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ABSTRACT

The purpose of this thesis is to study and develop intelligent agents

for the forthcoming Space Station Freedom. Relevant intelligent

capabilities, which are necessary in a semi-autonomous laboratory

environment, are assumed to be built into a robot. An intelligent controller

based on the DEVS formalism and the event-based approach is considered

for an experiment. We shall discuss multiple model representations,

where each model is tailored toward a specific purpose. Considering the

necessity of diagnostic capabilities, we shall discuss the possibility of

hierarchical diagnostic units for the Space Station. A high-level diagnostic

unit is implemented on the basis of an artificial intelligence scheme and a

hierarchy of diagnosers. This thesis also discusses the need for real-time

diagnostic units and real-time data acquisition. We shall consider a

constraint driven diagnostic unit which utilizes the time / cost (i.e., the

actual associated cost or time in inquiring information necessary for a

diagnostic process) criterion in an attempt to locate the causers) of failures.
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CHAPTER 1

INTRODUCTION

The forthcoming Space Station Freedom (SSF) will serve as a

platform to conduct long-term scientific experiments with an average

duration of 30 days or multiples thereof. This is due to the fact that the SSF

will be visited by the Space Shuttle once every 30 days. On that occasion,

experiment components can be exchanged! serviced by the Shuttle crew.

Since it is not feasible to request the scientific investigator to spend 30 days

in a row at one of the NASA Control Centers, it is important to grant the

experimenter access to his instruments from his own laboratory facilities.

This mode of operation has been coined Telescience. Interaction of the SSF

crew should be minimized since crew time is a scarce and expensive

resource. The immense cost of human labor in Space (more than $30,000

per hour) (Hall and Wolbers, 1984) has made the use ofRobot Technology in

Space attractive.

Unfortunately, today's robotic capabilities are insufficient for this

task. Robots are currently being used successfully in two different modes of

operation. The autonomous robot is met in factory automation. These

robots are usually sturdy, accurate, and fast, but they are not at all flexible.

They can be employed for repetitive precision tasks where the high cost of

laboratory set-up for robot manipulation is compensated for by the large

production throughput that is achievable in this way. These robots will not

be used in Space for some time since robotic tasks in Space are highly
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individual and non-repetitive. The teleoperated robot is currently met in

hazardous environments. A human operator controls the movement of the

robot using a mini-master console. In this mode, the robot simply copies

the movements of the mini-master. Such robots are very flexible, but

currently, they are not sturdy, they are somewhat inaccurate, and they are

rather slow. Also this mode of operation is not feasible for the application at

hand due to the long communication delay times (the SSF project currently

anticipates round-trip delay times of two seconds or longer) which excludes

any form of man-in-the-loop control.

What is needed is a telecommanded robot, i.e., a robot that can be

provided with commands at the task level, but that is able to decompose

tasks into primitive operations, and execute these primitive operations

autonomously. This mode of operation is sometimes called semi-

autonomous, since low-level operations are executed autonomously,

whereas high-level operations are executed under human command. It is

the aim of this research to analyze the necessary technology that will enable

such a semi-autonomous robot control environment.

We have selected the electrophoresis experiment (refer to Section 2.3)

as the medium to analyze the required intelligent agents for high-level

control and failure analysis. This apparatus has been of much interest to

scientists for many years. This is evident from their involvement as well as

the number of instances (12 times) that it has been conducted in Space thus

far. The knowledge that can be acquired by investigating this experiment

provides the basis for other related/similar experiments. Consequently, it
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provides an appropriate groundwork in developing some of the required

concepts for the analysis and design of intelligent agents.

The motivation and outline of this thesis is presented in this chapter.

In Chapter 2, the necessary background material is treated. The necessity

of multiple model representations with various levels of abstraction is

discussed in Chapter 3. The usefulness of the discrete-event modeling

paradigm (Zeigler, 1984) in the design of an intelligent robot is

demonstrated throughout this chapter. An intelligent controller, which is

assumed to be an element of a hierarchy of controllers, is considered on the

basis of the event-based control scheme (Meystel and Luh, 1987) and the

DEVS formalism (Zeigler, 1984). Other pertinent entities in a laboratory

environment are also considered in Chapter 3.

Chapter 4 begins with a discussion of the conventional and the

artificial intelligence schemes for developing diagnostic agents. It is

proposed that a hierarchical control scheme accompanied by hierarchical

diagnostic units provides the most appropriate control structure for the

SSF. An expert system shell called CESM (Zeigler, 1987-b) is considered for

the development of a high-level diagnostic agent. A customized diagnostic

agent, which obtains the necessary responses from the modeled

measurement devices, is constructed on the basis of CESM. This chapter

also argues for the necessity of inquiring information from various sensors

in real-time. It is suggested that since real-time data acquisition can affect

the duration as well as the quality of failure analyses, a diagnostic unit that

can take advantage of constraints such as time / cost may be useful. A

constraint driven diagnostic agent, an expanded implementation of CESM
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which can reduce the consultation time, demonstrates how appropriate

hypotheses may be concluded without inquiring all the available

knowledge.

Chapter 5 summarizes our work and suggests improvements for

some of the deficiencies that emerged in the course of our studies.
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CHAPTER 2

BACKGROUND

2.0 Outline of the chapter

This chapter sets the foundation for the chapters to come. We begin

In section 2.1 by presenting a mathematical tool, the System Entity

Structure, which will facilitate our upcoming modeling efforts. Next, in

section 2.2, we present an overview of the structure of a potential laboratory

module which is considered to be part of the forthcoming Space Station

Freedom (SSF) and its decomposition into subsystems. This laboratory

environment hosts among other equipment an electrophoretic apparatus, a

process which separates a solution into its charged components. The

chemistry and details of this experiment are treated in section 2.3. A

control algorithm which is primarily applicable at higher levels of the

control system hierarchy is discussed in section 2.4 along with its

comparison to a more conventional control algorithm. The type of control

implemented in this algorithm is commonly referred to as Intelligent

Control; however, we prefer to call it Event-Based Control anticipating the

use of the Discrete-Event paradigm. This chapter ends with section 2.5

which treats the DEVS (Discrete-Event System Specification) formalism,

and in particular the Discrete-Event representation of dynamical systems.
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2.1 System Entity Structure

In order to mathematically interact with a system, it must be

represented in a form which makes it convenient to interact with. The

System Entity Structure (SES) is one such form of a system representation.

The SES can be considered as a static model of the system. The System

Entity Structure formalism is a tool which facilitates organization of the

models for a model base. DEVS-Scheme is a realization of the System Entity

Structure formalism developed by Zeigler (Zeigler, 1984) in PC-Scheme

(Texas Instruments, 1985), a LISP-based, object-oriented programming

environment. The SES, a representation scheme of the structural

knowledge of a system, is a labeled tree with attached variable types that

satisfies the following axioms (Zeigler, 1984):

(1) Alternating entity / aspect or entity / specialization : Each node
has a mode that is either entity/aspect or entity/specialization
such that a node and its successors are always opposite modes,
and the mode of the root is an entity.

(2) Uniformity: Any two nodes with the same names have identical
attached variable types and isomorphic subtrees.

(3) Strict hierarchy: No label appears more than once down any
path of the tree.

(4) Valid brothers: No two brothers have the same label.

(5) Attached variables: No two variable types attached to the same
item have the same name.



1 6

It can be noted that there are three different types of nodes associated

with the labeled tree or SES. These nodes are entity, aspect, and

specialization which represent three different types of knowledge about the

structure of the system. The node entity, corresponding to a model

component that represents a real world object, can have several aspects

and/or specializations. The aspect node symbolized by a single vertical line

in the labeled tree represents one decomposition of an entity among many

existing ones (cf. Figure 2.1). The specialization node represents a way in

which a general entity can be categorized into special entities and is

symbolized by a double vertical line in the labeled tree (cf. Figure 2.4). An

entity can also be a multiple entity which consists of a collection of

homogeneous components as evident in Figure 2.5. Consequently, the

aspect of such an entity is called multiple aspect, and it is symbolized by a

triple vertical line in the labeled tree.

2.2 General Structure of a Laboratory

The forthcoming Space Station Freedom will host a life science

laboratory module which can accommodate various types of laboratory

experiments related to space medicine, gravitational biology, and

biochemistry (Kelly, 1989). While some of the laboratory components may be

highly specialized, there will be also provision for a general purpose

workbench, probably in the form of a glove box. It has also been proposed

that the Life Sciences module contain a rack mounted multi-purpose
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instrument to be operated by a Cartesian robot that can move left and right

as well as up and down along the rack (Schooley and Cellier, 1988). We will

denote this multi-purpose instrument rack, which can support a large set

of different experiments in related disciplines, as GPL (General Purpose

Laboratory).

It is apparent that the GPL should exhibit certain characteristics in

order to minimize the Hardware/SoftwarelInformation efforts required in

Requirements Development, Concept Development, Full Scale Engineering

Development, System Development, System Test and Integration,

Operations, Support and Modification, and Retirement and Replacement

(Wymore, 1988). Such characteristics include the physical structure of the

laboratory and the necessary means for executing required operations.

Therefore, the characteristics that we are concerned with are very general

and do not pertain to any particular laboratory environment and/or

experiment. To present some insight as to what such characteristics are

and how they can be realized, we will examine a laboratory environment,

GPL, without referring to any particular experiment. The SES described in

2.1 enables us to describe the GPL by providing a medium to represent the

physical structure of a laboratory environment in well defined terms. Each

laboratory, in general, can be decomposed into the aspects Materials,

Equipment, Workspace, and Operators as shown in Figure 2.1. The SES,

mentioned in 2.1, decomposes a Laboratory into:
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General Laboratory
Structure

GL-dec

Materials Workspace Equipment Operators

Figure 2.1: Decomposition of the physical structure of a laboratory
environment.

Aspects denote decompositions of an entity. A decomposition means

that all components are parts of the decomposed entity. In our example:

the GPL consists of Materials, a Workspace, Equipment, and Operators.

Obviously, an ideal laboratory environment, GPL, should support any

desired experiment, that is, it should encompass the characteristics of

laboratories for e.g. molecular biology, chemical analysis, and material

handling to name just a few. The limitations inherent in any space-bound

GPL: microgravity, communication obstacles (delay), waste disposal, and

contamination control (Schooley and Cellier, 1988) play important roles in

the successful completion of any large-scale space experiment. The GPL,

therefore, must offer some essential features to suppress some of the

limitations mentioned above. Some of the GPL's features are optimization

of workspace, incorporation of some of the human capabilities into a robot
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or ultimately a group of robots, selection of equipment types, and selection of

necessary types of materials for experiments. The description of entities of

subsequent decompositions of the GPL will present more and more details,

and provide the necessary background required for understanding some

aspects of the GPL's operations for a particular experiment.

The entity Materials can have several specializations (kind, phase,

health hazard) such as shown in Figure 2.2 (Kelly, 1989). The Kind of a

material determines whether it can be considered as supply, waste,

expandable, or whether it is experiment related. The Phase of a material is

a means of specifying whether it is a liquid, a gas, or a solid body. The

Health Hazard, on the other hand, characterizes the material as being

either pathogenic, radioactive, toxic, caustic, or carcinogenic. The nil

variant has been added here since a material may not be a health hazard at

all.

Characterization of entities by specialization means selection. For

each specialization, we need to choose one, i.e., material is either liquid or

solid, but it is at the same time of the kind supply or waste, etc. The

elements of specializations are always entities, i.e., liquid is an entity,

whereas the names of the specializations are attached variables.

Decomposition into components denotes an all relationship to the

parent, i.e., the laboratory consists of materials and a workspace and

equipment and operators; but it denotes a one-out-of relationship to the

child, i.e., the workspace is one-out-of the laboratory, etc.
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Specialization denotes a one-out-ofrelationship to the parent, i.e., the

(phase of a) material is either liquid or solid or gaseous; but it denotes an all

relationship to the child, i.e., all liquid_material is material.

Materials

Material

PHASE
KIND

'I'I I
solid liquid

gaseuos HEALTH

supply
HAZARD

I
~iC I

expandable experiment caustic
related

carcinogenic nil radioactive

Figure 2.2: Various types of materials necessary In the GPL
environment.

This methodology lays the ground work for the concept of multiple

inheritance. Liquid_Radioactive_Supply _Materials are materials that
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inherit all properties of the specialization liquid (phase), the specialization

supply (kind), and the specialization radioactive (health hazard).

Workspace

Compartments

III
Compartment

I

Sections

III
Section

Equipment
Racks

Storage
Areas

Robot
Terri tories

Figure 2.3: Various laboratory setting inside GPL.

The entity Workspace of the GPL is divided into several

compartments and subsequently many sections. Each section must be
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designed depending on its purpose and other relevant considerations such

as permissible size of its containable equipment and its location within a

specific compartment. The compartments should have the same physical

configurations (Kelly, 1989) whereas the sections must be designed and

built in order to accommodate particular specifications enforced by a

specific laboratory environment such as those listed earlier. A few

possibilities of the sections are presented in Figure 2.3.

Another entity of the GPL is the Equipment that IS

decomposed/specialized into several types as shown in Figures 2.4a and

2.4b. As these two figures illustrate, the type of decomposition (into aspects

or specializations) is not necessarily unique. If we consider equipment as

a set of different types of apparatus, we can then specialize the generic

apparatus into its different types as being a tool or a container or a

transporter, etc. This is shown in Figure 2.4a. Alternatively, we can

consider equipment as a box full of different utensils, and decompose this

box into the various components which are all tools and all containers and

all transporters, etc. Each of the tools can then be decomposed by multiple

decomposition into individual tools, and the same holds for the containers,

the transporters, and so on. This is illustrated in Figure 2.4b. Each of

these entities is then further decomposed into more specific types of

equipment. The Tool, for example could be a syringe, a pipette, a tube, a

gas bottle, a tray, a vacuum sealed plastic bag, or a pressurized bladder

bottle. The Instrument could be a computer, an input/output device, a

transducer, or some other special purpose device.
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Equipment

III
Apparatus

II
TYPE

I
Tool Instrumen t Transporter Separator

(2.4a)

Equipment

Tools Instruments

III III
Transporters Separa tors

III III
Tool Instrument Transporter Separator

(2.4b)

Figure 2.4: Different decompositions of equipment in GPL. (a)
specialization; (b) decomposition.

The input devices are of interest to us, and they can be of two types:

sensors and video cameras. The sensors can provide information with
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respect to temperature, flow, force, pressure, acceleration, velocity,

position, voltage, and/or current. The video cameras, on the other hand,

provide films or pictures of the entities of Materials, Workspace,

Equipment, and the Operators. There are other types of equipment which

should be available at the GPL such as Combiners, Separators, etc.

The last entity Operator which is of primary concern to us IS

specialized as shown in Figure 2.5. Therefore, the operator can be either a

Human, or an Automated Controller, or a Robot. The specialized entity

Human, is the most powerful one due to his abilities related to decision

making, planning, and learning which are not completely afforded by

either of the Automated Controller or the Robot. The presence of humans

in space is undesirable due to safety considerations and high cost.

Therefore, it is necessary to reduce the number of humans aboard SSF to a

minimum by allowing robots and automated controllers to compensate for

their absence.

Naturally, it will be necessary to incorporate some of the unavailable

human characteristics into automated controllers and/or robots if they are

to replace humans. We, however, assume that human capabilities of

interest are incorporated only into the robots, rather than building complex

or automated controllers that exhibit highly specialized features. This

assumption is valid for several reasons. Due to the limited workspace

available within the SSF, the number of hard-wired automated apparatus

should be minimized due to their limited domain of expertise and brief

periods of development. It is impractical and costly to launch

equipment/devices for a limited period of time or to service a few
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experiments at the GPL. If feasible, it would be better to achieve the same

result with a flexible robot which may be already in space, and which can

be programmed to perform the desired task.

Operators

III
Operator

II
TYPE

~'------I
Automa ted Robot
ControllerHuman

Figure 2.5: Various types of Operators available in GPL.

Moreover, it is impractical to consider the presence of automated

equipment in abundance since they would pile up in the limited space

available, and consequently, they would leave no space for other entities (see

Figure 2.1) which are vital for the operation of the GPL or even the SSF.

Thus, it may make sense to perform even tasks that would be easily

amenable to hard automation through robot control.

The life cycle of the SSF is considered to be at least 20 years. Robots

playa crucial role in this process as they exhibit a crucial property: they are

reprogrammable. A robot may be able to perform new/unforeseen tasks
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provided that the necessary primitive operations from which these

new/unforeseen experiments are composed are provided by it. This is the

main disadvantage with automated controllers: they are unable to adapt

themselves to new assignments, and therefore, they are handicapped.

What are the characteristics that our laboratory robot must possess

to successfully manage a space laboratory? It must be responsible, it must

possess decision power, and it must be able to recognize its own limitations.

A distributed hierarchical control architecture that possesses these

properties can be called hierarchical control with distributed intelligent

agents. The current status of robot technology is still far from this ultimate

goal. It is the aim of this thesis to advance the understanding of what is

needed to give a robot the facilities described above.

In the forthcoming chapters, we shall concentrate our efforts on

some of the features which must be built into a robot in order to make it

responsible for the entire process of preparation of an experiment hosted by

the GPL under varying, and maybe even unforeseen, operating conditions.

We shall also analyze diagnostic capabilities for fault recovery purposes

which must be available to restore the normal operation in the event that

something goes wrong.
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2.3 Electrophoresis Experiment

We shall consider a particular configuration of the GPL environment

for the execution of an electrophoretic experiment, and assume that it is

executed under the control and supervision of a single laboratory robot.

Before describing this special laboratory environment with respect to the

GPL, a brief explanation of the electrophoresis experiment and the steps

involved in its preparation is necessary.

Electrophoresis is a process that can separate solutions into their

charged components, some of which may be proteins, organic acids,

peptides, and metal ions (Hack, 1988).

Electrophoresis experiments can be performed using either Mobility

or Isoelectric Point techniques. In particular, the ITP (Isotachophoresis)

and the ZE (Zone EPH) methods are based on the Mobility technique, while

the IEF (Isoelectric Focusing) employs the Isoelectric Point technique

(Thormann, 1984). The device which is being used in our experiment is of

the ITP type. It will be referred to as the ITP device, or simply as ITP.

The Isotachophoresis technique applies an electric DC current over

the length of a narrow channel, called capillary, that contains the sample

to be separated. Figure 2.6 illustrates a simplified schematic of the ITP

device which consists of two chambers and a capillary. One of the

chambers is filled with the leading electrolyte, and the other contains the

terminating electrolyte. The capillary holds the sample solution that is

bounded by the two types of electrolytes previously mentioned. These

electrolytes are often called reference solutions since their properties must
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be known in order to identify various components of a particular sample

solution.

Our goal is to study the set-up procedure which consists of filling (or

emptying) the chambers, and the capillary. It also includes the

examination of each chamber and the capillary for detection of air bubbles

after each filling operation. These activities may be referred to as primitive

operations since other related experiments may require them as well. For

the set-up procedure, there exists a predefined sequence of operations

which can be described as follows:

1. Filling the Leading Electrolyte chamber,
2. Filling the Terminating Electrolyte chamber, and
3. Injecting the sample solution into the capillary

assuming that the chambers and the capillary are empty and clean prior to

the experiment. A successful completion of each of the above sequences

requires one or more of the following: Examination of air bubbles in the

chambers and/or the capillary, and emptying any of the two chambers or

the capillary if air bubbles were indeed detected in them. In setting-up the

electrophoresis experiment, it is seldom possible to complete the set-up

procedure without repeating one or more of the three operations mentioned

above due to the introduction of air bubbles in the chambers or the capillary,

often all the other required activities (such as the movement of the robot's

gripper from one coordinate to another) are successfully completed. The
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examination for the presence of air bubbles is extremely important since

their presence invalidates the experiment's results.

~ / Syringe

~ ~
TerminatingLeading

Electrolyte Chambers Electrolyte

Sample ....,-/ ~ Capillary

Figure 2.6: A simplified diagram of the ITP device and a syringe.

