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ABSTRACT
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1. INTRODUCTION

Let S be a set of n points in general position in the plane (i.e., no three on a
common line), and let ¢ be a vertical line which is disjoint from S and from all
intersections of segments connecting pairs of points in S. We use e € (g) for a
pair of points and € for the segment conve.! e is called an ¢-edge if ¢ separates its
endpoints.

For a non-vertical line A, below(\) denotes the set of points from S below A. For
an edge e, we use below(e) for the set of points in S that lie below the line carrying
€. In fact, we will frequently use ‘below € short for ‘below the line carrying e’.
Given an f-edge e and p € below(e), we use pivot(e, p) for the unique ¢-edge {p, ¢},

q € e (see Figure 1(a)).
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Fig. 1. (a) The setup and (b) a pivoting sequence.

We are interested in the randomized process given in Figure 2 which we will call
fast process. Tt finds the unique ¢-edge e such that below(e) = ), given some initial
(-edge {a,b}.

Figure 1(b) shows a possible sequence of edges that may arise during the process.

e «— {a,b};

while below(e) # () do
D “—random below(e);
e < pivot(e, p);

Fig. 2. Fast process.

The significance of this process becomes apparent when we interpret it in terms
of the simplex method for linear programming. It models the behavior of the
RANDOM-EDGE simplex algorithm on any linear program whose feasible region is
a simple n-facet polytope in dimension n — 2. Here, a pivot step corresponds to
a move from one vertex to an adjacent vertex along an incident edge chosen at
random among the ones that improve the objective function. (Cf. the appendix for
a detailed explanation.)

1Given a set of points S, conv S denotes the convex hull of S.

24) e andom S;” means p is chosen uniformly at random from the set S.
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Despite the fact that RANDOM-EDGE is the most natural randomized variant
of the simplex method, and that it has received considerable attention ([11], [16,
Exercise 8.10*], [15, Section 9.10], [1], [5], [13]), nontrivial bounds for its expected
performance could only be derived for specific instances [5]. In particular, the case
of general n-facet polytopes in dimension d could only be handled for n = d + 1
(when the polytope is a simplex—we come back to this case at the beginning of
the next section). If n = d + 2, as in our scenario, only the trivial O(n?) bound—
obtained from the maximum number of vertices a polytope with these parameters
can have—was known.

In this paper, we obtain two new results. First, we prove a tight bound of
O(log2 n) for the number of pivot steps needed by the randomized process of Fig-
ure 2 (equivalently, by RANDOM-EDGE on an n-facet polytope in dimension n — 2).
This is an exponential improvement over the previous bound.

Second, we analyze a variant of this process which we call the slow process. Here,
each round chooses a random point among all points and only performs a pivot
step if the chosen point is below the current edge (Figure 3).

e «— {a,b};
while below(e) # () do
P “random S;
if p below € then
e < pivot(e, p);
Fig. 3. Slow process.

From the analysis of the fast process, we get an O(n log? n) bound for the ex-
pected number of iterations of the slow process. We can prove that the bound is
actually ©(n), making the slow process an ultimately simple and asymptotically
optimal algorithm for 2-variable LP that can be transformed to the following linear
program (LP) in two variables k, d:

maximize d
subject to y; > kx; +d, i=1...n.

(1.1)

If 7 is the y-axis, this is just the problem of finding the lowest /-edge determined
by points p; = (z;,v:),7 = 1,...,n. (Every feasible solution of the LP (1.1) corre-
sponds to a line with all points above. The corresponding value d is the height of
the intersection point of this line with £. It follows that the optimal line supports
the unique edge of the lower convex hull intersecting ¢ which, therefore, must be
an f-edge.) An alternative way to look at the fast process is due to Dantzig ([3]):
he used it as the geometric interpretation of the dual of the LP (1.1), calling it the
column geometry.

Finally, we want to mention that one can interpret both processes as random
walks on the directed graph whose nodes are the f-edges, and whose arcs are the
pairs (e, pivot(e, p)), for all £-edges e and points p below e. The underlying undi-
rected graph is what we call a grid graph with ny rows and ng columns, where np,
(ng, resp.) is the number of points to the left (right, resp.) of ¢ (see Figure 4(a)).
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Fig. 4. (a) A grid graph with 3 rows and 4 columns and (b) the forbidden subgraph.

