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Balanced Lines, Halving Triangles, and
the Generalized Lower Bound Theorem
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Abstract

A recent result by Pach and Pinchasi on so-called balanced lines of a finite two-colored point set in the
plane is related to other facts on halving triangles in 3-space and to a special case of the Generalized Lower
Bound Theorem for convex polytopes.

1 Introduction

The following three facts are related to each other.

Fact A Let R and B be two disjoint finite planar sets, so that |R ∪ B| = 2n is even and R ∪ B is in
general position (i.e., no three points are collinear). Points in R and B are referred to as ‘red’ and ‘blue,’
respectively. A line ! is balanced (w.r.t. (R, B)) if ! passes through a red point and a blue point, and on
both sides of !, the number of red points minus the number of blue points is the same.

The number of balanced lines is at least min{|R|, |B|}.

If R and B can be separated by a line (but also in other configurations), this number is attained.

Figure 1: Balanced Lines.

Fact B n ∈ N. Let Q be a set of 2n + 1 points in 3-space in general position (i.e., no four points
are coplanar). A halving triangle of Q is a triangle spanned by three points in Q such that the plane
containing the three points equipartitions the remaining points of Q.

The number of halving triangles is at least n2.

If Q is in convex position (but also in other configurations), this number is attained.

Fact C d ∈ N, even1. Let P be a convex polytope which is the bounded intersection of d+4 halfspaces
1For reference to previous and forthcoming facts: d + 4 = m = 2n.
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in general position in d-space, i.e., no d + 1 bounding hyperplanes meet in a common point. (Therefore,
either P is empty, or it is a simple convex d-polytope with at most d + 4 facets. All vertices are incident
to d edges. Our set-up is chosen in this way, in order to have a clean relation to the other statements.)
Let its edges be oriented according to a generic linear function (edges are directed from smaller to larger
value; ‘generic’ means that the function evaluates to distinct values at the vertices of P).

The number of vertices with d/2 − 1 outgoing edges
is at most the number of vertices with d/2 outgoing edges.

If P is empty (but also for other polytopes), this is tight.

(In fact, for any d (whether odd or even), and for all 1 ≤ j ≤ %d/2&, the number of vertices with j − 1
outgoing edges is at most the number of vertices with j outgoing edges. And for d odd, and j = %d/2&,
these numbers are even equal. But that will not be relevant in our context.)

(A) has been proved by J. Pach and R. Pinchasi [7], answering a question of G. Baloglou’s. (The
statement in [7] is restricted to the case |R| = |B| = n. Then a balanced line must have the same number of
red and blue points on each side, and there are at least n such balanced lines. But see Remark 2.1 below.)
(C) is a very special case of the Generalized Lower Bound Theorem (GLBT) for simple polytopes, which—
in turn—is part of the necessity part of the g-Theorem proved by R. P. Stanley [8] (thereby answering a
conjecture by P. McMullen, who later provided also an alternative proof [6]); cf. also [10]. It was recently
shown that (B) and (C) can be derived from each other [9]. In Section 2 we present a simple proof of the
equivalence (A⇔B). That is, (A)–(C) are equivalent to each other.2 In Section 3, we give an alternative
proof of the equivalence (A⇔C). Clearly, that is already implied by (A⇔B⇔C), but we include here an
argument for this specific setting for the sake of completeness.

On one hand, this means that the result of [7] admits a proof that is considerably simpler than their
original proof, via the GLBT. On the other hand, Pach and Pinchasi’s proof has merits of its own, because
(i) no purely combinatorial proof of the GLBT (such as that in [7]) has been previously known (not even
for the special case (C) equivalent to the balanced line problem), and (ii) that proof is based on allowable
sequences in the dual, and thus (A) applies also for oriented matroids.

2 Balanced Lines and Halving Triangles

We first transform the balanced lines problem (A) to yet another problem (D) involving halving triangles
in three dimensions, which appears to be new.

Assume that the points of R ∪ B (as in (A)) lie in the plane z = 1. Map these points onto the unit
sphere centered at the origin O by: R ( r )→ r∗ := r/‖r‖, and B ( b )→ b∗ := −b/‖b‖. Let S0 denote the
resulting set of projected points, and put S = S0 ∪ {O}. By a small perturbation of R∪B that does not
change the combinatorial type of this set, we may assume that S is in general position.

Observe the following properties, whose proofs are straightforward:

(i) The xy-plane, π0 : z = 0, separates S0 into sets of cardinalities |R| and |B|.