It can be noted that each chamber and the capillary must be clean

prior to the filling process. Hence, if any of the chambers is not clean, it

must be emptied, filled with distilled water, and then re-emptied. The
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cleansing of the capillary, however, is achieved through cleaning of the

chambers since, whenever a sample solution is injected into the capillary,

each of the electrolytes exhibits new properties due to its contact with the

sample solution.

Upon receiving a request to perform an electrophoresis experiment, a

robot must first examine whether the chambers and the capillary are

clean. Assuming they are clean, it can proceed with filling a syringe with

the leading electrolyte solution and emptying it into the corresponding

chamber. Next, the electrolyte solution fills the left portion of the capillary

(cf. Figure 2.6) and thereafter it is examined for the presence of air bubbles.

If bubbles are detected, the robot must clean it out again and re-fill it, a

process which may have to be repeated several times.

However, if no air bubbles are detected, the robot proceeds with filling

the other designated chamber (i.e., the terminating electrolyte chamber).

Next, it examines the right segment of the capillary for presence of air

bubbles after it has been filled with the corresponding electrolyte. Again, if

air bubbles are present, it proceeds with cleaning as in the case of the

leading electrolyte chamber. In the absence of air bubbles, a micro syringe

is filled with the sample solution, and is injected into a designated location

in the capillary as sketched in Figure 2.6. A micro syringe is necessary due

to the capillary's fine structure which is intended to prevent a mixture of

the sample solution and the electrolytes.

The set-up procedure is completed if no air bubbles are detected at the

end of the injection process of the sample solution. However, if we detect air

bubbles in the capillary, we must start from scratch with a complete set-up
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procedure after cleansing each of the chambers and the capillary. It

should be noted that the injection of the sample solution into the capillary is

the most critical of the three operations and it often forces the entire set-up

procedure to be repeated several times.

Once the set-up of the ITP device has been completed, a switch IS

activated which will start the separation process. At the completion of the

experiment, a piecewise constant curve is produced. This curve represents

the separated zones which exhibit distinct constant voltages in a staircase

fashion starting with the leading solution and ending with the terminating

solution. Figure 2.7 displays such a curve for a sample solution.
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Figure 2.7: Response of a hypothetical ITP experiment.



32

By observing Figure 2.7, it can be concluded what are different

components in a particular sample solution.

One particular laboratory to be installed in the SSF Life Science

module is the so-called Fluid Handling Laboratory (FHL) (Schooley and

Cellier, 1988). This laboratory, which may exist as a specific configuration

of the GPL, hosts the environment desirable for the operation of the

electrophoresis experiment. It is desired to teleoperate this laboratory from

the ground using a Cartesian laboratory robot. Figure 2.8 represents the

structure and related components of each part of the FHL which indeed

exhibits the previously defined structure of the GPL.

1. Workspace

a. Storage sections
b. Electrophoresis section
c. Robot territory

2. Materials

a.Liquids
Liquid_ Carcinogenic_Supply _Leading-Electrolyte
Liquid_ Caustic_Supply _Terminating- Electrolyte
Liquid_ Toxic_Experiment- Related_Sample

_ _ _Sample-1
... _ ... _ . .. _Sample-2

... _ ... _ ... _Sample-n
Liquid_Nil_Su pply_Distilled -water
Liquid_ Toxic_Waste_Waste
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3. Equipment

a. Electrophoresis device or ITP
Leading Electrolyte chamber
Terminating Electrolyte chamber
Capillary
Others!

b. Measuring devices
Threshold sensors
Vision sensors or cameras

c. Transporters
Micro syringes
Regular syringes

d. Containers

Pressurized bladder bottles

4. Operator

a. Robot

Figure 2.8: Decomposition of the FHL into Materials, Workspace,
Equipment, and Operator entities.

The FHL is supposed to contain the leading electrolyte solution, the

terminating electrolyte solution, distilled water, one or several sample

solutions, the ITP, threshold type sensors, cameras, syringes, and a robot.

1 Others are parts of an actual ITP device which are not included. An ITP has a power
supply and several switches which are necessary to allow only a chamber and part of
its attached capillary or just the capillary's segment that is devoted to the sample
solution to be filled.
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Figure 2.9: The pressurized bladder bottle and two types of
threshold sensors.

It should be recalled that this experiment is to take place in the

microgravity environment (i.e., in Space), and as a result, there must be no

airlliquid interfaces that are not controlled by surface tension. A device

called Pressurized Bladder Bottle (Zeigler et al., 1988) is used to replace

containers, beakers, and alike. The pressurized bladder bottle is outfitted

with various sensors as depicted in Figure 2.9. The pressurized bladder

bottles and their sensors will be detailed in 3.23 together of a description of

their usage.

The chambers of the ITP device as depicted in Figure 2.6 must be

redesigned in order to avoid the problem of airlliquid interface presented by
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the chambers. This is an ongoing research activity investigated at the

Center of Separation Science (CSS) of the University of Arizona.

As mentioned in Section 2.1, we are not concerned with the

Workspace entity of the FHL. The Materials are considered to be either of

the kind 'supply' or 'waste' or 'experiment_related' with their phase being

'liquid' combined with various types of health_hazards as outlined in

Figure 2.8. We have considered only the minimum number of solutions

required for an experiment; a realistic laboratory, however, hosts various

kinds of sample solutions as well as leading and terminating electrolytes

and rinsing solutions.

The third member of the FHL is the entity Equipment which consists

of the ITP, the measuring devices, the transporters (i.e., the syringes or

motorized pipettes), and the pressurized bladder bottles. The measuring

devices are either threshold type sensors or vision sensors. The threshold

sensors, shown in Figure 2.9, are activated upon reaching their threshold

(i.e., binary), and can be used for examining the amount of a solution

present in any of the containers. The output of the vision sensors is

provided in the form of image frames; these are used for more critical tasks

such as examining the presence of air bubbles in the capillary or to make

sure that the micro syringe is properly located at the interface to the

capillary where a sample solution must be injected.

The specific number of measuring devices varies. Considering the

control operation of the electrophoresis experiment, we should assume that

there exist at least eight threshold type sensors and one vision sensor. One

threshold type sensor is used for each of the chambers and the capillary,
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three more are used for .the containers with the leading and the terminal

electrolytes and the sample solution, one is used for the distilled water

container, and finally one such sensor is used for the liquid waste

container, while the vision sensor is used for the examination of air

bubbles.

The threshold type sensors monitor the amount of the leading

electrolyte, the terminating electrolyte, and the Sample solutions injected

into the chambers and the capillary. They are special purpose sensors with

a predetermined denomination. The vision sensor, such as a video camera,

provides various types of information, and can be utilized (reassigned) for

many purposes.

To include diagnosis and subsequent recovery procedures, more

sensors of the threshold type are required, as well as possibly more

advanced vision sensors.

The last component of the laboratory is the robot which, to a certain

degree, must exhibit human expertise in completing its tasks as mentioned

earlier. The ultimate goal, of course, is to introduce cognitive capabilities

into a robot which will be responsible for conducting a subset of

experiments which will be available at the GPL.
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2.4 Event-Based Control

In the previous section, we described the set-up process of the

electrophoresis experiment as a sequence of operations, 'each depending on

the previously completed operation. Equivalently, it can be said that the

FHL needs a control scheme (for both static and dynamic aspects) to carry

out a series of operations. Hence, we must decide what typets) of control are

necessary and adequate for the experiments which will be hosted by the

GPL.

Traditionally, classical control theory offered control schemes which

have been used for several decades in isolation, and which are currently

also being used as part of a methodology called Intelligent Control (Saridis,

1977, 1979, 1983). An intelligent control scheme is an intersection of Control

Theory, Artificial Intelligent, and Operations Research. The control

intelligence is hierarchically distributed according to the principle of

decreasing precision with increasing intelligence. An intelligent controller

is composed of the following three basic levels of controls:

(i) The organizational level : accepts and interprets
the input commands and related feedback from
the system, defines the task to be executed, and
divides it into subtasks in their appropriate order
of execution.

(ii) The coordination level : receives instructions from
(i) and feedback information from the process for
each subtask to be executed, and coordinates the
execution at the lowest level.
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(iii) The hardware control level : usually involves the
execution of a certain motion, it requires the
mathematical model of the process, the
assignment of end conditions, and a performance
criterion or cost function defined by the
coordinator.

This type of control scheme provides the basis upon which

development of systems such as intelligent machines, space technologies

(such as the SSF), integrated manufacturing linked with robotics, and c3I

(Command, Communication, Control, and Intelligence) (McKinley, 1989)

are possible. It is clear that all these systems are very complex, and

conventional controllers alone are not able to control/manage them. Thus,

there arise the need for intelligent controllers to control any of the above

systems in various degrees of detail.

It is beyond the scope of this work to engage in a complete analysis of

intelligent controllers. Nonetheless, it is necessary to consider two aspects

of such controllers: what form of representation is necessary?, and what

type of control strategy is pertinent? The question of representation is

postponed until section 2.5. The other question, control strategy, is

examined and explained in some detail next.

Generally, a control problem should be examined with respect to the

available representation schemes (i.e., Continuous, discrete-time, discrete-

event, and qualitative). Presently, we assume that the dynamics of an

electrophoresis experiment will be represented as a discrete-event model.

Classical and intelligent types of control are usually applicable at

various levels; however, some control algorithms are not usually useful
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and/or justifiable for certain applications. For example, conventional

control algorithms are applicable at the lowest levels of control while

intelligent controllers are mostly used at the higherlhighest levels of the

control hierarchies-. An intelligent controller is considered to be superior

to a conventional controller for hierarchical levels of control since it relieves

unnecessary queries to the data acquisition subsystem to sample a process

at regular intervals of time. Types of control that are based upon the

discrete-event representation of systems are called event-based (Eventistic)

control (Meystel and Luh, 1987).

In the event-based control approach, a process can be partitioned into

several phases such that they are distinguishable from each other (Zeigler,

1989). Thus, each phase can be considered as a simple process which is

scheduled (predicted) to take some time, where the time can be either

measured or obtained analytically. Each of these phases is associated with

a minimum time, t-a«. and a time window, twind, which specifies the

acceptable variability of the execution time. Therefore, the lower limit of an

acceptable time for completion of a process is tmin while the upper limit is

tmax which is defined as follows:

tmax = tmin + twind

2 These types of control (classical and intelligent) are not mutually exclusive. Indeed,
usually intelligent controllers depend on conventional controllers for their inputs.
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Thus, an acceptable time for an event, tevent, to occur can be specified

as follows:

tevent E tmin + [0, twind ] or

tmin s tevent ~ tmax

A higher-level model can move through its phases as long as it

receives the sensors' outputs (from its lower level controllers) within the

time interval, tevent. Hence, the higher-level model starts in an assumed

phase and stays in it for t-a«. If the sensor's statef (i.e., a state which is

responsible to move the process from one phase to another) is changed

during this time interval, t-a«, it is recognized as a too-early signal, an

error, and relevant actions should be taken. However, if a sensor's

response arrives during tevent, it is interpreted as a successful signal.

Therefore, receiving sensory outputs within proper time intervals, tevent,

causes subsequent processes or operations to continue.

The only other possibility is that the model does not receive an input

from the corresponding sensor within the time interval bounded by tmax.

This failure to respond from the appropriate sensor is interpreted as an

error implying a too-late error signal. Hence, upon recognizing that the

process is not completed within tevent, the process should be stopped and

appropriate error messages be directed to a fault diagnoser or any other

appropriate agent. A graphical representation of an event-based control

3 Here, we have assumed that only changes in one state-variable are sufficient to move
a process from one phase to another. In general, it may be required to consider
several such state-variables to correctly represent a process.
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logic, along with the block diagram of its corresponding process, is shown

in Figures 2.10a and 2.10b.

Thr
Sen

eshold
sors Event

Based
r Controller

Process

Error

Command

(a)
Sensor

w::::;.... ---'- __ ---L. ~ Clock

Activated

I- ·1
tmin tmax

(b)

Figure 2.10: Representation of event-based control. (a) block
diagram; (b) graphical representation of a process.
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By examining Figure 2.10b, the event-based control strategy shows

that the produced sensory outputs do not have to be very precise. In other

words, sensors exhibit threshold-like characteristics, and precision is the

responsibility of the clock and not the sensor. Nonetheless, it must be noted

that generating time windows requires accurate correlation of sensory

outputs to significant variables of the model (Zeigler, 1989).

One very important advantage afforded by an eventistic type of control

is the ability of generating nonnumeric error messages, such as too-late

and too-early, that can carry important information for a diagnostic unit.

The reasoning procedures afforded by these forms of error messages in

comparison to error signals containing computed values is very important

for efficient and justifiable higher levels of control. In the following

chapter, an example of an event-based controller as applied to certain

operations related to the electrophoresis experiment is presented. Next, a

mathematical formalism is presented which forms the basis for the design

of event-based controllers.

2.5 DEVS Formalism and Discrete-Event Representation of
Dynamical Systems

The Discrete Event System Specification (DEVS4) is a formalism

introduced by Zeigler (Zeigler, 1986) that provides a formal basis for

specifying models expressible within discrete-event simulation languages

4 A complete description of the DEVS formalism is given in (Zeigler, 1976, 1984)
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such as SIMSCRIPT t and SIMULA. The DEVS formalism, much like

DESS (the Differential Equation System Specification) or the automaton

formalism, attempts to represent real world relationships within the

constraints of its formalism. Obviously, the objective of each formalism is

to faithfully and adequately represent a world view representation of

systems.

These formalisms, however, differ in how easily they can accomplish

their tasks. One very basic criterion for selecting a formalism is its relative

expressive power. By the expressive power of a formalism is meant the

class of systems it is able to faithfully represent. Hence, formalisms can be

compared to each other by asking whether every system specified, or more

precisely simulated by a model, in one can also be represented by a model in

another. The simulation efficiency, defined as time and space required to

simulate systems in a specified formalism, is another criterion in selecting

a formalism. There exist other aspects, such as convenience and

versatility, which contribute to the selection process of a formalism which

are not addressed here. An in-depth discussion of the world view of

formalism is given by (Zeigler, 1984).

Considering the brief definitions of the expressive power and the

simulation efficiency, the DEVS formalism provides the necessary tools for

the design of a large-scale system such as the SSF and consequently the

GPL (Zeigler, 1984).

DEVS-Scheme (Zeigler, 1986), is a lisp-based environment for

modeling and simulation of discrete-event systems based on the DEVS

formalism and its associated abstract simulator concepts in PC-Scheme
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(Texas Instruments, 1985). This modeling language provides an

environment which supports building models in a hierarchical, modular

manner since it is closed under composition (Wymore, 1988). Thus, the

development of large-scale models is made possible by using classes atomic-

models'i and the coupled-models's.

Atomic-models are constructed by using the following structural

frame:

M = < X , Y , S , 8int , 8ext , A , ta >
Where

X set of input ports
Y set of output ports
S set of states
8int Internal Transition Function
8ext External Transition Function
A. Output Function

ta Time Advance Function

The above seven-tuple description is completely described in (Zeigler,

1984). However, a brief explanation of the elements of the seven-tuple, M, is

necessary for understanding the discrete-event representation of dynamical

models, and subsequently, event-based controllers.

5
6

Atomic-models are primitive components which are described in DEVS-Scheme.
Coupled-models describe how various models, which could be atomic-models or
otherwise, are connected to each other to form more complex models. In other words, it
is a class which embodies the hierarchical model composition.
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The set X contains all possible external events (i.e., inputs) that are

received by a model. The set of outputs that are to be sent out is contained in

Y. The state variables are represented by the set S. In DEVS-Scheme,

there exist two state variables (i.e., sigma and phase) which are usually

present. The time an event (external or internal) is to occur is specified by

sigma, while the state variable phase specifies the current phase of the

model. The Internal Transition Function, Dt.nt, specifies the next state that

the model transits to after the time sigma has elapsed, provided that no

external event has arrived at an input port. The External Transition

Function, bext, specifies how the model should change its state when an

external event is received. Once the time assigned by sigma has elapsed,

the model is scheduled for its next internal transition. The Output

Function, A, generates an output just before an Internal Transition

Function takes place. The last element of M is the Time Advance

Function, ta, and it is responsible for timing the internal transitions.

Whenever the state variable sigma is present, this function simply returns

its value.

Atomic-models are coupled to each other by utilizing the class

coupled-models as mentioned earlier. Coupled-models specify how to

couple several component models whether they are atomic-models,

coupled-models, or a mixture of both, to form a larger model. Having the

freedom of connecting atomic-models and coupled-models together

translates to hierarchical model constructions.
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Throughout this work, only discrete-event models of systems will be

considered. Thus, it is appropriate to ask the question to what type of

systems this formalism can be applied.

A model, usually, is specified using some type of formalism

depending on its dynamics and/or its structure. The essence of the DEVS

representation of systems lies in the construction of External Transition

(8ext), Internal Transition (8int), and Time Advance (ta) Functions.

Sometimes, it may be necessary to extract these functions out of another

model expressed in another formalisms such as DESS. It has been

suggested by (Zeigler, 1984) that there exist several techniques? for the

construction of 8ext, 8int, and ta depending on the available knowledge about

the original system. These are:

1. The original system is analytically tractable.

11. The original system is described by a set of differential equations
which can be simulated in advance.

iii. No models exist, but experimental studies with the real system
are permitted.

IV. The simulation system learns the DEVS model structure on-
line.

All these methods require previous knowledge of the system whether

through simulation or by any other means. The objection may be raised

7 Thereexistappropriatemeasureswhichreducethe complexityofeffortsin obtaining
thesefunctions(Zeigler,1984)
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that, once a system has been analyzed, its behavior is completely known.

Then, what is the the purpose of representing it in the DEVS or any other

formalism? This view may seem legitimate at first glance; however the

justification and reasoning lies in the use of models as components in a

multicomponent DEVS modeling effort (Zeigler, 1984). The benefit of

transforming DESS or other models into DEVS models becomes even more

evident when all components of a large-scale system are represented in

such a form, since this permits extensive studies of large-scale/complex

systems to be performed.
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CHAPTER 3

MODELING OF INTELLIGENT CONTROLLERS

3.0 Outline of the Chapter

In this chapter, we will discuss the modeling of the Fluid Handling

Laboratory (FHL) components, as well as how a robot should act in order to

successfully carry out its responsibilities as they relate to the control of the

FHL components in an intelligent manner. Section 3.1 presents a modeling

methodology for systems that must support intelligent capabilities. In

Sections 3.2.1, 3.2.2, and 3.2.3, models of the camera, the rack, and the ITP

device are described in detail. The modeling of the robot, with its static and

dynamical decision making powers which depend on the models of the

camera, the rack, and the ITP device, is treated in Section 3.2.4.

Furthermore, the filling process of one of the chambers is examined in

detail to illustrate the coordination between the operational and the

controlled models of the ITP device. The generation of meaningful error

messages by an event-based controller is also discussed. The last section of

this chapter examines the interactions among the robot, the rack, the

camera, and the ITP device.
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3.1 Modeling Methodology

It was conveyed in the previous chapter that a modeling methodology

applicable to intelligent controllers of large-scale and complex systems can

be realized through the discrete-event formalism and the event-based

control approach. There was, however, no precise indication of how a

system and its intelligent controller should be represented.

In representing a process, the underlying control objectives play an

important role in the model construction (Zeigler, 1984, 1987-a). Therefore,

there can exist various types of models of the same system, each devoted to a

specific purpose. That is, if operations pertinent to a system are being

studied, there must exist an operational model which captures such

behaviors. Likewise, there must exist another model, a control model, of

the same system used by its controller which provides knowledge not

available in the operational model. Thus, the models which are intended

for 'operation' and 'control' of a system must provide different types of

information, some of which may be provided by either model. It should,

therefore, be evident that the number of models associated with a system is

related to the number of objectives at hand, each requiring a class of

information not available in any other model-.

