
appeared in Discrete & Computational Geometry 29:1 (2003) 105-131.

In between k-Sets, j-Facets, and i-Faces:

(i, j)-Partitions∗

Artur Andrzejak

Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto

CA 94304, USA

artur_andrzejak@hp.com

Emo Welzl

Inst. Theoretische Informatik

ETH Zürich

CH-8092 Zürich, Switzerland

emo@inf.ethz.ch

4th July 2002

Abstract

Let S be a finite set of points in general position in R
d. We call a pair

(A,B) of subsets of S an (i, j)-partition of S, if |A| = i, |B| = j and there is
an oriented hyperplane h with S∩h = A and with B the set of points from
S on the positive side of h. (i, j)-Partitions generalize the notions of k-sets
(these are (0, k)-partitions) and j-facets ((d, j)-partitions) of point sets as
well as the notion of i-faces of the convex hull of S ((i + 1, 0)-partitions).
In oriented matroid terminology, (i, j)-partitions are covectors where the
number of 0’s is i and the numbers of +’s is j.

We obtain linear relations among the numbers of (i, j)-partitions, mainly
by means of a correspondence between (i− 1)-faces of so-called k-set poly-
topes on the one side and (i, j)-partitions for certain j’s on the other side.
We also describe the changes of the numbers of (i, j)-partitions during con-
tinuous motion of the underlying point set. This allows us to demonstrate
that in dimensions exceeding 3, the vector of the numbers of k-sets does not
determine the vector of the numbers of j-facets – nor vice versa. Finally,
we provide formulas for the numbers of (i, j)-partitions of points on the
moment curve in R

d.

∗Part of this research has been carried out during the first author’s Ph. D. studies at the
Swiss Federal Institute of Technology Zurich (ETH Zurich, Inst. Theoretische Informatik).
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1 Introduction and Prerequisites

We denote by S a finite set of points in R
d, n := |S|. We will frequently assume

general position: no i + 1 points lie in a common (i − 1)-flat, for i = 1, . . . , d.
Without further mention, throughout the paper i, j, k, ℓ and m denote integers
(Z), while n stands for a natural number (non-negative integer, N0) and d for a
natural number or1 −1.

(i, j)-Partitions. We assume general position of S. A pair (A, B) of subsets
of S is called (i, j)-partition (of S), if |A| = i, |B| = j and there is an oriented
hyperplane h with S ∩h = A and with B the set of points from S on the positive
side of h; we say that h induces the (i, j)-partition (A, B). (A, B) is also called
a hyperplane partition of S if the indices (i, j) do not matter. Di,j = Di,j(S)
denotes the number of (i, j)-partitions of S.

It is easy to see that

Di,j 6= 0 iff 0 ≤ i ≤ d and 0 ≤ j ≤ n− i. (1)

For example, the planar point set displayed in Figure 1 has the following
(1, 1)-partitions.

({a}, {b}) ({a}, {e}) ({b}, {a}) ({b}, {d}) ({d}, {b})
({d}, {e}) ({e}, {d}) ({e}, {a}) ({c}, {a}) ({c}, {e})

The table in Figure 1 lists all non-zero values Di,j of this point set.2

b

a
e

d

c
Di,j j =0 1 2 3 4 5

i=0 1 4 6 6 4 1 ← a
1 4 10 12 10 4
2 4 6 6 4 ← e

↑f

Figure 1: A planar point set and the numbers of its (i, j)-partitions.

1
R

−1 := ∅ and R
0 is a singleton.

2As a result of our findings in this paper, all Di,j ’s of a planar 5-point set are completely
determined by entry D0,1 (or by D1,2), while D1,1 equals 10 – independently from the configu-
ration.
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The ‘boundary values’ D0,k, Dd,j and Di,0 specialize to the established notions
of k-sets, j-facets of point sets and (i− 1)-faces of a simplicial polytope, respec-
tively. These notions will be recapitulated below, also since they play a key role
in discussions and proofs of this paper.

The goal of these investigations is to establish the ‘missing link’ between k-
sets and j-facets, similar to the situation for convex polytopes, where the faces
of various dimensions interpolate between vertices and facets. These ‘in-between’
objects are indispensable for the understanding of the structure (face-lattice) of
a polytope. Even if one is only interested in the vertices versus facets aspects of
the Upper Bound Theorem ([18], cf. [27]), consideration of the whole f -vector is
essential for any proof known.

Results. Theorem 2.2 in Section 2 exhibits some linear relations among the
numbers of (i, j)-partitions. Section 3 describes the changes of the Di,j’s dur-
ing continuous motion of the underlying point set. While the linear relations in
Section 2 reveal certain redundancies in the Di,j’s, Section 4 shows that in di-
mensions exceeding 3, the vector of the numbers of k-sets does not determine the
vector of the numbers of j-facets – nor vice versa. Finally, in Section 5 we derive
formulas for the numbers of (i, j)-partitions for points on the moment curve.

For our proofs we analyze k-set polytopes and we employ oriented matroids
terminology (see definitions and discussion of these notions later in this section).

A notion related to (i, j)-partitions has been introduced by Mulmuley [19] in
the dual setting, where he generalizes h-vectors and derives equivalents of the
Dehn-Sommerville Relations. For a simple hyperplane arrangement in R

d, he
considers i-faces of the arrangement at level j (relative to 0), where the level of a
face is the number of hyperplanes in the arrangement that separate the relative
interior of the face from the origin 0 ∈ R

d.
For comparison to our setting, we briefly translate (dualize by polarity)3 Mul-

muley’s to the equivalent problem for point configurations S, where 0 6∈ S and
S ∪̇ {0} in general position is assumed. Let us call a pair (A, B) of subsets of S
an (i, j)-level pair (relative to the origin 0), if there is an oriented hyperplane
h with the origin 0 on its negative side such that S ∩ h = A and B is the set
of points from S on the positive side of h. Mulmuley considers the numbers4

Mi,j of (i, j)-level pairs. The main result in [19] establishes relations among the
Mi,j ’s, j ≤ k, for k fixed, under the assumption that every hyperplane through 0

contains at least k + 1 points in both of its halfspaces.
Note that Mi,j ≤ Di,j, and if every open halfspace (defined by a hyperplane)

containing 0 has at least j + 1 points, then Di,j = Mi,j. This property can be

3Alternatively, consider Mulmuley’s definitions for linear arrangements instead of affine ar-
rangements.

4In [19], this is the number of (d− i)-faces at level j, denoted by f j(d− i) there.
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achieved for all j ≤ ⌊ n
d+1
⌋−1 by ‘placing’ 0 at or close5 to a centerpoint of S (by

translation of S), cf. [9, Theorem 4.3]. The set of relations from [19] have been
further investigated and extended in [1].

j-Facets. For a sequence (p1, . . . , pd+1) ∈ (Rd)d+1 of d + 1 points in R
d we

define its sign6 χ(p1, . . . , pd+1) as the sign (−1, 0, or +1) of the determinant
det (pi 1)d+1

i=1 (the matrix has the coordinates of the points as rows, extended by
a 1). A sequence (p1, . . . , pd) of d distinct points in general position partitions
space into

{p ∈ R
d |χ(p1, . . . , pd, p) = s} for s = −1, 0, +1.

The set for s = 0 constitutes the hyperplane containing {p1, . . . , pd}, while the
sets for s = +1 and s = −1 are called the positive and negative, resp., side of
(p1, . . . , pd); positive and negative side are invariant under even permutations of
the defining point sequence. For d ≥ 2 an ordered d-tuple of points in general
position is called an oriented (d−1)-simplex, where we consider even permutations
of the same sequence to be equivalent (i.e. every d-point set in general position
gives rise to exactly two oriented (d−1)-simplices). The case d = 1 needs special
treatment: here an oriented 0-simplex is a pair (p1, o) ∈ R × {−1, +1} where
positive and negative side are {p ∈ R | s · o · (p− p1) > 0} for s = +1 and s = −1,
resp.

Assume general position of S. A j-facet of S is an oriented (d − 1)-simplex
spanned by d distinct points in S that has exactly j points of S on its positive
side. 0-Facets of S are in correspondence to facets of the convex hull of S. We
write ej = ej(S) for the number of j-facets of S and we call the vector e = e(S) :=
(ej)j∈Z the vector of j-facets (of S). Clearly, ej = 0 for j 6∈ {0, . . . , n− d}.

There is an obvious correspondence between (d, j)-partitions and j-facets
which gives

ej = Dd,j, provided n 6= d.

The case n = d is peculiar, since then the unique d-tuple in S gives rise to
one (d, 0)-partition, while there are two 0-facets, one for each orientation of the
simplex spanned by these points; hence, e0 = 2, while Dd,0 = 1, in this case.

Remark 1 A hyperplane h inducing a hyperplane partition (A, B) can be per-
turbed so that it induces any of the hyperplane partitions in

pert(A, B) := {(A′, B ∪ B′) |A′ ⊆ A, B′ ⊆ A\A′} . (2)

Moreover, h can be ‘moved’ until it contains d points, while never moving over
a point and while preserving incidence to A; then it induces a (d, k)-partition

5The actual centerpoint may be unique and enforce a degeneracy (e.g. be part of S) – the
necessary perturbation is accounted for by the use of floor instead of ceiling brackets.

6Obviously, transposition of two entries in the sequence switches the sign to its negative
value – such a map is called alternating sign map.
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(A′′, B′′) with A ⊆ A′′ and B\(A′′\A) ⊆ B′′ ⊆ B; thus, (A, B) ∈ pert(A′′, B′′).
(The pair (A′′, B′′) we reach is not unique.)

