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Abstract

Recent years have brought some progress in the knowledge of the complexity of linear
programming in the unit cost model, and the best result known at this point is a randomized

‘combinatorial’ algorithm which solves a linear program over d variables and n constraints
with expected

O(d2
n + e

O(
√

d log d))

arithmetic operations. The bound relies on two algorithms by Clarkson, and the subexponen-
tial algorithms due to Kalai, and to Matoušek, Sharir & Welzl.

We review some of the recent algorithms with their analyses. We also present abstract
frameworks like LP-type problems and abstract optimization problems (due to Gärtner) which
allow the application of these algorithms to a number of non-linear optimization problems
(like polytope distance and smallest enclosing ball of points).

1 Introduction.

We consider the problem of minimizing some linear objective function in d nonnegative variables
subject to n linear inequalities. In geometric terms, this corresponds to finding a point extremal
in some direction inside a polyhedron defined as the intersection of n halfspaces and the positive
orthant in d-space, see e.g. [6, 25]. There is vivid interest in this problem, and two major questions
have dominated the picture for a long time. First, are linear programming problems solvable
in polynomial time? Second, is the simplex method for solving linear programs a polynomial
algorithm? The first question was answered in the affirmative by Khachiyan [18] who developed a
polynomial time algorithm in the bit-model (Turing machine model), its complexity depending on
the encoding size of the input. The second question is still open, not only for the simplex method
but for any ‘combinatorial’ algorithm whose runtime has a bound in the unit cost model (RAM
model), i.e. depends only on n and d. For many pivot rules, the simplex method was shown to
require exponential time on certain inputs (the first such input has been constructed by Klee and
Minty [19] for the pivot rule originally proposed by Dantzig [9]). Two lines of research have been
pursued in order to overcome the exponential worst case behavior. First, the average complexity has
been studied which assumes that the input is random with respect to some probability distribution.
In this model, a polynomial bound for the simplex method (under a particular pivot rule) has
first been obtained by Borgwardt [4], partially explaining the good performance of the method
on practical problems. Second, the randomized complexity has been investigated, which replaces
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the average over an input distribution by the average over internal ‘coin flips’ performed by a
randomized algorithm. Although the progress obtained in this direction does not match the one
achieved for the average complexity in the sense that polynomial bounds could not be shown, at
least the exponential worst case behavior has been beaten, and the best result known at this point
is a randomized combinatorial algorithm which computes the solution to a linear program with an

expected subexponential number of O(d2n + eO(
√

d log d)) arithmetic operations. The bound relies
on two algorithms by Clarkson [8], and the subexponential algorithms due to Kalai [17], and to
Matoušek, Sharir, and Welzl [20].

The subexponential bound is the last link so far in a chain of results that have brought about
considerable progress over the last decade. Here is a brief account of the history of LP in the unit
cost model. The runtime of the simplex method is bounded by the number of vertices of an n-facet
polyhedron, which is O(n⌊d/2⌋) (ignoring an extra factor for the pivot steps). Megiddo [23] has
given the first algorithm whose runtime is of the form O(Cdn), and is thus linear in n for any fixed

d (see also [11] for the cases d = 2, 3). The factor Cd, however, is 22d

. An improvement to Cd = 3d2

was given in [12] and [7]. Randomized algorithms were then suggested by Dyer and Frieze [13],
achieving Cd = d3d, and Clarkson [8] with a complexity of O(d2n + d4

√
n log n + dd/2+O(1) log n).

Later, Seidel [24] discovered a remarkably simple randomized LP algorithm with expected time
O(d!n), [26] provide a bound of O(d32dn). Kalai published the first subexponential bound in
[17], and then a similar bound was proved in [20]. Combining those subexponential bounds with

Clarkson’s algorithms in [8] gives the above mentioned currently best bound of O(d2n+eO(
√

d log d))
for randomized algorithms. The best deterministic bound is O(dO(d)n) which has been obtained
by Chazelle and Matoušek [5] via derandomization of one of Clarkson’s randomized procedures.

In this survey we review the algorithms and the analyses which lead to the expected time bound
claimed in the abstract. We restrict ourselves to a presentation of the subexponential algorithm
in [20] and do not explicitly review Kalai’s subexponential simplex algorithms [17]. However,
as pointed out by Goldwasser [16], one of his variants is exactly dual to an algorithm we give in
Section 3; moreover, ideas underlying another variant are incorporated into an algorithm presented
in Section 5, so Kalai’s contribution is implicitly contained in this paper.

One nice feature of the combinatorial algorithms presented below is that they can be formulated
in a quite general abstract framework, and so they are applicable to a number of nonlinear opti-
mization problems,1 as e.g. computing the smallest ball (ellipsoid) enclosing n points in d-space,
computing the largest ellipsoid in a convex d-polytope with n facets, computing the distance be-
tween two convex d-polytopes with n facets or with n vertices, rectilinear 2- and 3-center problem
etc. Similar bounds as the one claimed above hold for all these problems, provided one can per-
form certain primitive operations efficiently. This has been shown by Gärtner [14] who also gave
explicit primitives for the polytope distance and the minimum spanning ball problem [15]. We will
elaborate on abstract frameworks underlying those extensions in the second half of the paper.