Although it is possible to map all the desired/required features

present in every model into a single model, the crucial underlying

objectives of intelligent agents, which depend upon the hierarchical

1 Note that in modeling by means of differential and integral calculi, models of the
system and its controller are usually merged together. Therefore, the description of the
goals and the control concepts are usually represented implicitly.
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approach, is thereby ignored. There are also other issues to consider such

as excess amount of knowledge and unavoidable increase in the complexity

of the model. When there exists a large amount of stored information, the

retrieval cost/efficiency of it can be quite high or even unacceptable. The

tradeoff between the amount of stored information and the rate at which it

can be retrieved is usually resolved by considering parameters such as cost,

desired retrieval speed, and available hardware.

The available approaches to store information lie between completely

centralized and completely decentralized schemes. Certainly, in designing

intelligent agents, an adequate level of decentralization is necessary. The

level of detail of the information, ranging from fine granularity to coarse

granularity, determines the level of the complexity of a system. An

adequate information granularity must be determined in order to represent

the necessary level of detail for a particular purpose, not considering the

proper level of detail in designing a system, can adversely affect its

performance. If not enough information is stored locally, the requested

task cannot be executed without asking frequently some other agent for

information. This will reduce the system's performance. On the other

hand, if too much information is stored locally, the access time will grow

which again will slow the system down. Obviously, there must be an

optimum amount of information or optimal information granularity which

lies in between the two extremes.

To demonstrate and clarify the necessity of constructing various

models of a system, the FHL is considered next. It was stated in Chapter 2

that our main focus is to study the FHL environment and in particular the
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process of setting-up an electrophoretic experiment. Consequently, we

must model a robot to conduct the electrophoresis experiment with the aid

of an intelligent controller to monitor some desired operations as explained

in Section 2.4. The capabilities required from an intelligent agent are

assigned to the robot. However, the immediate controllers of equipment

that is directly related to the ITP device, e.g., the controllers for the camera

and the rack will not be assigned to the robot. In this study, these

controllers are simply ignored. The exclusion of such controllers will

cause no loss of generality since no significant additional insight is gained

by including similar class of control capabilities.

It should be apparent from the above discussion that we will have

different models of the ITP device: one to administrate the required control

assignments, and another to reflect the actual dynamical operations. We

may attempt to represent the ITP device by considering four models three of

which will be modeled in this and the following chapters:

1. The first model is a reference model, MB-ITP, for the model base
which provides the most refined characteristics of the real
system. This model is usually characterized by a set of
integro/differential equations (using the DESS formalism). It is
this MB-ITP which will not be modeled in this Thesis. This is the
task of another parallel Thesis (Wang, 1989). The detailed model
of a real system, MB-ITP, can be used to generate (extract) models
with either equivalent or less complexity (at a more coarse
granularity). A higher aggregated model may be better suited for
the intelligent controller, or other agents such as the diagnostic
unit, due to its simplicity.
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2. The second model, M-ITP-OPER, is the model of the system, ITP,
that is being controlled, and it is devoted to the operational tasks.
This operational model is considered to be external to the
intelligent controller. It is this model that may eventually be
replaced by the real system during a true implementation of the
intelligent control strategy. It can provide external information
not known internally to the controller. This model will be
constructed as a discrete-event model which may eventually be
derived from the MB-ITP in an automated manner as
demonstrated by (Wang, 1989).

3. The third model, M-ITP-CONT, is another model of the ITP device
that is internal to the intelligent controller. This control model is
internal to the controller. It provides the type of knowledge that
permits higher levels of control. The M-ITP-CONT is also
represented as a discrete-event model.

4. The last model, which is also considered to be external, is used for
diagnostic purposes. It is named M-ITP-DIAG. It provides the
information that is necessary for a diagnostic unit (e.g., an expert
system) in the event of an error. This model should be replaced by
the real system during a true implementation of a diagnostic unit.
We shall elaborate on this diagnostic model, M-ITP-DIAG, In
Section 4.4.

Note that the internal and external models of the ITP device must

reflect various levels of detail; i.e., the M-ITP-CONT contains less detail

than the M-ITP-OPER, which must represent the more detailed

characteristics required at the operational level.
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It should be apparent that the number of models of a real system

generated from the reference model, MB-ITP, in the model base is directly

proportional to the number of objectives necessary to represent the various

desired characteristics of the real system. Therefore, a logical consequence

is that, as the complexity and the number of capabilities of a system

increases, we must expect that more models will be necessary to validly

represent all the facets of the real system that are being considered in the

design.

In Figure 3.1, we have illustrated that the M-ITP-OPER, the M-ITP-

CONT and the M-ITP-DIAG are to be extracted from the reference model,

MB-ITP, in the model base. It is also quite common to start with a less

complex model, and elaborate on it to generate a more detailed model

through the process of step-wise refinement. This is the approach that we

take when we generate the initial entity structure of the model. However,

this route is not amenable to automation. More on elaboration

(disaggregation) and simplification (aggregation) of models will be

presented in due course.
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MB-ITP

M-ITP-OPER M-ITP-CONT M-ITP-DIAG

(a)

MB-ITP

MB-ITP M-ITP-OPER

M-ITP-OPER M-ITP-CONT-------------
M-ITP-CONT M-ITP-DIAG M-ITP-DIAG

(a) (b)

Figure 3.1: Model-base, operational, control, and diagnostic
models of the ITP device. (a) two levels of abstraction; (b) three levels
of abstraction; (c) four levels of abstraction.
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It is not mandatory to always refer to the reference model in the

model base to generate all the other models from it as depicted in Figure

3.1a. For example, it may be advantageous to generate the M-ITP-OPER

model first, and then deduce the M-ITP-CONT and the M-ITP-DIAG

models from it (cf. Figure 3.1b). The control and the diagnostic rnodels, as

shown in Figure 3.1bt may be constructed from the operational model such

that they belong to the same level in the hierarchy. Another possibility is to

develop the M-ITP-OPER model from the MB-ITP, then obtain the M-ITP-

CONT model from it, which in turn is used for the realization of the M-ITP-

DIAG model (cf, Figure 3.1c). This is possible by successively simplifying

the models from the top to the bottom as shown in Figure 3.1ct indicating

four levels of complexity of the ITP device. The three discrete-event models

mentioned above can be realized through abstractions, i.e., by means of

homomorphic and/or isomorphic relations from the reference model or any

other model (Wymore, 1988).

The concept of homomorphism states that we can have many

different models of the same reality, a real system, where one is a

consistent simplification of another, or one is a consistent elaboration of

another. Nevertheless, through homomorphism we can assure that all

these models represent the same reality with various degrees of complexity.

In order to assure homomorphism, three mapping functions must be

defined. These mapping functions relate the states, inputs, and outputs of

any two systems to each other. Moreover, the next state and output

functions, similar to those defined for the DEVS formalism, must also be

preserved by the defined sets of mapping functions (Wymore, 1988).



56

The isomorphism concept is a specialized form of homomorphism.

In order for two models or systems to be isomorphic in addition to being

homomorphic, the relations specified in the three mapping functions must

all be one-to-one relations. Isomorphism may be thought of as a scheme of

renaming all the states, inputs, and outputs of a model, resulting in

another model. Subsequent generations of models, as explained in Figure

3.1, may be obtained through homomorphism from a previously derived

model. Methodological issues concerning the forms of abstractions that are

needed and what must be preserved in a morphic relation are discussed in

(Wymore, 1988).

3.2 Modeling the Components of the FHL

Having discussed the modeling methodology and its implications,

we will proceed by representing the camera, the rack, the ITP device, and

the robot by utilizing the DEVS-Scheme environment. In the following four

subsections, each of the components of the FHL will be described in

accordance with the elements of the seven-tuple, M, that was described in

Section 2.5.
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3.2.1 Modeling the Camera

The camera is modeled rather simply at a high level of abstraction.

It operates without any controller (cf. Section 3.1). Hence, we will omit the

explicit representation of the camera's model in this thesis, and instead

describe the elements of its seven-tuple, M. The role of the camera in

setting-up the electrophoresis experiment is to examine the presence of air

bubbles in the capillary or any of the chambers. The camera's response can

be a zero (signifying the absence of air bubbles), a one (signifying the

presence of air bubbles), and a nil (signifying its inability to answer the

question, either because it didn't understand the question correctly, or

because it cannot decide whether or not there are air bubbles present). The

set S contains the state variables phase, sigma, I/O-port, Il Onialue, leitp,

teitp, and saitp. The first four state variables are shared by all the models.

The state variables phase and sigma were explained in Section 2.5. Both

the I/O-port, input/output port, and the I/O-value, input/output value, are

elements of both the input set X and the output set Y. The state variables

ending with -itp indicate that the ITP device is under the examination of the

camera. Their first two letters, described below, specify the segment of the

ITP device that is under observation:

LE: leading electrolyte solution
TE: terminating electrolyte solution
SA: sample solution
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For instance, the leitp indicates that the chamber of the ITP device

containing the leading electrolyte is examined for the presence of air

bubbles. Both the input set, X, and the output set, Y, of this model as well

as all the other models are considered to be pairs of the form (l/ O-port , 1/0-

value). Each pair, therefore, is a message which is either received (i.e.,

input) or sent (i.e., output) by any of the models. The set X containing the

accepted inputs for this model is a subset of the output set Y of outputs

generated by the robot (cf. Appendix A). Consequently, the camera ignores

all other received inputs.

The first element of the camera's output pair, Y, informs the robot of

the identity of the examined segment of the ITP device. Permissible values

are leitp, teitp, and saitp, i.e., a state variable of the enumerated type 1/0-

port. The second element of any pair in the output set Y, I/O-value,

contains either a zero, a one, or a nil. Thus the output set Y consists of

pairs such as (leitp, 0), (leitp, 1), (leitp, nil), and so on.

The external transition function, Dext' which is responsible for the

external inputs, has to select the correct object based on the content of the

second element, I/O-value, of the received message from the robot. Once

the correct segment of the ITP device has been identified (i.e., one of the

chambers or the capillary), upon receiving a valid external input, the

camera assigns either a zero or a one to the I/O-value at the termination of

the sigma. The value of the I/O-port specifies which segment of the ITP

device was examined. Moreover, the I/O-port should be consistent with the

I/O-value which was received from the robot. That is if the robot requests

the examination of the leading electrolyte chamber, the camera should
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examine what was requested, and return a message containing the

requested response. The state-variable, phase, is updated at the beginning

and at the end of the external transition function, to keep track of the

camera's present status; this can provide important information to an

event-based controller. Once the 8ext is completed, a message which

contains one of the elements of the output set Y, (I] O-port , I/O-value), is

sent out by the Output Function, out-camera, to the robot.

The Internal Transition Function, 8int, which IS executed

immediately after the Output Function, enters a state (i.e., phase = passive

and sigma = 00 ; refer to Section 2.5) where the model stays idle until its

future activation upon receiving another valid input from the robot.

3.2.2 Modeling the Rack

The rack can be considered as a model which is static, dynamic, or

static-dy namic. The static model of the rack provides information

pertaining to the materials and the various types of equipment (cf. Figure

2.8) required to conduct the electrophoresis experiment. For instance, if

there does not exist a sufficiently large amount of a desired sample

solution, there will be no need for the robot to start filling the ITP's

chambers. The dynamic model of the rack can provide the behavioral

activities which take place in the workspace of the rack. These activities

are the filling/emptying of the pressurized bladder bottles and the

transporters, displacement of the various pieces of equipment, picking-up
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the transporters, and so on. The consideration of such processes is

important for an actual implementation of an intelligent controller.

Nonetheless, the modeling of such activities in our prototype environment

would not reveal any additional features from which we could learn

something useful, but instead, it would only complicate the matters at

hand. For this reason, the rack has been viewed as a static model. In a

real implementation, of course, the model of the rack should exhibit both

the static aspects and the dynamical behavior of the activities which take

place in its workspace.

The actual DEVS model of the rack is also described. The number of

state variables are related to the number of entities desirable for the FHL

(Table 3.1). The list of state variables shown in Table 3.1 only considers a

small number of entities which must be present in the FHL.

The input set X and the output set Yare identical to those given for

the camera except for the actual contents of the l l Osport and the I/O-value.

This model is also similar to the previous model with regard to how its Oext,

Oint, and A are structured. The rack's Oext updates the state variables

related to the activities of the leading electrolyte chamber, the terminating

electrolyte chamber, and the capillary depending on the received inputs.

The time, sigma, which is required to complete the Oext is arbitrarily

assumed to be 1 unit of time in accordance with the earlier assumption.

Obviously in a real implementation, sigma would have to be chosen

correctly in order to reflect the durations of the actual activities which must

be carried out. The ~nt of the rack resets to zero the state variables volle,
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Variables

TSYR:
TMSYR:
SYRLE:
SYRTE:
SYRSA:
VOLLE:
VOLTE:
VOLSA:
VOLDW:
VOLWA:
TOTLE:
TOTTE:
TOTSA:
TOTDW:
TOTWA:
SIGMA:
PHASE:
OPRT:
OVAL:

Table 3.1: Selected state variables chosen to represent the rack.

Description of some of the Selected State
Variables for the Rack

Total number of syringes available.
Total number of micro syringes available.
Number of syringes used for the LE chamber.
'Number of syringes used for the TE chamber.
Number of syringes used for the TE chamber.
Amount of LE used during an experiment.
Amount of TE used during an experiment.
Amount of SA used during an experiment.
Amount of distilled water used during an experiment.
Amount of waste accumulated during an experiment.
Total amount of LE available at the start of an experiment.
Total amount of TE available at the start of an experiment.
Total amount of SA available at the start of an experiment.
Total amount of distilled water available at the start of an expr.
Total amount of waste deposited at the start of an experiment.
Defined in section 2.5
Allowable phases.
Allowable input ports.
Allowable input values.

Where: LE: leading electrolyte
TE: terminating electrolyte
SA: sample

Default
Values

100
a>
o
o
o
o
o
o
o
o

400
ax>
10

ax>
o
00

PASSIVE
NIL
NIL

0\.....
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volte, volsa, voldw, and volwa upon completion of the set-up procedure. The

meaning of these state variables is described in Table 3.1. This is necessary

since it may be desirable to know how much of each commodity was used

for a particular experiment. Furthermore before starting an experiment,

the robot must inquire about the currently available commodities, which

are required to complete the experiment. The rack's A. can be utilized to

notify the robot of its current status which will prevent it from continuing

with the set-up procedure as soon as it receives an information indicating

insufficient commodities.

3.2.3 Modeling the ITP Device

In Section 2.2, it was stated that each chamber may be filled,

emptied, and cleaned several times during the set-up procedure where the

filling and the emptying operations were considered to be primitive

operations. The cleaning process is a compound operation that consists of

the sequence of primitive operations: emptying the chamber, filling it with

distilled water, and finally re-emptying it. Recall that the segment of the

capillary which contains the sample solution can only be filled and not

emptied (cf. Section 2.3).

In order to monitor the volume of the liquid inside the chambers and

the capillary with respect to the primitive operations, each of them is

outfitted with two types of sensors: air pressure sensors and contact sensors

as depicted in Figure 2.9. The underlying operations of these sensors were
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explained in Section 2.3. An air pressure sensor becomes activated when

the volume inside a chamber, for example, has reached some prespecified

limit (see Figure 3.3).

A randomly selected time duration, representing the activation of a

sensor, simulates the behavior of an actual air pressure sensor. The time

required to complete a particular operation, recognized as the activation of

a sensor, is not always exactly predictable since its behavior depends on one

or more parameters. If we consider a primitive operation to be a function of

a constant flow-rate only, the time which is needed for its completion can be

calculated analytically if we know the desired volume of the liquid and the

rate at which it enterslleaves the chamber. However, other parameters

which may influence the characteristics of these primitive operations are

e.g., the diameter of the chamber, the angle of the syringe inside the

chamber, the viscosity of the liquid, the current ambient temperature, and

the selected gravity force in the GPL.

Figure 2.9 shows that each chamber or capillary is outfitted with two

kinds of sensors: air pressure sensors and contact sensors. There are two

identical air-pressure sensors and two identical contact sensors. We shall

refer to Pl and Cl as the primary sensors, and to P2 and C2 as the backup

sensors. The primary sensors are used for control purposes, while the

backup sensors are used for diagnostic purposes. The reason for including

two sensors of each kind is to utilize the backup sensor for confirmation of

the primary sensor in the event of an error.

The tasks contact and release (cf. Figure 3.4) include the insertion of

the syringe into the chamber. That is, the filling operation begins with the
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assumption that the syringe is already inside the chamber or the capillary.

The model of the ITP device, therefore, only requires the air pressure

sensors (e.g., Pl) and not the contact sensors (e.g., Cl). The exclusion of

the contact sensors in the M-ITP-OPER is due to the assumption that the

tasks contact and release will be conducted without encountering any

errors.

The name M-ITP-OPER is selected to identify the operations filling,

emptying, and cleaning which should be carried out in the set-up

procedure of the electrophoresis experiment. The operational model of the

ITP device, M-ITP-OPER, is presented in Figure 3.2. M-ITP-OPER

contains three air pressure sensors (i.e., le-press-sensor, te-press-sensor,

and sa-press-sensor). The process-time is calculated by dividing a desired

volume, such as uol-fill-le-itp ; the output of a random number generator

(Figure 3.2), by a specified flow-rate. The flow-rate for simplicity is

assumed to be constant.

The time duration for each of the primitive operations was obtained

by experimenting with the ITP device- at the Center for Separation Science

at the University of Arizona. The probabilities associated with each

process-time, however, are selected according to the simulations'

objectives. The longer cleaning operation is represented by estimating the

total volume of the displaced distilled water in any of the chambers since

the flow-rate is assumed to be constant.

2 Each process-time and its associated probability, indicated by a random number
generator's output, should be obtained from any of the applicable methods listed in
section 2.5.
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The contents of the Il Orport and Il Owalue, are deducible from Figure

3.2 which are also some subsets of the robot's Ll Onialue and I/O-port,

respectively (see Appendix A).

The purpose of the ext-m-itp-oper, Dext' is to represent the operations

filling, emptying, and cleaning. When the operational model of the ITP

device, M-ITP-OPER, receives a message requesting one of the above

operations, it executes its Dext which would represents the reading in of a

value from an air pressure sensor (see Figure 3.2). In Figure 3.6, it is

shown that the air pressure sensor inside the leading electrolyte chamber

(shown as 'Sensor' in Figure 3.6) is empty upon receiving the input (LE,

FILL) from the robot (see 'XITP/Y robot' in Figure 3.6). The air pressure

sensor stays off for 22.9 units of time (obtained by experimentation) before it

goes on. The time which is required for the sensor to change its status from

off to on depends on several parameters as mentioned earlier. The state

variable le-press-sensor shown in Figure 3.6 as 'SITP' represents such a

change in the status of the air pressure sensor. Other state variables,

phase, oprt, and oval, are also changed at the end of the filling operation.

The M-ITP-OPER schedules sigma (equated to the process-time) in order to

represent the duration of the filling operation or equivalently the behavior of

the air pressure sensor. Upon completion of the Dext' a message with

appropriate l l Osport and Il Onialue is sent to the robot by using the out-m-

itp-oper, A.. The 'YITP', as shown in Figure 3.6, demonstrates that the

output (LEITP, FILL) is sent to the robot in order to notify it about its new

status (i.e chamber is full). The int-m-itp-oper, Dint, has no significance as
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mentioned earlier except for setting the model into its idle mode upon

completion of each operation.