Therefore, given i and j, the set of all (i, j)-partitions7 can be obtained as8

{(A′, B ∪ B′) |A′ ∈
(

A
i

)
, B′ ∈

(
A\A′

j−k

)
, for some (d, k)-partition (A, B)} . (3)

In this way the set of (d, k)-partitions determines the set of all hyperplane
partitions.9 By way of contrast, we will see that in dimension d ≥ 4, in general,
the numbers ek = Dd,k do not determine all Di,j’s.

k-Sets. We relax the condition of general position. A k-set of S is a set B of
k points in S that can be separated from S\B by a hyperplane disjoint from S.
We denote by ak = ak(S) the number of k-sets of S and call a = a(S) := (ak)k∈Z

the vector of k-sets (of S); note a0 = an = 1 and ak = 0 for k 6∈ {0, . . . , n}.
Clearly, B is a k-set iff (∅, B) is a (0, k) partition. This yields

ak = D0,k .

k-Sets and j-facets have received considerable attention in combinatorial and
computational geometry (starting with papers by Lovász [16] and Erdős et al.
[11] in the early 1970’s) with particular interest in upper and lower bounds on
their numbers. Despite of some progress in R

2 and R
3 in recent years, large gaps

still remain (see [1, Chapter 6] or [17, Chapter 11] for surveys, and [7, 22, 23, 26]
for very recent developments). In computational geometry k-sets play a role for
higher-order Voronoi diagrams, halfspace range searching problems, analysis of
randomized algorithms and so on (note also the related dual notion of k-levels
in arrangements of hyperplanes). Recently, k-sets of the infinite set N

d
0 – so-

called corner cuts – have been investigated because of a relation to computational
commutative algebra [20, 5, 25].

Faces of Polytopes. Let P be a convex d-polytope. We assume familiarity
with the notion of i-dimensional faces, i-faces for short, of P, cf. [14, 27]. By fi =
fi(P) we denote the number of i-faces, with f−1 := 1 (accounting for the empty
face) and fd := 1 (counting P as a d-face of itself); fi := 0 for i 6∈ {−1, . . . , d}.

If S is in general position and P is the convex hull conv S of S, then P is
a simplicial d′-polytope, d′ := min{d, n − 1}. (Simplicial means that every face
apart from P is a simplex.) The convex hull of a set A ∈

(
S
i

)
, i ∈ {0, . . . , d},

constitutes an (i − 1)-face F of P iff there is an oriented hyperplane h with

7As a side remark: If one knows for each oriented (d − 1)-simplex the number of points on
its positive side, then the actual sets of points on the positive sides of oriented (d−1)-simplices
can be retrieved, see [12].

8Note, however, that an (i, j)-partition (A′, B′) may be obtained from many (d, k)-partitions.
9And we have the inequality Di,j ≤

∑j

k=j−d+i

(
d

i

)(
d−i

j−k

)
gk; an estimate that readily allows

improvement though if i < d.
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S ∩h = A and no point from S on the positive side of h (a hyperplane supporting
P in F ) – in other words, iff (A, ∅) is an (i, 0)-partition of S and therefore,

fi−1(conv S) = Di,0 , for i 6= d + 1.

The case i = d + 1 is special, in that fd = 1 if n ≥ d + 1, and fd = 0, otherwise,
while Dd+1,0 = 0, always.

k-Set Polytopes. General position is not assumed. The k-set polytope Qk(S)
is the convex hull of the set

σ

(
S

k

)

:=

{

σ(T )

∣
∣
∣
∣
T ∈

(
S

k

)}

, where σ(T ) :=
∑

p∈T p ;

(Note σ
(

S
k

)
= ∅ for k 6∈ {0, . . . , n}, hence Qk(S) = ∅ for such k’s; and

(
S
0

)
= {∅},

hence Q0(S) degenerates to the origin 0 in R
d.) Beware that, in general, Qk(S)

is not simplicial, even if S is in general position. We will shortly characterize the
conditions for simpliciality (see Corollary 2.8 below), and we will characterize the
types of faces that can occur (so-called hypersimplices, which are k′-set polytopes
of some point set for some k′, see Theorem 2.7 (b.2)).

k-Set polytopes have been introduced in [10] for proving upper bounds on the
number of k-sets of dense point sets. Another application of k-set polytopes is the
enumeration of k-sets via reverse search [3]. We refer also to the related notion
of corner cut polytopes [20, 25], which are simply k-set polytopes of N

d
0. These

applications exploit a natural bijection between the vertices of a k-set polytope
and the k-sets of the underlying point set S, see Figure 2.

We extend this relation in Theorems 2.1 and 2.7 to a bijection between the
(i − 1)-faces of a k-set polytope (where i ∈ {2, . . . , d}) and the (i, j)-partitions
for j ∈ {k− (i− 1), . . . , k− 1}. This will be used to establish one of the relations
among the numbers of (i, j)-partitions (Theorem 2.2 (7)).

Covectors (Oriented Matroids). 〈v,w〉 denotes the scalar product of two
vectors (or points) v and w in R

d. Given c ∈ R
d\{0} and α ∈ R, the oriented

hyperplane h with parameters (c, α) is the set h := {x ∈ R
d | 〈c, x〉 = α}, with its

positive open halfspace h+ := {x ∈ R
d | 〈c, x〉 > α} and its negative open halfspace

h− := {x ∈ R
d | 〈c, x〉 < α}; hence, R

d = h+ ∪̇h ∪̇h−.
We assume some numbering {p1, . . . , pn} of the points in S. Every oriented

hyperplane h in R
d defines a vector u = u(h) ∈ {+,−, 0}n by

(u)i :=







+ if pi ∈ h+,
0 if pi ∈ h,
− if pi ∈ h−,

where (u)i is the i-th entry of u. u is called a covector of S, and L(S) denotes
the set of all covectors of S induced by all possible oriented hyperplanes. The set
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a + b

b

Q2(S)

a

Figure 2: A set S2 of 4 points in R
2 (black) and the corresponding 2-set polytope.

of covectors of S induced by every possible oriented hyperplane in R
d determines

the oriented matroid of S. In general, if a subset L ⊆ {+,−, 0}n fulfills certain
conditions, then it determines such an oriented matroid M(L) (see [4] for the
full definition10). Oriented matroids which arise from sets of points are called
realizable. The support of a covector u is the index set {i | (u)i 6= 0}. Covectors
of inclusion minimal support are called cocircuits. If all cocircuits have the same
number of 0’s, then the oriented matroid is called uniform, which is the case if
it comes from a point set in general position. Cocircuits determine all covectors;
in the uniform case, we can simply replace 0’s in a cocircuit arbitrarily by any
sign in {+,−, 0} and we obtain a covector, and we obtain all of them in this way
(this is basically a restatement of (3) in Remark 1 above).

There is an obvious correspondence between covectors and (i, j)-partitons: An
oriented hyperplane h induces an (i, j)-partition iff it induces a covector where
the number of 0’s is i and the number of +’s is j; similarly, j-facets correspond
to cocircuits with j the number of +’s. We do not claim our results to hold for
oriented matroids (other than realizable ones), but we employ oriented matroids
terminology for some of our proofs.

Notation and Conventions. Given sets X, Y ⊆ R
d, we let X + Y denote

their sum {x+y | x ∈ X, y ∈ Y }, and we use x+Y short for {x}+Y . For a point
set X ⊆ R

d, its affine hull is denoted by aff X and its convex hull by conv X.
We assume the binomial coefficient

(
i
j

)
to be defined for all i and j, where it

is 0 unless i ≥ j ≥ 0. We use brackets for the indicator function for a predicate
P : [P ] := 1 if P is true and [P ] := 0, otherwise. We use the sum convention that

10And, to be precise, an oriented matroid always contains the all-0 covector which we ignore
here unless n ≤ d.

7



the empty sum is the zero of the underlying monoid; e.g. for T an empty set of
points in R

d,
∑

p∈T p = 0, etc.

2 k-Set Polytopes and Linear Relations

Throughout this section, let S be a set of n points in R
d, with explicit mention

whenever general position is assumed.
We define

f
(k)
i = f

(k)
i (S) :=

{

fi(Qk(S)) , if i ∈ {−1, . . . , d− 1}, and

0 , otherwise.

Remark 2 There is a small subtlety in the definition of f
(k)
i that ought not to

be swept under the rug. Let d′ ≤ d be the dimension of Qk(S). If d′ = d, then

f
(k)
d′ = 0; otherwise, f

(k)
d′ = 1. The “logic” behind this proceeding is that we count

the whole polytope Qk(S) as a face of itself only if it is contained in a hyperplane
of the ambient space.

Theorem 2.1 For S in general position,

f
(k)
i−1 =







1 , if i = 0,

D0,k , if i = 1, and
∑k−1

j=k−(i−1) Di,j , otherwise.

Remark 3 It follows from Theorem 2.1 that

f
(k+1)
i−1 − f

(k)
i−1 = Di,k −Di,k−(i−1) , provided i 6∈ {0, 1}. (4)

Therefore, by successive application of (4),

Di+1,k =
∑

m≥0

(

f
(k+1−im)
i − f

(k−im)
i

)

, provided i 6∈ {−1, 0};

in particular, D2,k = f
(k+1)
1 . That is, the Di,j’s, i 6= 1, are determined by the

f
(k)
i−1’s.