2 Notation and Basics

For parameters n, d > 0, a linear programming problem in standard form consists of finding a
nonnegative vector x ∈ IRd that minimizes a linear function cT x subject to n linear inequalities
∑d

j=1 aijxj ≤ bi, i = 1, . . . , n. In compact form this can be written as

(LP) minimize cT x
subject to Ax ≤ b,

x ≥ 0,
(1)

where c is a d-vector, b is an n-vector and A is an (n×d)-matrix. The n+d inequalities Ax ≤ b and
x ≥ 0 are the constraints of the linear program. (Due to their special nature, the latter are called
nonnegativity constraints.) The set of vectors x satisfying all the constraints is called the feasible

1An extension of Clarkson’s algorithm to convex programming has been worked out by Adler and Shamir [1].
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region of the LP, and this region is an intersection of halfspaces, hence a polyhedron in IRd whose
facets are induced by some of the constraint hyperplanes. If the polyhedron is nonempty, the LP is
called feasible. In geometric terms, linear programming is therefore the problem of finding a point
in a polyhedron that is extreme in a given direction c.

To avoid various technicalities, we assume that the cost vector c satisfies c ≥ 0. This ensures
that (1) is bounded, equivalently that cT x assumes a (nonnegative) minimum value in the feasible
region, provided it is nonempty.

Let H be the set of n halfspaces defined by the constraints Ax ≤ b, and let H+ denote the set
of d halfspaces defined by x ≥ 0. For G ⊆ H ∪H+, we let vG denote the (unique) lexicographically
minimal point x minimizing cT x over PG :=

⋂

h∈G h, the intersection of halfspaces in G. At least
for H+ ⊆ G, vG exists (by our assumption on c), and vH+

= (0, . . . , 0)T . If PG is empty, we let
vG := ∞, which denotes infeasibility. If PG is nonempty but no lexicographically smallest point
minimizing cT x exists, we let vG := −∞, standing for unboundedness. If (1) is feasible, vH∪H+

is
its unique optimal solution. Let us write vF < vG if cT vF < cT vG, or if cT vF = cT vG but vF is
lexicographically smaller than vG. Moreover, −∞ precedes (and ∞ succeeds) any finite vertex in
this ordering.

A set of constraints (halfspaces) B ⊆ H ∪ H+ is called a basis if vB is finite but vB′ < vB

for any proper subset B′ of B. For example, H+ is a basis. If vG is finite, then a basis of G is a
minimal subset B ⊆ G with vB = vG. A constraint h ∈ H ∪ H+ is violated by G if and only if
vG < vG∪{h}. Uniqueness of vG implies that this is equivalent to vG 6∈ h (if vG is finite), which
explains the intuitive term ‘violation’. Finally, h is extreme in G if vG−{h} < vG, i.e. if h is violated
by G − {h}.

With this terminology we can state a first easy – but important – lemma. Part (i) and (ii) are
obvious, while (iii) is standard in linear programming theory.

Lemma 1

(i) For F ⊆ G ⊆ H ∪ H+, vF ≤ vG.

(ii) If vF , vG are finite with vF = vG, then h is violated by F if and only if h is violated by G.

(iii) If vG is finite, then any basis of G has exactly d constraints, and G has at most d extreme
constraints.

We remark that our scenario here is dual to a standard setup for the simplex method. The
assumption c ≥ 0 corresponds to the feasible origin assumption, while our convention of resolving
ambiguities by distinguishing the lexicographically smallest optimal solution is the simplex ana-
logue of resolving degeneracies by symbolic perturbation. While the feasible origin assumption is
for technical convenience only and can be removed if necessary, symbolic perturbation is one way
of achieving correctness of the simplex method (see [6] for details). Exactly the same relations
hold between our setup and the algorithms we are going to develop below.

3 Algorithms

We describe three algorithms which in combination prove the claimed O(d2n+eO(
√

d log d)) bound.
Clarkson’s first algorithm cl1 lp solves ‘large’ problems (‘large’ means that n is large compared to
d). It uses Clarkson’s second algorithm cl2 lp for problems of size roughly d

√
n. This algorithm

invokes the subexponential algorithm subex lp, when the number of constraints is at most 6d2.
In this section we will not explicitly refer to the vector c (it is hidden in the vG-notation).

Moreover, the linear program we consider is assumed to be feasible (although the reader will
realize that this is not essential, if we let the algorithms stop as soon as infeasibility is discovered).
We use v+

G short for vG∪H+
. Given some set H of constraints, the goal of the algorithms is to

compute v+

H .
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Clarkson’s algorithm 1. In order to solve the problem for a set H of n constraints we choose
some sample R of d

√
n constraints, compute v = v+

R (with some other algorithm), and determine
the set V of constraints in H violated by v. If V is not too large, (|V | ≤ 2

√
n), we add V to some

initially empty set G, choose another sample R, compute v = v+

G∪R, add the violated constraints
(provided there are not too many) to G, and so on. We continue until no constraint is violated by
v, when the solution is found. A more concrete specification of the procedure is given below (

(

H
r

)

denotes the family of r-elements subsets of H , the random R chooses each of them with the same
probability):

function procedure cl1 lp(H) H : set of n constraints in d-space

if n ≤ 9d2 then returns v+

H

return cl2 lp(H)

else

r := ⌊d√n⌋; G := ∅
repeat

choose random R ∈
(

H

r

)

v := cl2 lp(G ∪ R)

V := {h ∈ H | v violates h}
if |V | ≤ 2

√
n then G := G ∪ V

until V = ∅
return v

There are two crucial facts which make this procedure efficient. First, the expected size of
V is no more than

√
n (proved below); thus, the probability that |V | > 2

√
n is at most 1

2 (by
Markov’s inequality), and the expected number of attempts to find a sufficiently small V is at
most 2. Second, if any constraint is violated by v = v+

G∪R, then for each basis B of H ∪H+, there
must be a constraint h ∈ B−(G∪R∪H+) which is violated by v. (If no constraint in B is violated
by v then v+

H = v+

B ≤ v+

G∪R∪B = v+

G∪R ≤ v+

H , and v is already the solution of H .) It follows
that we augment G at most d times. Summing up, the expected number of iterations through the
repeat-loop is bounded by 2d. We conclude:

Lemma 2 For n = |H | > 9d2, procedure cl1 lp computes v+

H with an expected number of O(d2n)
arithmetic operations, and an expected number of at most 2d calls to cl2 lp with at most 3d

√
n

constraints.