;; Atomic-model for the ITP Device
(make-pair atomic-models 'm-itp-oper)
(send m-itp-oper def-state '(

le-press-sensor ; air pressure sensor for the LE chamber: on/off
te-press-sensor ; air pressure sensor for the TE chamber: on/off
sa-press-sensor ; air pressure sensor for the SA capillary: on/off
flow-rate ; influx flow-rate
process-time ; time to complete filling, emptying, and cleaning
phase ; passive, le-fill, te-fill, sa-fill, le-empty, ...
sigma ; 0 H 00

oprt ; output port: leitp, teitp, saitp
oval)) ; output value: fill, empty, clean

(send m-itp-oper set-s (make-state
flow-rate 1
le-press-sensor 'off
te-press-sensor 'off
sa-press-sensor 'off
process-time 0
sigma 'inf
phase 'passive
oval '0
oprt '0) )

;;; Random Variables
(define (vol-fill-le-itp num)

(let (( r random num) ) )
(cond( «= r 35) 19.4)

( «= r 65) 22.9)
( «= r 98) 24.5)
( else 29) )) )

;;; Other random variables have identical structure as shown above.
(define (vol-empty-Ie-itp num) ... )

;;; This random variables produces
;;; the necessary volume of the
;;; leading electrolyte that activates
;;; the air pressure sensor.

'" External Transition Function (i.e., Dext):
(define text-m-itp-oper sex)

(case (content-port x)
(,Ie (case (content-value x) ;;; RECEWED FROM ROBOT
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;;; The time for the filling operation is defined as the
;;; ratio of the vol-fill-le-itp to the flow-rate.

(set! (state-process-time s)
(/ (vol-fill-le-itp 100) (state-flow-rate s) ) )
(set! (state-oprt s) 'leitp)
(set! (state-oval s) 'fill)
(set! (state-le-press-sensor s) 'on)
(hold-in 'le-fill (state-process-time si ) )

('empty )
('clean )
Cte )
('sa )
(else (continue) ) ) )

;;; Internal Transition Function (i.e.,
(define tint-m-itp-oper s)

(if (not (equal? (state-phase s) 'passive)
(passivate) ;;; Whenever any of the operations filling,
(continue) ;;; emptying, and cleaning is completed, then

) ) ;;; passivate - it becomes idle.
;;; Output Function (i.e., A):
(define (out-m-itp-oper s)

('fill

;;; RECEIVED FROM ROBOT

;;; RECEIVED FROM ROBOT

;;; NOT RECEIVED FROM ROBOT
Oint):

;;; Send messages to robot when the
;;; filling operation is completed.

(if (not (equal? (state-phase s) 'passive)
(make-content 'port (state-oprt s) 'value (state-oval s»»

Figure 3.2 : Atomic model of the ITP.

If the robot sends a request (i.e., carry out the filling operation) to a

lower level controller, then at the same time it must start simulating a

version of the filling operation in order to fulfil its intelligent capabilities.

What is important to realize is that the M-ITP-OPER and the robot start the

filling operation simultaneously (Figure 3.3). In reality, the robot has a

model, M-ITP-CONT of the filling operation, and the M-ITP-OPER is

replaced with a real filling operation.
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3.2.4 Modeling the Robot

Traditionally, the translation of an assigned task into the robot

actuator commands involves the following three steps:

1. Task Level Planning: Given a particular task, find the
manipulated object's required motion.

2. Robot Motion Planning: Given the manipulated object's required
motion, find the desired robot trajectory.

3. Robot Controller: Given the desired robot trajectory, find the robot
actuator commands.

These three steps are sufficient for completion of most desired tasks

in the absence of errors. Since these steps are usually assigned to the lower

level controllers, while our objective is to design an event-based controller

(i.e., a controller applicable at higher levels of control), we will not be

concerned with steps 1, 2, and 3 as defined above. Our objective, as stated in

Chapter 1, is to initiate a particular task, and use an event-based controller

to monitor the correctness of the lower level actuator commands.

Therefore, a given task that is assigned to an event-based controller can be

translated into the following steps:

1. Task Level Planning: Given a particular task, decompose
it into smaller tasks or a set of primitive operations.

2. Robot Controller: Given the primitive operations,
assign them to appropriate lower level controllers.
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Hierarchy of Controllers

Event-Based
Controller

(set of tasks)

•

PID
Con trollers

(set of primitive operations)

Processes

Figure 3.4: Hierarchy of higher and lower level controllers.

Notice that an event-based controller does not have any knowledge of

the lower level controller's actuator commands which are responsible for

the execution of primitive operations (cf. Section 2.4). Figure 3.4 depicts a

block diagram representation of a set of PID controllers and their

associated event-based controller.

In studying the set-up procedure of the electrophoresis experiment,

the robot is viewed with respect to the following steps:
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A. Task Level Planning: The necessary steps for the set-up
procedure of the electrophoresis experiment, assuming the
operations filling, emptying, and cleaning, will be conducted as
follows:

1. Fill the LE chamber.
2. Examine the presence of air bubbles in the LE chamber.
3. Fill the TE chamber.
4. Examine the presence of air bubbles in the TE chamber.
5. Fill the capillary.
6. Examine the presence of air bubbles in the capillary.
7. Turn the switch on (i.e., set-up procedure is complete).

B. Robot Controller: Assuming the chambers and the capillary are
clean, the event-based controller commands for the above tasks
are:

1. Fill the LE chamber.
2. Proceed to step 3 if the filling operation IS completed as

scheduled, otherwise stop the operation and notify the
responsible agent.

3. Examine the LE chamber for the presence of air bubbles.
4. Fill the TE chamber (if no air bubbles are present in the LE

chamber), or empty/clean the LE chamber (if air bubbles are
present in the LE chamber) and return to step 1.

5. Proceed to step 6 if the filling operation is completed as
scheduled, otherwise stop the operation and notify the
responsible agent.

6. Examine the TE chamber for the presence of air bubbles.
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7. Fill the capillary (if no air bubbles are present in the TE
chamber), empty/clean the TE chamber (if air bubbles are
present in the TE chamber) and return to step 3.

8. Proceed to step 10 if the filling operation is completed as
scheduled, otherwise stop the operation and notify the
responsible agent.

9. Examine for the presence of air bubbles in the capillary.
10. Start the experiment (i.e., no air bubbles detected in the

capillary) or empty/clean the chambers and the capillary (i.e.,
air bubbles are detected in the capillary) and repeat the set-up
procedure.

The correctness of steps 1, 3, and 5 from A are considered to be the

responsibility of an event-based controller utilizing the operational

(external) and the control (internal) models of the operations necessary to

complete the set-up procedure. Therefore, B contains steps 2, 5, and 8 in

order to enforce the correctness of steps 1, 3, and 5 from A. When a

primitive operation is completed within the scheduled time tevent (cf.

Section 2.3), it is called a 'successful' operation. On the other hand, if the

primitive operation was not completed according to the schedule, either the

following commands from B (if an operation was completed earlier than

expected), or the present operation from B (if the operation has not been

completed within the allotted time) must be stopped. An intelligent

controller, therefore, is able to monitor the correctness of the dynamical

operations it is assigned to. The coordination between the operational and

the controlled models, represents the dy namical role of a higher level

controller which ensures such successful operations.
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The steps 4, 7, and 10 from B select either the next prescribed activity

from A, or a series of other activities determined by the event-based

controller. The activities listed in steps 4, 7, and 10 from B include some

additional operations (i.e., emptying and cleaning) which were not

previously scheduled, assuming 'perfect' completion (i.e., no air bubbles) of

steps 1, 3, and 5 from A.

A distinction between a 'successful' completion and a 'perfect'

completion of an operation should be made. The decision which is based

upon the perfect completion of an operation is static in nature; a

successfully completed operation is one which was completed within the

allotted time window. However, at this point, we don't know yet whether

there are air bubbles present. The operation must be evaluated with respect

to the absence of air bubbles before it can be called a 'perfect' operation. As

mentioned earlier, an event-based controller is responsible for both the

static and the dynamical behaviors involved in carrying out a task.

The filling operation of a chamber (and similar operations) in the

GPL environment requires some other activities such as insertion of a

syringe into the pressurized bladder bottle. We have defined the tasks

contact and release to represent all the other activities which are required

in real situations. Figure 3.5 illustrates how some new primitive

operations, such as move, pick-up, and dispose, are concatenated in order

to represent the tasks contact and release. The emptying process requires

other compositions of the contact and the release tasks, as compared to

those shown in Figure 3.5. The robot model, however, assumes an equal

execution time for both the contact or the release tasks irrespective of their
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internal compositions. We refer to a filling or emptying process, which

embodies these two tasks, as a filling or emptying task, respectively. Note

that in Figure 3.5, the operation of 'emptying a syringe' is equivalent to the

operation of 'filling a chamber'.

Operations Required to Fill a Chamber

Gri pper Pick- Up Fill EmIJ'¥ Dispose
Resti ng (Syri nge) (Syri nge) Syringe (syri nge)
Position

Syri nge Liquid

~

Disposal Return to
Location Location Location the Resti ng

Position
~ I I •
I· II· I~Release-1

Time
Contact

1
Fill Chamber

Figure 3.5: Decomposition of release and contact tasks into more
specialized tasks with respect to filling operation.



Table 3.2: Selected state variables chosen to represent the Event-Based controller.

SUde
Variables

Description of the Robot's State Variables

REF-LE:
REF-TE:
REF-SA:
STA-LE:

STA-TE:

STA-SA:

F-TIME-LE:
C-TIME-LE:
E-TIME-LE:
F-TIME-TE:
C-TIME-TE:
E-TIME-TE
F-TIME-SA:
SIGMA:
PHASE:
OPRT:
OVAL:

Number of refills for LE
Number of refills for TE
Number of reruns
Status of the LE chamber: Dirty, Empty, Clean, Full,
Error-Empty, Error-Clean, Error-Fill, LE-Full (no air bubbles)
Status of the TE chamber: Dirty, Empty, Clean, Full,
Error-Empty, Error-Clean, Error-Fill, TE-Full (no air bubbles)
Status of the segment of the capillary which is allocated for
for the sample solution: Full, Empty, Error-Fill
Minimum and allowable additional time to fill LE chamber
Minimum and allowable additional time to clean LE chamber
Minimum and allowable additional time to empty LE chamber
Minimum and allowable additional time to fill TE chamber
Minimum and allowable additional time to clean TE chamber
Minimum and allowable additional time to empty TE chamber
Minimum and allowable additional time to fill SA chamber
Defined in section 2.5.
Allowable phases.
Allowable input ports.
Allowable input values.

Where: LE: leading electrolyte
TE: terminating electrolyte
SA: sample

Default
Values

o
o
o

Dirty

Dirty

Empty

(19,6)
(28,7)
(22,8)
(09,3)
(18,5)
(12,4)
(03,2)

00

PASSIVE
NIL
NIL

-...l
V\
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As discussed in Section 3.1, the event-based controller must operate on the

ITP device or equivalently the (external) model, M-ITP-OPER, which

exhibits the proper dynamical behaviors. Recalling our previous

discussion of the event-based controller in Section 2.4, we must construct

the ITP's model such that it is able to represent tmin, tmax, and twind (cf,

Section 2.4). The required characteristics can be represented by a control

model of the ITP device.

Robot's State Variables

Static Dynamic

OPRT OPRT
OVAL OVAL
PHASE PHASE
SIGMA SIGMA
REF-LE F-TIME-LE
REF-TE C-TIME-LE
REF-SA E-TIME-LE
STA-LE F-TIME-TE
STA-TE C-TIME-TE
STA-SA E-TIME-TE

F-TIME-SA

Figure 3.6: Categorization of the robot's state variables into static
and dynamic.
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The atomic-model of the robot as depicted in Appendix A, represents

the decision making capabilities which require both the internal model, M-

ITP-CONT, and the external model, M-ITP-OPER, of the ITP device (see

Appendix A). The robot's state variable descriptions and their default

values are given in Table 3.2. The state-variables, as categorized in Figure

3.6, represent the static and dynamical decision making capabilities. The

state variables which are devoted to the dynamical behavior of the ITP

device represent the internal M-ITP-CONT model.

A scenario of the filling operation of the LE chamber, assuming it is

clean, illustrates how the robot performs as an eventistic controller

(Meystel and Luh, 1987). Figure 3.3 illustrates how the robot model (M-ITP-

CONT) and the ITP model (M-ITP-OPER) simulate the filling process

concurrently. Let us presume that the robot has already completed its

contact task. The robot, then, schedules t-a« (i.e., phase = le-fill-low) for

the filling operation of LE by using the M-ITP-CONT3 and, at the same

time, sends a message, (LE, FILL), to the lower level controller to carry out

the filling operation. Note that we only represent the model of the operation

by using the M-ITP-OPER and not its lower level controller. Thus, the

filling operation of the LE chamber is scheduled (i.e., phase = le-fill) to take

22.9 units of time as described in Section 3.2.3. It is possible that the robot

receives a message (i.e., notifying the end of the operation) before the

completion of tmin = 19, forcing it to suspend (i.e., phase = error-fill) the

continuation of the future activities (i.e., transmitting a halt message to the

ITP's lower level controller if one exists), and to issue another message,

3 This model is integrated into the model of the robot.
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(robot, error-Is-fill-low) = too-early, to a diagnostic unit. Again, since we

have excluded the lower level controller, the 'halt' message which must go

to the lower level controller is absent.

If the robot does not receive the completion message regarding the

filling operation too early, it schedules (phase = le-fill-twind) the M-ITP-

CONT to continue for twind = 6. If a message, (LEITP, FILL), is received

within the time period twind confirming the completion of the filling

operation for the LE chamber, then the robot proceeds by issuing its next

scheduled command (i.e., a release operation followed by the examination

of the LE chamber for air bubbles). The remaining possibility is that the

twind elapses before a confirmation is received from the M-ITP-OPER (i.e.,

phase = error-fill). Again, the robot must interrupt the current operation of

the ITP device (i.e., filling the LE chamber) by transmitting a stop message

to the lower level controller in addition to routing a message, (robot , error-

le-fill-Iate) = too-late, to a diagnostic unit. The robot utilizes the above

eventistic control algorithm for steps 1, 3, and 5 of list A as well as for the

emptying operations and cleaning tasks of both the LE and TE chambers

which belong to steps 4, 7, and 10 oflist B.

Let us now entertain the second type of control scheme which must

be embodied in the robot's model as well. This type of control is essentially

static in nature since it acts on a class of information that does not depend

on any dynamics. For instance, in Appendix A, it is shown that if the

filling operation of either chamber is repeated more than 20 times, the

event-based controller should discontinue to issue any filling command to

its assigned lower level controller. This is a valid type of control strategy
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that should be built into the real system in order to recognize and terminate

endless processes.

Another type of control which also belongs to this category disallows

a future activity to take place if its correct execution depends on a previously

executed operation of which we already know that it was not completed in

an acceptable (i.e., 'perfect') manner. Therefore, a known sequence of

tasks must be altered such that processes that can invalidate the outcome of

a future operation are tested for 'perfection'; recall the notion of 'successful'

and 'perfect' operations discussed earlier.

As an example, the camera which is responsible to detect the presence of

air bubbles in the chambers and the capillary, provides the desired

information that is used by the robot to either continue with its previously

scheduled sequence of activities (i.e., list A), or change the sequence (i.e.,

list B) to warrant the perfection of a desired operations.

3.3 An Overall View of the FHL

Up to the present, we have not mentioned the interaction between the

robot and the rack. As stated earlier, the rack is a static model that is

included to furnish knowledge for the static control scheme described

above. The robot may inquire, at the beginning of an experiment set-up,

information to ascertain that there exists an adequate amount of supplies.

We have not included this type of control which depends on inquiries from

the rack; instead, the FHL's environment is constituted such that the robot
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sends appropriate messages to the rack in order to update its list of

possessions. The interactions between the robot and the ITP device

provided the event-based control approach; whereas the camera and the

rack were necessary for static control of the experiment. Figure 3.7

illustrates the interconnections among the entities. Figure 3.7 exemplifies

the FHL's environment. Note that we have represented the model of certain

processes only, and we have eliminated their lower level controllers (cf.

Figures 3.4 and 3.7). Examination of Figures 3.4 and 3.7 manifests that the

control commands originating from the event-based controller are routed to

the processes (i.e., the ITP device) instead of a lower level controller,

assuming that the robot is acting as an intelligent controller. Indeed, it is

quite practical to implement both the lower level control algorithms (i.e.,

the actuator commands) and the higher level control algorithms (i.e., the

procedural commands) inside the robot model.

Although, in delineating the FHL environment, we bypassed a PID

type (low level) controller, as apparent from Figure 3.7, we have not

jeopardized our goal which is to illustrate the applicability of the DEVS

formalism to represent an event-based controller.



82

CHAPTER 4

DIAGNOSTIC AGENTS

4.0 Outline of the Chapter

The focus of this chapter is the consideration of failure analysis. In

Section 4.1, the utilization of conventional schemes and artificial

intelligence schemes for the development of a diagnostic agent is discussed.

Diagnostic units will only be considered for the analysis of hardware

failures. The consideration of hierarchical diagnostic units, expected to be

utilized in parallel with a hierarchy of controllers, is discussed.

Furthermore, the applicability of expert systems for higher levels of

hardware failure analysis is considered. Section 4.2 describes an

interactive expert system shell. The usefulness of this expert system shell

for the development of a higher level diagnostic unit in the PC-Scheme

environment is discussed. The selection of the diagnostic model of the ITP

device, M-ITP-DIAG, for a diagnostic agent is treated in Section 4.3. Next,

in Section 4.4, a customized diagnostic agent, constructed from CESM, is

presented. It obtains directly the necessary information from the desired

modeled sensory sources. This chapter concludes with Section 4.5 where

the effects of certain functions, such as the cost and time requirements

associated with the data acquisition, are discussed as they influence the

development of diagnostic units.
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4.1 The Diagnostic Process

Diagnosis: "the act or process of deciding the nature of a
diseased condition by examination of the
symptoms" (Webster's Dictionary, 1984).

From the above definition, diagnosis is defined as the recognition of

cause(s) of a disease or a fault when it is observed in the context of human

made systems.

Generally, faults can be categorized into two types: hard, related to

actual hardware failures; soft, related to those faults which are not

categorized as hard. For instance, a fault related to a sensor might be due

to hardware failures such as mechanical stress, over-voltage, and over-

heating. On the other hand, the same sensor may fail due to the lack of

some required information or electrical signals.

Here, we shall only consider errors which are categorized as hard in

the pursuit of the selection and implementation of a prototype diagnostic

agent for the FHL. By discarding errors of type soft in our study, the main

theme of this thesis will be served without any loss of generality.

There exist three general schemes for diagnosing a fault, depending

on the technology used. These schemes are referred to as manual,

conventional, and artificial intelligence schemes. Obviously, the manual

scheme is not suitable for our purpose. In the following, we shall examine

the remaining schemes in order to select one which is able to serve our

requirements -a diagnostic unit must be readily implementable in
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relation to the previously developed event-based controller, and be capable of

diagnosing higher level causes of failures within its defined domain.

4.1.1 Conventional Scheme

The conventional scheme is generally based on continuous and/or

discrete-time mathematical models which are usually represented by

(ordinary, partial, linear, non-linear, deterministic, stochastic) differential

or difference equations. One high order equation can be used or it can be

reduced to a set of first order equations, a so-called state-space model. A

number of approaches which are based upon such mathematical models

are: (1) "Parameter Estimation in Real Time" (DaIle-Molle and

Himmelblau, 1987), (2) "Parity Space Eigenstructure Assignment" (Patton

and Willcox, 1987), (3) "Hierarchical and Fast Recursive State Estimation"

(Mansour and Nour-Eldin, 1987), (4) "Direct Detection" (Hassan et al., 1987),

(5) "Local Second-Order Observers" (Hengy and Frank, 1987), (6)

"Overlapping Decomposition" (Tzafestas and Skolarikos, 1987).

Generally, all conventional methods are based on either hardware

redundancy or analytical redundancy. The hardware redundancy

approach uses multiple identical measuring devices (sensors, etc.) such

that appropriate majority logic is able to detect the faults. Obviously, the

presence of back-up measuring devices poses major difficulties in actual

implementation of certain systems due to concerns related to increased

cost, weight, volume, and/or complexity.
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The analytical redundancy approach, on the other hand, is free of the

above problems since a mathematical model representation is chosen in

order to reflect inherent relationships among the measured variables of the

systems. This approach has been the focus of recent research due to new

developments in control theory, estimation theory, and the increased

computing power of microcomputers and microprocessors. It eliminates

the need for redundant hardware in the system.