(ii) For r ∈ R and b ∈ B, the line passing through r and b is a balanced line iff the triangle Or∗b∗ is a
halving triangle of S. In particular, this establishes a correspondence between the balanced lines
in R ∪ B and those halving triangles of S that are incident to O and are crossed by π0 (i.e., π0

intersects their relative interior).

(iii) The point O is an extreme point of S if and only if R and B are separated by a line.

Moreover, we can apply a reverse transformation as follows. Let Q be any set of 2n + 1 points in 3-space
in general position. Let q0 ∈ Q be a fixed point, and let π0 be a plane of Q that passes through q0 and

2Of course, true statements are always equivalent; we mean that these facts can be derived from each other in a fashion
that is significantly simpler compared to the proofs of the individual statements.



through no other point of Q. Let π be a plane parallel to π0. Map each point q ∈ Q \ {q0} to the point of
intersection of π with the line that passes through q and q0. Denote by R (resp. B) the subset of points
on π that are images of points of Q that lie in the side of π0 that contains (resp. does not contain) π.

(iv) A triangle q0q1q2, for q1, q2 ∈ Q, is a halving triangle crossed by π0 if and only if the line that passes
through the images of q1 and q2 is a balanced line w.r.t. (R, B).

These properties imply the equivalence (A⇔D) of the result of Pach and Pinchasi and the following
assertion (D).

Fact D n ∈ N. Let Q be a set of 2n + 1 points in 3-space in general position. Let q0 ∈ Q be a fixed
point, and let π0 be a plane of Q that passes through q0 and through no other point of Q, and separates
Q \ {q0} into two sets of cardinalities k and 2n− k.

There are at least min{k, 2n− k} halving triangles of Q
that are incident to q0 and are crossed by π0.

If q0 is an extreme point of Q (but also in other situations), this number is attained.

Let us first show that, indeed, for q0 extreme, the number of halving triangles of Q that are incident
to q0 and are crossed by π0 equals min{k, 2n− k}. Project Q0 = Q \ {q0} centrally from q0 onto a plane
parallel to a supporting plane of Q at q0; denote the projected set by Q∗

0. The plane π0 projects to a
line λ that separates Q∗

0 into sets of cardinalities k and 2n − k. It is then easy to check that, for points
q1, q2 ∈ Q0, the triangle q0q1q2 is a halving triangle of Q crossed by π0 if and only if the segment q∗1q∗2 ,
connecting the images q∗1 , q∗2 of q1, q2, is a halving edge3 of Q∗

0 that is crossed by the line λ. By Lovász’
Lemma [3, 5], the number of such edges is exactly min{k, 2n− k}.

We proceed to a proof of implication (D ⇒ B). Suppose (D) holds. Consider a set Q of 2n+1 points.
Let πq, for q ∈ Q, be pairwise parallel planes such that πq ∩ Q = {q} for each q ∈ Q. Every halving
triangle ∆ of Q is crossed by exactly one of these planes which is also incident to a vertex of ∆ (a plane
crosses a triangle if it contains one of the three vertices, and separates the other two). Hence, there are
at least

2n+1∑

i=1

min{i − 1, 2n + 1 − i} = n2

halving triangles, which implies (B). (By the preceding argument, equality is attained when Q is in convex
position.)

Finally, let us provide the proof of implication (B ⇒ D). Suppose that assertion (D) is false. Thus
there exist a set Q of 2n + 1 points, a parameter 0 ≤ k ≤ 2n, a point q0 ∈ Q and a plane π0 passing
through q0 and partitioning Q\{q0} into two sets of cardinalities k and 2n−k, such that the number c of
halving triangles of Q incident to q0 and crossed by π0 is strictly smaller than min{k, 2n− k}. First, we
project Q0 = Q \ {q0} from q0 onto a sphere centered at q0; let Q′

0 denote the resulting set of projected
points, and Q′ = Q′

0 ∪ {q0}. In this way, the collection of halving triangles incident to q0 did not change,
nor did the number of points on either side of π0. Therefore Q′, q0 and π0 still provide a configuration
contradicting (D). Now let πq, for q ∈ Q′

0, be planes parallel to π0 with πq ( q for each q. If necessary,
rotate π0 slightly about q0 so that πq ∩ Q′ = {q} for each q ∈ Q′

0. As in the previous argument, every
halving triangle of Q′ is crossed by exactly one of the planes in {π0} ∪ {πq | q ∈ Q′

0} (which is also
incident to a vertex of the triangle). Since all points apart from q0 are extreme in Q′, the number of
halving triangles of Q′ is exactly

c − min{k, 2n− k}︸ ︷︷ ︸
<0

+
2n+1∑

i=1

min{i − 1, 2n + 1 − i}
︸ ︷︷ ︸

=n2

< n2 . (1)

The equivalence (B⇔D), and thus (B⇔A) is established.
3An edge whose containing line equipartitions Q∗

0 \ {q∗1 , q∗2}.