Via the Euler-Poincaré Formula, the theorem yields the linear relation (7) in
Theorem 2.2 below. While (5) is obvious, (8) needs separate proof and can be
seen as a generalization of the relation d fd−1 = 2 fd−2 for the f -vector of a
simplicial d-polytopes (one of the Dehn-Sommerville Relations).
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Theorem 2.2 The following relations hold for S in general position.

D0,0 = 1 and Di,j = Di,n−i−j . (5)

∑

j∈Z
Di,j =







2
(

n
i

)
ϕd−i(n− i) , for n > i ≥ 0 and i ≤ d,

1 , for n = i ≤ d, and

0 , otherwise ,

(6)

where ϕd(m) :=
∑d

ℓ=0

(
m−1

ℓ

)
for m ≥ 1.

D0,k +
∑d

i=2

∑k−1
j=k−(i−1)(−1)i−1Di,j = 1− (−1)d , (7)

provided k ∈ {1, . . . , n− 1} and n ≥ d + 1.

d (Dd,j + Dd,j−1) = 2 Dd−1,j , provided n ≥ d + 1. (8)

Remark 4 (Open Problem) If d ≥ 3, the statements of Theorem 2.1 saliently
circumvent the numbers D1,j. For d = 2, they are determined by the remaining
entries of D (because of (8)), but for d ≥ 3, we do not understand their relation
to other entries.

Remark 5 For d = 2, (7) reads as

D0,k = D2,k−1 , (i.e. ak = ek−1) for n ≥ 3 and k ∈ {1, . . . , n− 1},

which is the known simple relation between k-sets and (k−1)-facets in the plane.
If d = 3, then (7) amounts to

D0,k −D2,k−1 + D3,k−2 + D3,k−1 = 2 for n ≥ 4 and k ∈ {1, . . . , n− 1}.

If we substitute in this relation the term 3
2
(D3,k−1 + D3,k−2) for the term D2,k−1

(according to (8)), we obtain11

D0,k = 1
2
(D3,k−2 + D3,k−1) + 2 , (i.e. ak = 1

2
(ek−2 + ek−1) + 2)

for n ≥ 4 and k ∈ {1, . . . , n− 1},

as we have shown before in [2]. That is, again the vector of k-sets and the vector
of j-facets determine each other. In Section 4 we will see that this is not the case
in dimensions exceeding 3.

11Note 3D0,k = D2,k−1 + 6 for yet another relation that is a linear combination of (7) and
(8) in case of d = 3.
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Remark 6 The relations in Theorem 2.1 are by no means a complete list of
linear relations, not even of those known at this point. In particular, we have the
Dehn-Sommerville Relations on (Di,0)i∈Z, and we have Mulmuley’s relations [19]
(mentioned in the introduction) with extensions in [1].

Moreover, Gullikson and Hole [15] showed
∑

k∈Z

(−1)kak = 0 for odd d.

Note here the relation
∑

j∈Z
(−1)jDd−1,j = 0 that follows immediately from (8).

The goal, of course, would be to supply a complete characterization of all
linear relations, similar to the situation for the f -vector of simplicial polytopes,
where we know that the Dehn-Sommerville Relations and linear relations thereof
exhaust all possibilities, cf. [14, Section 9.2].

Proofs of Theorems 2.1 and 2.2 are postponed to the end of this section. We need
some better understanding of k-set polytopes first.

Basic Properties of k-Set Polytopes. Recall that we have Qk(S) = ∅ for
k 6∈ {0, . . . , n}, Q0(S) = {0}, and |Qn(S)| = 1. For the remaining values of k we
get:

Lemma 2.3 For k ∈ {1, . . . , n − 1}, the dimensions of aff S and aff σ
(

S
k

)
are

equal.

Proof. We prove the stronger claim aff S = aff( 1
k
· σ
(

S
k

)
) (recall k > 0).

The inclusion 1
k
· σ
(

S
k

)
⊆ aff S is immediate from the definitions of σ

(
S
k

)
and

affine combination.
For demonstrating S ⊆ aff( 1

k
· σ
(

S
k

)
), consider an arbitrary p ∈ S. Choose

some T ∈
(

S\{p}
k

)
(recall k < n). Now the equality

p =

(
∑

q∈T

1

k
· σ((T ∪ {p})\{q})

)

− (k − 1)
1

k
· σ(T )

shows that p is the affine combination of points in 1
k
· σ
(

S
k

)
.

If τ : R
d → R

d′ , x 7→ v + Ax, is an affine map that is injective on aff S, then
τk : x 7→ kv + Ax is an affine map that is injective on aff σ

(
S
k

)
= aff Qk(S) with

Qk(τ(S)) = τk(Qk(S)). Hence, Qk(τ(S)) and Qk(S) are affinely isomorphic. We
will see that Qk(S) is determined up to affine isomorphism, if n ≤ d+1 and S in
general position. (As a marginal note, observe that Qn−k(S) = Qn(S)−Qk(S).)

The hypersimplex ∆d−1(k) (in R
d) is the convex hull of those vertices of the

d-cube [0, 1]d whose coordinates sum up to k; ∆d−1(1) is the standard (d − 1)-
simplex in R

d ([27, page 19]). Employing our terminology,

∆d−1(k) = conv σ

(
Ud

k

)

= Qk(Ud) ,
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where Ud denotes the set of {0, 1}-points in R
d with exactly one 1-coordinate.

Clearly, all points in σ
(

Ud

k

)
are vertices of ∆d−1(k), since they are among the

vertices of the cube [0, 1]d.

Lemma 2.4 If S is in general position and n ≤ d + 1, then Qk(S) is affinely
isomorphic to the hypersimplex ∆n−1(k).

Proof. conv S is an (n − 1)-dimensional simplex (due to general position and
n ≤ d+1), and thus affinely isomorphic to ∆n−1(1) via an affine map τ : R

d → R
n,

injective on aff S and with τ(S) = Un. By the preceding discussion Qk(S) is
affinely isomorphic to Qk(Un) = ∆n−1(k).

Remark 7 Without going into further details, it is perhaps worthwhile to men-
tion that if we embed S (⊆ R

d) in the hyperplane 〈1, x〉 = 1 in R
d+1 (1 the

all-ones vector), then the k-set polytope of S is the cross-section of the zonotope
conv{σ(T ) | T ∈ 2S} with the hyperplane 〈1, x〉 = k.

Maximizing Sets and Vertices of k-Set Polytopes. Given a vector c in
R

d\{0}, we say that T ∈
(

S
k

)
maximizes c if

〈c, σ(T )〉 ≥ 〈c, σ(T ′)〉, for all T ′ ∈
(

S
k

)
;

in other words, σ(T ) lies in a supporting hyperplane of Qk(S) with normal vector
c.

Lemma 2.5 Let k ∈ {1, . . . , n}, T ∈
(

S
k

)
, c a vector in R

d\{0} and let h be the
oriented hyperplane with parameters (c, α), where α := minp∈T 〈c, p〉. Then the
following statements are equivalent.

(a) (S\T ) ∩ h+ = ∅.

(b) T maximizes c.

(c) The sets in
(

S
k

)
which maximize c are exactly those of the form

(T ∩ h+) ∪ R , R ∈

(
S ∩ h

|T ∩ h|

)

.

Proof. By choice of α, we have T ∩ h− = ∅ .

(c) ⇒ (b) holds, since we can choose R = T ∩ h, and (T ∩ h+) ∪ (T ∩ h) equals
T by our initial observation.

For (b) ⇒ (a), let p∗ be some point in T with 〈c, p∗〉 = α. If there exists a
q ∈ S\T with 〈c, q〉 > α, then

〈c, σ((T ∪ {q})\{p∗})〉 > 〈c, σ(T )〉 ,
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– a contradiction to T maximizing c. Therefore, if (b) holds, then 〈c, q〉 ≤ α for
all q ∈ S\T and (a) holds.

Next we show (a) ⇒ (c). Put A := S ∩ h and B := T ∩ h+. Since 〈c, p〉 = α for
all p ∈ A, 〈c, σ(B ∪R)〉 attains the same value for all R ∈

(
A

|T∩h|

)
. This is also

the value of 〈c, v(T )〉, since T = B ∪ (T ∩ h) (we use here T ∩ h− = ∅ again).
We are left to show that for all T ′ ∈

(
S
k

)
not of the form B ∪ R, R ∈

(
A

|T∩h|

)

there exists some T ′′ ∈
(

S
k

)
with 〈c, v(T ′′)〉 > 〈c, v(T ′)〉. Suppose first that

there is a point p in T ′ ∩ h−. Choose some q ∈ T \ T ′ (this must exist, since
T ′ 6= T and |T ′| = |T | finite). We have 〈c, p〉 < α and 〈c, q〉 ≥ α; therefore
T ′′ := (T ′ ∪ {q})\{p} serves the purpose. Secondly, assume that T ′ ∩ h− = ∅,
but |T ′ ∩ h| > |T ∩ h|; hence, B\T ′ 6= ∅. Now choose some p ∈ T ′ ∩ h and
some q ∈ B\T ′. Again, T ′′ := (T ′ ∪ {q})\{p} is answering the purpose. Finally,
if T ′ ∩ h− = ∅ and |T ′ ∩ h| = |T ∩ h|, then T ′ ∩ h+ = B, that is, T ′ is of the
form excluded. For concluding T ′ ∩ h+ = B, we have eventually employed the
precondition (a): (S\T ) ∩ h+ = ∅.