This approach, however, is clearly inappropriate for a large number

of systems such as nuclear power plants, aircrafts, satellites, and remotely

operated systems which must contain hardware redundancies for safety

reasons. Usually, failures of such systems have so severe consequences

that cost and weight factors are considered unimportant in comparison.

A diagnostic agent which does not depend on hardware

redundancies is called MBDS (Model Based Diagnostic System) (Ribbens,

1988). The design of a MBDS is based on the conventional approach, i.e., a

dynamical model of a system with known relationships among its variables

should be developed. Such a diagnostic unit has been designed and

implemented for electronically equipped engines (Ribbons, 1988). It detects

failures in actuators (complete failures), and in the calibration shift of

sensors (partial failures). A linearized state-space model of the engine is

used to represent its behavior in the neighborhood of a given operating

condition.

x = A-x + Bvu
y = C-x + Diu
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Although the model of the engine is non-linear, a linearized model is

able to represent the dynamics of the system as long as the matrices A and

B are updated in order to cover the full dynamic range of the engine.

Figure 4.1 depicts the block diagram of the MBDS:

A

U Dynemic X y Feilure Si gneture y

System • Sensors Generet i ng -
state Est i meter

2:
+ -

Deci si on Logi c ,

Failure q Error Residual
Declara tion

Figure 4.1: Block diagram for MBDS.

The "failure signature" generation system is a form of state

estimator. The diagnostic agent compares the measured dynamic system

performance with the estimated performance. If there is no failure in any

component, the measured and the predicted performance of the modeled

system will agree. Otherwise, the generated error residual q is analyzed

for the determination of the failurets).
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4.1.2 Artificial Intelligence Scheme

Diagnostic systems which are based on A.I. are often referred to as

either Knowledge-Based Systems or Expert Systems. An expert system (ES)

devoted to the diagnosis process consists of a Knowledge Base (KB) and an

Inference Engine (IE). The KB contains the factual knowledge and the

preferential knowledge, while the IE contains the general problem-solving

techniques applied to the KB. Several supporting components such as a

user interface and knowledge acquisition modules are often specified to

facilitate their usage. Each of these basic components of an expert system

(i.e., the knowledge base and the inference engine) is further divided into

several types (Rich, 1983).

For the representation of the knowledge-base, a critical issue in

developing a knowledge-based system, there exist several different

methodologies such as frames, production rules, lists of facts, semantic

networks, and logic predicates. It should be emphasized that usually not

anyone knowledge representation is sufficient, and a combination of the

above schemes is therefore common. The second component, the inference

engine, also offers various options such as forward-chaining, backward-

chaining, best-first search, and constraint satisfaction. As with the

knowledge representation, a combination of various inference mechanisms

is also common.

Three approaches In developing a diagnostic system using the

techniques of artificial intelligence have been reported (David & Krivine,

1987):
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1. Declarative Programming:

When there exists an algorithm that uses diagnostic
knowledge represented in a declarative manner, the
underlying technique IS classified as de c lara t i ve
programming. This approach is appropriate when there is an
explicit way to formulate the diagnostic algorithm, and if
conventional programming techniques are inadequate (i.e.,
the diagnostic knowledge is continuously evolving, and/or the
problem solving process involves symbolic manipulations,
etc.).

The knowledge of the expert is assumed to be exact but
not necessarily complete. The knowledge is not directly
programmed out, but instead, it is expressed in a declarative
manner: i.e., associations between failures and their
manifestations are expressed using a production rule
formalism. Fault-trees and fault-dictionaries are two forms of
declarative knowledge representations. Such a data driven
knowledge representation scheme thereby allows easy
modification (i.e., adding/deleting) of the rules in comparison
with knowledge encoded directly, i.e., using conventional
program structures.

2. Expert Systems:

Expert systems are used when no exact explicit
diagnostic algorithm is available, but there exists a heuristics
on the basis of which occurring problems can be diagnosed.
Specifically, the knowledge employed by expert systems is
heuristic (i.e., uncertain, inexact, and incomplete). Expert
systems are organized in a hierarchy of 'prototypes' where
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each prototype is a description of a typical problem (Aikins,
1983). Designers of expert systems make use of the
hypothesis / establish / refine strategy, thus they try to establish
ever more specialized prototypes. The control of the
information acquisition, the establishment! rejection of
failures, and the control of the search for the next prototypes
are all decisions which are heuristic in nature.

The designer of an ES usually faces several difficulties
relating to the formalization of the problem, the selection of
useful knowledge, knowledge representation, knowledge
utilization, knowledge acquisition, and finally, validation of the
expert system. Expert systems exhibit several inherent
drawbacks: they do not have a real understanding of what they
are reasoning about, they are domain specific, their
explanation capabilities are solely based on a trace of fired
rules, and finally, they are unable to justify their knowledge.

The mam difference between the declarative
programming and the expert system approach lies in the
nature of the knowledge, and how it is encoded and stored.
That is, expert systems always instantiate declarative
programming since its knowledge is continuously evolving.
Expert systems can be categorized into the following A.I.
formalisms:

i) Production Systems: These have a single KE and a
single IE.

ii) Structured Production Systems: These have a single
inference engine (i.e., a single set of meta-rules)
operating on several distinct KEs.

iii) Distributed Systems: These use a hierarchically
structured network of co-operating specialists.
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3. Model-Based Reasoning:

If some of the data upon which the decision making
process relies (either using declarative programming or the
expert system approach) is extracted from one or several
models rather than from the real system, the system is
referred to as a model-based system. It has been demonstrated
that model-based systems can help overcome difficulties expert
systems (e.g., the unavailability of explicit knowledge, the
incompleteness of knowledge necessary to cover a specific
domain, or the large amount of knowledge required to
represent a complex system) encountered in the utilization of
(Davis, 1982, 1984), (Chandrasekaran and Mittal, 1983),
(Forbus, 1985). In the sequel, A.I. techniques may use
knowledge inherent in previously developed models of a system
in lieu of, and in addition, to real system knowledge. For
example simulation experiments may be performed on models
to generate approximate information about the expected
behavior of the real system. The power of this approach lies in
its ability to reason with some understanding of the system it is
reasoning about. Also, the knowledge inherent in these
models is stored in a much more compact form than would be
the case if all possible modes of system behavior were explicitly
enumerated.

These models are commonly referred to as deep models
or causal models. Among those model types are the functional
models (deKleer & Brown, 1984), the Causal Network (Riger &
Grinberg, 1977), the Qualitative Physics models (Forbus, 1985),
(Kuipers, 1986), and the Black-Box Network (Davis, 1984),
(Genesereth, 1984). These methods reason on a model of the
behavior or the structure, and relations among domain objects.
For diagnostic purposes, the reasoning on these models
consists of extracting associations between actions, faults, and
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symptoms. The associations between symptoms and fault
hypotheses result in a so-called candidate generation. Test
generation is the outcome of associations among actions, fault
hypotheses, and observations.

The main difficulty with this approach is the inability to
find an appropriate model which is powerful enough to cover
all important faults. It should be emphasized that the model
must remain tractable. For this reason, there often exist
several different models that reflect the system behavior under
different fault assumptions (Davis, 1982, 1984).

It should be evident that the latter approach is used for
classes of problems that are not successfully solvable by either
of the previously discussed approaches.

4.2 Hierarchical Diagnostic Agents

As stated in Chapter 1, one of our objectives is to demonstrate that it

is advantageous to construct a diagnostic agent with an appropriate level of

complexity and power. That is, a diagnostic unit must be developed such

that it is consistent with its associated intelligent controller. Both the

conventional and the artificial intelligence approaches provide us with

numerous choices to construct such a diagnostic unit.

To correspond to the hierarchy of control, we envision a hierarchy of

diagnostic units. One form of a hierarchical diagnostic unit, which is

based on a paradigm of 'cooperating diagnostic specialists', has been

suggested and implemented by (Bylander et al., 1985). In this thesis,

however, the hierarchy of diagnostic units is intended to include not only
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expert systems, which may themselves be constructed on a hierarchical

basis, but also model-based programming techniques. Expert systems

which combine heuristic reasoning based on rules with deep reasoning

based on a model of a problem domain are referred to as Second Generation

Expert Systems (Steels, 1986).

In this work, the hierarchy of diagnostic units is limited to two

levels only. The justification for such a selection is as follows: earlier we

decided to distinguish only between the high-level (event-based) and the low-

level (conventional) types of control. Thus, in order to comply with our

objective -the consistency between the various levels of controllers and

their corresponding diagnostic agents-, we shall consider corresponding

low-level and high-level diagnosers. Indeed, if the low-level diagnoser is

built on the basis of the conventional scheme discussed earlier, and the

high-level diagnoser is constructed on the basis of the artificial intelligence

scheme, then there exists a one-to-one mapping between the high/low-level

controller and its diagnostic unit. This means that for every intelligent

controller there exists an intelligent diagnoser, and for every conventional

controller there exists a conventional diagnoser. We have used the words

intelligent and conventional in order to convey the same idea which was

utilized in the design of controllers. Additional discussion will be presented

in due course.

It is not always necessary to utilize the conventional scheme to

develop a low-level diagnostic unit. The model-based approach can be used

for the development of a low-level diagnostic unit as well. Other approaches

within the A.I. framework are also suitable for the construction of a low-
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level diagnostic unit if the underlying characteristics of the system permit.

However, the converse -the applicability of a conventional approach for a

high-level diagnostic unit-, is not as easily accomplished due to the

necessary higher level features (e.g., nonnumeric commands).

Considering our objective, we shall eliminate the consideration of a

conventional scheme for the implementation of a high-level diagnoser

because of the following two reasons: first, the type of diagnostic capabilities

which are desirable to us are targeted toward a higher level which is

compatible with its intelligent controller; and secondly, the DEVS

formalism and its corresponding environment, DEVS-Scheme, do not

currently support the manipulation of continuous or discrete-time systems

unless they are mapped into discrete-event models.

Although we have eliminated the consideration of the conventional

scheme for the development of an intelligent diagnostic unit which is

required to operate at the same level as the event-based controller, we still

have many methods available to us within the A.I. framework. In order to

design an intelligent (high-level) diagnoser and a conventional (low-level)

diagnoser, the analyzed system should be partitioned in accordance with

the approach taken for the event-based controller. For instance, the

diagnostic agent that is assigned to reason on failures of a computer may be

considered as either high-level or low-level depending on whether the

computer itself is considered to be a system composed of several subsystems

or an atomic component within a multi-processor architecture,

respectively.
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If the diagnostic agent assigned to this computer is considered to be

high-level, then it has to locate high-level failures such as failures of some

electronic boards, the power supply, and so on. For example, this

diagnostic unit will not be responsible to locate the low-level failures that

are inside an electronic board. Such low-level failures could be due to faulty

modules, wrong wiring, wrong modules, disconnected wires, and many

others -requiring a low-level diagnostic unit. On the other hand, if the

computer is considered to be a component of a larger system, then the high-

level diagnoser is responsible to locate the faulty component which could be

the computer or any other part of the system which is also considered to be

a component (e.g., peripherals), whereas the low-level diagnoser would be

responsible to diagnose causes of faults within the computer.

The number of levels which are assigned to each diagnostic unit may

vary depending on the partitioning of failures and the number of diagnostic

units. That is, if the failures are classified into five levels and a low-level

diagnoser and a high-level diagnoser are considered, one diagnoser may be

responsible for two levels of failures, while the other is responsible for the

remaining three levels.

The high-level and low-level knowledge representations, which are

utilized by their corresponding diagnostic units, are examined to guide us

in selecting an appropriate algorithm within the three A.1. approaches for

a high-level diagnostic unit. Knowledge bases are used to store various

kinds of information about the system and its components. A KB may be

referred to as a model of the system as well. Generally, the type of

knowledge enables us to conduct either shallow-reasoning when the
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knowledge is classified as high-level or deep-reasoning when the

underlying knowledge is classified as low-level (Chandrasekaran & Mittal,

1983), (Scherer & White, 1987).

The knowledge bases which contain the high-level associations of

various components of a system are constructed from general behavioral

and the structural knowledge of the system. This form of knowledge

representation is adequate when we do not have the capability to represent

the system more faithfully (e.g., a system such as the human body is not

completely understood), or when the system is considered to be very

complex.

Furthermore, we may also choose to represent a system, the low-level

behavior and structure of which are known, by the shallow-reasoning

paradigm because of its relative simplicity, the type of analysis, and the

insight that it is capable of delivering. This form of reasoning is primarily

based on rules-or-thumb that are often acquired from experience.

Nonetheless, it may become difficult and too complex to define all

interactions at the system level and determine what part of this knowledge

is useful and how it should be used.

The other approach, deep reasoning, reasons on structural and

behavioral information (Davis, 1982, 1984)1. The system is described as a

hierarchical network of black boxes. The structural information describes

the interconnection among the modules which can be organized in two

ways: functional and physical. The functional view considers the system's

There exist various definitions of deep-reasoning with minor differences among
them. We chose the definition given here due to its wide-spread usage and acceptance.
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organization according to how its modules interact, while the physical view

specifies how it is physically constructed. The behavior determines how the

information leaving a component is related to the information entering it.

This approach considers issues such as multiple descriptions of a

structure, differences between structure and behavior, enumeration and

layering of failures, methodical enumeration and relaxation of underlying

assumptions, and systematic generation of categories of failures by

examining the underlying assumptions.

The concept of layering of failures can be advantageously used in

deciding what approach (i.e., conventional or A.I.) is pertinent for a high-

level diagnostic unit, assuming a hierarchy of diagnosers. Figure 4.2

shows that either a single diagnoser (i.e., Figure 4.2a) or two diagnosers

(i.e., Figure 4.2b) may be constructed. That is, we have only considered two

classes of failures: high-level (i.e., system level) and low-level (i.e.,

component level) without indicating how many internal levels each

diagnoser may be responsible for.

It may be necessary to consider more than two levels of failures, just

as it may be necessary to have several levels of controllers. Once a high-

level diagnoser determines a faulty device, it notifies a selector which in

turn decides what kind of diagnoser (i.e., a more specialized diagnoser

compared to the previous one) should be utilized for further diagnosis. The

hierarchy of failures is similar to our earlier categorization of controller

commands into high-level commands and low-level commands (cf. Section

3.2.4). This interpretation serves our purpose well as we do not wish to

perform diagnoses at primitive levels (conventional or model-based
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diagnoser) but rather at comparatively higher levels (intelligent diagnoser),

It should be emphasized that the distinction between these two

categorizations of failures is application dependent.
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Figure 4.2: Hierarchy of diagnostic units. (a) Single diagnoser; (b)
high-level and low-level diagnosers.
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Model-based reasoning which is well suited for locating low-level

faults is based on deep-reasoning. Note that the conventional approaches

are capable of generating approximately the same types of failure analysis

as the model-based approach. The approaches which are based on deep-

reasoning, therefore, are not considered to be appropriate for higher levels

since the diagnostic capabilities afforded by deep-reasoning is extensive and

provides more detail than what is useful at the higher levels. It is also

more difficult to develop these types of diagnostic units due to difficulties

related to the knowledge representation and the control strategies. An

intelligent diagnostic unit which should be operating at the same level of

complexity as its intelligent controller does not require such detailed

information. An appropriate expert system is able to provide the medium

for shallow-reasoning since the underlying knowledge can be made

available at the higher level. Thus, an expert system is considered to be a

good candidate for the development of an intelligent diagnostic unit.

We must also consider the remaining approach, declarative

programming, for possible implementation of an intelligent diagnostic

unit. This approach is not desirable since it is usually difficult to formulate

an explicit diagnostic algorithm. This is specially important since the

operating environment is exposed to both system upgrading and system

degradation. The instruments used in the GPL will be frequently

upgraded, while some components of the SSF may fail, and cannot

immediately be repaired or replaced. The diagnoser must be able to operate

correctly and reliably under such varying and not completely foreseeable

conditions. Furthermore, the exact nature of the operations required to
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conduct experiments in the microgravity environment is not completely

known, and the possibility of new or modified experiments and thereby the

prevalence of modified or new operating conditions must be considered.

From the discussion of the available approaches within the A.I.

framework, expert systems are the most suitable for the development of a

high-level diagnostic unit.

Nonetheless, we must still select one formalism among the possible

three (i.e., Production Systems, Structured Production Systems, and

Distributed Systems). Obviously, the choice of one of these formalisms

depends on its availability and appropriateness with respect to the problem

at hand. Consequently, we postpone the selection process until the

presentation of an expert system which is available to us.

Given the foregoing explanation of failure levels and the diagnostic

systems representing them, it is appropriate to formalize the general

diagnosis definition, that was given at the beginning of this chapter, by

concisely defining the set of its steps as follows:

1. Error Recognition:

The diagnosis process begins with the observation of
misbehavior which is recognized as a discrepancy (i.e.,
commonly referred to as a symptom) between the expected and
the observed behavior. This is generally assigned to a
controller such as an event-based controller or a conventional
controller. The event-based controller is able to generate error
messages carrying non-numeric information such as "too-
late" or "too-early" (cf. Chapter 3).
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2. Candidate Generation:

Once an error has been recognized, the problem solver
attempts to generate one or several hypotheses about the
possible causes of the malfunction. The possible discrepancies
are often expressed in several different forms using
appropriate knowledge representations. One class of
knowledge representation can express the known associations
between symptoms and causes, that are usually referred to as
the diagnostic knowledge. Other forms of knowledge
representations are fault-dictionary, fault-tree, and directed
graphs (Rich, 1983). The same associations can also be
represented as a set of rules which may be based on an expert's
knowledge. The expert system approach usually utilizes
diagnostic knowledge which is heuristic in nature. Another
form of knowledge representation which usually pertains to
model-based reasoning can generate the necessary knowledge
from a model or a schema as explained earlier (Davis, 1984).

3. Candidate Reduction:

The diagnostic process continues with the confirmation!
rejection of cause(s) for a determined fault. Indeed, it is rare
that a diagnoser would indicate only one possible cause for an
observed fault unless there exists exact knowledge to
determine the cause unambiguously. In the domain of expert
systems, the knowledge is often inexact, uncertain, and
incomplete (i.e., heuristic). The non-uniqueness of faults also
holds true for knowledge acquired from the model-based
reasoning approach; it is difficult to acquire/maintain all the
necessary information for positive identification of the causes
of an error. Hence, a diagnoser often produces a number of
possible candidates for a given fault. Then, it is expected to
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select only one of the possible causes based on some criteria of
conflict resolution. Once the possible source of a failure has
been determined, an attempt to correct it by appropriate means
is conducted.

The complexity of each of the above steps is dependent on the specific

application. In particular, Step 2 deals with various knowledge

representations such as lists of facts, semantic networks, production rules,

logic predicates, and frames. The last step which is responsible for the

inferencing includes methods such as forward-chaining, backward-

chaining, and best-first (Rich, 1983).

In the next section, we will describe an expert system shell which is

being used to implement a diagnostic unit for the FHL and in particular for

the electrophoresis experiment. Moreover, we shall examine the

knowledge representation scheme and the control strategies which are

offered by this expert system.

4.3 Classification Expert System Maker

The Classification Expert System Maker (CESM) is an expert system

shell which is designed for developing classification-based expert systems

(Zeigler, 1987-b). This expert system shell is written in PC-Scheme which

supports the object oriented programming paradigm. CESM is of

particular interest to us since DEVS-Scheme has also been developed in PC-

Scheme (Texas Instruments, 1985). Consequently, interfacing between
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CESM and DEVS-Scheme is straightforward. Having the ability to utilize

an expert system (i.e., a diagnostic unit) in an environment which also

supports the modeling and simulation of discrete-event systems plays a

significant role in selecting CESM as an expert system shell.