After pairing rows (columns) with points on the left (right) of £ in an arbitrary
fashion, every node corresponds to some f-edge, and the graph receives its orien-
tation. Gértner et.al. observed ([6], [7]) that if such a grid orientation is induced
by a line and n points, then it is acyclic, every subgrid® has a unique sink, and no
subgrid is isomorphic to the graph shown in Figure4(b).

On the other hand, a grid orientation is called admissible if it has these prop-
erties. As shown in [7], any admissible grid orientation is induced by a line ¢ and
n points in the sense that we find pseudolines through the pairs of points whose
relative orders along ¢ determine the orientation, see Figure5. Note that the ar-
guments used in the proofs below are also valid in this general setting. In fact,
one can translate the proofs into pure combinatorial arguments on admissible grid
orientation ([17]).
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Fig. 5. A grid orientation and its realization.

2. UPPER BOUNDS

Here we analyze the expected number of pivots in the process described in Figure 2.

WARM-UP.

It is instructive to first have a look at the 1-dimensional counterpart as given in
Figure 6. For that we are given a set M of real numbers, and a € M. As above, this
process can be interpreted in terms of the simplex algorithm; this time, it models

3A graph induced by all the nodes in some of the rows and columns.
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the behavior of the RANDOM-EDGE variant on n-facet polytopes in dimension n—1,
hence on simplices.

r— a;
while r # min(M) do
T <—random {J) eM | T < ’I"};

Fig. 6. 1-dimensional fast process.

It is not difficult* to show that the expected number of while-loops performed is
exactly the Harmonic number H,,_1, where m is the rank, 1+|{x € M | x < a}|, of
a in M. But we want to provide a rough estimate in the spirit of the later analysis
instead. Let X;, i € No, be the random variable for the number of iterations of the
while-loop with

20 < |{reM |z <p} <2t (2.1)
for p the value of r at the beginning of the respective iteration of the while-loop.
For m > 2, the random variable Z = Z}S(%Z(m*m X, gives the overall number of
executions of the while-loop. E(X;) <2 for all i € Ny, since, whenever (2.1) holds,
we have a chance of at least % to choose an element of rank 2¢ or smaller.

Hence, E(Z) < 2(1 + |logy(m —1)]) = O(logm).

The obvious extension of that analysis to the 2-dimensional process fails, since
the number of points below edges appearing in the process oscillates. In fact,
the number of points below the current edge is no measure of progress at all. This
number may be 1, we pivot, and the number becomes as large as n—3 (see Figure 7).

RN

e

Fig. 7. We thought we were so close!

k-LINES AS MILESTONES.

Here is the crucial definition that will allow us to measure progress. Given k € Ny,
a non-vertical line A is called a k-line of S and ¢ if on both sides of ¢ there are
exactly k points from S below .

It is easy to see that every point = € £ is contained in a k-line for some k € Ny,
as long as x is disjoint from all segments connecting two points in S. Start with
a line through = that has large slope so that all points on the right side of ¢ are
below, and all on the left side are above. Now rotate the line by decreasing its

4For m € N, let f,, denote the expected number of iterations when starting with an element of
rank m. Then fi =0 and fry1 =1+ % S, fio Now fm = Hp—1 follows.
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slope. Eventually, we will reach the situation opposite to what we started with: No
points below to the right, all below to the left. All transitions in between change
the number of points below on exactly one side by +1. Somewhere in between we
must have had a transition where the numbers of points below were the same on
both sides.
A k-line disjoint from S exists for all &,
0 <k <m:=min{ny,nr},

ny, the number of points in S left of ¢, and ng := n — ng. For each i, 0 < i <
|log, m |, fix some 2i-line \; disjoint from S. Line Ao has to be chosen, so that the
only edge intersecting £ below ) is the edge ¢ with below(e) = (). Moreover, let
Allog, m|+1 be some m-line that intersects £ above all f-edges (and above® Allog, m])-
The line )\; intersects £ below A; for 0 < i < j < |log, m] + 1.

0 A1

Fig. 8. Setting milestones.

We define the random variable X;, ¢ = 0,1,...,|log, m|, as the number of
executions of the while-loop (in Figure 2) where the current segment £ intersects ¢
below A;11 but not below \; (¢ is the value of e at the beginning of the respective
iteration of the while-loop). The sequence of these executions we call phase i of
the process®. The careful choice of \g ensures that completion of phase 0 entails
completion of the whole process. Hence, Z = Z}fgz ™ X, is the random variable
whose expectation we want to analyze.