Lemma 2.6 Let S be in general position. For k ∈ {1, . . . , n} and T ∈
(

S
k

)
, the

following conditions are equivalent.

(a) T is a k-set.

(b) σ(T ) is a vertex of Qk(S).

(c) T maximizes some vector c.

(Moreover, if the conditions hold, then the cone of normal vectors of (oriented)
supporting hyperplanes of Qk(S) at σ(T ) is precisely the set of normal vectors
that are maximized by T .)

Proof. (a) ⇒ (b). For a k-set T there exists an oriented hyperplane h (with
normal vector c) such that S ∩ h = ∅ and S ∩ h+ = T . While preserving these
properties, we can perturb h so that all 〈c, p〉, p ∈ S, are distinct; so let us assume
this property. Set α := minp∈T 〈c, p〉. The oriented hyperplane ĥ with parameters

(c, α) satisfies |S∩ĥ| = |T ∩ĥ| = 1 and (S\T )∩ĥ+ = ∅. It follows, by Lemma 2.5,
that T is the unique set that maximizes c, and thus σ(T ) is a vertex of Qk(S).

(b) ⇒ (c). If σ(T ) is a vertex of Qk(S), then there is an oriented hyperplane h
such that σ(T ) ∈ h and h+ ∩ Qk(S) = ∅. That is, for c the normal vector of h,
we have that that 〈c, σ(T ′)〉 > 〈c, σ(T )〉 for no T ′ ∈

(
S
k

)
. This constitutes that T

maximizes c.

(c) ⇒ (a). If T maximizes some vector c, then by Lemma 2.5 the hyperplane h
with parameters (c, minp∈T 〈c, p〉) has the property that T ∩ h− = ∅ and (S\T )∩
h+ = ∅. Since S is in general position, we can perturb h and obtain a hyperplane
h̃ such that S ∩ h̃+ = T and S ∩ h̃ = ∅.

Remark 8 The equivalence “T is a k-set ⇔ σ(T ) is a vertex of Qk(S)” is valid
in general, i.e. without the general position assumption made in Lemma 2.6.
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(i− 1)-face of Qj+1(S)

.

.

.

(i− 1)-face of Qj+i−1(S)

(i, j)-partition

Figure 3: Visualization of Theorem 2.7, case i ≥ 2.

Faces of k-Set Polytopes. We have prepared the grounds for the crucial result
of this section, which will easily entail Theorem 2.1 and thereby Theorem 2.2 (7).

Theorem 2.7 Let S be in general position and let (A, B) be an (i, j)-partition
of S.

(a.1) If i = 0 (i.e. B is a j-set of S), then σ(B) is a vertex of Qj(S).

(a.2) If i ≥ 2, then for every ℓ ∈ {1, . . . , i− 1} the set

{

σ(B ∪ R)

∣
∣
∣
∣
R ∈

(
A

ℓ

)}

= σ(B) + σ

(
A

ℓ

)

is the vertex set of an (i−1)-face F ′ of Qj+ℓ(S); we have that F ′ = σ(B)+
Qℓ(A), an (i− 1)-polytope affinely isomorphic to ∆i−1(ℓ).

Let F be an (i− 1)-face of Qk(S).

(b.1) If i = 1 (i.e. F is a vertex of Qk(S)), then there is a unique k-set T of S
with F = σ(T ).

(b.2) If 2 ≤ i ≤ d, then there is exactly one (i, j)-partition (A′, B′) (for some
j ∈ {k − (i − 1), . . . , k − 1}) that induces F in the fashion described in
(a.2); that is, F = σ(B′) + Qk−j(A

′) and F is affinely isomorphic to the
hypersimplex ∆i−1(k − j).

Proof. (a.1) is the implication (a) ⇒ (b) from Lemma 2.6.

(a.2). Let h be an oriented hyperplane with S∩h = A and S∩h+ = B; let (c, α)
be the parameters of h. Consider T ∗ = B∪A∗ for some A∗ ∈

(
A
ℓ

)
. Note that A∗ is

nonempty, and so α = minp∈T ∗〈c, p〉. We have (S\T ∗)∩h+ = ∅ and so Lemma 2.5
tells us that the sets B∪R, R ∈

(
A
ℓ

)
, are exactly those sets in

(
S

j+ℓ

)
that maximize

c. That is, there is a supporting hyperplane ĥ of Qj+ℓ(S) with normal vector c

and with σ
(

S
k

)
∩ ĥ = σ(B) + σ

(
A
ℓ

)
. That is, indeed F ′ = conv(σ(B) + σ

(
A
ℓ

)
) is

a face of Qj+ℓ(S). The remaining facts – in particular, that F ′ is an (i− 1)-face
and that all points in σ(B) + σ

(
A
ℓ

)
are vertices, follow from Lemmas 2.3 and 2.4,

respectively.
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(b.1). Note, as a word of warning, that σ(T ′) = σ(T ′′) is possible for sets T ′ 6= T ′′

in
(

S
k

)
– even with the general position assumption as we formulated it.

Clearly, if F is a vertex, then F ∈ σ
(

S
k

)
and there has to be a set T ∈

(
S
k

)
with

F = σ(T ). T has to be a k-set (Lemma 2.6), and there is an oriented hyperplane
h with |T ∩ h| = 1 and S ∩ (h ∪ h+) = T . By Lemma 2.5 (c) it follows that T is
the unique set that maximizes the normal vector of h and we are done.

(b.2). Note that since F is an (i − 1)-face with i ≥ 2, Qk(S) has to be of
dimension at least 1 and hence k ∈ {1, . . . , n− 1}.

Consider some supporting hyperplane h of Qk(S) with Qk(S)∩h = F . Let c be
the normal vector of h and let T ∈

(
S
k

)
so that σ(T ) is a vertex of F . Now consider

the hyperplane ĥ with parameters c and α := minp∈T 〈c, p〉. Lemma 2.5 (c) tells us

exactly which sets in
(

S
k

)
maximize c, namely those of the form B′∪R, R ∈

(
A′

ℓ

)
,

where B′ := T ∩ ĥ+, A′ := S ∩ ĥ, and ℓ := |T ∩ ĥ|; ℓ > 0 by choice of ĥ, and
ℓ < |A′|, since otherwise F is of dimension 0. That is, Lemma 2.3 is applicable
and F = σ(B′) + Qℓ(A

′) is of dimension |A′| − 1; therefore, |A′| = i. We have
obtained the claimed (i, j) partition (A′, B′), where j := |B′| = |T | − ℓ with
1 ≤ ℓ ≤ i− 1.

For the proof of uniqueness, let T := {T ∈
(

S
k

)
| σ(T ) is vertex of F}. Recall

from (b.1) that every vertex has a unique set T that generates it. It follows
that T = {B′ ∪ R |R ∈

(
A′

ℓ

)
} for A′,B′ and ℓ as above. Clearly this determines

(A′, B′), since B′ =
⋂

T∈T T and A′ =
⋃

T∈T T\B′.

Corollary 2.8 For S in general position, Qk(S) is a simplicial polytope iff d ≤ 3
or k 6∈ {2, . . . , n− 2}.

Proof. Cases d ∈ {0, 1, 2} are trivial. For d = 3, note that ∆2(1) and ∆2(2) are
2-simplices, while ∆2(0) and ∆2(3) degenerate to a point (so, in fact, they are
0-simplices). Hence, for d = 3 and for all k, all facets of Qk(S) are simplices and
Qk(S) is simplicial.

However, for d ≥ 4 and 2 ≤ ℓ ≤ d− 2, the hypersimplex ∆d−1(ℓ) is a (d− 1)-
polytope with

(
d
ℓ

)
> d vertices – thus not a simplex. Hence, for d ≥ 4 and

k ∈ {2, . . . , n − 2}, Qk(S) is not simplicial. Q1(S) = conv S and Qn−1(S) =
σ(S)−Q1(S), so this settles the cases k ∈ {1, n− 1} because of general position
of S. The remaining cases are trivial, since for k 6∈ {1, . . . , n − 1}, the k-set
polytope degenerates to a single point or the empty set.

Proof of Theorem 2.1. Case ‘i = 0,’ i.e. the claim f
(k)
−1 = 1, holds by definition

(recall that every polytope enjoys the presence of an empty face: f−1 = 1).

Case ‘i = 1’ claims that the number of k-sets of S is exactly the number of
vertices of the k-set polytope. That fact is established by the bijection described
in Theorem 2.7 (a.1) and (b.1).
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Case ‘i ∈ {2, . . . , d}’ follows from the bijection between the (i−1)-faces of Qk(S)
on the one side and the set

{(A, B) | (A, B) is an (i, j)-partition of S with k − i + 1 ≤ j ≤ k − 1}

on the other side, as it is described in Theorem 2.7 (a.2) and (b.2).

Finally, if i 6∈ {0, . . . , d}, then f
(k)
i−1 is 0 (recall f

(k)
d = 0, in particular), and so is

the sum
∑k−1

j=k−i+1 Di,j, since Di,j = 0 for i 6∈ {0, . . . , d}.

Proof of Theorem 2.2 (5) is self-evident.