This expert system shell provides an expert system building

environment similar to most other expert system shells. The structure of

CESM as shown in Figure 4.2 supports several important features:

• system classification models built on the
taxonomy entity structure,

• automatic compilation of a knowledge base into
rules,

• a straightforward interfacing with the underlying
environment (i.e., PC-Scheme),

• a convenient way to add/delete rules (i.e.,
knowledge) to/from the knowledge base-.

• expressions and function descriptions in addition
to synonyms and anti-synonyms, and

• uncertainty handling using qualitative words
(i.e., usually, and rarely), and evidence
accumulation utilizing the Dempster-Shafer
approach.

2 It should be noted that this feature requires knowledge that is well defined with respect
to its domain. It is not always possible to add rules to a rule base without influencing
the existing rules, thus introducing inconsistencies.
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Figure 4.3: Architecture of CESM -components and their
interactions.
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The data types and data values for CESM are as follows: class (i.e.,

entity) and predicate are two primary types of data where the class plays the

role of an unknown class in the inference engine, and a predicate is used to

describe a property of a class.

The value of a class is a measure of the evidence relevant to it. CESM

represents the values of each entity by using a quadruple as defined below:

(EF, EA, N, X)

where:
0.0 s EF, EA, N, X ~ 1.0

EF + EA + N + X = 1.0.

Some of the evidential status values which are displayed to the users

are as follows:

(1.0, 0.0, 0.0, 0.0) ~ CEF: Conclusive Evidence For
(0.9 sEF < 1.0, EA, N, X s 0.1) ~ EF: Strong Evidence For
(0.5 ~ EF < 0.9, EA, N, X s 0.1) ~ EF: Unchallenged Evidence For
(0.0 < EF < 0.5, EA, N, X s 0.1) ~ EF: Week Evidence For

(1.0, 0.0, 0.0, 0.0) ~ CEA: Conclusive Evidence Against
(EF, 0.9 ~ EA < 1.0, N, X s 0.1) ~ EA: Strong Evidence Against
(EF, 0.5 sEA < 0.9, N, X ~ 0.1) ~ EA: Unchallenged Evidence Against
(EF, 0.0 < EA < 0.5, N, X s 0.1) ~ EA: Week Evidence Against

(1.0,0.0, 1.0, 0.0) ~ X: Neutral
(0.0, 0.0, 0.0, 1.0) ~ X: Inconsistent
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If three of the four elements of a quadruple are known, the

remaining element can be calculated from the equation EF + EA + N + X =
1.0. Thus, it is sufficient to store the first three elements of the quadruple

(EF EA N X) only.

Permissible values for a predicate are 'yes', 'maybe-yes', 'no',

'maybe-no', and 'unknown'. Since the predicate and the class have

different data values (e.g., maybe-yes for the predicate and quadruple for

the class), the inference engine makes them compatible by equating them

as follows:

yes == (1.0 0.0 0.0)

maybe-yes == (0.5 0.0 0.5)

no == (0.0 1.0 0.0)

maybe-no == (0.0 0.5 0.5)

unknown == (0.0 0.0 1.0)

In the remaining of this section, we will describe briefly the

individual components of CESM followed by a discussion of the knowledge

representation and the inferencing mechanisms of CESM.

Knowledge Acquisition Module: This is a knowledge base
development program which provides a user-friendly interface
to define knowledge for a particular domain. The knowledge
which is required from a user must follow the structure of an
entity structure. The acquired knowledge, which is
systematically stored in a file, is saved in the knowledge base.



The Knowledge Base Description Language (KBDL) in CESM is
simple and easy as it allows any English word, abbreviation, or
phrase to be used for a class or a predicate. As mentioned
earlier, qualitative words usually and rarely are available to
qualitatively indicate the degree of certainty of any predicate or
equivalent rules which are constructed from them.

Knowledge Base Compiler: The knowledge stored In the
knowledge base is translated into a set of rules by this
component. Then, a file which contains the compiled rules is
saved in the rule base. The rule base is made accessible to the
inference engine through the working memory.

Working Memory: The working memory contains either the
entity structure(s) and other associated information (i.e.,
synonyms, anti-synonyms, expressions, and functions) or the
objects which are mainly rules, predicate objects, and class
objects. The restriction to allow either a consultation session or
a knowledge development session to take place at any point in
time is due to the current memory limitations of Scheme.

Inference Engine: The inferencing mechanisms provided by
CESM are forward/backward chainings. In either case, the
ultimate goal of the inference engine is to confirm or reject an
atomic class (i.e., a leaf entity).

User Consultation Module: The interactive process between the
user and the inferencing system is the responsibility of this
module. The functionality of this module varies depending on
the selected inferencing mechanism.

106



107

4.3.1 Knowledge Representation

The knowledge representation in CESM is hierarchical. The entity

structure is built from a set of entities (each entity is a class or a subclass)

which represent real world objects or concepts. Each entity has properties,

attributes, and other characteristics which are described by a set of

predicates (cf. Figure 4.4). There are semantic relations among predicates

which could be synonyms, anti-synonyms, expressions, or functions.

There exists an entity called the root entity which has children

(entities), and is not itself a child. Children entities which do not have

children themselves are called leaf entities. An entity structure can be

developed such that the most general information is assigned to the root

entity, and the most specific information is assigned to the leaf entity. The

development of an entity structure using this approach can represent faults

from the least specific entity (i.e., the root entity) to the most specific entities

(i.e., the leaf entities) -a scheme which is often exercised by experts in the

fields of medicine, electronics, and automotive among others.

The predicates are chosen such that they either provide evidence in

favor of or against a failure. An entity structure can be constructed to

represent the knowledge which is required by shallow reasoning without

specifying the structural and behavioral information required by its

counterpart, deep reasoning. Therefore, it is only necessary to construct an

entity structure (i.e., a fault-tree or more precisely a precompiled

diagnosis knowledge) for a problem, which is then automatically translated

into a set of rules by the knowledge base compiler.
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4.3.2 Control Strategies

The inferencing mechanisms for expert systems are primarily based

on heuristic searches (i.e., traverses of a tree in which each node

represents a problem state and each arc represents a relationship between

the states represented by the nodes it connects) with a technique which is

able to guide them toward a final goal. Since these search methods (e.g.,

forwardlbackward-chaining) do not depend on any particular task or

problem domain, they are very powerful.

However, the efficacy of these heuristic search methods is often

highly dependent on the way they exploit domain-specific knowledge.

Furthermore, they are also unable to overcome the problem of

combinatorial explosion to which they are vulnerable (Rich, 1983). For this

reason, heuristic search methods are often referred to as weak search

methods (Rich, 1983). Two of these methods which provide the basis for

nearly all other search methods are forward-chaining and backward-

chaining.

Depending on the topology of the problem space, it may be

significantly more efficient to search either from general to specific (i.e., by

forward-chaining) or vice versa (i.e., by backward-chaining). Several of the

domain-specific problems, where it is shown that one search algorithm is

significantly better than the other, are presented in (Rich, 1983).

Consequently, we should determine which of the two control strategies of

CESM is more promising, if any, for diagnosing the high-level failures of

the experiments hosted by the GPL. To answer this, three considerations
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are often evaluated in order to compare the forward-chaining and

backward-chaining algorithms (Rich, 1983):

1. Are there more possible goal states or start
states? We should explore from the smaller set
of states to the larger set of states.

2. Is it important to proceed in the direction that
corresponds more closely to a way a technician
thinks?

3. In which direction is the branching factor (i.e.,
the average number of nodes that can be
reached directly from a single node) larger?

Usually in a system such as the FHL, there are less start states (i.e.,

high-level causers) of a failure) in comparison to goal states (i.e., the low-

level cause(s) of a failure). That is, forward-chaining is more appropriate

than backward-chaining. An error message, (ROBOT, ERROR-LE-FILL-

LATE), which is received from the event-based controller, can be caused by

either a syringe, or a pressurized bladder bottle (high-level failures),

assuming the error is caused by a hardware failure. A failure which is

related to a syringe can be specialized into a broken syringe, a bent needle,

or a clogged needle (low-level failures). Similarly, a failure which is related

to a pressurized bladder bottle, can be specialized into a broken bottle, or a

ruptured inflatable bag (low-level failures).
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Generally, a technician begins the diagnostic process of a failure by

conducting general tests (which are usually easy and efficient to conduct)

in an attempt to reach a conclusion. Since general examination of the

symptoms usually is not capable of finding the exact cause(s) of a failure,

in the sequel, he either performs more specialized tests in order to narrow

down the causes of the failure (i.e., he uses the forward chaining

technique), or he makes one or several hypotheses based on the information

accumulated thus far which he then tries to verify (using the backward

chaining approachr". It appears that in the majority of cases related to

experiments performed in our FHL laboratory, forward-chaining is more

appropriate and natural for diagnostic purposes.

The last consideration, the branching factor, indicates that it might

be more appropriate to reason backward since the branching factor is lower

going from the cause(s) of low-level failures to high-level failures.

Taking into consideration all three factors, it is nevertheless

concluded that, in our case, it may be more appropriate to reason forward.

It should be stated that the selection of the forward-chaining algorithm does

not impair our study, since our software configuration makes it relatively

easy to switch back and forth between forward-chaining and backward-

chaining.

Within the artificial intelligence framework, CESM provides the

necessary environment for the development of an expert system. However,

since we have only considered the electrophoresis experiment (i.e., one

3 In medical diagnosis, forward-chaining followed by backward-chaining is
customary, that is, a combination of both strategies are used. Knowing when to switch
from one to another is often difficult to assess.
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entity structure), one high-level diagnoser is sufficient. Therefore, neither

the structured production systems nor the distributed systems need to be

conaidered+. Hence, the applicability of CESM with respect to the

availability and the appropriateness criteria, set forth earlier, has been

demonstrated.

4.4 A Diagnostic Unit and M-ITP-DIAG

The failures which may be encountered in the FHL were classified as

either software or hardware failures. As our intention has been to

determine the cause(s) of hardware failures only, the diagnostic model of

the ITP device should provide the type of information needed by the

diagnostic unit.

Since a faulty primary sensor may interrupt a primitive operation,

backup sensors were considered for their confirmation, i.e., the diagnostic

model of the ITP device must represent the backup sensors for both

chambers and the capillary. Therefore, the M-ITP-DIAG model of the ITP

device is similar to M-ITP-OPER since it is representing the backup

sensors.

As stated in Chapter 3, M-ITP-DIAG may contain a smaller amount

of information in comparison to MB-ITP (cf. Figures 3.1a, 3.1b, and 3.1c).

Although the diagnoser unit must represent the backup air pressure

sensors (i.e., LE, TE, and SA), it may not be necessary to include the same

4 Note that CESM supports multiple knowledge bases and thereby rule bases.
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level of complexity in the M-ITP-DIAG as the M-ITP-OPER. A less detailed

diagnostic model of the ITP device is sufficient since the actual operations

of the backup sensors need not be monitored by the event-based controller.

The diagnostic model of the ITP device is considered to contain the same

level of complexity as the controlled model (cf. Figure 3.1b). M-ITP-DIAG

may also contain a smaller amount of information in comparison to M-ITP-

CONT (cf. Figure 3.1c).

The diagnostic model of the ITP device, an atomic-model, is not

included in this thesis since its exclusion is not relevant to our study. It is

also expected that the M-ITP-DIAG will be used much less frequently in

comparison to M-ITP-OPER and M-ITP-CONT.

The responses of the backup sensors are not sufficient for

identification of high-level causers) of a failure (cf, Figure 4.5).

Consequently, we need additional sources of information (e.g., the response

of a vision sensor) in order to determine the high-level cause(s) of a failure

in addition to the low-level causers). Figure 4.4 depicts the failures (classes

or entities) and related symptoms (predicates) that should be examined for

determining the cause(s) of a failure. The diagnoser, therefore, requires

information that is available from both the backup sensors and the camera

(i.e., a vision sensor).

The diagnostic model of the ITP device may respond with any of the

values which were defined for the data type predicate (i.e., 'yes', 'maybe

yes', 'no', 'maybe no', and 'unknown'). Of course, it may be

desirable/necessary to include other forms of logics; e.g., binary logic (i.e.,

'yes', 'no'), or fuzzy logic (i.e., [0,1], where 0.0 == 'no' and 1.0 == 'yes'). All the
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sensors in this study are assumed to have threshold type characteristics (cf.

Section 2.3) with their responses being either on or off; i.e., they are of the

binary logic type.

Figure 4.4 shows how, In our FHL example, failures can be

partitioned into general (i.e., high-level) and specific (i.e., low-level).

Failures of the pressurized bladder bottle, the syringe, and the faulty

primary air pressure sensor are classified as high-level failures. Once a

high-level diagnoser has determined the possible high-level cause of a high-

level failure, a more specialized diagnostic unit (i.e., a low-level diagnoser)

may be used to identify the low-level causers) of the previously determined

high-level failure. Characterized as low-level failures are: broken syringe,

clogged needle, bent needle, ruptured inflatable bag, and broken bottle.

High-level failures can be efficiently detected by an event-based controller,

and their causers) identified by a high-level diagnoser.

Figure 4.5 illustrates how a fault-tree or precompiled diagnosis

knowledge may utilize binary logic in order to identify the cause(s) of a

failure. From this fault-tree, it cannot be determined conclusively which of

the three causes is responsible for a hardware failure, it only indicates

which is the most likely candidate depending on the received responses for

Q2 and Q3. There is, however, an exception to that: 'false' responses to

both Q2 and Q3 in Figure 4.5 do not indicate which of the causes is the most

probable. Furthermore, note that the information provided by the backup

sensors alone is not sufficient for determining whether the syringe or the

pressurized bladder bottle is responsible for the failure, i.e., Q3 is necessary

(cf. Figure 4.5). The predicates are expressed as sentences which are
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equivalent to the rules compiled by the knowledge base compiler component

ofCESM.

Although it may be desirable/practical to simply replace a syringe, a

pressurized bladder bottle, or a faulty sensor rather than repairing it, it is

our intention to demonstrate the possibility of using high-level and low-level

diagnostic units for large-scale systems. It may also be necessary to locate

the low-level causers) through a more thorough analysis if the problem

persists. For instance, by replacing a ruptured inflatable bag with a new

one, the problem may not be resolved if the cause that was responsible for

the damage of the inflatable bag is not removed as well (e.g., if the liquid

contained in the bladder is able to dissolve the bladder, or if there is a thorn

inside the bottle that perforates the full bladder, or if the control algorithm

pushes the needle so far into the bottle that the needle perforates the almost

empty bladder).

It is also possible that several devices (e.g., the syringe and the

pressurized bladder bottle) may be involved in a single failure. E.g., if the

control algorithm places the syringe in an incorrect position (not centered

on the septum), an injection attempt could damage both the syringe and the

pressurized bladder bottle at the same time. Retrospectively, it will be

difficult to identify the true cause of the problem since both the syringe and

the pressurized bladder bottle are meanwhile defective. The design of

diagnostic capabilities that are able to solve such problems are non-trivial.

Nonetheless, a diagnostic system may be able to detect/correct one

cause/failure at a time and continue progressively until all or most of the

failures have been detected and corrected.
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Failures

01. Are specifications correct?

01 (F): Software Failures

01 (T): Hardware Failures

02 (F), 03 (T):
Primary Sensor

Failure

02. Are primary and backup
sensors in agreement ?
03. Is the needle inside the
pressurized bladder bottle ?

02 (F), 03 (F): Primary Sensor,
or Syringe, or Pressurized

Bladder Bottle Failure

Figure 4.5: Part of the diagnostic structure given in Figure 4.4;
binary logic is utilized in determining high-level failures.

It seems important to keep a track record of past failures and their

repairs. If a failure that was recently removed reoccurs again shortly after

it was removed, there is a strong indication that the true cause of the

problem had not been identified, and that the repair approach was
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unsuccessful. In that case, the diagnoser should either take this new

information into account in an extended analysis of the problem, or

recognize its own limits and call for help.

In Section 4.2, we concluded that CESM was well suited for the

implementation of the diagnostic unit (expert system) assigned to the FHL.

We also decided that the diagnoser needs to have access to a vision sensor in

addition to the backup air pressure sensors.

The development of a diagnostic unit requires a knowledge base.

This knowledge base must be constructed from the knowledge of an expert.

Since the operations involved in the electrophoresis experiment are simple,

the knowledge is represented in the form of a fault-tree as depicted in

Figure 4.4. Since the fault-tree shown in Figure 4.5 contains high-level

knowledge, it provides the medium for shallow-reasoning. The reasoning

process starts from the root entity and traverses to the leaf entities in order

to locate high-level hardware failure(s) that are caused during the

execution of the primitive operations. Note that the most specific causes

(e.g., clogged-needle, and ruptured-inflatable bag) are at the lowest level of

the fault-tree which is shown in Figure 4.4.

There are numerous possibilities to perform a diagnostic task.

Figure 4.4 is not a unique fault-tree, and it may not contain all possible

failures. Note that the segment of the fault-tree which distinguishes

between software and hardware causers) is for illustration only, and is not

currently implemented.

The fault-tree (i.e., the entity structure or precompiled diagnostic

knowledge) is transformed by the knowledge base compiler into a set of
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rules, an automated process offered by CESM. However, since CESM was

implemented as an interactive expert system environment, we could not

use CESM for our task as it was, but had to extract portions of the CESM

code to form another, a non-interactive expert system environment from it.

CESM's interactive consultation capability was thereby eliminated from the

code. Our code, instead of asking the use r to supply the necessary

information in an interactive session, obtains the required information

directly from models which represent actual sensory devices. Note that this

is not equivalent to the model-based approach discussed earlier. These

models are merely used since our system is not currently connected to an

operational set-up (i.e., FHL) with appropriate real sensory devices.