We will show that E(X;) = O(logn) for all ¢ and, hence,

E(Z) = O((logn)(1 4 logm)) = O(log* n).

ANALYSIS OF A SINGLE PHASE.

Fix some i, 0 < i < [logym], set k =21, X = X\; and A = A\;1. So X is a k-line,
and there are at most 4k points below A (actually exactly, unless ¢ = |log, m]).
We have an edge intersecting ¢ not below ) but below A, and the phase starts.
The phase ends whenever we reach an edge that intersects £ below \. Note that
for every edge occurring in the phase, one endpoint has to be below A (since the
edge intersects ¢ below \) and there is an endpoint above A’ (since otherwise, we
are already in a new phase).

A few words on what we are heading for. We further split phase i into strokes. A
stroke starts after we have sampled a point in below(A) U below(X’) (or at the very

5This is automatically satisfied, unless m is a power of 2.
6Note that phases count down during the process.
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beginning of the phase) and it finishes after another point in below(\)Ubelow()\’) is
chosen (this includes the event that the phase ends); thus, any stroke in the phase
terminates with a point in below(\) U below()\). If N is the number of strokes,
then we can write X := X as

X=Yi+Yp+ -+ Yy

where Y; is the number of iterations of the jth stroke. Note that N itself is a
random variable. (For j > N we set ¥; = 0.) We will show that

(i) E(Y;]j < N)=0(logn) for all j, and
(ii) E(N)=0(1).

It follows that E(X) = O(logn):

O(logn)

S B0 < M) P < )

j=1

= O(logn) > Pr(j < N)

j=1

= O(logn)E(N) . (2.2)

E(X)

As for the points sampled from below(\) Ubelow(\') we distinguish several cases
depending on where the respective new point pivoted into the current edge lies. We
will see that each of these situations is more or less promising in our goal to escape
this phase.

Here are the steps in our reasoning: At any time during the phase, the following
four claims hold.

Claim 1.  The expected number of pivots until we sample a new point in
below (\)
is at most 21ogy n.

Proof. At least one of the two endpoints of the current edge has to be below \.
So in a contiguous subsequence where the new point is always chosen above A, the
other endpoint below stays the same throughout this sequence. We denote this
point by g. If we order the points on the other side of £ according to their visibility
from ¢, we get almost the situation as in the one-dimensional process described in
Figure 6. In fact, there are two differences which can only improve our expecta-
tions: We terminate not only in the lowest point but also in £ — 1 other points.
In each step we may also sample on ¢’s side of ¢, in which case we immediately
terminate (we have surely sampled below \). Hence, the expected length of such a
subsequence is at most’ 2logy, n.

"Even Hy_ym—1 is true.
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Since any new point sampled in below()\) starts a new stroke, this also establishes
our claim (i) from above: the expected number of iterations during a stroke is
O(logn).

Claim 2.  Conditioned on the event that we sample a point in

below(\) U below()\') ,
the point will be in
below()\')
with probability at least %

Proof. Since all edges in this phase intersect £ not below X it follows: For one
side of ¢, all k points below X must also lie below the line through the current
edge. That is, at least k points below ) are also below the line through the current
edge. On the other hand, at most 5k points are below A or A’. This holds, since
[below(A)| < 4k, |below(\)| = 2k, and on one side of ¢, all k points below X' are
also below .

Claims 1 and 2 combined assure that we reach a point below A within an ex-
pected number of at most 10 log, n steps.

So what happens after we see such a point p below A'? Two cases have to be
distinguished, depending on whether p is also below A or not.

Fig. 9. p € below()\') \ below(\).

Claim 3. If an endpoint p of the current edge is in
below (') \ below()\) |
then the next point sampled below A or N will be in
below () N below(\)
with probability at least %

Proof. Two relevant conclusions right away (see Figure 9): (i) Since p is not below
A and below )\, while ' intersects £ below A, the lines A and N must intersect on
p’s side. (ii) Since p is not below A, the other endpoint ¢ of the current edge has to
be below A.

Before g can be substituted by a point not below A, the other endpoint has to
be below A. That is, when we first sample a point below A or X/, point ¢ is still in
the edge. Therefore, the current edge connects ¢ to a point below the edge {p, ¢},
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above ). So the line carrying this edge must intersect A’ on p’s side. But then, on
q’s side, all k points below X\ are also below the then current edge.

