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On Spanning Trees with Low Crossing Numbers∗

Emo Welzl¶

Abstract

Every set S of n points in the plane has a spanning tree such that no line disjoint
from S has more than O(

√
n) intersections with the tree (where the edges are

embedded as straight line segments). We review the proof of this result (originally
proved by Bernard Chazelle and the author in a more general setting), point at
some methods for constructing such a tree, and describe some algorithmic and
combinatorial applications.

1 Introduction.

Over the recent years there has been considerable progress in the simplex range searching
problem. In the planar version of this problem we are required to store a set S of n points
such that the number of points in any query triangle can be determined efficiently. One
of the combinatorial tools developed for this problem are spanning trees with low crossing
numbers.

Let S be set of n points in the plane. For a spanning tree on S and a line h, the
crossing number of h in the tree is defined as ch = a + b

2 , where a is the number of edges
{p, q} in the tree with p and q on opposite sides of h, and b is the number of edges with
exactly one endpoint on h. h crosses an edge, if that edge contributes to the crossing
number of h. Note that an edge completely contained in the line h does not contribute
to the crossing number. The crossing number of the tree is the maximal crossing number
of any line.

In other words, a spanning tree with crossing number c ensures that no line (disjoint
from S) intersects the straight line embedding of the tree in more than c edges. It has
been shown in [CW89], that every set of n points allows a spanning tree with crossing
number O(

√
n), which is tight. In Section 2 we review the proof of this result (which is

treated in [CW89] in a more general setting, for arbitrary dimension, and for set systems
of finite VC-dimension, see Section 5). We derive an explicit constant for the bound on
the crossing number. The proof builds on a packing lemma for a pseudodistance on points
in the presence of a set of lines (where the distance between two points is the number
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of separating lines), and on a reweighting technique, which has been applied to several
seemingly unrelated problems, see [CF88, Cla89, AM90, Mat91b, AK91].

Spanning trees are useful in a number of applications. The original motivation for
introducing the concept in [Wel88] was the triangle range searching problem which can be
solved in O(

√
n log n) query time and linear space via spanning trees. This is close to the

lower bound of Ω(
√

n) for linear space data structures in the so-called arithmetic model
[Cha89]. Recently, this lower bound has actually been achieved in [Mat91c]. Several
different algorithmic applications are described in [Aga89, EGH+89, Aga91, AvKO91,
CJ91, AS91]. For example, spanning trees with low crossing numbers can be used for ray
shooting among line segments in the plane (i.e., we want to preprocess line segments in the
plane such that the first segment intersected by a query ray can be efficiently computed).

In Section 3 we indicate the application to triangle range searching, and we present
two recent combinatorial results which can be easily derived from spanning trees with low
crossing numbers [MWW91, Pac91].

Section 4 indicates some of the building blocks of algorithms for constructing spanning
trees with low crossing numbers. This will lead us to a randomized Monte-Carlo algorithm;
however, we did not try to present the best known time bounds for construction. Finally
in Section 5, we point at the generalizations to higher dimensions.

We tried to keep the paper largely self-contained, so that in particular in Sections 2
and 3 little foreknowledge should be required. Hence we start by reviewing some basics
before we plunge into the rest of the paper.

Notation and basics. Let S be a set of n points in the plane, and let G be a set of !
lines in the plane. We say that S is in general position, if no three points lie on a common
line, and no two points lie on a vertical line. G is in general position, if no three lines
contain a common point, no two lines are parallel, and no line is vertical.

We denote by HS the set of lines containing at least two points in S; if S is in general
position, then |HS| =

(
n
2

)
. H̃S is a representative set of lines for S, if whenever a line g

(disjoint from S) partitions the set S into nonempty sets S ′ and S ′′ (on the respective
sides of g), then there is a line h in H̃S which induces the same partitioning. It is an easy

exercise to verify, that there is always a representative set of at most
(

n
2

)
lines.

The arrangement A(G) of G is the partitioning of the plane induced by G into vertices
(intersections of lines in G), edges (connected components on the lines in the complement
of the vertices), and cells (connected components of the plane in the complement of the

lines). Obviously, there are at most
(
!
2

)
vertices, at most !2 edges, and a bound of

(
!
2

)
+!+1

on the number of cells is also not too hard to prove; if G is in general position, then all
three bounds are attained cf. [Ede87].

We will use the point/line duality defined by: for a point p = (a, b), the dual image p∗

is the nonvertical line with equation y = ax+ b, and for a nonvertical line g with equation
y = cx + d, the dual image g∗ is the point (−c, d). This mapping preserves incidences
between lines and points (i.e. p lies on g if and only if g∗ lies on p∗), and it preserves the
relative position between a point and a line (i.e. p lies above g if and only p∗ lies above
g∗).

For two nonvertical lines g and h, define the double wedge of g and h as the two open
quadrants (defined by the two lines) which are disjoint from the vertical line through the



common point of g and h; if g and h are parallel, then the double wedge degenerates
to the strip between the two lines. Now a line g intersects the open line segment with
endpoints p and q, if and only if g∗ lies in the double wedge defined by p∗ and q∗.

We frequently use the inequalities 1 + x ≤ ex, for all real numbers x, and
∑n

i=1
1√
i
<

2
√

n, for all positive integers n.

Conventions. All points and lines we consider in Sections 2, 3, and 4 are assumed to
lie in the plane!