Remark 2.1. Consider Q′
0 ∪ {q0} as in the argument just given. Let π′ be another plane through q0

that partitions Q′
0 into sets of cardinalities k′ and 2n − k′, and let c′ be the number of halving triangles

incident to q0 and crossed by π′ (this is also the number of such halving triangles in the original Q).
Since the left-hand side of (1) is equal to the number of halving triangles of Q′

0 ∪ {q0}, it follows that

c − min{k, 2n− k} = c′ − min{k′, 2n− k′} .

Hence, if there were a configuration contradicting (D), then there would also be one with a plane π0

that equipartitions Q \ {q0}, and, thus, if there were a configuration contradicting (A), then there would
also be one with |R| = |B|. That is, the ‘special case’ of (A) treated in [7] immediately entails the more
general formulation in (A).

3 Balanced Lines and the GLBT

We want to exhibit a more direct relation between (A) and (C). We will not do so with (C) itself, though,
but replace it by the following assertion (E), which is known to be equivalent to (C) by the Gale transform
[9].

Fact E m ∈ N, even. Let S be a set of m points in 3-space, and let ρ be a directed ray pointing at its
apex x, such that S∪{x} is in general position, and ρ is disjoint from S and from all segments connecting
points in S. An oriented triangle spanned by three points in S is called a j-triangle of S, if there are
exactly j points of S on its positive side.4 We say that ρ enters a j-triangle ∆ of S, if it intersects ∆
from the positive side to the negative side of it (i.e., x is on the negative side of ∆). If ρ crosses ∆ from
the negative to the positive side, then we say that ρ leaves ∆. Let gj(x, S) be the number of j-triangles
entered by ρ minus the number of j-triangles left by ρ.

gm/2−2(x, S) ≥ 0 .

If x is extreme in S ∪ {x} (but also in other situations), equality holds.

In fact, as already suggested by the above notation, it can be shown that gj(x, S) is a function of x
that is independent of the choice of the ray ρ pointing at it. From this it immediately follows that if x is
extreme in S ∪ {x}, then gj(x, S) = 0 for all j. Using the Gale transform (see [9]), one can show that if
x is not extreme in S ∪ {x}, then there is a simple polytope P in Rm−4 with at most m facets, such that
the so-called g-vector of P is exactly the vector (gj(x, S))$(m−4)/2%

j=0 ; see [9] for details (if x is extreme, P is
the empty polytope). The nonnegativity of this vector is the GLBT.5 We refer to [9] for the equivalence
(E⇔C); see also [4].

We have prepared the ground for a proof of equivalence (D⇔E). Assume the set-up of statement (D);
recall that Q has 2n + 1 points. Put Q0 = Q \ {q0}, and let H(q̃), for any q̃ ∈ π0, denote the number of
halving triangles of Q0 ∪ {q̃} that are incident to q̃ and are crossed by π0. We draw a line ! in π0 passing
through q0, move a point q̃ along ! from infinity to q0, and keep track of the changes in H(q̃) during this
motion (see [2] for related results obtained this continuous motion paradigm, and [1, Chapter 3.6-3.8] for
a thorough treatment of the combinatorial changes occurring in such a motion).

Initially, q̃ is an extreme point of Q0 ∪ {q̃} and so H(q̃) = min{k, 2n − k}. As q̃ moves along !, H(q̃)
changes only when q̃ becomes coplanar with three points a, b, c ∈ Q0, so that the plane passing through
these four points bounds two open halfspaces, one of which contains n − 1 points of Q0 and the other
n − 2. Three cases may arise, as illustrated in Figure 2.

(a) The four points a, b, c, q̃ are in convex position, say in this counterclockwise order, see Figure 2(a).

(b) The four points are not in convex position but q̃ is an extreme point of the quadruple, and, say, c
lies in the interior of q̃ab, see Figure 2(b).