Sensors

~~r-------~--------------------I
I ~r I

____________~I~~ I
I ~ •

I.
I

I I

~~~I I
I DIAGNOSER .
I ----------------------~

Failures

Inference Engine ....• •.. Set of Rules...•

I

Figure 4.6: A customized diagnostic unit.
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This customized diagnostic unit -an inference engine operating in

forward chaining mode, a set of heuristic rules, and the above models of the

measurements devices-, requires rules which are written in advance.

These rules do not exhibit the same structure as those which would be

generated automatically by CESM from an entity structure. This diagnostic

unit is shown in Figure 4.6.

The necessity for a non-interactive expert system can be envisioned

for an automated environment with none or minimal human intervention,

as this is truly the case in the context of the SSF. That is, once an error is

detected, the event-based controller sends a message to a high-level

diagnoser indicating the encountered failure. The schematic of such an

environment is depicted in Figure 4.7. Thereafter, the diagnoser begins its

diagnostic process by identifying the causers) of the failure. At the S8F, it

may be impractical to have a human operator consult with an expert

system for identifying the possible causers) of a failure, instead, the expert

system must be able to directly and unsupervised interrogate sensors to

obtain the necessary information enabling its decision making process.

An initial version of the knowledge base (or equivalently a set of

rules) should be constructed in advance, but it must be possible to

constantly upgrade it incorporating new experiences in order to cope with a

constantly changing world due to system upgrading and system

degradation. However, in the currently available expert system, which is a

modified version of CE8M, all rules must be written in advance. There is

currently no provision in the code for learning new rules on the fly.
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Figure 4.7: Architecture of the FHL depicted in Figure 3.7 with the
addition of a diagnostic unit.

In the event of receiving an error message from the robot, the

diagnoser begins to evaluate the antecedences of its rules by using the

models of the appropriate sensors (i.e., the LE, TE, and SA backup air

pressure sensors, and the vision sensor). The triggered rules (i.e., rules
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the antecedences of which are satisfied) are stored in a queue. Then, one of

the triggered rules is chosen by a conflict resolution algorithm, and it is

fired, i.e., its consequence is executed or determined.

This expert system selects the first triggered rule in the queue -a

primitive form of conflict resolution-, and fires it which results in

evidence accumulation for one or more of the entities or failures. The

evidence accumulation could result in CEF, EF, CEA, EA, N, and X (cf.

Section 4.2). A hypothetical case is considered next in order to clarify the

diagnostic process of an encountered failure. When an error message

(ROBOT, ERROR·LE·FILL·LATE) is received, the diagnoser inquires the

status of the backup leading electrolyte air pressure sensor in order to

determine the correctness of the primary sensor (cf. Figures 4.5 and 4.7).

Thereafter, if the primary sensor and the backup sensor agree, additional

information is needed in order to determine which of the remaining devices

(i.e., the syringe or the pressurized bladder bottle) is responsible for the

failure. On the other hand, if the two sensors disagree, the primary sensor

has been identified to be faulty, and can be replaced without any additional

diagnostic efforts. Of course, it would also be possible that the backup

sensor is defective as well which would then indicate a simultaneous

double failure which is more difficult to diagnose. In order to minimize the

chances for undetected faulty backup sensors, it is recommended to

interchange the primary and the backup sensor on a regular (scheduled)

basis (which can be done in software).

If the primary sensor is not responsible for the failure, then more

rules will be examined. Consequently, all the newly triggered rules, if any,
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must be added to the queue. In the case of existing triggered rules in the

queue, the first rule is selected and fired, a process which continues until

no rules are left in the queue, and no further rules are triggerable. The

results of the above simulation is depicted below.

Sensors' Responses:

Backup_Air_Pressure == yes
Needle_Inside_Pressurized_Bladder_Bottle == maybe no

Diaenostic unit:

Primary-Sensor:
Syringe:
Pressurized Bladder Bottle:

(0.00 0.98 0.02)
(0.70 0.00 0.09)
(0.21 0.21 0.09)

Note that the responses of the sensors are consistent with the data

type values of the predicates listed in Section 4.2. Therefore, the results of

the diagnosis, as shown above, reflect the received responses.

Our goal has not been to develop an expert system which is able to

determine causes of all failures, but instead, to demonstrate two issues:

first, the ITP device should be modeled according to its purpose, and

second, a high-level diagnostic unit which is designed to function at the

same level of complexity as an event-based controller may be beneficial.

It may not be necessary to rely entirely on hardware redundancy if

other means are available. More accurate and dependable methods in
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comparison to the backup sensors can be utilized as well. For instance, it

may be desirable to substitute backup air pressure sensors with a video

camera to quantify the amount of the liquid inside a chamber.

The application of hierarchical diagnostic systems may reduce the

required effort of knowledge acquisition, and simplify the inferencing

mechanisms in comparison to a diagnostic system which is aimed at all

levels of failures within a complex system. Moreover, hierarchical

diagnostic systems can be more easily implemented in a distributed

computing architecture than monolithic diagnosers, thereby reducing the

amount of time needed for the decision making process which may be

essential in the context of a real-time diagnoser.

4.5 Constraint Driven Diagnostic Units

Cost is an important criterion in most system designs, and

consequently results in the exclusion of certain design options.

Considering measurement devices, which would be necessary for the

diagnostic units, the selection procedure depends on several criteria such

as cost, reliability, and response time. We note that the cost can be either

the unit's purchase cost or its operation cost. Generally, such criteria are

inter-related since a more expensive unit (e.g., a video-camera) often

produces more reliable responses, and requires a longer time duration at a

higher operation cost in comparison to a less expensive unit (e.g., a

threshold type sensor). We will not be concerned with the exact inter-
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relationship of time, cost, reliability, or any other constraints. Instead, we

lump together the operation cost and the response time into a single term:

'time / cost'. This term will be treated as a performance index, i.e., we

assume that a higher time / cost parameter results in a higher quality

analysis. In cases where this is not automatically true, we simply will

have to redefine the term time / cost to make it true.

The importance of selecting a suitable measurement device, which

minimizes the interrogation time/cost, lies in the fact that it may be possible

to conduct a certain task successfully with a lesser amount of accuracy

being the result of a lower operation cost and a shorter time duration.

To illustrate the above discussion, consider an automotive

technician. He/She does not need to disassemble an engine in order to find

out what may have possibly caused an engine related failure. Instead, in

the majority of cases, it is sufficient to conduct simple testes) and arrive at

reasonably accurate/reliable hypotheses. Of course, the reason for taking

such an approach is simple -the technician is trying to minimize the

repair time and cost.

Our intention is to integrate the time/cost constraint into the design

of a diagnostic unit which is expected to operate in real-time, Such a

diagnostic unit shall be referred to as a Constraint Driven Diagnostic Unit

(CDU). We should caution that certainty (i.e., accuracy) offered by various

sensory devices are often not the same. In fact, usually as the

certainty/reliability of knowledge Increases, the actual interrogation

time/cost increases as well.
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A diagnostic unit may have access to several sensory devices in order

to inquire certain types of information. However, it may be significantly

more economical to utilize one subset of available sensory devices instead of

using the entire set or another subset. A diagnostic unit, therefore, should

be able to minimize the interrogation time/cost by selecting an appropriate

set of sensory devices which collectively require the least time/cost in

determining one or more hypotheses. Recall that a diagnostic unit which is

to operate in the FHL must obtain the required information in real-time,

The selection process of the measuring devices, therefore, must

follow a scheme or a strategy which is applicable in all situations. Well

known algorithms such as A* (Hart, 1968, 1972) and B* (Berliner, 1979)

minimize the necessary efforts for a search of a graph or a tree.

Additionally, a search algorithm should determine whether to

discontinue (i.e., a reasonable dependable hypothesis is concluded) or

continue (i.e., an acceptable hypothesis is not concluded) its search,

assuming there exists a goal state. That is, appropriate provisions must be

available to such a search algorithm, either for its termination or its

continuation whichever necessary.

The logic from which a diagnostic unit can determine whether

'enough' evidence has been accumulated for a hypothesis, requires prior

knowledge. This knowledge can be one or more lower-level threshold

value(s) which are assignable to the hypotheses or entities. Appropriately

selected threshold values can determine the goodness of the accumulated

evidence for each of the hypotheses at any instance during a failure

analysis.



126

One way of obtaining such knowledge is by storing an adequate

number of the previous case histories for which the same failure had been

analyzed. Given all the encountered failures and their subsequent

recoveries, the required knowledge (i.e., threshold values) can be

determined. The selection of an inappropriate threshold value can have

adverse effects on the performance of a diagnostic unit. That is, if the

threshold value is chosen to be relatively large, then it may be necessary to

interrogate all the measurement devices, while on the other hand selecting

a relatively small threshold value may result in a hypothesis which is not

worth any investigation (i.e., step 3 of the diagnostic process outlined in

Section 4.1).

In the set-up of the electrophoresis experiment, we assumed the

utilization of threshold type sensors (i.e., primary and backup) and a

camera in detecting high-level failures (cf. Figure 4.4). We may also choose

to use one or more vision sensors in place of the primary and the backup

sensors if they are available. That is, assuming the availability of several

devices for a particular measurement, the time/cost constraint can be used

to select one among them.

Although, we have not yet mentioned anything about the

performance (i.e., accuracy, reliability, time, and cost) of a vision sensor or

a threshold type sensor, we assume a higher certainty factor for the former

in comparison to the latter. The degree of certainty offered by measuring

devices can influence the diagnostic process with respect to the time

duration and the desired certainty of a hypothesis.
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It is illustrated in Figure 4.8 that two devices can be used to measure

the volume of a liquid inside a container. The hypothetical time and cost

measurements for a camera (Volume_Camera) and a backup air pressure

sensor (Backup_Air_Pressure) are represented graphically (i.e., various

segments of the concentric circles). Note that the certainty of each response

(i.e., length of the arc) is assumed to be a function of the associated

time/cost. Thus, the camera's responses, as depicted in Figure 4.8, provide

a higher certainty in comparison to the threshold type sensor.

Time /Cost Assignments For
Interrogation OfSensors

Certainty

Volume.x.amera

Figure 4.8: Graphical representation of time/cost.
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Due to our earlier assumption, each sensor will be assigned a single

time/cost measurement. Moreover, each sensor will also be assigned a

qualitative certainty factor as well. As mentioned earlier, uncertainty or

certainty handling using qualitative words (i.e., usually and rarely) is

supported by CESM. Therefore, the assignments of qualitative certainties to

each sensory device or predicate is straightforward. The certainty of each

predicate can be either always ~ (1.0 0.0 0.0), usually ~ (0.7 0.0 0.3) ,

rarely ~ (0.0 0.7 0.3), and never ~ (0.0 1.0 0.0). Although, it may be

desirable to quantitatively evaluate the certainty of each sensor, the

usefulness of this approach will be demonstrated equally well with the

assigned qualitative certainties.

To illustrate the foregoing discussion, we shall present an example

for explanation purposes instead of Figure 4.4. Since CESM is our expert

system shell, a fault-tree (i.e., a knowledge structure) which consists of a

set of entities and a set of predicates is constructed. Figure 4.9 illustrates

this precompiled diagnostic knowledge where each node (e.g., B2), except

the root-entity (i.e., Failures), contains several predicates (e.g., B2_Pl,

B2_P2, and B2_P3) with various interrogation time/cost assignments.

Recall that the root-entity always has an evidential status of (1.0 0.0 0.0),

thereby there is no need for any predicate(s). The assigned values to the

predicates indicate the necessary time/cost interrogation before receiving

any responses from the measurement devices.

An expanded version of CESM which facilitates the time/cost

assignments of predicates in an interactive environment is referred to as
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CDU. Predicates with unknown time/cost (e.g., Bl_P2, B2_Pl, and B4_Pl)

are currently assigned the highest interrogation time/cost. Although it

would be possible to assume the contrary (i.e., unassigned predicates

require the lowest interrogation time/cost), such an option is not currently

available to the users of CDU. Note that all the predicates which are

depicted in Figure 4.9 offer the same degree of certainty irrespective of their

time/cost interrogation. In particular, when the certainty qualifier of any

predicate is absent as those which are shown in Figure 4.9, its certainty

qualifier is equated to 'usually' by default.

Furthermore, it is conceivable for each predicate to be assigned to any

number of entities. Since upon the interrogation of a predicate, one or more

entities may become affected, the diagnostic unit can potentially fire one or

more of the triggered rules.

It is also possible that several predicates require the same time/cost

interrogation. If this occurs, the diagnostic unit should employ an

appropriate conflict resolution algorithm to select an appropriate

measurement device. For instance, if two predicates of two entities require

the same time/cost interrogation, then the conflict resolution algorithm

should be able to choose the predicate for which its entity has accumulated

the most or the least evidence thus far. There exist other strategies which

may be considered as well. Currently, the modified CESM or CDU

interrogates all the predicates which require equal time/cost.
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Failures

Al
Al PI = 25
AI-P2 = 10

A2
A2 PI 20

BI B2
B2 PI

B2 P2 = 32
132 P3

B3 B4

Bl PI = 34
En P2

B3 PI
B3 P2 5 B4 PI

Figure 4.9: A hypothetical diagnostic structure with varIOUS
measurement devices.

Given Figure 4.9, an expert system (e.g., CDU) should attempt to

reach at least one goal state (i.e., B1, B2, B3, or B4) by minimizing the total

interrogation time/cost. Although, the A * algorithm ensures that the

minimum time/cost path of a problem graph is found, provided one exists,

the Best-First search algorithm has been implemented instead since it was

easier to implement. A description of the details of the Best-First algorithm

can be found in many A.I. textbooks, e.g., Rich (1983).
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Each predicate (sensor) is assigned a variable which represents its

actual interrogation time/cost.

As stated earlier, a diagnostic unit must be able to terminate its

searching process based on some pre specified criteria if it is to minimize

the time of a search. The evidential status of each entity, except the root-

entity, is calculated by CESM and represented by a quadruple (cf, Section

4.3). A diagnostic process can be terminated either by assigning an

acceptable minimum to any of the elements of the quadruple of a leaf-entity,

or various forms of their combinations, or by assigning a maximum

accumulated interrogation time/cost of all sensors. Currently a diagnostic

process may be discontinued when either of the elements EF or EA of the

quadruple of any of the goal states reaches a previously assigned threshold

value (e.g., 0.3). Currently the user is allowed to specify this threshold

value before the start of a consultation session. Therefore, the user's

freedom to either continue or terminate a consultation session depends on

the selected threshold value. As mentioned earlier, the selection of an

inappropriate threshold value can either prolong the diagnostic process or

result in hypotheses with inadequate certainties.

The steps of a consultation session for Figure 4.9 is depicted in Figure

4.10. The steps zero to five illustrate how the fault-tree (i.e., Figure 4.9) is

searched in order to reduce the interrogation time/cost. It is noted that only

five of the predicates have been queried; they are identifiable as bold

numbers in the inquiry order column. Also note that each predicate's

response is represented as the first element of its 3-tuple in the column

predicates.. For example, when the response to B2_P2 is 'yes', it is
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sufficient to be displayed as (B2_P2 . 0.5) instead of (B2_P2 . (0.5 0.0 0.5»

(refer to Figure 4.10).

At the beginning, step zero, all the entities are unknown (0.0 0.0 1.0)

except the root-entity (1.0 0.0 0.0), which remains unchanged throughout

the consultation session. Steps one through five show that only one

predicate is chosen in each step and queried from the user.

It must be emphasized that reaching a leaf-entity may not be

sufficient for the diagnostic process to be discontinued, depending on the

selected threshold value. That is, although the entity B1 in Figure 4.10 has

accumulated some evidence (B1 == (0.24 0.0 0.75» at the end of step two,

the diagnostic process had to be continued until a goal entity has

accumulated 'enough' evidence (i.e., either EF ~ 0.3 or EA ~ 0.3).

Each of the five steps shows that once a predicate is interrogated, the

previous evidential status for its corresponding entity is updated

accordingly. Obviously, every received response from a measuring device

may not necessarily result in a change of an entity's evidential status. For

instance, when A2_P1 was interrogated, the response was unknown (i.e.,

A2_PI == don't know), thereby the evidential status of A2 remained

unchanged. Furthermore neither of the entities B3 and B4 could be

considered for a possible goal entity, and thereby their predicates would not

become eligible. Once the third element of an entity's quadruple, N, is not

equal to 1 (i.e., the entity has accumulated some evidence), then the

predicate(s) of any of its immediate children (i.e., entities) become eligible.

This is due to the fact that the knowledge structure is constructed

assuming a hierarchy of faults.
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Thereafter, in step four, the next appropriate predicate (i.e., AI_PI)

is interrogated. Due to the content of the received response, the evidential

status of the Al changes (cf, Figure 4.10). This step, however, cannot

influence the evidential status of the goal entities B1 and B2 unless the

previously fired rulers) which do not require any further interrogation of

predicate(s) are revised (i.e., they are 'un-fired' and fired with the modified

knowledge). Roughly speaking, this form of reasoning falls within the

framework of non-monotonic reasoning (NMR) (Genesereth and Nilsson,

1987). In the current implementation of CDU, however, the consultation

process must continue.

Step five of this consultation session corresponds to the interrogation

of the BI_PI, the next appropriate predicate. The received response

resulted in B1 == (0.35 0.0 0.65), which consequently prompts the user to

either terminate or continue the diagnostic process (i.e., EF ~ 0.3 for B1).

If the user decides to continue, the remaining eligible predicates will

be interrogated accordingly. Again, when any of the leaf-entities reaches

an appropriate evidential status, the user may either continue or

discontinue the consultation session, a process which continues until there

exist no more eligible predicates.
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Step Zero:

ENTITIES PREDICATES TIME INQUIRY
COST ORDER

(AI (0.0 0.0 1.0» (AI_PI U) 25 (N)
(Al_P2 U) 10 (N)

(Bl (0.0 0.0 1.0» (Bl_Pl U) 34 (N)
(Bl_P2 U) (N)

(B2 (0.0 0.0 1.0» (B2_Pl U) (N)