A sampling lemma. It remains to prove the bound on the expected size of the sets V of violated
constraints. For further application, we formulate (and prove) the lemma for multisets.

Lemma 3 Let G be a set of constraints in d-space, let H be a multiset of n constraints in d-space,
and let 1 ≤ r ≤ n. Then, for random R ∈

(

H
r

)

, the expected size of VR := {h ∈ H | v+

G∪R violates h}
is bounded by dn−r

r+1 .

Proof. For R ∈
(

H
r

)

and h ∈ H , let χG(R, h) denote the characteristic function for the event that
v+

G∪R violates h (one if true, and zero otherwise). Then
(

n

r

)

E(|VR|) =
∑

R∈(H

r )

∑

h∈H−R

χG(R, h) =

∑

Q∈( H

r+1)

∑

h∈Q

χG(Q − {h}, h) ≤
∑

Q∈( H

r+1)

d = d

(

n

r + 1

)

;

the first equality is a write-out of the definition, the second equality is a rewriting of sums, and the
inequality follows from the fact that there are at most d extreme constraints in every set G∪Q∪H+;
(in fact, only those extreme constraints which are in Q contribute to the sum). E(|VR|) ≤ dn−r

r+1
follows.

Hence, for r = ⌊d√n⌋, we have E(|VR|) <
√

n. Below, we will use the lemma for multisets and
with r = 6d2 which entails E(|VR|) < 1

6dn.
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Clarkson’s algorithm 2. This algorithm proceeds very similar to the first one. It chooses a
random sample R of constraints – now of size 6d2 – and computes v+

R by some other algorithm
(the subexponential algorithm to be described later). Then it determines the violated constraints
V from H . Instead of ‘forcing’ these constraints for the next iterations (like in the previous
algorithm), it just increases their probability to be selected in further random samplings on H .
This effect is achieved by assigning a multiplicity µh to every constraint h in H ; µh is doubled,
when h is violated by an intermediate solution. The analysis will show, that for any basis B of H ,
the elements of B increase their multiplicities so quickly, that they are chosen with high probability
after a logarithmic number of iterations. Let us first provide the details of the procedure, and then
have the analysis materialize. In this procedure, we view H as a multiset, each h with multiplicity
µh; µ(H) :=

∑

h∈H µh. When we talk about random R ∈
(

H
r

)

, then we refer also to the multiset
(and so, in general, R is a multiset).

function procedure cl2 lp(H) H : set of n constraints in d-space

if n ≤ 6d2
then µh = 1 for all h ∈ H

return subex lp(H) returns v+

H

else

r = 6d2

repeat

choose random R ∈
(

H

r

)

v := subex lp(R)

V := {h ∈ H | v violates h}
if µ(V ) ≤ 1

3d
µ(H) then

for all h ∈ V do µh := 2µh

until V = ∅
return v

It follows from Lemma 3 and Markov’s inequality that the expected number of attempts until
we obtain a sufficiently small V is 2 at most. The next lemma will bound the number of successful
iterations, i.e. iterations where H gets reweighted.

Lemma 4 Let k be some positive integer. After kd successful iterations, we have

2k ≤ µ(B) < nek/3

for every basis B of H.

Proof. Every successful iteration adds a weight of at most 1
3dµ(H) to H , and so the upper bound

µ(B) ≤ µ(H) ≤ n(1 +
1

3d
)kd < nek/3

follows.
To see the lower bound on µ(B), recall that (as we argued before) if there are constraints

violated by v, then there must be a violated constraint in any basis of H . So every successful
iteration doubles the weight of a constraint in B. That is, there is a constraint in B which has
been doubled at least k times (since there are only d constraints in B). Hence, µ(B) ≥ 2k.

Since 2 > e1/3, the lower bound will exceed the upper bound for large enough k, which means
that we must have found the solution before that.

Lemma 5 For n = |H | > 6d2, procedure cl2 lp computes vH with an expected number of
O(d2n log n) arithmetic operations, and an expected number of at most 6d lnn calls to subex lp

with at most 6d2 constraints.

Proof. For k = 3 lnn, we have 2k = n3 ln 2 > n2 = nek/3. Hence, by Lemma 4, there are at most
3d lnn successful iterations, and the expected number of iterations is at most twice this number.
Each iteration costs O(dn) arithmetic operations and one call to subex lp.
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A subexponential algorithm. Given a set H of n constraints we remove a random constraint
h, and compute the solution for H − {h} recursively (so after taking random samples of size d

√
n

and 6d2, we ended up with a sample of size n−1.) If h is not violated by v+

H−{h}, then we are done.

If h is violated, then we try again by removing a (hopefully different) random constraint. Note
that the probability that h is violated by v+

H−{h} is at most d
n since there are at most d extreme

constraints in H (actually a special case of Lemma 3).
So much for the basic idea; in order to guarantee efficiency, we need some additional ingredi-

ents. First, the procedure SUBEX lp actually solving the problem has two parameters: a set G of
constraints, and a basis B ⊆ G; in general, B is not a basis of G, and we call it a candidate basis.
2 For technical reasons the subexponential procedure computes vG (rather than v+

G) and a basis
for G; it assumes that vB > −∞ and so vG > −∞. Note that B has no influence on the output
of the procedure (but influences its efficiency). The original problem of computing v+