Moreover, on ¢’s side, all points below ) are also below A (since these lines
intersect on the other side). So, summing up, the k points below X are both below
the current edge and below A, and they are at disposal, when we sample a point
below A or ). The claim follows.

Claim 4. If an endpoint p of the current edge is in
below(A) Nbelow(\) ,
then the next point sampled below X or X will be in
below(\') on the side opposite to p
with probability at least %

Proof. If p is substituted in a pivot, it must be substituted by a point below A
or \. This holds, since on p’s side of ¢, everything below the current edge has to
be below A or X (see Figure 10). As a consequence, until the first pivot with a

Fig. 10. p € below(\) N below(\).

point below A or )\, point p is still an endpoint of the edge. But since p is be-
low X', on the opposite side everything below X is also below the current edge. So
there are at least k good choices, and at most 5k choices of points below A or \.

Claim 4 entails that once we have chosen a point below A and A, then — with
probability at least % — the next point chosen below A or A will terminate the
phase.

To complete the argument, we look at the sequence of points from below(\) U
below()\’) that are pivoted into the current edge. Recall that these are exactly the
points that terminate the strokes of a phase (except for the last one). If we can
show claim (ii) from above, i.e. that the expected length of this sequence is at
most some constant ¢, then the expected length of the whole sequence is at most
2clogyn due to Equation 2.2. Each point in this sequence is classified depending
on whether it lies in

Class 0: below(A) \ below(\)
Class 1: below(\') \ below()\)
Class 2: below()\) N below(\)

Every point in the sequence considered is in Class 0, 1, or 2. If we have a point in
Class 0, the next will be in Class 1 or 2 with probability at least % (by Claim 2).
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If we have a point in Class 1, the next will be in Class 2 with probability at least
L (by Claim 3). (All of this of course conditioned on the event that a next point
exists at all, i.e. the phase hasn’t stopped already.) Finally, if we are in Class 2, it
is the last point in the sequence with probability at least % (by Claim 4).

Now we estimate the expected length of the sequence by the Markov chain®
depicted in Figure 11, with four states

start =0, 1, 2, and 3 = stop,
and the indicated transition probabilities.

4/5 stant 4/5 stop

Fig. 11. A pessimistic Markov chain.

On one hand, it is easy to calculate that the expected number of steps from start
to stop is 155. On the other hand, the chain and our sequence can be coupled so
that whenever the chain is in state s € {0,1,2,3}, then the corresponding point
in the sequence in Class ¢ > s, or the sequence has ended already. Hence, we
have shown that the expected number of pivots in a single phase is bounded by
310log, n, and the theorem follows.

Theorem 2.1. The expected number of pivots in the process defined in Figure 2
18 at most

O((logn)(1 +logm)) = O(log?n),
where n is the number of points, and m is the smaller of the numbers of points on
the two sides of the line.

THE SLOW PROCESS.

If we consider the process in Figure 2 as an algorithm, it remains to specify how
to sample from below(e). It is perhaps worthwhile to mention on the side, that
if we can sample efficiently (say in time logarithmic in n), then the process gives
a polynomial time algorithm even for exponential size sets. If we sample in the
obvious way in O(n) time, then this gives us an O(n(logn)?) algorithm. On that
we can improve by looking at the alternative slow process? in Figure 3. The number
of pivots has the same distribution as the process in Figure 2. Here we analyze the
number of iterations of the while-loop. To that end, define phases as previously
done. Recall that in phase i, the current edge intersects £ not below the 2'-line \;.

81t simulates a biased coin with success probability é and counts the number of experiments until
we have three consecutive successes.

9The ‘below(e) # @’-test can be made once in n rounds only, thus causing amortized constant
cost. Or, after every pivot, we can go through all points in random order (without replacement)
until we find the first point in below(e); if no such point is found, we are done. Compared to the
‘pure version’, this can only speed up the procedure.
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Claim 5. For each i, the expected number of iterations in phase i is at most

O(5r)-

Proof. Divide phase i into strokes as we did it before. That is, a stroke is ended,
whenever we sample a point in

(below(X\") U below())) N below(e),

(¢ the current value of e), or when the phase ends.

In phase i, there are always at least 2° points from below()\’) that lie below
the current edge (on some side of ¢, all points below \; are also below the current
edge). That is, at any point, we sample a point resulting in the termination of the
stroke with probability at least % Therefore, the expected number of iterations in
a stroke is at most g;. The number of strokes is, of course, the same as in the slow
process; its expectation is constant. The claim follows.