(6) We concentrate on the case n > i ≥ 0 and i ≤ d. First, for i = 0, we have
to establish that there are ϕd(n) =

(
n−1

d

)
+
(

n−1
d−1

)
+ · · ·

(
n−1

0

)
ways of dissecting

S by a hyperplane disjoint from S. This is actually a well-known fact (folklore),
sometimes referred to as Cover’s formula [6]; see also [9, Theorem 3.1], where this
is stated in a different form, though. We present a proof for the sake of com-
pleteness. Moreover we want to provide an explicit bijection between unordered
hyperplane partitions {{S∩h−, S∩h+} |S∩h = ∅} and at most d element subsets
of S\{a}, where a ∈ S is some arbitrarily chosen anchor point.

Counting is obvious in R
1. For the announced bijection, we can associate

the trivial dissection {S, ∅} with the empty set; a non-trivial dissection {B0, B1},
max B0 < min B1, is associated with min B1, if a ∈ B0, and with max B0, if
a ∈ B1.

Now assume d > 1. Choose some generic line λ through a, so that the orthog-
onal projection of S on a hyperplane orthogonal to λ is in general position within
this hyperplane. Let S ′ denote the projection of S. By induction hypothesis,
there are ϕd−1(n) unordered hyperplane partitions of S ′ in its affine hull; these
are in correspondence to the dissections of S that can be realized by a hyperplane
parallel to λ.

Given any other unordered hyperplane partition {B0, B1}, a ∈ B0, consider
the hyperplane h with B0 ⊆ S ∩ (h− ∪ h) and B1 ⊆ S ∩ (h+ ∪ h) that maximizes
the distance between a and the point of intersection between λ and h. Note that
the parameters of this hyperplane can be obtained from a linear program that is
bounded, since no hyperplane parallel to λ realizes the partition {B0, B1}. More-
over, because of general position, there is a unique A ∈

(
S\{a}

d

)
that determines h

in the sense that the conditions A∩B0 ⊆ S ∩ (h− ∪h) and A∩B1 ⊆ S ∩ (h+ ∪h)
lead to the same hyperplane h. The constraints in A are tight, that is, A ⊆ h.
This set A will be associated with the partition {B0, B1}.

Why is every A ∈
(

S\{a}
d

)
chosen exactly once? We describe the inverse

map. Given such an A, let hA be the oriented hyperplane with A ⊆ hA and
a ∈ h−

A. The projection A′ ∪ {a′} ⊆ S ′ of A ∪ {a} to the hyperplane orthogonal
to λ is a set of d + 1 points in general position in a (d − 1)-flat. There is a
unique Randon partition {A′

0, A
′
1} with a′ ∈ A′

0; that is A′ ∪ {a′} = A′
0 ∪̇A′

1 and
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conv A′
0∩conv A′

1 6= ∅ (consult Radon’s Theorem, cf. [8, Theorem 2.1 and remark
after Theorem 9.1]). For A0 and A1 the preimages of A′

0 and A′
1, respectively,

set B0 := A0 ∪ (S ∩ h−
A) and B1 := A1 ∪ (S ∩ h+

A). The partition {B0, B1} is
indeed realizable by a hyperplane (an appropriate perturbation of hA), and it is
not difficult to see that {B0, B1} is the unique partition that is mapped to A.

This completes the proof that there are ϕd(n) unordered hyperplane parti-
tions, and this shows that, for n > 0,

∑

j∈Z
D0,j = 2ϕd(n). In fact, after fixing

some point a ∈ S and an ordered sufficiently generic orthogonal basis, the proof
establishes the claimed bijection between hyperplane partitions and at most d
element subsets of S\{a}.

The identity for n > i > 0 and i ≤ d is now easy to obtain. We simply consider
each i-tuple A of points in S. We choose a generic (d − i)-flat κ disjoint from
aff A. Every point p in S0 := S\A is mapped to the intersection of aff(A ∪ {p})
with κ, which results in a set S ′

0 of n − i points. In κ, there are ϕd−i(n − i)
unordered partitions (by (d − i − 1)-flats in κ), which correspond to the ways a
hyperplane h with S ∩ h = A can partition S\A (details omitted).

For a proof of (7) recall the Euler-Poincaré Formula for the f -vector of a d-
dimensional polytope, [27, Corollary 8.17].

f0 − f1 + · · ·+ (−1)d−1fd−1 = 1− (−1)d . (9)

If the presumptions k ∈ {1, . . . , n − 1} and n ≥ d + 1 are satisfied, Qk(S) is
a d-dimensional polytope (see Lemma 2.3), we can substitute the findings from

Theorem 2.1 in (9) with f
(k)
i for fi, and we readily obtain (7).

The final relation (8) claims d (Dd,j +Dd,j−1) = 2 Dd−1,j, provided n ≥ d+1. We
employ double counting for a proof.

Fix some j. We assign to every (d, j)-partition (A, B) the set

Γ(A, B) := {(A\{p}, B) | p ∈ A}

By appropriate small rotation of the hyperplane inducing (A, B) it is easily seen
that each of these pairs is a (d − 1, j)-partition of S; and obviously there are
d = |A| of them. In a similar fashion, every (d, j − 1)-partition (A, B) maps to a
set

Γ(A, B) := {(A\{p}, B ∪ {p}) | p ∈ A}

of d distinct (d− 1, j)-partitions of S.
If we can show that every (d− 1, j)-partition (A′, B′) appears in exactly two

such sets, the asserted identity is verified. Let h be an oriented hyperplane
inducing (A′, B′). We can rotate h about the (d− 2)-flat aff A′ in two directions
until we hit points p and q, respectively (both not in A′); we have p 6= q, since
n ≥ d+1. If p ∈ B′, then we have reached a (d, j−1)-partition (A′∪{p}, B′\{p});
obviously, (A′, B′) ∈ Γ(A′ ∪ {p}, B′\{p}). If p 6∈ B′, we have (A′, B′) ∈ Γ(A′ ∪
{p}, B′), with (A′ ∪ {p}, B′) a (d, j)-partition. The same applies to q instead of
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p. Every hyperplane inducing (A′, B′) leads to the same points p and q, and we
are done.

3 (i, j)-Partitions under Continuous Motion

In this section we let S and S ′ denote two sets of n ≥ d + 2 points12 each in
general position in R

d, d ≥ 2, and we will use a tacitly assumed bijection p 7→ p′

between S and S ′. We want to investigate the numbers of (i, j)-partitions under
continuous motion of the underlying point set. S and S ′ can be thought of as the
configuration of the moving point set right before and right after an event that
changes some of the Di,j’s. Such considerations have been exploited frequently,
take the original proof of Tverberg’s Theorem [24] as a prominent example in
discrete geometry, and see [15, 2] for examples in the context of k-sets and j-
facets.

What might change the Di,j’s? We have seen that the (d, k)-partitions de-
termine all (i, j)-partitions (Remark 1). As long as no point moves over a hy-
perplane determined by some other d points, we are save. Otherwise, the d + 1
points p1, . . . , pd+1 involved13 change their sign14 χ(p1, . . . , pd+1), and in a generic
motion, this will be the only (d + 1)-point subset that does so.

Mutations and Mutation Kernel. The pair (S, S ′) is called a mutation if
there is a set X ∈

(
S

d+1

)
so that for a sequence (q1, . . . , qd+1) of d + 1 distinct

points in S

χ(q1, . . . , qd+1) 6= χ(q′1, . . . , q
′
d+1) iff {q1, . . . , qd+1} = X.

The set X is called mutation kernel of the mutation (S, S ′).
We are interested in the increments Di,j(S

′) − Di,j(S), and we will see that
this change depends on two integer parameters of the mutation only (apart from d
and n). (i) In order to introduce the first parameter observe that all hyperplanes
spanned by d points in X partition S\X in the same way into two sets B0 and
B1. This fact is obvious if one keeps in mind that the simplex spanned by X
is ‘almost flat’ before and after it changes its sign. We will have to verify that
this is actually guaranteed by our definition of a mutation. The size, ℓ, of B0

determines one of the two parameters. (ii) For the second parameter note that if
we choose d points in X, then the hyperplane spanned by these points may have
the unique remaining point in X either on the same or on the opposite side of B0.

12If n ≤ d + 1, the Di,j ’s do not depend on the configuration but on n and d only; the same
is true, if d = 1. These cases are of no interest to us here.

13None of these points is distinguished, all of them move over the hyperplane determined by
the remaining d points.

14Note that if these points change their sign in some order, then they change their sign in
each orders.
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The number, m, of d-point subsets of X where the remaining point in X lies on
the same side as15 B0 is the second parameter we need to consider. (The choice of
B0 among B0 and B1 was arbitrary, so depending on this choice, the parameters
may be (m, ℓ) or (d + 1 −m, n − (d + 1) − ℓ)). A more formal introduction of
these parameters will be given shortly.

The Simplex Spanned by the Mutation Kernel is ‘Almost Flat.’ Let
us assume for the rest of this section that (S, S ′) is a mutation with mutation
kernel X = {p1, . . . , pd+1}. The following lemma states that the hyperplane
spanned by {p1, . . . , pd−1, pd} separates points p̂, ˆ̂p ∈ S\X iff the hyperplane
spanned by {p1, . . . , pd−1, pd+1} does so; in fact, iff the hyperplane spanned by
{p1, . . . , pi−1, pi+1, . . . , pd+1} does so for i = 1, . . . , d + 1, since we can apply the
lemma to any permutation of (p1, . . . , pd+1). In other words, all hyperplanes
spanned by d points in X separate S\X in the same manner.

Lemma 3.1 For a mutation (S, S ′) with mutation kernel X := {p1, . . . , pd+1}
and for p̂, ˆ̂p ∈ S\X, we have

χ(λ, pd, p̂) · χ(λ, pd, ˆ̂p) = χ(λ, pd+1, p̂) · χ(λ, pd+1, ˆ̂p)

where λ is short for the sequence p1, . . . , pd−1.