H can now be
solved by:

function procedure subex lp(H) H : set of n constraints in d-space

(v, B) := SUBEX lp(H ∪ H+, H+) returns v+

H

return v

Besides the violation test, the following pseudocode for SUBEX lp assumes the availability of a
second primitive operation, basis(B, h), which computes a basis of B ∪ {h} for a d-element basis
B and a constraint h. This step corresponds to a dual pivot step, and with an appropriate repre-
sentation of B, it can be performed with O(d2) arithmetic operations. Our feasibility assumption
guarantees that basis(B, h) 6= ∞. Note that the quantity m below is initially n + d before we go
down the recursion.

function procedure SUBEX lp(G, B); G: set of m constraints

if G = B then B ⊆ G: basis

return (vB , B) returns vG and basis of G

else

choose random h ∈ G − B

(v, B′) := SUBEX lp(G − {h}, B)

if h violates v then

return SUBEX lp(G, basis(B′, h))

else

return (v, B′)

A simple inductive argument shows that the procedure returns the required answer. This
happens after a finite number of steps, since the first recursive call decreases the number of con-
straints, while the second call increases the value of the candidate basis (and there are only finitely
many different values). The procedure SUBEX lp can be viewed as a dual simplex algorithm, its
corresponding primal version being exactly one of Kalai’s subexponential simplex variants [17, 16].

For the analysis of the expected behavior of the algorithm, let us take a closer look at the
probability to make the second recursive call with candidate basis ‘basis(B′, h)’. To be precise we
have to take back the previously claimed d

n -bound and replace it by d
m−d , since we choose h from

G−B (and B always has d elements). However, if d−j extreme constraints in G are in B, then the
bound improves to j

m−d ; in fact, there are never more ‘bad’ choices than there are choices at all,

and so the bound can be lowered to min{j,m−d}
m−d . We want to show that the numerator decreases

rapidly as we go down the recursion, and this will entail the subexponential time bound.
We enumerate the constraints in G in such a way that

vG−{h1} ≤ vG−{h2} ≤ · · · ≤ vG−{hd−k} < vB ≤ vG−{hd−k+1} ≤ · · · ≤ vG−{hm}.

The ordering is not unique, but the parameter k emerging from this ordering is unique and we call
it the hidden dimension of the pair (G, B); hidden dimension zero implies that B is a basis for G.

2In simplex terminology, this corresponds to a dual feasible basis.
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Note that for h ∈ G − B, vB ≤ vG−{h}, and so h1, h2, . . . , hd−k are in B. Hence the only
choices for h which possibly entail a second call are hd−k+1, . . . , hd (for i > d, vG−{hi} = vG).
Suppose that, indeed, hd−k+i , 1 ≤ i ≤ k, is chosen, and the first call (with candidate basis B)
returns with basis B′, vB′ = vG−{hd−k+i}. Then we compute B′′ = basis(B′, hd−k+i). Since
vG−{hd−k+i} = vB′ < vB′′ , the pair (G, B′′) for the second call has hidden dimension at most k− i.

The hidden dimension is monotone, i.e., if B ⊆ F ⊆ G, then the hidden dimension of (F, B) does
not exceed the hidden dimension of (G, B). This holds, because the constraints h1, h2, . . . , hd−k

are in B (and so in F ), and vF−{hi} ≤ vG−{hi} because F ⊆ G.
We denote by b(m, k) the maximum (over all possible inputs) expected number of calls to basis

entailed by a call SUBEX lp(G, B) with m constraints and hidden dimension at most k. b(d, k) = 0
for 0 ≤ k ≤ d, and with the discussion above we conclude the recursion

b(m, k) ≤ b(m − 1, k) +
1

m − d

min{k,m−d}
∑

i=1

(1 + b(m, k − i)) for m > d. (2)

A simple proof by induction shows that b(m, k) ≤ 2k(m− d). However, it turns out that for n not
much larger than d, this is a gross overestimate, and with extra effort one can show

1 + b(m, k) ≤ exp

(

2

√

k ln
m − d√

k
+ (ln 3 + 2)

√
k + ln

m − d√
k

)

= eO(
√

k ln(m−d)),

where ln x = max(ln x, 1). For a proof of this bound see [15, 20]. Each basis computation takes
O(d2). For each basis B computed in the algorithm, we test every constraint at most once for
violation of vB . Hence, the number of violation tests is bounded3 by (m − d)b(m, d), with O(d)
arithmetic operations for each such test.

Lemma 6 For n = |H |, procedure subex lp(H) computes v+

H = vH∪H+
with an expected number

of O((d2 + nd)eO(
√

d ln n)) arithmetic operations.

Putting it together. If we plug the bound obtained for subex lp into Lemma 5, then we have a

bound of O(d2n log n+eO(
√

d ln d) log n) for the expected number of arithmetic operation required by

cl2 lp. If we apply this to Lemma 2, we get an estimate of O(d2n+d4
√

n log n+ eO(
√

d ln d) log n))
for cl1 lp. The middle term is dominated by the first or last term for all values of d and n; for
the values of n for which the last term is dominant, the log n factor is absorbed by O(

√
d ln d) in

the exponent. We conclude

Theorem 7 The optimal nonnegative vertex v+

H of a linear program with n constraints H in d-

space can be computed by a randomized algorithm with an expected number of O(d2n + eO(
√

d ln d))
arithmetic operations.

4 An Abstract Framework

In this section we show that the algorithms we discussed so far actually work in a more general and
abstract combinatorial setting, which makes them applicable to a wide range of problems (most of
them are convex programming).