2 Proof of existence.

We want to prove that every set of n points in the plane allows a spanning tree such that
no line has more than O(

√
n) crossings with the tree. Note that it suffices to concentrate

on a representative set H̃S of lines: Let T be a spanning tree on S. Clearly, by definition,
every line disjoint from S has a line in H̃S with the same (number of) crossings. If
h contains points from S, then we consider two parallel lines h′ and h′′ on both sides
of h, but sufficiently close so that all points in S (except those on h) have the same
position relative to h′ (and to h′′) as to h. Then the respective crossing numbers satisfy
ch = ch′+ch′′

2 . That is, the maximum crossing number is attained by a line disjoint from
S.

The O(
√

n) bound is asymptotically the best we can hope for. To see this for some
positive integer n, choose a set G of ! = %

√
2n& lines in general position, and place n

points into the cells of the arrangement, no two points in the same cell (which is possible,

since
(
!
2

)
+ ! + 1 ≥ n). Every edge of an (arbitrary) spanning tree will be crossed by at

least one of the lines in G; thus there must be a line in G with at least n−1
! = Θ(

√
n)

crossings.
If we start the construction of our tree, then it looks like a good idea to begin with an

edge {p, q}, such that p and q are separated by as few as possible lines in a representative
set. To provide a bound on this number is our next step.

A packing lemma [Cha88, CW89]. Suppose we are given a set S of n ≥ 2 points
with diameter ∆ (i.e. ∆ is the maximal Euclidean distance between any two points in
the set). Then there are two points at distance at most σ = 4∆√

n . This can be easily seen
by the fact that the closed disks of radius σ

2 centered at the points in S are contained
in a ‘large’ disk of radius 3

2∆ centered at an arbitrary point in S (this is true if σ ≤ ∆;
otherwise the claim is trivial). If the small disks were pairwise disjoint, then they cover
an area of nσ2π

4 = 4∆2π in the large disk of radius 3
2∆, which is not possible. Hence two

disks intersect, and the respective centers have distance at most σ.
We will use the same idea as just described to show that for any set S of n points,

and any set G of ! lines there is always a pair of points separated by less than 2!√
n of the

lines. To this end we introduce a pseudodistance δG for pairs of points (relative to G) by
δG(p, q) = a + b

2 , where a is the number of lines in G which have p and q on opposite
sides, and b is the number of lines which contain exactly one of the two points p and q.
It is easily seen that δG is a pseudometric (i.e. it is symmetric and satisfies the triangle
inequality).



For a point p and a real number σ, we let DG(p, σ) denote the set of vertices v in the
arrangement of G with δG(p, v) ≤ σ. The sets DG(p, σ) will play the role of disks, and
the cardinality of DG(p, σ) will play the role of area in our proof, and so we need a lower
bound on this quantity in terms of σ.

Lemma 2.1 If G is a set of ! lines in general position, and σ is an integer, 0 ≤ σ ≤ % !2&,
then |DG(p, σ)| ≥

(
σ+1

2

)
for all points p disjoint from G.

Proof. Choose a line g through p which intersects the same number of lines in G on both
sides of p. Such a line exists, since we can take a directed line h through p and rotate it,
while observing the number of intersections on h preceding p. After rotating h by π this
will be the number of intersections succeeding p; so in between we must meet a situation
as required for g (note that if ! is odd, then g must be parallel to one of the lines in G).

Now consider the intersections q1, q2, . . . , q%!/2& on g on one side of p, enumerated in
such a way that δG(p, qi) = i − 1

2 (if g passes through a vertex, we may perturb g with
p to make sure that all lines in G create distinct intersections). Let us first assume that
σ ≤ ( !2). Then, for all i ≤ σ, qi has at least σ−i+1 vertices on its line at distance at most
σ − i + 1

2 ; all these vertices have distance at most σ from p (by the triangle inequality).
If we collect vertices at distance at most σ in the same way on the other side of p, we
obtain 2(σ + · · · + 2 + 1) = 2

(
σ+1

2

)
such vertices, each of which may be counted at most

twice. This gives the claimed bound for σ ≤ ( !2).
If ! is odd, and σ = % !2&, then the above procedure gives us a count of 2(σ + · · · + 2)

only. Now we recall that there is a line h ∈ G parallel to g which contains at least two
points at distance at most % !2&; take the two vertices incident to the infinite edges on h.

In this way we have again counted 2
(
σ+1

2

)
vertices, each vertex at most twice. The lemma

is proved.
The bound in Lemma 2.1 can be shown to be tight.

Lemma 2.2 Let G be a set of ! lines, and let S be a set of n ≥ 2 points. Then there are
two distinct points p and q in S with δG(p, q) ≤ 2!√

n .

Proof. Choose some positive integer k with the property that

((2k!√
n
) + 1)(2k!√

n
) >

(2k!)2

n
. (1)

Replace each line h in G by two buckets of k parallel copies each, such that the ‘original’
h lies between these two buckets, and the two buckets are sufficiently close to h, so that
there are no points from S within a bucket, and between a bucket and its original. So the
only points from S between the two buckets are those which lie on h. The resulting set
G′ has !′ = 2k! lines, no point in S lies on a line in G′ and for any pair {p, q} of points
in S, δG′(p, q) = 2kδG(p, q). Then perturb the lines in G′ to general position such that no
line moves over a point in S; this does not change the pseudodistance δG′ between points
in S.