Proof. The three-term Grassmann-Plücker identity (cf. [4, 21]) implies that

{χ(λ, pd, p̂) · χ(λ, pd, ˆ̂p), −χ(λ, pd+1, p̂) · χ(λ, pd+1, ˆ̂p), χ(λ, pd, pd+1) · χ(λ, p̂, ˆ̂p)}

contains {−1, +1} or equals {0}. The value 0 contradicts general position. Now,
if the asserted identity in the lemma fails to hold, this implies the value of
χ(λ, pd, pd+1) · χ(λ, p̂, ˆ̂p) (it has to be −χ(λ, pd, p̂) · χ(λ, pd, ˆ̂p)).

If the value of χ(λ, pd, pd+1) ·χ(λ, p̂, ˆ̂p) is fixed by −χ(λ, pd, p̂) ·χ(λ, pd, ˆ̂p), then
– by definition of a mutation – it remains unchanged under the mapping p 7→ p′;
a contradiction to the mutation condition which lets χ(λ, pd, pd+1) change its sign
under the mapping, but not so the sign χ(λ, p̂, ˆ̂p).

At this point we prefer to pass over to covector terminology. To this end
assume an underlying ordering {p1, . . . , pn} of S with {p1, . . . , pd+1} = X. We
set + := −, − := +, 0 := 0, and for sequences v = v1 . . . vs and w = w1 . . . wt

over {+,−, 0}, we let v := v1 . . . vs and vw := v1 . . . vsw1 . . . wt. Moreover, we
let pertv be the set of all vectors which agree with v on all nonzero positions of
v – in accordance with the analogous definition for hyperplane partitions in (2).
Recall that a cocircuit is a covector where the number of 0’s is d, and that the
set L(S) of all covectors of S can be written as the union of all sets pertc over
all cocircuits c of S.

15The reader may justifiably worry, what that means if B0 is empty – a forthcoming more
formal definition will clarify.
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Formal Introduction of Mutation Parameters. Now the only cocircuits
of S which are not cocircuits of S ′ are those induced by oriented hyperplanes
spanned by d points in X, i.e. the positions of 0’s in these cocircuits (d of them)
are among the first d + 1 positions; obviously, there are 2(d + 1) such cocircuits.
Moreover, Lemma 3.1 shows that there is a vector16

z ∈ {+,−}n−(d+1) such that
all cocircuits with all their 0’s in the first d+1 positions are from {+,−, 0}d+1

z or
{+,−, 0}d+1

z; note that z cannot be the empty sequence due to our assumption
n ≥ d + 2. We denote those cocircuits by ci and ci, i = 1, . . . , d + 1, where

ci =

i−1
︷ ︸︸ ︷

0 . . . 0 gi

d+1−i
︷ ︸︸ ︷

0 . . . 0 z , gi ∈ {+,−}.

For S ′, these cocircuits are substituted for by c
′
i and c

′
i, i = 1, . . . , d + 1, where

c
′
i =

i−1
︷ ︸︸ ︷

0 . . . 0 gi

d+1−i
︷ ︸︸ ︷

0 . . . 0 z .

Now we call the pair (S, S ′) an (m, ℓ)-mutation, for m the number of +’s among
the gi’s and ℓ the number of +’s in z.

Lemma 3.2 If (S, S ′) is an (m, ℓ)-mutation, then (i) it is also a (d+1−m, n−
(d + 1) − ℓ)-mutation, and (ii) (S ′, S) is a (d + 1 −m, ℓ)-mutation. Moreover,
(iii) 1 ≤ m ≤ d and (iv) 0 ≤ ℓ ≤ n− (d + 1).

Proof. The only item that needs some consideration is (iii). Suppose m = 0,
that is gi = − for all i = 1, . . . , d+1. That is, all points with corresponding entry
+ in z are separated from the interior of conv X by all hyperplanes spanned by
facets of conv X. No point can satisfy this, so z has all −’s. But now switch to
S ′ and apply the argument to X ′ and the cocircuits c

′
i to obtain a contradiction.

If m = d + 1, apply the reasoning to X and the cocircuits ci. .

Switching Covectors. We have by now complete control of the changes in the
set of cocircuits from S to S ′: The ci ’s and ci ’s go, and the c

′
i ’s and c

′
i ’s come.

We know that the ci’s stand for m of the (ℓ + 1)-facets of S and (d + 1) − m
of the ℓ-facets of S, and similarly for the other cocircuits involved. So we could
easily derive the increments ej(S

′)− ej(S) in terms of m and ℓ (and d and n, of
course) now. We head for the general setting, instead.

Recall that all covectors of S can be obtained as perturbations of cocircuits.
It follows, that all covectors in the symmetric difference L(S) ⊕ L(S ′) must be
perturbations of one of ci, ci, c

′
i or c

′
i, i = 1, . . . , d + 1, and thus have to equal

z or z in their last n− (d + 1) entries.

16A vector representing the unique partition of S\X by hyperplanes spanned by d points in
the mutation kernel X . There are two of them, namely z and z.

19



The issue remaining is the following: Do the cocircuits ci, ci, c
′
i or c

′
i, i =

1, . . . , d + 1, and perturbations thereof tell us everything about covectors of the
form {+,−, 0}d+1

z or {+,−, 0}d+1
z ? After all, such covectors appear also as

perturbations of other cocircuits. The following lemma clarifies the picture.

Lemma 3.3 Let (S, S ′) be a mutation, with ci’s and z as defined above. Then
all covectors in L(S) of the form {+,−, 0}d+1

z are in
⋃d+1

i=1 pertci.

Proof. Note that for v ∈ {+,−, 0}d+1, we have vz ∈
⋃d+1

i=1 pertci iff (v)i = gi

for some i = 1, . . . , d + 1; that is, iff g1 . . . gd+1 z 6∈ pertvz. Hence, the assertion
of the lemma is equivalent to g1 . . . gd+1 z 6∈ L(S); for sufficiency recall that every
covector forces all of its permutations to be covectors.

Now let us restrict ourselves to the subset P = {p1, . . . , pd+2} of S. If, indeed,
g1 . . . gd+1 z ∈ L(S), this shows that L(P ) ⊇ {+,−}d+1(z)1, and since every covec-
tor forces its complementary vector to be a covector, we have L(P ) ⊇ {+,−}d+2.
So P realizes all of its 2d+2 ordered partitions as ordered hyperplane partitions –
too much is too much, as Theorem 2.2(6) tells us.

All in all, we have shown that L(S)⊕L(S ′) equals

(
d+1⋃

i=1

pertci ⊕
d+1⋃

i=1

pertc
′
i

)

∪̇

(
d+1⋃

i=1

pertci ⊕
d+1⋃

i=1

pertc
′
i

)

which leaves us with a counting exercise. Given i and j, the set of vectors of
the form {+,−, 0}d+1

z contains
(

d+1
i

)(
d+1−i

j−ℓ

)
vectors with i the number of 0’s

and j the number of +’s. How many of these are not in
⋃d+1

i=1 pertci, i.e. have
g1 . . . gd+1 z as perturbation? For that we would have to switch (d+1)−m−(j−ℓ)
of the gi = + to 0 (which leaves (j − ℓ) +’s among the first d + 1 positions) and
switch i− ((d + 1)−m− (j − ℓ)) of the gi = − to 0 in order to have i to be the
number of 0’s. This makes

(
d + 1−m

(d + 1)−m− (j − ℓ)

)(
m

i− ((d + 1)−m− (j − ℓ))

)

=

(
m

d + 1− i− (j − ℓ)

)(
d + 1−m

j − ℓ

)

=: Ti,j(m, ℓ)

sequences (with i 0’s and j +’s) not appearing in
⋃d+1

i=1 pertci. Summing up, the

number of covectors of (i, j)-partitions in
⋃d+1

i=1 pertci is
(

d+1
i

)(
d+1−i
j−ℓ

)
−Ti,j(m, ℓ),

and the number of covectors of (i, j)-partitions in
⋃d+1

i=1 pertc
′
i is

(
d+1

i

)(
d+1−i

j−ℓ

)
−

Ti,j(d+1−m, ℓ). That is, the increment of (i, j)-partitions of the form {+,−, 0}d+1
z

is Ti,j(m, ℓ)− Ti,j(d + 1−m, ℓ). An analogous analysis (with n− (d + 1)− ℓ for
ℓ, and d + 1−m for m) for covectors of the form {+,−, 0}d+1

z finally yields the
following result.
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Theorem 3.4 If (S, S ′) is an (m, ℓ)-mutation, then

Di,j(S
′)−Di,j(S) = δ

(m,ℓ)
i,j ,

where

δ
(m,ℓ)
i,j := Ti,j(m, ℓ)− Ti,j(d + 1−m, ℓ)

+ Ti,j(d + 1−m, n− (d + 1)− ℓ)− Ti,j(m, n− (d + 1)− ℓ).

Remark 9 Ti,j(m, ℓ) 6= 0 iff ℓ + max{0, d + 1 − m − i} ≤ j ≤ ℓ + d + 1 −
max{m, i}. For example, relevant for the changes in the number of j-facets,

Td,j(m, ℓ) vanishes unless ℓ ≤ j ≤ ℓ + 1, and thus δ
(m,ℓ)
d,j = 0 unless j ∈ {ℓ, ℓ +

1, n − (d + 1) − ℓ, n − d − ℓ}. And in view of k-sets, T0,j(m, ℓ) vanishes unless

j = ℓ + d + 1−m, and thus δ
(m,ℓ)
0,j = 0 unless j ∈ {ℓ + m, ℓ + d + 1−m, n− ℓ−

m, n− ℓ− d− 1 + m}.