Theorem 2.2. The expected number of iterations of the process defined in Fig-
ure 3 s
©(n)

where n is the number of points, unless the starting edge {a,b} is already the lowest
l-edge.
Proof. Zitfg;? m) 3r < 2n and so the upper bound follows from Claim 5. If {a, b} is
disjoint from the lowest £-edge, a lower bound of %n is obvious, since on the average
it takes that long until we have sampled both endpoints of the lowest edge at least
once. Even if {a, b} contains exactly one of the two endpoints of the lowest ¢-edge,
we still need n steps on the average before we meet the other endpoint for the first
time. The lower bound follows.

The coupon collector analysis (cf. [9, Exercise 3.13]) tells us that it takes
O(nlogn) iterations until we expect to have sampled each point at least once.
The process analyzed finds the lowest /-edge much before all points have been seen
at least once.

3. A LOWER BOUND

We prove a lower bound on the expected number of pivot steps for certain config-
urations in the process of Figure 2. This is our construction: Let £ be the y-axis.
We place 4n points pg, - - -, P2n—1,q0; - - - s §2n—1 onto the lines = +1 and x = +n
in such a way that {py | k& > n} C below({p;,q;}) whenever j < i < n, and
{qx |k > n} C below({pi,q;}), whenever i < j < n; cf. Figurel2. Finally, to get
general position, we slightly perturb the points.

Again, we divide the sequence of pivots into distinct phases. We are in phase a
as long as min(i, j) = a, where 7, j are the indices of the points defining the current
edge e.'0

10Note that we follow the general trend: Phases count down during the process.
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Fig. 12. Instance for the lower bound.

We define the random variables X;,7i = 0,...,n — 1, as the number of pivots
during the phase 7, Z shall denote the total number of pivots under the assumption
that we start with the edge {p,—_1,¢n—1}. We aim to bound the expected value of
Z from below, but a direct approach E(Z) = Z?:_Ol E(X;) seems not suitable.

Conditioned on the event of choosing the first point in {po,...,p:} U{qo,..., ¢},
p; and ¢; are equally likely chosen with probability m This implies that

L foralli,0<i<n-—1
i1 — i+1
Pr(Phase i is entered) { D ori—n— 1. (3.1)
Thus, denoting the event that phase i is entered by Ph;, we get
n—1 n—1
E(Z) = > E(X;) =) E(X;|Ph;)Pr(Ph)
i=0 i=0
E(X; [ Phy)
= E(Xp-1 [ Phy1) +Z ) . (3.2)

Recall that a new phase is entered whenever we choose a point whose index sets
a new minimum. We say that the phase is on the left (right, respectively) of ¢
whenever its defining minimum point is on the left (right, respectively).

To estimate the expectations of the X; conditioned on the event that phase i
is actually entered we distinguish two cases. If phase 7 is on the same side as the
previous phase, we have to assume the worst: Possibly, it is over after just one flip!
But if the minimum switched to the other side with the beginning of phase 7 then
n points (Pp, ..., P2n—1 OF Gn, ..., qG2n—1) are put back into the game.

Using the same argument as for Equation 3.1, we see that the probability that

phase i does not lie on the same side with respect to £ as the previous phase is %
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Let r and s denote the number of points on the left and on the right of ¢ below
the current edge; it is easy to see that we are in phase min(r, s).

The missing piece is to compute ¢, 5, the expected number of flips until we leave
the current phase min(r, s). Clearly, t, s = t5 ,, so w.l.o.g. assume s < r. Then ¢, ;
is monotone in r. For s < r (i.e. in particular, at the beginning of a new phase),
we have at least s +n points below the current edge on the side of r.

The simple recursion

1
t0,0 5207 tr,s=1+m2tr/7s (r—|—5>0)

gives us

b= H, whenever s = 0
"% Hygs — Has + 1 otherwise.