For n ≤ 4 the assertion of the lemma is trivial; so we have to consider only the case
n ≥ 5 and Lemma 2.1 applies to σ = ( !′√

n). We get

∑

p∈S

|DG′(p, σ)| ≥ n

(
σ + 1

2

)

> n
!′2

2n
>

(
!′

2

)

,



(where property (1) proved to be useful). Since there are only
(
!′

2

)
vertices, there must

be two ‘disks’ DG′(p, σ) and DG′(q, σ), p, q ∈ S, p += q, which overlap in a vertex; by the
triangle inequality their centers p and q have pseudodistance δG′(p, q) at most 2σ. Hence,
δG(p, q) ≤ 1

2k2( !′√
n) ≤

2!√
n , the bound claimed in the lemma.

We need to extend Lemma 2.2 to sets of lines G where every line h has a positive real
weight w(h) associated. The pseudodistance δG(p, q) is now defined as a + b

2 , where a is
the sum of weights associated with lines separating p and q, and b is the sum of weights
associated with lines which contain exactly one of the two points p and q.

Lemma 2.3 Let G be a finite set of weighted lines with overall weight ∆, and let S be a
set of n ≥ 2 points. Then there are two distinct points p and q in S with δG(p, q) ≤ 2∆√

n .

Proof. Let k be some positive integer. Replace every line h in G by two buckets of
%k · w(h)& unweighted lines each, in the same way as described in the previous proof. If
! is the number of lines in G, then we obtain a set G′ of at most 2k∆ + 2! unweighted
lines to which we can apply Lemma 2.2. It supplies us with two points p and q with
δG′(p, q) ≤ 4k∆+4!√

n , and so

δG(p, q) ≤ δG′(p, q)

2k
≤ 2∆√

n
+

2!

k
√

n
.

In other words, for every ε > 0 we find points p and q with δG(p, q) ≤ 2∆√
n + ε. Since there

are only finitely many points, this implies the lemma.

Construction by iterative reweighting [Wel88, CW89]. Using Lemma 2.2 we can
easily show that for n points S and ! lines G the greedy algorithm (using δG as weight
function on edges) constructs a spanning tree on S with weight at most

∑n
i=2

2!√
i
≤ 4!

√
n.

That is, the average crossing number of a line in G is 4
√

n. We will show that by a
different construction we can guarantee this bound (up to a low order term) for all lines.

Theorem 2.4 Every set S of n points has a spanning tree with crossing number at most
4
√

n + O(n1/4
√

log n).

Proof. Let G0 be a representative set of lines, ! = |G0| ≤
(

n
2

)
, and let S0 = S. We

start the construction of the spanning tree by choosing two points p and q in S0 which
are separated by the smallest number of lines in G0 (i.e. no more than 2!√

n). Next we put

the edge {p, q} into the edge set of our tree and remove p from the point set which gives
S1 = S0 − {p}.

For the rest of the construction we need some means to ensure that no line gathers
too many crossings. That is lines which have already many crossings with the edges
constructed so far should cross a next edge less likely. We will achieve this by assigning
weights to the lines. To be precise, a line which has c crossings so far will have multiplicity
(1 + µ)c for µ > 0 a parameter to be chosen later.

Hence, we continue our construction by multiplying by 1 +µ the weight of all lines in
G0 which separate p and q; this gives a new set G1 of weighted lines with overall weight
∆1 ≤ !(1+ 2µ√

n). Then we continue the construction with G1 and S1: we choose two points

p1 and q1 which are separated by lines of overall minimal weight, add edge {p1, q1} to the



edge set, remove p1, and multiply the weights of separating lines by 1 + µ, and proceed
as above.

After i steps we have a set Gi of weight

∆i ≤ ∆i−1(1 +
2µ

√
n − (i − 1)

) ≤ !
i−1∏

j=0

(1 +
2µ√
n − j

)

and a set Si of n − i points.
Step n − 1 completes the construction of a spanning tree for S. What is the crossing

number of this tree? Let ch denote the number of crossings of line h in the tree. Then h
is represented with weight (1 + µ)ch in Gn−1, that is

∆n−1 =
∑

h∈G0

(1 + µ)ch .

However, we have also a bound of

∆n−1 ≤ !
n∏

j=2

(1 +
2µ√

j
) < ! e

∑n

j=1
(2µ/

√
j) ≤ e4µ

√
n+2 lnn.

Hence, we may conclude that

ch <
1

ln(1 + µ)
(4µ

√
n + 2 lnn) ,

for all lines h which implies ch < 4
√

n+O(n1/4
√

log n) for the choice of µ which minimizes
this bound (see Appendix).

The theorem and its proof provide us with a number of immediate consequences. A
spanning path is simple, if only line segments corresponding to consecutive edges on the
path intersect.

Corollary 2.5 Every set S of n points has a simple spanning path with crossing number
at most 4

√
n + O(n1/4

√
log n).