Let us consider optimization problems specified by pairs (H, w), where H is a finite set, and
w : 2H → W ∪{−∞} is a function with values in a linearly ordered set (W ∪{−∞},≤), the value
−∞ (standing for ‘undefined’) preceding all values in W . The elements of H are called constraints,
and for G ⊆ H , w(G) is called the value of G. The goal is to compute a minimal subset BH of
H with the same value as H (from which, in general, the value is easy to determine), assuming
the availability of two basic operations to be specified below. It turns out that the algorithms we

3A direct proof also gives the 2k(m − d) bound for the expected number of violation tests.
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have seen can be used to perform this computational task, as long as the following axioms are
satisfied:

Axiom 1. (Monotonicity) For any F, G with F ⊆ G ⊆ H , we have w(F ) ≤ w(G).
Axiom 2. (Locality) For any F ⊆ G ⊆ H with −∞ 6= w(F ) = w(G) and any h ∈ H ,
w(G) < w(G ∪ {h}) implies that also w(F ) < w(F ∪ {h}).

If Axioms 1 and 2 hold, then we call (H, w) an LP-type problem. Linear programming is an LP-type
problem (H ∪ H+, w), if we set w(G) = vG for a constraint set G ⊆ H ∪ H+. Then the axioms
coincide with Lemma 1 (i) and (ii). The notions introduced in Section 2 carry over in the obvious
way: A basis B is a set of constraints with w(B′) < w(B) for all proper subsets B′ of B. For
G ⊆ H , a basis of G is a minimal subset B = BG of G with w(B) = w(G). Constraint h is violated
by G, if w(G) < w(G ∪ {h}). Constraint h is extreme in G, if w(G − {h}) < w(G).

For the efficiency of the algorithm the following parameter is crucial: the maximum cardinality
of any basis is called the combinatorial dimension of (H, w), and is denoted by δ = δ(H,w).

We assume that the following primitive operations are available.

(Violation test) ‘h is violated by B’, for a constraint h and a basis B, tests whether
h is violated by B or not.

(Basis computation) ‘basis(B, h)’, for a constraint h and a basis B, computes a basis
of B ∪ {h}.

Carefully reconsidering the algorithms developed in the previous section, we find that the two
axioms and primitive operations above constitute all that is needed to make them work in the
abstract setting. Of course, concrete vertices vB as referred to in case of LP do not exist in the
abstract setting and need to be replaced by their abstract representations B.

As far as the subexponential analysis of SUBEX lp is concerned, we have already seen that
another property of LP is needed to make it valid, and this is part (iii) of Lemma 1 which states
that any basis has exactly d constraints. We call this property basis-regularity. More precisely, it
is crucial for the analysis that a call to SUBEX lp(G, B) with |G| = d entails no further calls to
primitive operations, and this follows from basis-regularity. The axioms above do not imply basis-
regularity, and all of the concrete LP-type problems we present below are indeed not basis-regular.
Still, a bound which is linear in n (but exponential in δ) can be proved in any case [26, 15].

Theorem 8 Given an LP-type problem (H, w), |H | = n, of combinatorial dimension δ, and some
initial basis B ⊆ H, a basis BH of H can be computed with an expected number of at most
2δ+2(n − δ) violation tests resp. basis computations.

The next section shows that the subexponential analysis can in fact be extended to all LP-type
problems. However, already at this stage, the theorem establishes optimal linear-time algorithms
for any LP-type problem of fixed combinatorial dimension δ. To this end observe that the primitive
operations involve problems of size δ + 1 at most, and for constant δ, even brute-force realizations
entail only constant effort. There is quite a number of problems which fit into the framework. We
just provide a list, for further details see [20].

Smallest enclosing ball. Given a set P of n points (or other objects) in d-space, find center and
radius of the smallest ball containing all the points (combinatorial dimension d + 1).

Polytope distance. Given two polytopes P and Q (specified by a total of n points in d-space),
compute points p ∈ P, q ∈ Q minimizing dist(p, q), p ∈ P, q ∈ Q (combinatorial dimension d + 2).

Smallest enclosing ellipsoid. Given n points in d-space, compute the ellipsoid of smallest volume
containing the points (combinatorial dimension d(d + 3)/2).

Largest ellipsoid in polytope. Given a polytope in d-space as the intersection of n halfspaces,
compute the ellipsoid of largest volume contained in the polytope (combinatorial dimension d(d +
3)/2).

Smallest intersecting ball. Given n closed convex objects in d-space, compute the ball of smallest
radius that intersects all of them (combinatorial dimension d + 1).
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Angle-optimal placement of point in polygon. Let P be a star-shaped polygon with n vertices
in the plane (a polygon is star-shaped if there is a point inside the polygon which sees all edges and
vertices; the locus of all such points is called the kernel). Compute a point p in the kernel of P ,
such that after connecting p to all the vertices of P by straight edges, the minimal angle between
two adjacent edges in the triangulated polygon is maximized (combinatorial dimension 3).

Rectilinear 3-centers in the plane. Given a set P of n points in the plane, find three points
c1, c2, c3 so that maxp∈P mini=1,2,3 ‖ci − p‖∞ is minimal [27].

Spherical separability. Given n red and n blue segments in d-space, find the smallest radius ball
covering all red segments and disjoint from all blue segments. Holds also for many computationally
simple objects instead of line segments [28].

Width of ‘thin’ point sets in the plane. The width of a planar set P is the smallest width of a
stripe covering P . Computing the width of an n-point set has an Ω(n log n) lower bound. However,
if the smallest distance between two points in P is larger than the width of P , the problem can be
formulated as an LP-type problem of combinatorial dimension 5 (relies on the fact that n disjoint
unit disks allow a line transversal iff any 5 of them do [10]).