Applying these observations to 3.2 we can therefore deduce that

E(X; | Ph;)
E(Z) > Z
pard 141
side of minimum

n—QEXi|Phi/\h d . ..
- Z change side of minimum
= 2 i+ 1 changed

n—2 n—2
Z mln ’L+n+jl Z z+nz

= 2(i+1)

Hn = Hn+z H21 +1 1 Hn = H2'L’
_ e e N S

2 +; 2i+1) 2 Zz+1 ;i—i—l
>

1
5 (Hn—lHn - EHgn—3>
-2 Hy; 2n—3 H

where we used the simple observation »_. A<D Tt —1as well as the
equality

H; 1
;T: H2 +ZZQ

for a proof see [8, Equation 6.71].
Recalling the well-known estimate Inn < H,, <Inn + 1 we conclude

E(Z) > ~1In*n+ O(logn). (3.3)

1
4
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Theorem 3.1. There exist instances of one line and n points in general posi-
tion in the plane such that the expected number of pivot steps for the fast process
described in Figure 2 satisfies the following bound:

E(Z) > = In*n+ O(logn).

A~ =

As an encore we would like to describe (without proof) another noteworthy in-
stance for which the same asymptotic lower bound holds: Let ¢ be the y-axis.
We place 2n points pg, ..., Pn-1,490,---,qn—1 onto the graph of the function y =
f(x) = log|z| such that z,, < z,, < 0 < x4, < x4, for any i < j < n. Fur-
thermore, and most importantly, {p;|j # ¢} C below({pi,¢:}), and {g; | j # i} C
below({pi+1,4:}), cf. Figure13.

Note that there exists a sequence of pivots which visits all possible /-edges! That
is, there are simple (n — 2)-polytopes with n facets where we can pivot through all
vertices in a monotone fashion (w.r.t. some linear function).

Po

)
Py e

Fig. 13. Another instance for the lower bound.
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APPENDIX
The relationship between RANDOM-EDGE and the Fuast Process

We want to show that there is a one-to-one correspondence between the vertices of a
simple n — 2-polytope with n facets and the f-edges of a suitable point configuration
in the plane, with the properties that

(i) the order of the vertices (according to a given generic linear function) matches
the order of the corresponding f-edges along £, and

(ii) any pair of adjacent vertices corresponds to a pair of ¢-edges that share one
endpoint.

Theorem 1.3 below establishes such a correspondence. (Actually, it will more gener-
ally relate n-facet polytopes in dimension d to point configurations in n — d-space).
Under this correspondence, a RANDOM-EDGE pivot step on the polytope be-
comes a pivot step in the fast process applied to the point configuration corre-
sponding to the polytope, and vice versa. In particular, the expected runtime
(number of pivot steps) of RANDOM-EDGE, starting at some vertex v, equals the
expected length of the fast process, starting from the f-edge corresponding to v.

Consider the following generalisation of the process defined in Figure 2 to arbi-
trary dimensions:

Let S be a set of n points in general position in RY (i.e. no d + 1 on a common
hyperplane), and let ¢ be a vertical line which is disjoint from S and from all
intersections of hyperplanes induced by points of S.

The convex hull of a d-tuple s € (‘3) defines a d — 1-simplex, denoted by .
below(s) denotes the set of points from S that lie below the hyperplane spanned
by s.

We are only concerned with the simplices intersected by ¢, which we call /-
simplices. Note, that given some ¢-simplex s and a point p € below(s), there is a
unique point g € s, such that the simplex ¢ given by the d—tuple sUp\ ¢ is actually
an (-simplex, and we define pivot(e, p) := ¢.

So the Fast Process given in Figure 2 can be generalized to the randomized
process below. It finds the unique f-simplex s with below(s) = @, given some initial
¢-simplex {p1,...,pd}.

S {plv s 7pd};
while below(s) # () do

P <—random below(s);
s « pivot(s, p);
Fig. 1. The fast process generalized.

Consider a simple polytope P of dimension d with n > d+ 1 facets, along with a
generic linear function z — ¢z, where ¢,z € R?. We will now show that RANDOM-
EDGE on P is equivalent to the process given in Figure 1 on some configuration of
n points and one line in dimension n — d.
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The problem of maximizing ¢« over P can be written as

(LP) maximize c!x

subject to Ax < b, (AL1)
where A is an n x d-matrix, b an n-vector, and { Az < b} a bounded set with some
interior point.

Lemma 1.1. There exists a strictly positive n-vector § such that §7 A = 0.
Proof. From the fact that { Az < b} is bounded, it follows that the linear program

(LP’) maximize g+ -+ fin
M1
subject to Az <b— (A1.2)

/.LiZO, i=1,...,n

is bounded; because (LP’) is also feasible (set p; = 0,4 = 1,...,n), it has an optimal
solution.
Then, by the LP duality theorem (cf. [2, Chapter 9]), the dual problem

(LP’2) minimize b%y
subject to ATy = 0, (A1.3)
yi>1l, 1=1,....n

has an optimal solution, in particular a feasible solution. Any such feasible solution
7 is a vector with the required properties.