(B2_P2 U) 32 (N)
(B2_P3 U) (N)

(A2 (0.0 0.0 1.0» (A2 PI U) ID (N)
(B3 (0.0 0.0 1.0» (B3_Pl U) (N)

(B3 P2 U) 5 (N)
(B4 (0.0 0.0 1.0» (B4 PI U) (N)

Step one:

Al_P2 == maybe yes

(AI (0.35 0.0 0.65» (AI_PI U) 25 (N)
(AI P2 0.5) 10 (1)

(Bl (0.0 0.0 1.0» (Bl_Pl U) 34 (N)
(Bl P2 U) (N)

(B2 (0.0 0.0 1.0» (B2_Pl U) (N)
(B2_P2 U) 32 (N)
(B2_P3 U) (N)

(A2 (0.0 0.0 1.0» (A2 PI U) ID (N)
(B3 (0.0 0.0 1.0» (B3_Pl U) (N)

(B3 P2 U) 5 (N)
(B4 (0.0 0.0 1.0» (B4 PI U) (N)



Step Two:

B2_P2 == yes

(AI (0.35 0.0 0.65» (AI_PI U) 25 (N)
(Al_P2 0.5) 10 (1)

(Bl (0.0 0.0 1.0» (Bl_Pl U) 34 (N)
(Bl_P2 U) (N)

(B2 (0.24 0.0 0.75» (B2 PI U) (N)
(B2_P2 IT) 32 (2)
(B2 P3 U) (N)

(A2 (0.0 0.0 1.0» (A2 PI U) zo (N)
(B3 (0.0 0.0 1.0» (B3_Pl U) (N)

(B3 P2 U) 5 (N)
(B4 (0.0 0.0 1.0» (B4 PI U) (N)

Step Three:

A2_P2 == don't know NO CHANGE

Step Four:

AI_PI == maybe yes

(AI (0.58 0.0 0.42» (AI PI . 0.5) 25 (4)
(AI P2 . 0.5) 10 (1)

(Bl (0.0 0.0 1.0» (Bl PI U) 34 (N)
(Bl_P2 U) (N)

(B2 (0.24 0.0 0.75» (B2_Pl U) (N)
(B2_P2 iT) 32 (2)
(B2 P3 U) (N)

(A2 (0.0 0.0 1.0» (A2 PI . U) zo (3)
(B3 (0.0 0.0 1.0» (B3_Pl U) (N)

(B3_P2 U) 5 (N)
(B4 (0.0 0.0 1.0» (B4 PI U) (N)
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Step Five:

BI_PI == maybe yes

(AI (0.58 0.0 0.42»

(Bl (0.35 0.0 0.65»

(B2 (0.24 0.0 0.75»

(A2 (0.0 0.0 1.0»
(B3 (0.0 0.0 1.0»

(B4 (0.0 0.0 1.0»

(AI_PI
(Al_P2
(Bl_Pl
(Bl_P2
(B2_Pl
(B2_P2
(B2_P3
(A2_Pl
(B3_Pl
(B3_P2
(B4_Pl

0.5)
0.5)
0.5)
U)
U)
IT)
U)
U)
U)
U)
U)

25
10
34

32

5
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(4)
(1)
(5)
(N)
(N)
(2)
(N)
(3)
(N)
(N)
(N)

Time / cost is unknown.
U Unknown.
N not interrogated.

Figure 4.10: Steps of a consultation session.

Results after the interrogation of five predicates:

Unchallenged evidence for AI.
Weak evidence for B1.
Weak evidence for B2.

A few other experiments based on Figure 4.9 are conducted. Their

results are depicted in Tables 4.1-3. The column case identifies any of the

six consultation sessions. The column time / cost depicts the total

interrogation time/cost values for each case. The third and fourth column
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from the left signify the particular hypotheses for each case. The

remaining column, Diagnoser, identifies the chosen method: cnu or

CESM.

Table 4.1: Numerical results of consultation sessions for cases
(a), (b), and (c).

Case Time/Cost Al B2 Diagnoser

(a) 42 (0.70 0.0 0.30) (0.35 0.0 0.65) cnu
241 (0.91 0.0 0.09) (0.58 0.0 0.42) CESM

(b) 42 (0.70 0.0 0.30) (0.48 0.0 0.65) cnu
241 (0.91 0.0 0.01) (0.50 0.0 0.16) CESM

(c) 121 (0.70 0.0 0.30) (0.35 0.0 0.65) cnu
241 (0.70 0.0 0.30) (0.58 0.0 0.42) CESM

Table 4.2:
and (e).

Numerical results of consultation sessions for cases (d)

Case Time/Cost A2 B3 Diagnoser

(d) 35 (0.70 0.0 0.30) (0.35 0.0 0.65) cnu
140 (0.70 0.0 0.30) (0.58 0.0 0.42) CESM

(e) 35 (0.70 0.0 0.30) (0.48 0.0 0.51) cnu
140 (0.70 0.0 0.30) (0.50 0.0 0.33) CESM
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Table 4.3: Numerical results of consultation sessions for case (f),

Case Time / Cost A2 B4 Diagnoser

(0 140

140
(0.70 0.0 0.30)
(0.70 0.0 0.30)

(0.35 0.0 0.65)
(0.35 0.0 0.65)

CDU
CESM

A partial graphical representation of Tables 4.1-3 is depicted in

Figure 4.11. Only the EF segment of each evidential status of each

hypothesis is graphed in Figure 4.11. The filled/unfilled 'diamond' shape

symbols with the lowest interrogation time/cost signify the utilization of

CDU, while the remaining ones signify the utilization of CESM (cf. Figure

4.11 and Tables 4.1-3). The utilization of CESM usually results in

hypotheses with higher certainties in comparison to the utilization of CDU

alone since potentially the latter should interrogate fewer times whenever

applicable.

Figures 4.11 (a), (b), and (c) illustrate some variations of consultation

sessions which resulted in accumulating evidence for Al and B2. It is

shown that by interrogating more predicates, the certainty of each

hypothesis is increased. It is noted that the difference between lower level

hypotheses is always less than or equal to the difference between the higher

level hypotheses. That is, as the depth of a diagnostic structure increases,

the impact of interrogating measuring devices with higher time/cost

becomes less significant.
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Figure 4.11: Partial graphical representation for Tables 4.1-3.
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For instance, Figure 4.11 (b) shows that even though the difference

between the certainty level of Al from CESM is higher than CDU, the

difference between certainty level of B2 obtained by these two methods is

insignificant. Figures 4.11 (d) and (e) demonstrate various certainty levels

for another set of hypotheses: A2 and B3. Note that in the latter, the

difference is insignificant which is a reflection of the received responses.

Referring to Figure 4.9, there exists only one predicate for B4.

Therefore, there is no difference between the utilization of CDU and CESM,

i.e., at worst CDU behaves identical to CESM. Consequently, if there does

not exist more than one predicate for each entity, CESM is an instantiation

of CDU -it always generates the same hypotheses with the same levels of

certainties as CDU.

It must be emphasized that it is not the purpose of CDU to conclude

the same degree of certainty as CESM. This is in accord to what we stated

at the beginning of this section -in certain instances, it is possible to detect

the failures successfully without inquiring all the information which may

be made available to a diagnostic unit.

The reduction in time/cost in the context of the SSF can have

significant effects. The operation cost of the GPL is much higher than a

comparable laboratory on Earth. Subsequently, an optimum usage of the

resources of the GPL is of essential concern. Constraint driven diagnostic

units can effectively contribute to economical and optimal operation of the

FHL and thereby the GPL. It is also noted that the diagnostic units may

also be employed in other applications afforded by artificial intelligence.
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CHAPTER 5

CONCLUSIONS

In this work, we have demonstrated the applicability of the DEVS

formalism to the analysis of an intelligent controller. It was shown that

various model representations of the ITP instrument are important in the

model construction of intelligent agents. The ITP instrument with various

levels of abstraction was modeled for operation, control, and diagnostic

purposes. All of these models were abstracted from the reference model.

It was suggested that hierarchical diagnosers for hierarchical event-

based controllers can be beneficial. That is, hierarchical diagnostic units

are to be constructed on the basis of both expert systems and model-based

programming techniques, and not a strict hierarchy within either of the

two. The applicability of a high-level diagnostic unit, operating at the same

level of complexity as an event-based controller, was demonstrated. It was

proposed that the application of hierarchical diagnostic agents may reduce

the efforts required in knowledge acquisition, and may simplify the

inferencing mechanisms in comparison to a single diagnostic agent which

is aimed at all levels of failures within a complex system. Moreover,

hierarchical diagnostic agents can be more easily implemented in a

distributed computing architecture than monolithic diagnosers, thereby

reducing the amount of time needed for the decision making process which

may be essential in the context of a real-time diagnoser.

Requirements for real-time diagnostic units was mentioned for a

remotely operated laboratory such as the GPL. A customized diagnostic
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unit, which requires precompiled rules, was constructed by using CESM in

order to allow it to interrogate directly the models of the appropriate

measuring devices. Nonetheless, such an expert system is inadequate

since it is not able to utilize rules which can be generated automatically by

CESM. Thus, it would be desirable to expand CESM such that it can

operate in a non-interactive mode as well.

The applicability of the DEVS formalism for building model-based

diagnostic units should be investigated, and if successful, these diagnostic

units should be subsequently integrated. It is necessary to develop

guidelines and/or tools which can help in determining the appropriate

number of diagnostic agents. In constructing hierarchical diagnostic

units, the number of levels assigned to each of the diagnostic agents should

be also decided appropriately.

We discussed the necessity of constraint driven diagnostic units

where the consideration of constraints was considered to be important.

Two such constraints, the interrogation time and its associated cost for

each inquiry, were considered together as one time/cost parameter. A

diagnostic unit -an expanded version of CESM-, was implemented that

takes time/cost into consideration. It can interrogate a lesser number of

measuring devices, and yet conclude reasonably acceptable hypotheses.

The usefulness of a constraint driven diagnostic unit becomes important

when only a subset of measuring devices can assure a successful failure

analysis. In this work, a preliminary study suggested that such diagnostic

agents can be beneficial if economical utilization of some commodities (e.g.,

time and cost) are important.
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The constraint driven diagnostic unit as presented in this work,

however, requires improvements. Its current search strategy, best-first

search, does not ensure an optimal minimization of time/cost. Thus, other

search algorithms (e.g., A* or B*) should replace the current algorithm in

order to ensure a minimum path to a goal entity. Furthermore, we

acknowledged the deficiency of the current termination strategy.

Additional research is necessary to determine an appropriate termination

strategy as well as how non-monotonic reasoning can lend itself to an

enhancement of the constraint driven diagnostic units.
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APPENDIX-A

DISCRETE·EVENT MODEL OF A ROBOT

;;; This model includes M-ITP-CONT.

(make-pair atomic-models 'robot)
;;; External Transition Function (i.e., Oext):
(define (ext-robot sex)

(case (content-port x)
('exp-l ;;; RECEIVED FROM A USER OR SPACE MANAGER

(case (content-value x) ;;; Robot assumes that there is adequate
('start ;;; amount of supplies and syringes. This

(case (state-sta-le s) ;;; can be assured by sending a message
;;; to rack asking for such information.

(,flush ;;; Content of the LE chamber is unknown.
(set! (state-oprt s) 'le)
(set! (state-oval s) 'empty)
(hold-in 'contact 5) )

('empty ;;; The LE chamber is empty, but not clean!
(set! (state-oprt s) 'le)
(set! (state-oval s) 'clean)
(hold-in 'contact 5) )

('clean ;;; The LE chamber is empty and clean.
(set! (state-oprt s) 'le)
(set! (state-oval s) 'fill)
(hold-in 'contact 5) )

('full ;;; The LE chamber contains LE liquid.
(case (state-phase s)

(,release ;;; The robot has completed the release task
;;; successfully; camera is ready to examine
;;; the presence of bubbles in the LE chamber.

(set! (state-oprt s) 'le)
(set! (state-oval s) 'bubbles?)
(passivate) ) ) )

('Ie-full ;;; The LE chamber is filled with LE liquid (no bubbles),
;;; thus start by examining the status of the TE chamber.

(case (state-sta-te s)
('flush ;;; The content of the TE chamber is unknown.

(set! (state-oprt s) 'te)
(set! (state-oval s) 'empty)
(hold-in 'contact 5) )

('empty;;; The TE chamber is empty, but not clean.
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('Ieitp
(case (content-value x)

('empty
(case (state-phase s)

('le-empty-Iow ;;; Receiving the completion
(set! (state-sta-le s) 'error-empty) ;;; time too early.
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-empty-early)
(hold-in 'error-early 0) )

(Te-empty-twind
(set! (state-sta-le s) 'empty)
(set! (state-oprt s) '( »
(set! (state-oval s) '( »
(hold-in 'release 4) )

Cerror-late ;;; Not receiving the completion
(set! (state-sta-le s) 'error-empty) ;;; time as expected.
(set! (state-oprt s)'robot)
(set! (state-oval s) 'le-empty-late)
(hold-in 'error 0.5) ) ) )

('clean
(case (state-phase s)

('Ie-clean-Iow ;;; Receiving the completion time too early.
(set! (state-sta-le s) 'error-clean)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-clean-early)
(hold-in 'error-early 0) )

(set! (state-oprt s) 'te)
(set! (state-oval s) 'clean)
(hold-in 'contact 5) )

('flush ;;; The TE chamber is empty and clean.
(set! (state-oprt s) 'te)
(set! (state-oval s) 'fill)
(hold-in 'contact 5) )

('full ;;; The TE chamber contains TE liquid.
(case (state-phase s)

('release ;;; The has completed successfully the rele-
;;; ase task; camera is ready to examine the
;;; presence of bubbles in the TE chamber.

(set! (state-oprt s) 'te)
(set! (state-oval s) 'bubbles?)
(passivate) ) ) )

Cte-full ;;; The TE and LE chambers are filled with
;;; appropriate solutions and no bubbles,
;;; continue by injecting the SA solution.

(set! (state-oprt s) 'sa)
(set! (state-oval s) 'fill)
(hold-in 'trans-sa 1) ) ) ) ) ) )

;;;RECEIVED FROM ITP

;;; Receiving the completion
;;; time as expected.
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;;; Receiving the completion
;;; time as expected.

('le-clean-twind
(set! (state-sta-le s) 'clean)
(set! (state-oprt s) '( ))
(set! (state-oval s) '( ))
(hold-in 'release 4) )

('error-late ;;; Not receiving the completion
(set! (state-sta-le s) 'error-clean) ;;; time as expected
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-clean-late)
(hold-in 'error 0.5) ) ) )

('fill
(case (state-phase s)

Cle-fill-low ;;; Receiving the completion time too early.
(set! (state-sta-le s) 'error-fill)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-fill-early)
(hold-in 'error-early 0) )

Cle-fill-twind ;;; Receiving the completion time as expected.
(set! (state-sta-le s) 'full)
(set! (state-oprt s) '( ))
(set! (state-oval s) '( ))
(hold-in 'release 4) )

(,error-late
(set! (state-sta-le s) 'error-fill)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-fill-late)
(hold-in 'error 0.5) ) ) )

Cteitp
(case (content-value x)

('empty
(case (state-phase s)

Cte-empty-Iow )
('te-empty-twind )
(,error-late ) ) )

('clean
(case (state-phase s)

Cte-clean-low ... )
('te-clean-twind ... )
Cerror-late ... ) ) )

Cfill
(case (state-phase s)

Cte-fill-low )
Cte-fill-twind )
(,error-late ) ) )

;;; Not receiving the completion
;;; time as expected.

;;; RECEWED FROM ITP
;;; In the event of receiving inputs
;;; from the ITP wrt the TE chamber,
;;; the robot follows the same pattern
;;; of logic as in the case of receiving
;;; it for the LE chamber.
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Csaitp ;;;RECEIVED FROM ITP
(case (content-value x)

('fill
(case (state-phase s)

('sa-fill-Iow ;;; Receiving the completion time too early.
(set! (state-sta-sa s) 'error-fill)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'sa-fill-early)
(hold-in 'error-early 0) )

Csa-fill-twind ;;; Receiving the completion time as
expected.

(set! (state-sta-sa s) 'sa)
(set! (state-oprt s) '( »
(set! (state-oval s) '( »
(hold-in 'release 4) )

Cerrcr-Iate ;;; Not receiving the completion
(set! (state-sta-sa s) 'error-fill) ;;; time as expected.
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'sa-fill-late)
(hold-in 'error 0.5) ) ) )

('lecam ;;;RECEIVED FROM CAMERA
(if'{ (state-ref-le s) 20)

(begin ;;; If the LE chamber filling process has been repe-
;;; ated less than 20 times, continue the process.

(case (content-value x)
. (1 ;;; Bubbles were detected in the LE chamber.

(set! (state-oprt s) 'le)
(set! (state-oval s) 'empty)
(set! (state-sta-le s) 'flush)
(set! (state-ref-le s) (1+ (state-ref-le s)
(hold-in 'contact 5) )

(0 ;;; Bubbles were absent in the LE chamber.
(set! (state-sta-le s) 'le)
(set! (state-oprt s) 'le)
(set! (state-oval s) 'flush)
(set! (state-ref-le s) (state-ref-le s)
(hold-in 'trans-te 1) ) )

(BKPr "excess number of refilling "(state-ref-Ie s) ) )
('tecam ;;;RECEIVED FROM CAMERA

(if « (state-ref-te s) 20)
(begin

(case (content-value x)
(1 ... )

(0 ... »»)
('sacam

(if'{ (state-ref-te s) 5)

;;; This portion of the code is identical
;;; to the inputs received from the
;;; camera examining the LE chamber.

;;;RECEIVED FROM CAMERA
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(begin ;;; If the capillary has been filled less than 5 times,
;;; continue the process.

(case (content-value x)
(1 ;;; Bubbles were detected in the capillary.

(set! (state-oprt s) 'le)
(set! (state-oval s) 'empty)
(set! (state-sta-le s) 'flush)
(set! (state-sta-te s) 'flush)
(set! (state-ref-sa s) (1+ (state-ref-sa s)
(hold-in 'contact 5) )

(0 ;;; Bubbles were absent in the capillary
(set! (state-sta-le s) 'full)
(set! (state-oprt s) 'turn-on)
(set! (state-oval s) 'switch)
(passivate) ) ) )

(BKPT "Excess number of reruns for the set-up" (state-ref-sa s)
»: )

;;; The Oint is responsible for the recurrent operations involved in the
;;; set-up procedure and scheduling of the tmin and twind for the
;;; primitive operations and tasks.

;;; Internal Transition Function (i.e., Oint):
(define tint-robot s) .

(case (state-sta-le s) ;;; The LE chamber is under consideration
('flush ;;; If it's content is unknown, empty it.

(case (state-phase s)
Ccontact ;;; Contact task is completed (refer to

(set! (state-oprt s) 'le) ;;; figure 3.32), schedule the minimum
(set! (state-oval s) '(» ;;;time for emptying process.
(hold-in 'le-empty-low (car (state-e-time-le s) ) ) )

Cle-empty-Iow ;;; tmin has elapsed, schedule for twind.
(set! (state-oprt s) 'le)
(set! (state-oval s) '( »
(hold-in 'le-empty-twind (cadr (state-e-time-le s) ) ) )

Cle-empty-twind ;;; twind has elapsed, issue an error message.
(set! (state-sta-Ie s) 'error-empty)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'Is-empty-late)
(hold-in 'error 0.5) ) ) )

Cempty ;;; If the state of the LE chamber is empty,
(case (state-phase s) ;;; empty, the same pattern is followed
('contact ;;; as above.
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(set! (state-oprt s) 'le)
(set! (state-oval s) '( »
(hold-in 'Ie-clean-low (car (state-c-time-Ie s) ) ) )

Cle-clean-Iow
(set! (state-oprt s) 'le)
(set! (state-oval s) '( »
(hold-in 'te-clean-twind (cadr (state-e-time-le s) ) ) )

('te-clean-twind
(set! (state-sta-le s) 'error-clean)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-clean-late)
(hold-in 'error 0.5) ) ) )

('clean
(case (state-phase s)
('contact

(set! (state-oprt s) 'le)
(set! (state-oval s) '( »
(hold-in 'le-fill-low (car (state-s-time-low s) ) ) )

Cle-fill-low
(set! (state-oprt s) 'le)
(set! (state-oval s) '( »
(hold-in 'le-fill-twind (cadr (state-e-time-low s) ) ) )

{'1e-fill-twind
(set! (state-sta-le s) 'error-fill)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'le-fill-late)
(hold-in 'error 0.5) ) ) )

(,full
(case (state-phase s)

(,release
(set! (state-oprt s) 'le)
(set! (state-oval s) 'bubbles?)
(hold-in 'passive 1) ) ) )

(if (eqv? (state-sta-Ie s) 'Ie-full)
(begin

(case (state-sta-te s)
('flush

(case (state-phase s) .
('trans-te

(set! (state-oprt s) 'te)
(set! (state-oval s) 'empty)
(hold-in 'contact 5) )

('contact
(set! (state-oprt s) 'te)
(set! (state-oval s) '( »
(hold-in 'to-empty-low (car (state-e-time-te s) ) ) )

('te-empty-Iow

;;; If the state of the LE chamber is
;;; empty, the same pattern is followed
;;; as the one above.

;;; If the state of the LE chamber is
;;; empty, the same pattern is followed
;;; as the one above.

;;; This portion provides logic as
;;; applied above when the state of
;;; LE chamber was not LE-FULL.
;;; Here the only difference is the
;;; tmin and twind used for each of
;;; the emptying, cleaning, and
;;; filling.
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(set! (state-oprt s) 'te)
(set! (state-oval s) '( »
(hold-in 'te-empty-twind (cadr (state-e-time-te s) ) ) )

Cte-empty-twind
(set! (state-sta-te s) 'error-empty)
(set! (state-oprt s) 'rob)
(set! (state-oval s) 'te-empty-Iate)
(hold-in 'error 0.5) ) ) )

('empty ;;; Same form of logic is used for
(case (state-phase s) ;;; empty, clean, full, and trans-sa

Ctrans-te ) ;;; with appropriate tmin and twind
Ccontact ) ;;; for each of them.
Cte-clean-Iow ... )
Cte-clean-twind ... »)

('clean
(case (state-phase s)

Ctrans- te ...)
Ccontact ... )
Cte-fill-low ... )
Cte-fill-twind ... »)

('full
(case (state-phase s)

('release
(set! (state-oprt s) 'te)
(set! (state-oval s) 'bubbles)
(hold-in 'passive 1) ) ) )

('te
(case (state-phase s)

('trans-te
(set! (state-oprt s) 'te)
(set! (state-oval s) '( »
(hold-in 'trans-sa 1) ) ) ) ) ) )

(if (and (eqv? (state-sta-le s) 'le-full)
(eqv? (state-sta-te s) 'te-full) )

;;; This portion tests whether both
;;; the LE and TE chambers are
;;; filled with appropriate liquids.
;;; if indeed the test is passed, the
;;; filling of the capillary with the
;;; sample solution begins. Note
;;; that no emptying, or cleaning
;;; takes place.

(begin
(case (state-phase s)

('trans-sa
(set! (state-oprt s) 'sa)
(set! (state-oval s) 'fill)
(hold-in 'contact 5) )

('contact
(set! (state-oprt s) 'sa)
(set! (state-oval s) '( »
(hold-in 'sa-fill-low (car (state-f-time-sa) ) ) )



Csa-fill-low
(set! (state-oprt s) 'sa)
(set! (state-oval s) '( ))
(hold-in 'sa-fill-twind (cadr (state-f-time-sa) ) ) )

Csa-fill-twind
(set! (state-sta-sa s) 'error-fill)
(set! (state-oprt s) 'robot)
(set! (state-oval s) 'sa-fill-late)
(hold-in 'error 0.5) )

(,release
(set! (state-oprt s) 'sa)
(set! (state-oval s) 'bubbles)
(hold-in 'passive 0.5)

)))))

;;; The A is responsible for sending messages to camera and rack.

;;; Output Function (i.e., A):
(define (out-robot)

(case (state-phase s)
('() (make-content) )
('error

(set! (state-sigma s) 'inf)
(make-content 'port (state-oprt s) 'value (state-oval s) ) )

(else (make-content 'port (state-oprt s) 'value (state-oval s) ) )
) )

151
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