Proof. The asymptotic bounds follow directly from Theorem 2.4, if we double the edges
in a spanning tree of crossing number c, and consider an Eulerian walk in this graph,
which has crossing number 2c. We can now simply scan this walk and omit points which
have occurred before. In this way the number of crossings with a line cannot increase.
Let p0, p1, . . . , pn−1 be the resulting spanning path with crossing number at most 2c. If
two line segments pi−1pi and pj−1pj , 1 ≤ i < j − 1 ≤ n − 2 intersect then we replace
the edges {pi−1, pi} and {pj−1, pj} by new edges {pi−1, pj−1} and {pi, pj} to obtain the
spanning path

p0, p1, . . . , pi−1, pj−1, pj−2, . . . , pi+1, pi, pj, pj+1, . . . , pn−1 .

The crossing number of no line increases, and the Euclidean length decreases. Conse-
quently, after a finite number of steps we have obtained a simple spanning path with
crossing number at most 2c.

In order to achieve the claimed constant we have to look at the proof of the theorem
once more. We proceed as for the construction of a tree, except that we are more careful



about the points we put into the sets Si. We keep as an invariant, that the edges con-
structed so far give a set of vertex disjoint paths on S (some of which are just isolated
vertices), and we let Si contain all isolated vertices, and exactly one point of degree one
from each path. In the next step, we choose two points p and q of minimal pseudodistance
(with respect to the current weighted set of lines) in Si. The addition of edge {p, q} merges
two connected components; we remove p and q from Si, and add one of the two points
of degree one in this component to the set, which gives us Si+1. After the appropriate
reweighting of the lines we continue the construction. The calculus of the analysis stays
the same and gives the claimed bound. The constructed path can be converted into a
simple one by the same procedure as described in the first paragraph of the proof.

Corollary 2.6 Every set S of n points has a matching of size k with crossing number at

most 4k√
n + O(

√
k lnn/

√
n), for integers k, 1

2

√
n ln n ≤ k ≤ n

2 , and with crossing number

at most 2e lnn
ln(

√
n ln n/(2k)) , for integers k ≤ 1

2e

√
n ln n.

Proof. The construction of a matching works in the obvious way (referring to the notation
in the proof of Theorem 2.4). We choose the edge of minimal pseudodistance, remove its
two points from the current point set, and reweight the lines with new crossings. Now
Si has n − 2i points. After k steps we have a matching of required size. Via the overall
weight ∆k of Gk we get the following bound for the number of crossings of lines in G0:

∑

h∈G0

(1 + µ)ch = ∆k ≤ !
k∏

i=1

(1 +
2µ

√
n − 2(i − 1)

) < ! e
√

2 µ
∑k−1

j=0
1√

n/2−j

< ! e
√

2 µ2(
√

n/2−
√

n/2−k) = ! e2µ(
√

n−
√

n−2k) < e4µk/
√

n+2 lnn .

The last inequality uses that
√

n −
√

n − x
√

n ≤ x for all x, 0 ≤ x ≤
√

n.

It follows that ch ln(1 + µ) < 4µk√
n + 2 ln n, and we obtain the bounds claimed in the

corollary by the appropriate choice of µ (see Appendix).
It is perhaps interesting to consider explicitly the bound for some values of k. For

k = n1/2−ε, the lemma gives a bound of O(1
ε ); for k =

√
n, we obtain O( log n

log log n); for k =√
n ln n, the crossing number does not exceed O(log n). The bounds for k = Ω(

√
n log n)

are asymptotically tight. It remains open whether there is always a matching of size
√

n
with constant crossing number.

The constant. We have not presented the best possible constant. Nevertheless, we
briefly indicate the best bounds known to the author. Let us first observe that a lower
bound of

√
n − 1 for spanning trees can be obtained by a slight refinement of the lower

bound construction in the beginning of the section. For a positive integer n choose a set
G of ! = 2%

√
n& lines in general position. Then we assign colors to the cells such that no

two adjacent cells (i.e. cells which share a common edge) have the same color. (Choose a
fixed point o in one of the cells and color a cell red if for a point p in this cell δG(o, p) is
odd, and color the cell blue otherwise.) We place n points in the cells of the larger color

class – no two points in the same cell (which is possible since 1
2(

(
!
2

)
+!+1) ≥ n). Any two

of these points are separated by at least 2 lines. Hence, the overall number of crossings



between the set of ! lines and any spanning tree is at least 2(n−1); hence, there is always
a line with at least 2(n−1)

! ≥
√

n − 1 crossings.
Although the bound in Lemma 2.1 is tight, the bound can be improved to |DG(p, σ)| ≥

3
(
σ+1

2

)
, if p has pseudodistance at least σ to every point in an infinite cell, and if σ ≤ !

3 ;

this follows from a result on k-sets proved in [EHSS89]. With this bound we can improve
the estimates in Lemmas 2.2 and 2.3 to 2!√

3n
and 2∆√

3n
(up to low order terms). The bound

in Theorem 2.4 improves to ( 4√
3

+ o(1))
√

n. So the optimal constant lies in the range
between 1 and 2.31.

3 Applications.

We present three applications of spanning trees, paths, or matchings with low crossing
numbers. The first is algorithmic, while the second and third are primarily of combinato-
rial interest. Nevertheless, the proofs reveal also algorithms for computing the structures
whose existence we have proven.

Counting points in halfplanes [CW89]. Suppose we want to count the points below
a nonvertical line from a given point set S, and we have to answer many such queries.
Thus it pays off to prepare the points in a data structure.