Assumption 1. For A,b in (Al.l), we can assume the following without loss
of generality (in particular, without changing the behavior of RANDOM-EDGE on
(A1.1)):

(i) The rows of A sum up to 0. This is achieved via Lemma 1.1, by a suitable
scaling of the constraints in (A1.1) by positive multiples.
(ii) Any set of d rows of A is linearly independent. For this, we apply a slight
perturbation to A.
(iii) b > 0. This is obtained by translating P in such a way that O is an interior
point.

Lemma 1.2. Consider the (n + 1) x (d + 1)-matriz

H:= (:} _Ob) . (A1.4)

There exists an (n—d) x (n+ 1)-matriz B of full row rank with BH = 0, such that
the columns of B are in general position when interpreted as points in R,
(We will specify our general position requirements below.)
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Proof. The columns of H are vectors in R"*!, spanning a subspace of dimension
at most d + 1. The orthogonal dual of this subspace has therefore dimension at
least n — d. Choose n — d linearly independent vectors in the orthogonal dual to
obtain the rows of B. The prior perturbation of A (we may even perturb H) also
lets us choose B in such a way that it assumes any desired general position.!

We need some terminology. For a matrix M and index set I, My (M, respec-
tively), denotes the submatrix consisting of all rows (columns, respectively) with
indices in I. For B as above, let p; € R"~? denote the point corresponding to the
i-th column of B, and define

II; .= {pi,i S I}

Theorem 1.3. Let A, b, B be as above, consider I C [n],|I| = d and set I :=
[n] \ I. Moreover, let & := A;'b; (which exists by Assumption 1(ii)) and choose
veR.

The following two statements are equivalent.

(i) T is a vertex of P with objective function value .
(i) The relative interior of convlly intersects the line {tp,+1} in a unique point,
at value t =/, b;.

Proof. Using Lemma 1.2, we can first argue that

0 — BH<§) —BI(AI|—b1)<f)+BI(AII—bI) < | ) + BT |0) (f)

0

= BT(Aﬂ - bj) ( 31; ) + chanrl,

With
251 ~
= | =-ar-n(7)
Hn
it follows that
L ippy1 = Z WiDi (A1.5)

iel
;M - (_1,...,_1)(A|—b)<‘f>
(o|§i:bi)<f> _ zi:bi>0.

where

IEssentially, we apply the Gale dual transform (cf. [14], [18]) to the vertices of the polar dual of
the polytope P adjoined by the vector ¢ defining the objective function.
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The second equality is Assumption 1(i), and the final inequality follows from

Assumption 1(iii). So, we may scale (A1.5) by 1/ . b;, obtaining

'z
S Pt = > i, > Ai=1, (AL6)

icl iel

where \; = Zu-ib" If statement (i) of the theorem holds, i.e. Z is a vertex with

Gr o () <o

by simplicity of P, which implies p; > 0 in (A1.5) and A\; > 0 in (A1.6). Hence, the
point

c¢T% =+, then

T

mpn-i-l = ﬁpn-i-l
is a convex combination of the points in II7 as described by (A1.6). Statement (ii)
follows when we assume that p,y1 # 0 and that the line {{p,11} is disjoint from
all affine spaces spanned by less than n — d of the points in IIj,). In fact, these are
requirements on the ‘general position’ in Lemma 1.2.

Now assume that statement (ii) holds and that the set II; is affinely independent
(our final general position requirement). In this case, there are unique values A; > 0

such that
g
S Pt = > Aipi Y Ai=1.
i iel iel
Because the line spanned by p,1 intersects convll; in a single point, there is no

other value of « for which the previous equation can be satisfied. Therefore, there
are unique values v, u; > 0 with

Vont1 = Y Hipi, Y pi =Y bi. (ALT)
iel iel i
On the other hand, by the above computations, the values

— T
v o= c T,

— (A = bs) ( f )

satisfy equation (A1.7), so they are the desired unique values. It follows that

1223

(il -o (1) <o

and 7 is a vertex with ¢?'& = v, proving (i).

It is easy to see that for d = n — 2 the correspondence & « II; established by the
theorem satisfies properties (i) and (ii) from the beginning of this appendix, thus
completing the argument.