In the ‘balanced’ situation m = d + 1 −m, the increment δ
(m,ℓ)
i,j vanishes for

all i, j, and ℓ. That is, for d odd, a ((d + 1)/2, ℓ)-mutation leaves the Di,j’s
untouched. This is of particular interest in R

3, where a motion preserving convex
position of a point set encounters such balanced (2, ℓ)-mutations only.

With a little help of the just given remarks, the following implications for j-facets
and k-sets are easy to obtain.

Corollary 3.5 Let (S, S ′) be an (m, ℓ)-mutation.

(a) ej(S
′) = ej(S) for j 6∈ {ℓ, ℓ + 1, n− d− (ℓ + 1), n− d− ℓ},

eℓ(S
′)− eℓ(S) = en−d−ℓ(S

′)− en−d−ℓ(S)

= (2m− d− 1) · (1− [2ℓ = n− d− 1] + [2ℓ = n− d]) , and

eℓ+1(S
′)− eℓ+1(S) = en−d−(ℓ+1)(S

′)− en−d−(ℓ+1)(S)

= (d + 1− 2m) · (1− [2ℓ = n− d− 1] + [2ℓ = n− d− 2]) .

(b) ak(S
′) = ak(S) for k 6∈ {ℓ + m, ℓ + d + 1−m, n− ℓ−m, n− ℓ− d− 1 + m},

aℓ+m(S ′)− aℓ+m(S) = an−ℓ−m(S ′)− an−ℓ−m(S)

= [2m 6= d + 1] · (−1 + [2ℓ = n− d− 1]− [2ℓ = n− 2m]) , and

aℓ+d+1−m(S ′)− aℓ+d+1−m(S) = an−ℓ−d−1+m(S ′)− an−ℓ−d−1+m(S)

= [2m 6= d + 1] · (1− [2ℓ = n− d− 1] + [2ℓ = n− 2d− 2 + 2m]) .
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T2

T3T1

T4

Figure 4: Projection of a set S in R
4 with four (d + 1)-sets.

4 Vector a(S) versus Vector e(S)

In this section we show that for d ≥ 4 the information given by the vector e(S)
is in general not sufficient to determine the vector a(S) – nor vice versa. We
show that for every d ≥ 4 and every n ≥ 4(d + 1) there are sets S, S ′ in R

d of
n points in general position with e(S) = e(S ′) and a(S) 6= a(S ′). An analogous
statement is shown for the case when the roles of a and of e are swapped. This
contrasts the situation in R

2 and R
3 (see Remark 5) where the vectors e(S) and

a(S) determine each other.

Theorem 4.1 (a) For any d ≥ 4 and n ≥ 4(d + 1) there are sets S, S ′ in R
d of

n points in general position with e(S) = e(S ′) and a(S) 6= a(S ′). More precisely,
for each d ≥ 4, k ≥ 1, ℓ ≥ 0 and n ≥ 4k(ℓ + d + 1) there are sets Sk,ℓ, S ′

k,ℓ in R
d

of n points in general position such that e(Sk,ℓ) = e(S ′
k,ℓ) and

al+m(Sk,ℓ)− aℓ+m(S ′
k,ℓ) = k,

where

m =

{
d/2 if d is even,
(d + 5)/2 otherwise.

(b) For any d ≥ 4 and n ≥ 3
2
(d + 1)2 there are sets S ′, S ′′ in R

d of n points in
general position with a(S ′) = a(S ′′) and e(S ′) 6= e(S ′′). In more concrete terms,
for each d ≥ 4, ℓ ≥ ⌊d/2⌋ − 1 and n ≥ (ℓ + d + 1)(d + 1) there are sets S ′

ℓ, S ′′
ℓ in

R
d of n points in general position such that a(S ′

ℓ) = a(S ′′
ℓ ) and

eℓ−m(S ′
ℓ)− eℓ−m(S ′′

ℓ ) = 1,

where

m =

{
d/2− 1 if d is even,
(d− 3)/2 otherwise.

Proof. (a) Assume that d ≥ 4. In order to illustrate the idea of the proof we start
with the special case of d even, k = 1, and ℓ = 0. We let S be a set of 4(d + 1)
points in general position such that there are four pairwise disjoint (d + 1)-sets
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of S denoted as T1, . . . , T4, see Figure 4. The set T1 itself is chosen in such a way
that it allows a (d/2 + 2, 0)-mutation (of the whole set with mutation kernel in
T1), and T2, T3, and T4 are chosen in such a way that each of these sets allows
a (d/2, 0)-mutation. Let S ′ be a set obtained by “executing” a corresponding
mutation (as required) for each of the sets T1, . . . , T4. By Corollary 3.5 we have
e(S) = e(S ′), but on the other hand we have by the same corollary

ad/2+2(S
′) = ad/2+2(S)− 1,

ad/2−1(S
′) = ad/2−1(S) + 1,

ad/2(S
′) = ad/2(S)− 3,

ad/2+1(S
′) = ad/2+1(S) + 3,

and so a(S) 6= a(S ′).
The general case is based on the same scheme. We construct two sets S and

S ′ of n points each in R
d such that S ′ is obtained by moving the points in S under

a sequence of mutations. Let d, k, ℓ, and n be fixed and fulfill the conditions
described in the assertion of the theorem.

Assume first that d is even. We put t = 4k, m′ = d/2 + 2 and m′′ = d/2.
Assume that S is constructed in such a way that it has pairwise disjoint (ℓ+d+1)-
sets T1, . . . , Tt; this is possible for example if T1, . . . , Tt are sufficiently close to
the surface of a sphere. The remaining n − t(ℓ + d + 1) points are placed at
the center of the sphere. Furthermore, for each i ∈ {1, . . . , t} we deform Ti in
such a way that for a given integer mi ∈ {1, . . . , d} a subset of d + 1 points in
Ti forms a mutation kernel of a (potential) (mi, ℓ)-mutation. It is not hard to
see that such a construction is possible. Now S ′ is obtained by “executing” the
assigned mutations, where m1 = . . . = mk = m and mk+1 = . . . = mt = m′.
By Corollary 3.5 exactly three (m′, ℓ)-mutations compensate the changes of the
vector of j-facets caused by one (m, ℓ)-mutation, and so we have immediately
e(S) = e(S ′). Since m, m′, d+1−m and d+1−m′ are pairwise distinct integers
(m and d + 1 −m have different parity) and since 2ℓ < n − 2d − 2 (and so the
‘special terms ’of Corollary 3.5 like [2l = n− d− 1] etc. can be ignored), we have
by the same corollary that

aℓ+m(S ′) = aℓ+m(S)− k,

aℓ+d+1−m(S ′) = aℓ+d+1−m(S) + k,

aℓ+m′(S ′) = aℓ+m′(S)− 3 k,

aℓ+d+1−m′(S ′) = aℓ+d+1−m′(S) + 3 k.

If d is odd, then we put t = 3k, m = (d+5)/2 and m′ = (d−1)/2. The remainder
of the proof goes through as above.

(b) Assume that d, ℓ and n are given and fulfill the conditions of the theorem
statement. First we treat the case that d is even. Let S, S ′ and S ′′ be sets of
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n points in general position in R
d with following properties. We construct S in

such a way that it has (ℓ + d + 1)-sets T0, . . . , Tt, where t = d. Furthermore, the
(ℓ + d + 1)-set T0 is deformed in such a way that it allows a (1, ℓ)-mutation M0,
and for each i ∈ {1, . . . , t} we deform Ti in such a way that the set Ti allows an
(d/2, ℓ − d/2 + i)-mutation Mi. Now S ′ is obtained from S by “executing” the
mutation M0, and S ′′ is obtained from S by executing the mutations M1, . . . , Mt.
Next we show that a(S ′) = a(S ′′) but e(S ′) 6= e(S ′′). We have 2ℓ < n − 2d − 2
and so by Corollary 3.5 it follows that

al+1(S
′) = al+1(S)− 1,

an−l−1(S
′) = an−l−1(S)− 1,

al+d(S
′) = al+d(S) + 1,

an−l−d(S
′) = an−l−d(S)− 1.

Furthermore, for each i ∈ {1, . . . , t}, the mutation Mi changes the vector of k-sets
in the following way:

el+i(S) and en−l−i(S) are changed by − 1,

el+i+1(S) and en−l−i−1(S) are changed by + 1.

The cumulative effect of these changes is the same for S ′′ as given above for S ′

and so a(S ′) = a(S ′′). On the other hand, by Corollary 3.5 (and the fact that
2ℓ < n− 2d− 2) we have

eℓ(S
′) = eℓ(S) + 1− d,

en−d−ℓ(S
′) = en−d−ℓ(S) + 1− d,

eℓ+1(S
′) = eℓ+1(S) + d− 1,

en−d−ℓ−1(S
′) = en−d−ℓ−1(S) + d− 1,

which are the only differences between e(S) and e(S ′). Moreover, we have for
example

eℓ−d/2+1(S
′′) = eℓ−d/2+1(S)− 1,

and it follows that e(S ′) 6= e(S ′′).
If d is odd, then S ′ is the same as above and S ′′ is obtained from S by

exactly t = (d − 1)/2 mutations M1, . . . , Mt, where for i ∈ {1, . . . , t} Mi is an
((d−1)/2, l− (d+1)/2+2i)-mutation. The remainder of the proof goes through
as above.