The structure we use is a simple spanning path p1, p2, . . . , pn of S with low crossing
number c. The edges on the path are enumerated so that edge {pi, pi+1} gets number
i. For a nonvertical line h disjoint from S, let I+ the set of indices of edges {pi, pi+1}
with pi below h and pi+1 above h, and let I− be the set of indices of edges {pi, pi+1}
with pi above h and pi+1 below h. Then the number of points in S below h is given by∑

i∈I+ i−∑
i∈I− i, if pn lies above h, and n +

∑
i∈I+ i−∑

i∈I− i, if pn lies below h. Thus, if
we can determine the ch crossings of line h with the path, then the number of points below
h can be computed with ch additions and subtractions. Here we can invoke a result from
[CG89], which states that the edges of a simple path can be stored with O(n) space, such
that the first edge hit by a ray can be computed in O(log n) time. Clearly, this structure
can be used to compute the intersections of a line with a path in O(k log n) time, where
k is the number of intersections.

Theorem 3.1 Every set S of n points can be stored in O(n) space, such that the number
of points in S below any query line can be computed in O(

√
n log n) time.

The structure can readily be used also for counting points in triangles within the same
asymptotic time bounds.

Colorings with low discrepancy [MWW91]. We want to color a set of n points in
the plane by red and blue, such that every halfplane contains roughly the same number
of red and blue points. How well can we achieve that goal? This type of questions are
investigated in the field of discrepancy ([Spe87], [BC87]).

For technical reasons we switch to colors −1 and +1. A coloring of a point set S is a
mapping χ : S → {−1, +1}. The discrepancy of χ is defined as maxh∗ |χ(S ∩ h∗)|, where
χ(A) =

∑
p∈A χ(p), and the maximum is taken over all halfplanes h∗.



Theorem 3.2 For every set S of n points there is a coloring χ with discrepancy at most
2
√

2n1/4
√

ln n + O(log n).

Proof. Assume that n is even (if not, we may ignore one point temporarily; the dis-
crepancy grows at most by one by adding it back with an arbitrary color). Let M be a
perfect matching on S with crossing number c. We consider the set C of all colorings χ
with χ(p) + χ(q) = 0 for all {p, q} ∈ M . Note that every element of C has discrepancy at
most c. We show that there is a better coloring in C by considering colorings randomly
chosen from C. We need the well-known Chernoff bound (see e.g. [Spe87], [HR90]) in
the following form: If X is the sum of k independent random {−1, +1} variables — each
variable attains −1 and +1 with equal probability —, then Prob(|X| > λ

√
k) < 2e−λ

2/2.
Let h be a nonvertical line disjoint from S with ch crossings in M , and let h− be the

halfplane below h. Set

Bh = {p ∈ S|p ∈ h− and h crosses the edge in M containing p} .

Then |Bh| = |ch|, χ(S ∩ h−) = χ(Bh), and for a random χ in C,

Prob(|χ(Bh)| > λ
√

ch ) < 2e−λ
2/2 . (2)

If λ = 2
√

ln n then the bound in (2) becomes 2n−2. Let H̃S be a representative set of

lines with |H̃S| ≤
(

n
2

)
< n2/2. Thus there is a coloring χ0 in C with χ0(S ∩ h−) ≤

2
√

ch ln n ≤ 2
√

c lnn for all h in H̃S; this coloring χ0 is good for all (open or closed)
halfplanes below lines. We have |χ(A)| = |χ(S − A)| for all χ ∈ C and all A ⊆ S, which
takes care of halfplanes above lines. The lemma follows, since there is a perfect matching
with c = 2

√
n + O(n1/4

√
log n), see Corollary 2.6.

[Bec91] proves a lower bound of Ω(n1/4−ε), for any ε > 0, for the discrepancy of
colorings for halfplanes.

Mutually avoiding segments [Pac91]. Two closed line segments are called avoiding,
if the lines supporting the segments intersect outside both segments. The following result
was first proved in [AEG+91]; the simple proof below was presented in [Pac91].

Theorem 3.3 Every set S of n points in general position allows 1
8

√
n − O(n1/4

√
log n)

mutually avoiding line segments with endpoints in S.

Proof. Let p0, p1, . . . , pn−1 be a spanning path with crossing number c − 1. For con-
venience add also the edge {pn−1, p0} to obtain a spanning cycle with crossing number
c. We show that among the n edges on this path there are % n

2c+1& edges which define
mutually avoiding line segments. To this end consider the graph which has the set L of
line segments pi−1pi, i = 1, 2, . . . , n−1, and pn−1p0, as vertices. Two vertices are adjacent,
if their corresponding line segments are not avoiding. A line containing a line segments
s in L intersects at most c of the line segments in L − {s} (it’s at most c including the
adjacent segments on the cycle!). Consequently, our graph has at most cn edges. A graph
with n vertices and cn edges has an independent set (i.e. a set of vertices where no two
are adjacent) of cardinality % n

2c+1& (the existence of a % n2

2m+n& size independent set in a
graph with n vertices and m edges follows from Turan’s theorem, cf. [Bol78]). But an



independent set in this graph corresponds to a set of mutually avoiding line segments; the
theorem follows due to the bounds on c previously derived.

It is not known whether there are point sets which do not allow a linear number of
mutually avoiding line segments.