The question whether a problem is LP-type can be a subtle issue and the answer may depend
on the way the problem is formulated. In LP, for example, it may seem natural to define w(G) just
as the minimum value of cT x subject to the constraints in G. Then however, basis regularity and
– much worse – the locality axiom no longer hold. To see this, consider the 2-dimensional problem
of minimizing y (i.e. cT = (0, 1)) subject to the constraint set H = {h1, h2, h3}, h1 : x − y ≤ −1,
h2 : x ≥ 0 and h3 : y ≥ 0. Then w(H) = w({h1, h2}) = 1, and the latter set is a basis (of H).
Another basis of different size is {h3} with w({h3}) = w({h1, h3}) = w({h2, h3}) = 0. This means
that {h1, h3} violates h2 but {h3} does not violate h2, so locality fails. Defining w(G) := vG (as
we have done it) ‘saves’ the situation. As an example that works with canonical w consider the
smallest enclosing ball problem addressed above, in dimension 2. For a subset Q of the points we
define w(Q) as the radius of the smallest disk DQ containing all the points in G. DQ is unique, and
G violates p if and only if p lies outside DQ. From this, locality easily follows (and monotonicity
is obvious). However, the situation is different for the smallest enclosing disk in the L∞-norm
(smallest enclosing axis-parallel square). Defining w(Q) as the sidelength of the smallest square
covering Q does not work, because this square is in general not unique and locality may fail, just
like in LP. Computing the smallest enclosing axis-parallel rectangle instead (from which a smallest
square can be obtained) fixes the problem.

These examples are not meant to suggest that similar transformations can be applied to create
an LP-type problem out of any problem that just ‘looks’ LP-type. As an example, consider
the closest pair problem. For a point set P in the plane and a subset Q, let w(Q) be the closest
interpoint distance in Q. Then w is monotone (the other way round) but locality fails (it is an easy
exercise to verify this). Moreover, there is no way to cast the closest pair problem as an LP-type
problem with fixed combinatorial dimension (if w(Q) as above would work, we had combinatorial
dimension 2), because then Theorem 8 would imply the existence of an O(n) algorithm, n = |P |,
contradicting the Ω(n log n) lower bound.

5 A Subexponential Bound for LP-type Problems

Fix some LP-type problem (H, w) of combinatorial dimension δ, |H | = n. In the previous section
we have argued that SUBEX lp can solve the problem with an expected subexponential number
of primitive operations, provided that calls to pairs (G, B) with |G| = δ are ‘free’. This is the
case if the problem is basis-regular, i.e. all bases have size exactly δ, like in LP with δ = d. For
many other problems (including the ones listed above), basis-regularity is not naturally satisfied.
Here we prove that the subexponential analysis can in fact be extended to all LP-type problems,
whether they are basis-regular or not. Let us start by ‘pretending’ that small problems are free;
specifically, we assume existence of an algorithm Small LPtype that can handle pairs (G, B) with
|G| ≤ δ. Then any LP-type problem can be solved by the following algorithm LPtype which is just
the abstract analogue of SUBEX lp, with Small LPtype plugged in as a subroutine.
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function procedure LPtype(G, B) B ⊆ G: basis

if |G| ≤ δ then returns BG

return Small LPtype(G, B)

else

choose random h ∈ G − B

B′ := LPtype(G − {h}, B)

if h is violated by B′
then

return LPtype(G, basis(B′, h))

else

return B′

If we evaluate the performance of LPtype in terms of violation tests, then the bounds developed
for SUBEX lp apply with a multiplicative overhead of tS(δ) + 1, where tS(δ) denotes the maximum
expected number of violation tests incurred by algorithm Small LPtype (which we develop later)
on a single instance. This algorithm will – just like LPtype – have the property that any basis
computation is preceded by a violation test, so bounding the latter bounds the former as well.
Specifically, the following holds.

Lemma 9 Given some initial basis B ⊆ H, a basis BH of H can be computed with an expected

number of no more than (n − δ)eO(
√

δ ln n)(tS(δ) + 1) violation tests, resp. basis computations.

Note that for basis-regular LP-type problems, tS(δ) = 0. Below we prove that in the general case
tS(δ) can be bounded by

2δ exp
(

2
√

δ + 2
4
√

δ ln δ + ln2 δ
)

= eO(
√

δ), (3)

where the exponent is asymptotically smaller than the exponent we already get from the analysis
of SUBEX lp. Thus, the contribution of the small problems does not introduce asymptotic overhead
in the exponent of Lemma 9. In particular, the best bound we were able to give for LP in Theorem
7 then applies to any LP-type problem.

Theorem 10 Given an LP-type problem (H, w), |H | = n, of combinatorial dimension δ, and some
initial basis B ⊆ H, a basis BH of H can be computed with an expected number of no more than

O(δn + eO(
√

δ ln δ)) primitive operations.

For the concrete LP-type problems smallest enclosing ball and polytope distance mentioned
above, this bound becomes a ‘real’ bound in terms of arithmetic operations, since in these cases a
violation test can be performed in time O(d) and a basis computation in time O(d3) [15].

The small problems. Recall that the crucial feature in the analysis of SUBEX lp was that if
|G−B| is large, then the second recursive call is efficient on average due to a substantial decrease
in hidden dimension. Our algorithm Small LPtype exploits the same idea. It will have a first and
a second recursive call, the first one solving the problem on G − {h}, for h randomly chosen from
some sample space. However, if the canonical sample space G−B turns out to be too small (which
could be the typical situation for |G| ≤ δ), some preliminary computations will enlarge it to make
the second call more efficient on average. The degree of enlargement is obtained from a tradeoff
between the extra effort and the gain in efficiency.