5 (i, j)-Partitions on the Moment Curve

The moment curve in R
d is the set Md = {(t, t2, . . . , td) | t ∈ R}. We denote by

Sn,d = {p1, . . . , pn} a set of n points on the moment curve, with the numbering
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consitent with the order of occurrence on the curve. In this section we derive a
formula for the numbers of (i, j)-partitions of Sn,d (Theorem 5.1). Such formulas
have been known for cases i = 0 [15] and i = d [1].

Let us define (
a

b

)

−1

=

{
1 if a = b = −1
(

a
b

)
otherwise.

Theorem 5.1 For n ≥ d + 1 we have

Di,j(Sn,d) =

d∑

s=0

B(n, j, i, s)

where, for q ∈ N0, B(n, j, i, 2q) equals

i∑

t1=0

i−t1∑

t2=0

((
q + 1

t1

)(
j − 1

q − t1

)

−1

(
q

t2

)

·

(
n− i− j − 1

q − t2 − 1

)

−1

(
2q − t1 − t2

2q − i

))

+

i∑

t1=0

i−t1∑

t2=0

((
q

t1

)(
j − 1

q − t1 − 1

)

−1

(
q + 1

t2

)

·

(
n− i− j − 1

q − t2

)

−1

(
2q − t1 − t2

2q − i

))

and, for q ∈ N, B(n, j, i, 2q − 1) equals

2

i∑

t1=0

i−t1∑

t2=0

((
q

t1

)(
j − 1

q − t1 − 1

)

−1

(
q

t2

)

·

(
n− i− j − 1

q − t2 − 1

)

−1

(
2q − 1− t1 − t2

2q − 1− i

))

.

For i = 0 the formula in Theorem 5.1 reduces to (10) as below which can be
found also in [15]. The formula for ej(Sn,d) can be derived from Theorem 5.1
using Vandermonde’s convolution [13].

Corollary 5.2 For n ≥ d + 1 we have

aj(Sn,d) = D0,j(Sn,d) =
d∑

s=0

B(n, j, s) (10)

where, for q ∈ N,

B(n, j, 2q − 1) := 2

(
j − 1

q − 1

)(
n− j − 1

q − 1

)
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and, for q ∈ N0,

B(n, j, 2q) :=

(
j − 1

q

)(
n− j − 1

q − 1

)

+

(
j − 1

q − 1

)(
n− j − 1

q

)

.

Furthermore, for d = 2q − 1 we have

ej(Sn,d) = Dd,j(Sn,d) = 2

(
j + q − 1

q − 1

)(
n− j − q

q − 1

)

and for d = 2q we have

ej(Sn,d) = Dd,j(Sn,d) =

(
j + q − 1

q − 1

)(
n− j − q

q

)

+

(
j + q

q

)(
n− j − q − 1

q − 1

)

.

The proof of Theorem 5.1 is postponed to the end of this section.
An ordered partition of a set S is a t-tuple (S1, . . . , St) of (possibly empty)

sets such that S = S1 ∪̇S2 ∪̇ . . . ∪̇St and for Sa, Sb with a < b it holds that the
indices of the points in Sa are smaller than the indices of the points in Sb. The
sets S1, . . . , St are called blocks. Let h be the hyperplane h0+h1x1+. . .+hdxd = 0
in R

d. The points of intersection of h with the moment curve Md correspond to
the roots of the polynomial

f(t) = h0 + h1t + . . . + hdt
d.

The graph of f(t) is divided up by at most d intersections with the axis t into
segments above, on and below the axis t (with zero or more points in Sn,d in
each segment). This gives rise to a following definition. A PZN-partition of Sn,d

(induced by h) is an ordered partition of Sn,d such that the consecutive blocks
are determined by the consecutive segments of the graph of f(t): the ith block
contains exactly the points in the ith segment. In addition, the blocks are colored
by P, Z and N depending whether the segment of the block is above, on, or below
the axis t, respectively. The order of blocks in the partition is determined by the
order how the segments of the graph of f(t) are traversed when t goes from −∞
to +∞.

It is not hard to see that the PZN-partitions of Sn,d are exactly the ordered
partitions of Sn,d with blocks colored P, Z and N which fulfill the following con-
ditions:

• the first block is a P-block or an N-block,

• if B is not the last block and it is a P-block (N-block), then B is directly
followed by a Z-block and an N-block (a P-block) (i.e. the sequence is PZN
or NZP),
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f(t)

f(t)

t t

Figure 5: Both PZN-partitions correspond to the same (0, 3)-partition

• each Z-block has cardinality 0 or 1,

• the number of Z-blocks is at most d.

If the total cardinality of the P-blocks is j and the total cardinality of the
Z-blocks is i, then such PZN-partition corresponds to an (i, j)-partition of Sn,d.
Unfortunately, many different PZN-partitions can yield the same (i, j)-partition.
This is illustrated in Figure 5. To overcome this problem, we introduce the
following notion. A PZN-partition is called a minimal PZN-partition, if

1. all Z-blocks before the first non-empty P-block or N-block are non-empty,

2. each Z-block directly preceding an empty P-block or an empty N-block is
non-empty.

Lemma 5.3 Among all PZN-partitions of Sn,d which correspond to the same
(i, j)-partition of Sn,d there is exactly one minimal PZN-partition.

Proof. The proof of existence is easy and left to the reader. Assume that P and
P ′ are two minimal PZN-partitions of Sn,d which correspond to the same (i, j)-
partition of Sn,d for some i ∈ {0, . . . , d} and j ∈ {0, . . . , n−i}. We show first that
P and P ′ have the same non-empty P-blocks and the same non-empty N-blocks
(each non-empty block is identified by its color and by the points it contains).
Assume that there is a P-block (N-block) of P not present in P ′. Then P ′ must
contain two P-blocks (N-blocks) B1, B2 with B ⊆ B1 ∪ B2. Since B1 and B2

contain consecutive points on Md, all blocks between B1 and B2 must be empty.
Especially, there is an empty N-block (P-block) directly preceded by an empty
Z-block between B1 and B2, which contradicts 2. Since the non-empty Z-blocks
are determined by the (i, j)-partition, P and P ′ have the same non-empty blocks.

Next we show that P and P ′ have the same empty blocks (empty blocks are
identified by their color and one non-empty block directly proceeding or directly
following the empty block). Assume that B is an empty Z-block of P. Then the
P-block (N-block) B′ directly following B must be non-empty by 2, furthermore
there is a non-empty P-block or N-block B′′ before B closest to B (by 1) in P.
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t

B′

B

B′′

Figure 6: Illustration of the argument that B must exist in P ′

The number of Z-blocks between B′′ and B′ in P ′ is the same as in P, since B′′

has the same color in both partitions and both partitions have the same number
of non-empty Z-blocks between B′′ and B′ (parity argument), see Figure 6. Since
each (empty) P-block or N-block between B′′ and B′ is directly preceded by a
non-empty Z-block in both P and P ′ we follow that B must exist in P ′. Now
assume that B is an empty P-block (N-block) in P. If B is the first block of P,
then clearly B also exists in P ′ by 1 and by the fact, that the first non-empty
P-block or N-block has the same color in both P and P ′. Otherwise there is a
non-empty P-block or N-block B′ before B closest to B. Then B must occur in
P ′ by a similar argument as before.

Proof of Theorem 5.1. By the last lemma we have to count the minimal
PZN-partitions such that the compounded cardinality of the P-blocks is j and
the compounded cardinality of the Z-blocks is i. We classify the PZN-partitions
by the number of their Z-blocks, and so let B(n, j, i, s) be the number of such
minimal PZN-partitions of Sn,d with exactly s Z-blocks each. Among them we
count the PZN-partitions which start with a P-block and have t1 empty P-blocks
and t2 empty N-blocks. If s = 2q − 1, then the number of P-blocks is q and the
number of N-blocks is also q. There are

(
q
t1

)
possibilities to choose the empty

P-blocks among all P-blocks and
(

j−1
q−t1−1

)

−1
ways to partition a set of j points of

Sn,d into q − t1 remaining non-empty P-blocks (if j = 0 and q − t1 = 0, then all
P-blocks are empty and we have exactly one choice). It is not hard to see that we
can choose the empty N-blocks among all N-blocks independently of the choice
of the empty P-blocks. There are

(
q
t2

)
choices for the empty N-blocks, and we can

partition the n − i − j points in Sn,d into q − t2 remaining non-empty N-blocks
in
(

n−j−i−1
q−t2−1

)

−1
ways.

By 1 and 2 it is clear that for each empty P-block or N-block we must make a
unique Z-block non-empty and that in total t1 + t2 Z-blocks become non-empty.
The remaining i− t1− t2 points in Sn,d can be put into the remaining s− t1− t2
Z-blocks, which is possible in

(
s−t1−t2

s−i

)
ways. Since the same calculation also holds
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for the PZN-blocks which start with an N-block, the value of B(n, j, i, s) is

2
i∑

t1=0

i−t1∑

t2=0

((
q

t1

)(
j − 1

q − t1 − 1

)

−1

(
q

t2

)

(
n− i− j − 1

q − t2 − 1

)

−1

(
2q − 1− t1 − t2

2q − 1− i

))

.

The case s = 2q is handled analogously.
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