4 Construction.

The proof of existence of spanning trees with low crossing numbers in Theorem 2.4 de-
scribes an algorithm which can be implemented in polynomial time. A number of more ef-
ficient algorithms can be found in the literature [EGH+89, Aga91, Mat91d, Mat90, AS91].
We will present some of the basic ingredients of these algorithms, which will lead us to
a randomized algorithm which computes in expected O(n

√
n log n) time a spanning tree

whose crossing number does not exceed O(
√

n log n) with high probability.
The first step in making an algorithm more efficient is to reduce the number of lines

which have to be considered in a construction.

Test sets. Given a set S of n points and two nonvertical lines g and h, we define
δ∗S(g, h) = a + b

2 , where a is the number of points from S in the double wedge defined by
g and h, and b is the number of points from S which lie on exactly one of the lines g and
h. Similar to δ on points, δ∗ is a pseudometric on lines. In fact, if we denote by S∗ the
lines dual to the points in S, then δ∗S(g, h) = δS∗(g∗, h∗).

For a real number σ, we call a set H of lines a σ-test set for S, if for every line g
disjoint from S, there is a line h ∈ H with δ∗S(g, h) ≤ σ.

Lemma 4.1 Let S be a set of n points and let H be a σ-test set for S. If the maximal
crossing number of a line in H in a spanning path on S is C, then the crossing number
of this path (for all lines) is at most C + 2σ.

Proof. For any two lines g and h, observe that if g crosses an edge which is not crossed
by h, then one of the two endpoints of this edge has to lie in th double wedge of g and h,
or on g. Since every point is incident to at most two edges on a path, we easily get that
the respective crossing numbers cg and ch satisfy |cg − ch| ≤ 2δ∗S(g, h). The lemma is an
immediate consequence of this fact.

Lemma 4.2 Let S be a set of n points and let σ be an integer with 0 ≤ σ ≤ n. (i) There
exists a σ-test set of at most 4(n

σ )2 lines. (ii) If S is in general position, then, for every
positive real λ, a set of lines obtained by connecting at least (2 +λ)(n

σ )2 ln n random pairs
of points in S is a σ-test set with probability at least 1 − n−λ.

Proof. We prefer to dualize the scenario. In the dual environment statement (i) claims
that for a set G (= S∗) of ! (= n) lines, there exists a set Q of 4( !σ )2 points, such that
every point p disjoint from G has a point q ∈ Q with δG(p, q) ≤ σ. Choose Q as a maximal
set of points, where any two points have pseudodistance δG greater than σ. Lemma 2.2
implies that Q contains at most (2!

σ )2 points, and the maximality of Q guarantees the
desired property.



For a proof of (ii), we have to consider a set R of r random vertices in A(G), G a
set of ! lines in general position. For any point p disjoint from G, a random vertex has
pseudodistance at most σ from p with probability |DG(p, σ)|/

(
!
2

)
> (σ! )

2 (use Lemma 2.1).
Hence, the probability that all points in R have pseudodistance more than σ from p is
less than (

1 −
(
σ

!

)2
)r

≤ e−rσ2/!2 . (3)

For r ≥ (2 + λ)( !σ )2 ln !, the expression in (3) is bounded by !−2−λ. Let P be a set

of m =
(
!
2

)
+ ! + 1 points, one in each cell of A(G). Then with probability at most

m!−2−λ ≤ !−λ there is a point in P which has pseudodistance more than σ from all
points in R (for ! ≥ 2, m ≤ !2). Since every point disjoint from G has a point in P at
pseudodistance 0, the lemma is proved.

The algorithm. Let G be a set of lines, and let p be a point. For a nonvertical line h
(not necessarily in G), we say that h sees p (and p sees h) in A(G), if p lies on or above h,
and the closed vertical segment connecting h and p is disjoint from all lines in G − {h};
(if p lies on h, then p sees h if and only if p lies on no line in G − {h}). Thus a point p
which lies on a single line g in G sees g and no other line, and if p is contained in two or
more lines in G, then p sees no line at all. Every point p sees at most one of the lines in
G.

The algorithm proceeds now as follows. We assume that the set S of n points is in
general position, and that n ≥ 2. First we take a random sample T of n lines connecting
points in S; this will be a σ-test set, for σ ≤ 2

√
n ln n, with probability 1 − n−2. Then

we construct a set F ⊆ T of τ ≤
√

n lnn lines such that no line in T − F sees more than
κ ≤ 2e

√
n ln n points from S in A(F ) (the construction of F will be described below).

We add to F a horizontal line h0, which lies below all points in S. Each point p in S is
projected vertically on a line from F directly below (or through) p; this gives a set S ′ of
n projections. For g ∈ F , let S ′

g be the points in S ′ which lie on g; if a point in S ′ lies on
several lines in F , then we put it only in one set S ′

g.
We add two extra vertical lines h− and h+ which lie to the left (right, respectively)

of all points in S. On every line g connect all points in S ′
g by a path along g, starting at

the intersection of g with h− and ending at the intersection of g with h+. Connect these
paths via edges on h− and h+ so that no line intersects more than two of these extra
edges. Note that the resulting spanning path P ′ has crossing number 3 + τ at most (‘3’
accounts for crossings on h0, h−, and h+). Now we consider the vertical edges connecting
the points in S − S ′ to their projections in S ′. A line g ∈ T − F crosses such a vertical
edge only if it sees the upper endpoint in A(F ), or it contains the lower endpoint.