Fix some pair (G, B). If we would (like it is done in LPtype) insist on using the same basis
B for the first recursive call on the set G − {h}, then of course, h would be restricted to lie in
G − B, and there would be no way to enlarge the sample space. But we might as well recur with
(G − {h}, B′), where B′ ⊆ G − {h} is some other basis. As long as B′ is no worse than B (i.e.
w(B′) ≥ w(B) holds), such a choice can make the whole procedure only more efficient. In this
situation, a call with (G− {h}, B) or with (G−{h}, B′) can be performed for all h ∈ G−B ∩B′,
which typically is a larger set than G − B. Thus, the more alternative bases B′ are available, the
larger the sample space gets; the ‘preliminary computations’ addressed above just represent a way
of collecting enough such alternative bases. The following defines elements that might potentially
end up in the sample space.
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Definition 11 h ∈ B ⊆ G is called free with respect to (G, B) if there exists a basis B′ ⊆ G−{h}
with w(B′) ≥ w(B). In this case B′ is called a witness for h with respect to (G, B).

A witness of h proves that h is free. Elements of G − B are free with witness B. With this
terminology, our task consists of finding free elements (in addition to the ones in G − B, if their
number does not suffice), along with corresponding witnesses.

To do this, we incrementally update a set D of free elements; initially, D := G − B. In case D
is already large enough, which for our purposes will mean |D| ≥ ⌈α|G|⌉, for 0 < α < 1 a constant
to be determined later, there is nothing to do. Otherwise we will have to enlarge D by at least one
more free element ‘hidden’ in B; to this end we step through a sequence of basis computations, until
a witness for a yet unknown free element is discovered,4 as follows: recursively call the algorithm
with (G, B), but supply an additional parameter E that contains all the elements of G whose
status is yet unknown (initially, E = B). This recursive call now has two ways to terminate: either
it finds the desired basis BG or – while improving its basis – discovers some B′ ⊆ G which fails
to contain E. This, however, means that the elements in E − B′ have been uncovered as free
elements with witness B′, so the call has found at least one new free element and has therefore
accomplished its task. Shrink E accordingly and repeat. The key observation is that as long as
D is small, the set E of elements of unknown status will be large. Since the recursive call with
parameter E terminates as soon as the first basis B′ appears that is no longer wedged between E
and G, it actually operates only on G − E instead of G. This makes it substantially cheaper. In
other words, the algorithm tentatively ‘enforces’ the elements of E and either finds the optimal
basis in G under this tentative hypothesis, or it disproves the hypothesis by delivering (at least)
one new free element. If enough free elements have been found (i.e. E has become small enough),
the algorithm proceeds as before: it removes a random free element h and recurs on (G−{h}, Bh),
where Bh is a witness of h. This idea of tentatively enforcing constraints in order to find new free
elements in an efficient manner has first been used by Kalai in one of his subexponential simplex
algorithms for LP [17].

The Algorithm. The problem is solved by a call to an auxiliary algorithm Small LPtype E

which has three parameters E ⊆ B ⊆ G.

function procedure Small LPtype(G, B) B ⊆ G: basis

return Small LPtype E(G, B, ∅) returns BG

The top-level of Small LPtype E (where E = ∅) matches the description given above. Down
the recursion the size of the problem is measured by |G−E|, and the quantity ⌈α|G−E|⌉ replaces
⌈α|G|⌉ as the critical value for the required number of free elements.

The procedure Small LPtype E(G, B, E) either returns BG or delivers a basis B′ with w(B′) >
w(B) and E 6⊆ B′ ⊆ G (if E = ∅, only the former alternative is possible, therefore Small LPtype(G, B)
indeed returns BG). The current set D of free elements is implicitly maintained as G − E′. The
witness for an element h will be denoted by Bh.

4or we already find an optimal basis BG
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function procedure Small LPtype E(G, B, E) E ⊆ B ⊆ G; B: basis

if G = B then returns BG or basis B′, with

return B w(B′) > w(B), E 6⊆ B′ ⊆ G

else

E′ := B

for all h ∈ G − E′ do Bh := B

while |G − E′| < ⌈α|G − E|⌉ do

B := Small LPtype E(G, B, E′)

if E 6⊆ B then

return B

elsif E′ 6⊆ B then

for all h ∈ E′ − B do Bh := B

E′ := E′ ∩ B

else return B

choose random h ∈ G − E′

B′ := Small LPtype E(G − {h}, Bh, E)

if E 6⊆ B′ then

return B′

else

if B′
is violated by h then

B′′ := basis(B′, h)

if E 6⊆ B′′ then

return B′′

else return Small LPtype E(G, B′′, E ∪ {h})
Termination of Small LPtype E follows by observing that the recursive calls solve smaller prob-

lems, measured in terms of |G − E| (note that the first recursive call is not executed if E′ = E
because then the algorithm does not enter the while-loop). The while-loop terminates because
E′ gets smaller in every iteration. The correctness of the algorithm follows by inductively checking
the invariant ‘E ⊆ B ⊆ G’.

Let tE(m, k) denote the maximum expected number of violation tests during a call to algorithm
Small LPtype E(G, B, E) of size |G−E| = m and freedom at most k, where the freedom of a triple
(G, B, E) is the number of free elements with respect to (G, B) that are not in E (this implies
k ≤ m). The following recurrence relation can be proved, invoking arguments similar to the ones
used in the development of recurrence (2).

Lemma 12 tE(m, 0) = 0. For m ≥ k > 0, tE(m, k) is bounded by

⌈αm⌉−1
∑

i=0

tE(i, min(k, i)) + tE(m − 1, k − 1) + 1 +
1

⌈αk⌉

⌈αk⌉
∑

i=1

tE(m − 1, k − i).

From this, an upper bound of

tE(m, k) ≤ 2 exp
(

2
√

k/α + lnm(log1/α m + 1)
)

can be derived, and noting that tS(δ) ≤ tE(δ, δ), we obtain (with α := 1/(1 + ln δ/ 4
√

δ))

tS(δ) ≤ 2δ exp
(

2
√

δ + 2
4
√

δ ln δ + ln2 δ
)

,

which is the bound claimed in (3) for the maximum expected number of violation tests incurred
by a call to Small LPtype(G, B). For the details of the analysis see [14, 15].

