 22-24 July 2002. Available from
http://pag.lcs.mit.edu/~mernst/pubs/invariants-specs.pdf. Accessed October 2002.

[35] ResolveCorp. eXtensible C#© is here! Retrieved May 2003 from
http://www.resolvecorp.com/products.htm.

[36] Raphaël Simon, Emmanuel Stapf, and Bertrand Meyer. “Full Eiffel on .NET”.
MSDN, July 2002. Available from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/pdc_eiffel.asp. Accessed October 2002.

[37] Software Engineering Institute. “Volume II: Technical Concepts of Component-
Based Software Engineering”. CMU/SEI-2000-TR-008, 2000. Available from
http://www.sei.cmu.edu/publications/documents/00.reports/00tr008.html.
Accessed June 2002.

[38] Dave Thomas. “The Deplorable State of Class Libraries”. Journal of Object
Technology (JOT), Vol.1, No.1, May-June 2002. Available from
http://www.jot.fm/issues/issue_2002_05/column2. Accessed June 2002.