For a line g ∈ T , consider a line g′ parallel to and below g, but sufficiently close so
that no point in (S ′ ∪ S) − g changes its relative position to g′ (compared to g). For all
lines g ∈ T , g′ crosses at most 3 + τ edges in P ′. If g ∈ F , then g′ crosses no vertical
edge, and if g ∈ T − F , then g crosses at most κ vertical edges.

In order to obtain a path on S we walk along P ′ with excursions along vertical edges,
and we enumerate the points in S as we meet them on this walk. For any line g ∈ T ,
the primed version g′ crosses at most 3 + τ + 2κ edges, and since δ∗S(g, g′) ≤ 1 (recall
that we assume S to be in general position), no line in T has crossing number exceeding



5 + τ + 2κ. Consequently, the crossing number of the path is at most 5 + τ + 2κ+ 2σ (by
Lemma 4.1), which is at most 5+(5+4e)

√
n ln n = O(

√
n log n) with probability 1−n−2.

It remains to show how a set F obscuring many visibilities is constructed.

Obscuring sets.

Lemma 4.3 Let S be a set of n points, and let G be a finite set of lines. For a random
set R of r lines in G, and for a random line g in G−R, the expected number of points in
S seen by g in A(R) is at most n

r+1 .

Proof. We employ backwards analysis, cf. [Sei91]. Observe that g sees a point p in A(R)
if and only if g sees p in A(R ∪ {g}). Thus the quantity we are interested in is the same
as the expected number of points from S seen by a random line g ∈ R′ in A(R′), with R′

a random set of r + 1 lines in G. Since every point in S sees at most one line in R′, this
number is bounded by n

r+1 .
We will use the lemma to make the following conclusion: If we choose r lines R at

random, then with probability at least 1
2 the expected number of points seen by a line in

G − R is at most 2n
r+1 ; in this case at most |G−R|

e lines see more than 2e n
r+1 points (we use

Markov’s inequality twice).
We start the construction of F by choosing a random sample R0 of r = (

√
n

lnn) lines in

H0 = T . We determine the set H1 ⊆ H0−R0 of lines which see more than 2e n
r+1 ≤ 2e

√
n ln n

points from S in A(R0). If |H1| > |H0|/e — which happens with probability less than
1
2 —, then we choose a new sample R0 from H0 until |H1| ≤| H0|/e holds. In the same
way we produce a set R1 of r lines in H1, such that the set H2 ⊆ H1 − R1 of lines which
see more than 2e n

r+1 points in A(R1) satisfies |H2| ≤ |H1|/e. If we continue like this, we

have exhausted all lines in T after at most %ln |T |
r + 1& ≤ lnn steps (at least for n large

enough), and the expected number of samples we took is at most twice this number. The
union F of all Ri’s constitutes a set of at most r ln n ≤

√
n ln n lines, and no line in T −F

sees more than 2e
√

n ln n points in A(F ). (The constants can be decreased at the cost of
a larger constant in the running time.)

If we are interested in the existence of F only, then we may choose ‘2’ as 1.

Lemma 4.4 Let S be a set of n points and let G be a set of ! lines. For every positive
integer r ≤ min{n, !}, there is a set F of r%ln !

r +1& lines in G, such that no line in G−F
sees more than e n

r+1 points of S in A(F ).

Time complexity. What is the time complexity of the construction of F ? When we
choose a random sample R of r lines then we construct the arrangement A(R) in O(r2)
time, cf. [Ede87]. Then, for every point in S, we determine the cell the point is contained
in: We simply determine the line in R directly below a point p by looking at all lines
(in O(nr) time for all points). Then, for each line g ∈ R, we look at the points which
have this line below and determine the respective edges of the arrangement directly below
these points (this works again in O(nr), if every point checks all edges on ‘its’ line). As
we have located all points in their cells, we provide a list of points in each cell sorted by
x-coordinate. Now we want to compute the number of points seen by a line h +∈ R. We
determine the cells intersected by h by threading the line through the arrangement in O(r),



cf. [Ede87]. In each cell visited, we take the x-coordinates of the first and last point of h
in the closure of this cell. h can see only points in this cell which have their x-coordinates
in this range. In the sorted lists we can determine these points in O(log n + k′), k′ the
number of points in this range. Similar to the proof of Lemma 4.3, we can show that the
expected sum of all k′ over all cells intersected by h is at most 2n

r+1 . So the expected time
spent for a line h is O(r log n + n

r+1). Altogether, if ! lines have to be checked, we spend

time O(nr + !(r log n + n
r+1)) = O(n

√
n

log n + !(
√

n log n)). The expected number of times

we have to handle such a set R is O(log n), and the number of lines to be checked decreases
geometrically. Hence, the overall expected time for constructing F is O(n

√
n log n). The

spanning path can easily be obtained from the arrangement A(F ) within this time bound.

Theorem 4.5 There is a randomized algorithm which computes for any set of n points
in general position a spanning path in expected O(n

√
n log n) time, such that the crossing

number does not exceed O(
√

n log n) with probability 1 − n−2.

With some more sophistication, the algorithm can be tuned to have close to linear running
time (see [Mat91d] for some of the ideas required). Test sets are used in most efficient con-
structions of spanning trees with low crossing numbers [Mat91d, Mat90, Aga91]. Efficient
(deterministic) constructions of test sets are described in [Mat91b]. The idea of repeated
sampling on ‘bad’ lines for the construction of obscuring sets is taken from [CSW90].