Abstract optimization problems. Let us investigate the properties crucially underlying algo-
rithm Small LPtype. As it turns out, these are surprisingly few. First, the basis B′′ need not be a
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basis of B′∪{h}. It suffices that w(B′′) > w(B′). In case of LP this is equivalent to B′′ = BB′∪{h},
but in a general LP-type problem, many bases B′′ with the required property might exist. In this
situation, any of them would do. Thus, the basis computation primitive could as well be replaced
with a basis improvement primitive which might be (much) easier to implement. Anticipating this
relaxation, the O(d3) bounds stated above for the basis computation in the smallest enclosing ball
and polytope distance problems were actually bounds for the basis improvement [15].

Second, in order to guarantee the invariant ‘E ⊆ B ⊆ G’, the improved basis B′′ has to be a
subset of G but not necessarily of B′ ∪ {h}. By the locality axiom we know that B′ ∪ {h} must
contain an improved basis if G contains one (and the correctness of the algorithm in its present
form crucially relies on this fact), but if we had a method of directly accessing some arbitrary
improved basis in G, the algorithm would work completely without the locality assumption.

Third and last, the function w is quite irrelevant. The important feature is that the bases are
linearly ordered, and solving the problem for a set G ⊆ H means finding the largest basis among
all bases which are subsets of G. We can as well assume that any subset of H actually is a basis.

Following this discussion, we define an abstract optimization problem (AOP) to be a triple

(H,�, Φ),

where H is a finite set, � is some linear ordering of 2H and Φ is an improvement oracle which is
a function on pairs (G, B), B ⊆ G ⊆ H with the following property.

Φ(G, B) =

{

B, if B = max�{B′ | B′ ⊆ G},
B′ ≻ B, B′ ⊆ G, otherwise.

Under this model, the optimal (with respect to �) subset BH of H can be found with at most
2n − 1 calls to the improvement oracle, where n = |H |. However, we can almost verbatim apply
algorithm Small LPtype to solve an abstract optimization problem in subexponential time. To
this end, violation test and basis computation are replaced by a single call to the oracle: compute
B′′ := Φ(G, B′). Then the violation test becomes a query ‘B′′ 6= B′?’, and if this query has a
positive answer, the improved basis B′′ is readily available. The careful reader might have noticed
that under the AOP axioms, G = B does not necessarily imply that B is optimal for G, so the
termination criterion checked in the first line of the algorithm is not valid. However, we can assume
the following stronger oracle.

Ψ(G, B) =

{

B, if B = max�{B′ | B′ ⊆ G},
B′ ≻ B, B′ ⊆ G, B′ = max�{B′′ | B′′ ⊆ B′}, otherwise,

which guarantees that only bases are considered during the algorithm which define their own
optimum. Ψ(G, B) can be simulated with at most |G| calls to Φ (replace the basis B′ resulting
from Φ(G, B) with Φ(B′, B′) until B′ is stable). Invoking the bound (3) for Small LPtype we thus
get

Theorem 13 Given an AOP (H,�, Φ), a set BH = max�{B | B ⊆ H} can be computed with an
expected number of no more than

2n2 exp
(

2
√

n + 2 4
√

n lnn + ln2 n
)

calls to the improvement oracle Φ.

If not before, the power of randomization in our context becomes apparent here. Namely, the
following lower bound can be shown, see [14, 15].

Theorem 14 Let A be a deterministic algorithm for solving AOPs on an n-element set H. Then
there exists an AOP (H,�, Φ) which forces A to call Φ at least 2n − 1 times to find the optimal
subset BH .

For LP-type problems, no similar (and even no superpolynomial) lower bound for deterministic
algorithms is known.
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6 Discussion

We have reviewed several (randomized) algorithms for LP and LP-type problems which in combi-
nation lead to the currently best known subexponential bounds.

A challenging open problem is to improve on these bounds, and to prove or disprove the exis-
tence of a polynomial combinatorial algorithm for linear programming. While algorithm SUBEX lp

might still substantially outperform the bound of Lemma 6 on actual LPs, Matoušek has con-
structed abstract LP-type problems which force SUBEX lp to behave not much better than analyzed
[21]. An interesting problem in this context is to determine the complexity of AOPs. Due to the
very weak and simple axioms it might be possible to prove a nontrivial (superpolynomial) lower
bound on the number of improvement oracle calls needed by any algorithm for solving AOPs. For
deterministic algorithms, such a bound is given by Theorem 14, for randomized algorithms not
even a superlinear bound (w.r.t. |H |) is known. On the other hand, any improved upper bounds
for AOPs immediately apply to small instances of LP (n = O(d)) and the other concrete LP-type
problems we have mentioned.

Chazelle and Matoušek [5], gave a deterministic algorithm solving LP-type problems in time
O(δO(δ)n), provided an additional axiom holds (together with an additional computational as-
sumption). Still these extra requirements are satisfied in many LP-type problems.

A natural generalization is the problem of finding the best solution satisfying all but k of the
given constraints, for abstract LP-type problems as defined here. This has been investigated by
Matoušek [22].

Amenta [2], considers the following extension of the abstract framework: Suppose we are given
a family of LP-type problems (H, wλ), parameterized by a real parameter λ; the underlying ordered
value set W has a maximum element ∞ representing infeasibility. The goal is to find the smallest
λ for which (H, wλ) is feasible, i.e. wλ(H) < ∞. [2] provides conditions under which the such a
problem can be transformed into a single LP-type problem, and she gives bounds on the resulting
combinatorial dimension. Related work can be found in [3].
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