4The orientation of the triangle declares one side of the plane it spans as the positive side. Obviously, the opposite
orientation of a j-triangle is an (m − 3 − j)-triangle.

5And the characterization of all possible g-vectors is the g-Theorem.
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Figure 2: Three cases of coplanarity: (a) The four points are in convex position. (b) The four points are
not in convex position but q̃ is an extreme point of the quadruple. (c) The four points are not in convex
position and q̃ is the middle point.

(c) The four points are not in convex position and q̃ is the non-extreme (‘middle’) point, see Figure 2(c).

Each case is further divided into two subcases, depending on whether q̃ reaches the plane of abc from the
side containing n − 2 points of Q0 (subcase (i)), or from the side containing n − 1 points of Q0 (subcase
(ii)). Let δ denote the line of intersection of π0 and the plane of abc (drawn as a dashed line in Figure 2).

In case (a.i), the triangles abc, q̃ac were halving triangles of Q0 ∪ {q̃} before q̃ reached the plane of
abc, and the triangles q̃ab, q̃bc are halving triangles after q̃ leaves that plane. If δ does not cross the
quadrangle abcq̃ (at the time of coplanarity) then π0 does not cross the triangle q̃ac before q̃ reaches the
plane of abc, and does not cross q̃ab, qac after q̃ leaves that plane. Hence H(q̃) does not change in this
case. On the other hand, if δ crosses abcq̃ then π0 crosses the triangle q̃ac before q̃ reaches the plane of
abc, and crosses exactly one of the triangles q̃ab, q̃ac afterwards. Hence H(q̃) does not change in this case
either. Case (a.ii) is treated in a fully symmetric manner, and H(q̃) does not change in this subcase as
well. In cases (b.i) and (b.ii) the local behavior at q̃ is the same as in the corresponding subcases (a.i)
and (a.ii), so H(q̃) does not change in these cases either.

In case (c.i), the triangle abc was a halving triangle of Q∪{q̃} before q̃ reached the plane of abc, and the
triangles q̃ab, q̃bc and q̃ac are halving triangles after q̃ leaves that plane. The line δ always crosses exactly
two of these three triangles, which means that H(q̃) increases by 2 in this subcase. By a symmetric
reasoning, H(q̃) decreases by 2 in subcase (c.ii). In each of these subcases, abc spans, depending on its
orientation, an (n− 2)-triangle and an (n− 1)-triangle of Q0. In case (c.i), q̃ enters the (n− 2)-triangle6

spanned by abc, or more precisely, the ray on which q̃ moves to q0 enters this (n − 2)-triangle. In case
(c.ii), q̃ leaves the (n − 2)-triangle spanned by abc.

We have shown
H(q0) = min{k, 2n− k} + 2gn−2(q0, Q0) .

So H(q0) ≥ min{k, 2n − k} iff gn−2(q0, Q0) ≥ 0. The latter is the assertion of (E). This completes the
proof.

Remark 3.1. This implication does not hold if we consider the number of j-triangles of Q, for j ≤ n−2,
that are incident to q0 and are crossed by π0. In this case, H(q̃) changes by +2 when q̃ enters a (j − 1)-
triangle of Q0 or when q̃ leaves a j-triangle of Q0, and H(q̃) changes by −2 when q̃ leaves a (j−1)-triangle
of Q0 or when q̃ enters a j-triangle of Q0. In this case we have

H(q0) = 2 min{j + 1, n− 2 − j, k, 2n − k} + 2 (gj(q0, Q0) − gj−1(q0, Q0)) ,

which does not lead to the same implication as in the preceding proof.

6That is, q̃ approaches the plane of abc from the side that contains n − 2 points of Q0.



4 Discussion

The purpose of this paper is to show the relation between the balanced lines problem (A) of [7], some
problems involving halving triangles in 3-space, and the Generalized Lower Bound Theorem. This sheds
some extra light on the result in [7] and explains the difficulty in obtaining a purely combinatorial proof of
(A), as experienced in [7]. It highlights the additional merit of the proof of [7], in providing, implicitly, the
first purely combinatorial proof of the special case of the Generalized Lower Bound Theorem described in
(C). In doing so, we also obtained the property (D), which seems to be new. Several interesting challenges
remain.

• Can one obtain a direct and simpler proof of the balanced lines result (A)?

• Can one obtain a purely combinatorial proof of the Generalized Lower Bound Theorem, beyond
the special case established (indirectly) here?
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