A deterministic O(n
√

n log2 n) algorithm which gives a spanning tree with O(
√

n)
crossing number is described in [Mat90]. [AS91] can produce a tree with crossing number
O(n1/2+ε) in time O(n1+ε) for any ε > 0, and they describe how such a tree can be
maintained under a sequence of insertions and deletions. So-called simplicial partitions
([Mat91b], see Section 5) can be used to obtain a spanning tree with crossing number
O(

√
n) in time O(n1+ε) for any ε > 0 (where the constant in the crossing number depends

on ε), [Mat91a].

5 Discussion.

The result on spanning trees generalizes to higher dimensions and other geometric objects:
For every set of n points in d-space there is a spanning tree, such that no hyperplane
intersects the straight line embedding of the tree in more than O(n1−1/d) points, which
is tight. The proof of the general result starts off by providing a higher-dimensional
counterpart of Lemma 2.1, and then proceeds almost verbatim as in the planar case.
Similarly, we can always find a tree which has O(n1−1/d) crossings with any ball, if we
define that a ball crosses an edge if exactly one endpoint of the edge lies in the ball.

For a set system (X,R), R ⊆ 2X , we can also consider spanning trees on finite subsets
A of X. We say that a set R ∈ R crosses an edge {x, y} of the tree, if |R∩{x, y}| = 1. Then
it is possible to prove the existence of a spanning trees with crossing number O(n1−1/d),
where d is some combinatorial parameter associated with the set system (related to the
VC-dimension); details can be found in [CW89].

An important extension of matchings with low crossing numbers, simplicial partitions,
were introduced in [Mat91b]. In the planar version, for a set S of n points, such a partition
consists of pairs (ti, Si), i = 1, 2, . . . , m, where the ti’s are open triangles or line segments
with ti ⊇ Si, and the Si’s form a partition of S. It is shown that for any r there is a



simplicial partition such that m = O(r), the cardinalities of the Si’s are roughly balanced
(|Si| ≤ 2n

m for all i, to be precise), and no line intersects more than O(
√

m) of the ti’s. Note
that perfect matchings with low crossing numbers are related to simplicial partitions with
m = n

2 . Simplicial partitions can be efficiently constructed, and they allow improvements
in many algorithmic applications, [Mat91b].

We conclude by stating two open problems.

Problem 1 Is there a constant C, such that every set of n points in the plane has a
matching of size

√
n whose straight line embedding is intersected in no more than C edges

by any line disjoint from the points?

Corollary 2.6 gives a bound of O( log n
log log n) on C; a constant number of intersections can be

guaranteed, if a matching of size n1/2−ε is required, for any fixed ε > 0.

Problem 2 Given n points S and n nonvertical lines G in the plane, is there always a
set F of O(

√
n) lines in G, such that no line in G− F sees more than

√
n points of S in

A(F ); a line h ∈ G − F sees a point p in A(F ) if p lies on or above h, and the closed
vertical segment connecting p and h is disjoint from all lines in F?

Lemma 4.4 gives a bound of O(
√

n log n) on the size of F .
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Appendix: Optimal choice of reweighting factor 1 + µ.

We want to estimate minµ>0 f(µ) for

f(µ) =
1

ln(1 + µ)
(aµ + b) , (4)

with a, b > 0. The first derivative of f is

f ′(µ) =
a ln(1 + µ) − (aµ + b)(1 + µ)−1

ln2(1 + µ)
.

So a local extremum (which obviously has to be a minimum) is achieved when

aµ + b = a(1 + µ) ln(1 + µ) , (5)

or, equivalently, when
ex(1 − x) = 1 − c , (6)

where we write x short for ln(1 + µ), and c short for b/a. Equality (6) has exactly one
solution.

Let us first consider the case c ≤ 1. Then, for x =
√

c,

ex(1 − x) ≥ (1 + x)(1 − x) = (1 − c) ,

and, for x =
√

2c,

ex(1 − x) = 1 −
∞∑

i=1

(i − 1)xi

i!
< 1 − x2

2
= 1 − c .



Consequently, (6) is satisfied for some x in the range
√

c ≤ x <
√

2c; so the optimal µ
has to be chosen such that

√
b/a ≤ ln(1 + µopt) <

√
2b/a, for b ≤ a .

If we substitute (5) into (4), then we get for the optimal µ that f(µ) = a(1 + µ), and so

minµ>0f(µ) < ae
√

2b/a = a + O(
√

ab), for b ≤ a ,

since ey ≤ 1 + ( e
√

2−1√
2

)y for 0 ≤ y ≤
√

2. (For a = b, we get minµ>0 f(µ) = ea.)

If c > 1, then we rewrite (6) as

z(ln z − 1) = c − 1 ,

where z = µ + 1. We assume actually that c is sufficiently large, say, c ≥ e. For z = ec
ln c ,

ec

ln c
(ln ec − ln ln c − 1) = c(e − e ln ln c

ln c
) > c − 1 ,

and, for z = c−1
ln c ,

c − 1

ln c
(ln(c − 1) − ln ln c − 1) < (c − 1)(1 − ln ln c + 1

ln c
) < c − 1 .

Therefore, µ has to be chosen such that

b/a − 1

ln(b/a)
< 1 + µopt <

eb

a ln(b/a)
, for b ≥ ea ,

which implies

min
µ>0

f(µ) <
eb

ln(b/a)
, for b ≥ ea .


