
Monitoring Security
Policies
Felix Klaedtke

NEC Labs Europe

Story so far . . .

� Which policies are enforceable?
∗∗∗ Characterization for an abstract setting
∗∗∗ Enforcement via execution monitoring

policies

system

enforcement
mechanism

allowed
action?

� In the following:
How to check policy compliance of system behavior?

behavior |= policy
?

2

Story so far . . .

� Which policies are enforceable?
∗∗∗ Characterization for an abstract setting
∗∗∗ Enforcement via execution monitoring

policies

system

enforcement
mechanism

allowed
action?

� In the following:
How to check policy compliance of system behavior?

behavior |= policy
?

2

Why relevant?

� Policies are omnipresent but not all are enforceable

� Even when enforceable, the enforcement mechanism
might be missconfigured or corrupted

� Strengthen security controls, audits, system debugging, . . .
See NIST SP 800-92: “Guide to Computer Security Log Management”

3

Why different?

� Policy enforcement and monitoring are related but . . .

� Monitoring is simpler!
A monitor only needs to observe the system and report the violations
∗∗∗ Events must only be observable
∗∗∗ When monitoring online, violations can be reported possibly with a delay
∗∗∗ Monitoring a trace offline is also possible

� Monitoring is more generally applicable!
∗∗∗ For P ⊆ Σ∞, if P is enforceable then P is “monitorable”
∗∗∗ Pnueli & Zaks (2006):

“A verdict for an infinite sequence is always possible by an observation.”
∗∗∗ Examples: ω-safety properties and also some ω-liveness properties

(e.g., eventually p)
∗∗∗ Nonexamples: some ω-liveness properties (e.g., always eventually p)
∗∗∗ Alternative characterizations/views exist (e.g., [Falcone et al. ’12])

4

Scope

events
Monitor

during runtime or audit

?

� Setting: policies stipulate data usage and agent behavior in
IT systems or business processes

HIPAA, SOX, separation of duty, etc.

� Objective: detect policy violations

� Focus: policy specification and monitoring

5

Why challenging?

efficiency

of algorithmic solution

expressiveness

of policy language

�
�
�
�
�
�
�richness

of system model

6

Why challenging?

,,

•LTL

efficiency

of algorithmic solution

expressiveness

of policy language

�
�
�
�
�
�
�richness

of system model

6

Why challenging?

,,

•LTL

,
,

•MTL

efficiency

of algorithmic solution

expressiveness

of policy language

�
�
�
�
�
�
�richness

of system model

6

Why challenging?

,,

•LTL

,
,

•MTL

efficiency

of algorithmic solution

expressiveness

of policy language

�
�
�
�
�
�
�richness

of system model

•temporal + first-order

6

Monitoring first-order temporal properties

Chomicki

Sistla&Wolfson
Lipeck&Saake

1990 2000 2010

security

verification

database

Bauer et al.

Basin et al.

Chowdhury et al.
Garg et al.

Decker et al.
Halle&Villemaire

Maggi et al.

Barringer et al.

Roger&Goubault−Larreq

Baader et al.

Stolz&Boden

Barringer et al.
Rosu&Chen

Havelund

7

Monitoring first-order temporal properties

Chomicki

Sistla&Wolfson
Lipeck&Saake

1990 2000 2010

security

verification

database

Bauer et al.

Basin et al.

Chowdhury et al.
Garg et al.

Decker et al.
Halle&Villemaire

Maggi et al.

Barringer et al.

Roger&Goubault−Larreq

Baader et al.

Stolz&Boden

Barringer et al.
Rosu&Chen

Havelund

7

Policy Specification

8

Example

� Consider a financial or research institute

∗∗∗ Employees write and publish reports

∗∗∗ Reports may contain confidential data

� Report-must-be-approved policy

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� IT system logs events

2013-03-03 publish report (Charlie, #234)

2013-03-04 archive report (Alice, #104)
...
...
...

...

...

...
2013-03-09 approve report (Alice, #248)

2013-03-13 publish report (Bob, #248)
...
...
...

...

...

...

� Is system trace policy compliant?

9

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

10

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqq qqqqqq qqq
qqqqqq qqqqqqq qqqqqqq qqqqqqqq

r rrrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrr
r rrrrrrrrrr rrrrrrrrrr rrrrrrrrr rrrrrrrrr rrrrrrrr rrrrrrrr

10

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

qqqqqq qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqq qqqqqq qqqqqq qq
qqqqqqqqqqqq qqqqqq qqqqqqq qqqqqqq

rrrrrrrrr rrrr rrrrr rrrrr rrrrrr rrrrrrr
r rrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrrr rrrrrrrrrrrrrrr

10

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

Event predicates
� approving and publishing a report

� happen at a point in time

� logged with time-stamp

qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqq qqqqqqq qqqqqq qqqqq qqq
qqqqqqqqqqqqqqqqqqq qqqqqqq
qqqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq

r rrrrrrrrrrr rrrrrrrrrr rrrrrrrr rrrrrrr rrrrrr rrrrrr r rrrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr

10

Policy elements

1. Reports must be approved before they are published.

2. Approvals must happen at most 10 days before publication.

3. The employees’ managers must approve the reports.

Subjects
� reports and employees

� unbounded over time

Temporal aspects
� qualitative: before and always

� quantitative: at most 10 days

Event predicates
� approving and publishing a report

� happen at a point in time

� logged with time-stamp

State predicates
� being someone’s manager

� have a duration

qqqqqq qqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqqqqqq qqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqq qqqqqqqqqqq qqqqqqqqqq qqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqqq qqqqqq qqqqqqq qqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqq qqqqqq qqqqqq qqqqqqq

r rrrrrrrr rrrrrrrrr rrrrrrrrrr rrrrrrrrrrr rrrrrrrrrrrr rrrrrrrrrrrrr rrrrrrrrrrrrrr rrrrrrrrrrrrrrr rrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrr

10

Linear-time temporal logic

- time
0 1 2 3 4 5 6 7 8 9 10 . . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� At each time point i ∈ N, a proposition P is either true or false

� Previous and Next

 P -
P

###P -
P

� Once and Eventually (including present)

� P -
P

��� P -
P

� Historically and Generally (including present)

� P -
P P P P P

��� P -
P P P P . . .

11

Linear-time temporal logic

- time
0 1 2 3 4 5 6 7 8 9 10 . . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� At each time point i ∈ N, a proposition P is either true or false

� Previous and Next

 P -
P

###P -
P

� Once and Eventually (including present)

� P -
P

��� P -
P

� Historically and Generally (including present)

� P -
P P P P P

��� P -
P P P P . . .

11

Linear-time temporal logic

- time
0 1 2 3 4 5 6 7 8 9 10 . . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� At each time point i ∈ N, a proposition P is either true or false

� Previous and Next

 P -
P

###P -
P

� Once and Eventually (including present)

� P -
P

��� P -
P

� Historically and Generally (including present)

� P -
P P P P P

��� P -
P P P P . . .

11

Linear-time temporal logic

- time
0 1 2 3 4 5 6 7 8 9 10 . . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� At each time point i ∈ N, a proposition P is either true or false

� Previous and Next

 P -
P

###P -
P

� Once and Eventually (including present)

� P -
P

��� P -
P

� Historically and Generally (including present)

� P -
P P P P P

��� P -
P P P P . . .

11

Linear-time temporal logic

- time
0 1 2 3 4 5 6 7 8 9 10 . . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� At each time point i ∈ N, a proposition P is either true or false

� Previous and Next

 P -
P

###P -
P

� Once and Eventually (including present)

� P -
P

��� P -
P

� Historically and Generally (including present)

� P -
P P P P P

��� P -
P P P P . . .

11

Since and Until

� Temporal operators: Since and Until

Q S P -
P Q Q Q

Q U P -
Q Q Q P

� Examples:

��� access → � login ¬
(
(¬login) U (access ∧ ¬login)

)
��� access →

(
(¬logout) S login

)
“a user is not allowed to acccess a file before he has not logged in”

12

Since and Until

� Temporal operators: Since and Until

Q S P -
P Q Q Q

Q U P -
Q Q Q P

� Examples:

��� access → � login ¬
(
(¬login) U (access ∧ ¬login)

)
��� access →

(
(¬logout) S login

)
“a user is not allowed to acccess a file before he has not logged in”

12

Metric temporal operators

- time
0

τ0

1

τ1

2

τ2

3

τ3

4

τ4

5

τ5

6

τ6

7

τ7

8

τ8

9

τ9

10

τ10

. . .

. . .

present ︸ ︷︷ ︸
future

︸ ︷︷ ︸
past

� Each time point i ∈ N is timestamped τi ∈ N
∗∗∗ monotonically increasing: for all i ∈ N, τi ≤ τi+1

∗∗∗ progressing: for every κ ∈ N, there is some i ∈ N such that τi > κ

� Attach timining constraints to temporal operators

�≤10 P
-τ0 τ1 τ2 τ3 τ4 τ5

P︸ ︷︷ ︸
τ4−τ1≤10

13

Propositional MTL

� Syntax: P an atomic proposition from AP and I an interval over N

φ ::= P
∣∣ ¬φ ∣∣ φ ∨ φ ∣∣ I φ

∣∣###I φ
∣∣ φ SI φ

∣∣ φUI φ

� Semantics: D̄ =(D0,D1, . . .) with D0, . . . ⊆ AP, τ̄ =(τ0, τ1, . . .), and i ∈ N

(D̄, τ̄ , i) |= P iff P ∈ Di

(D̄, τ̄ , i) |= ¬φ iff (D̄, τ̄ , i) 6|= φ
(D̄, τ̄ , i) |= φ ∨ ψ iff (D̄, τ̄ , i) |= φ or (D̄, τ̄ , i) |= ψ

(D̄, τ̄ , i) |= I φ iff i > 0, τi − τi−1 ∈ I , and (D̄, τ̄ , i − 1) |= φ
(D̄, τ̄ , i) |=###I φ iff τi+1 − τi ∈ I and (D̄, τ̄ , i + 1) |= φ

(D̄, τ̄ , i) |= φ SI ψ iff there is some j ≤ i with τi − τj ∈ I , (D̄, τ̄ , j) |= ψ,
and (D̄, τ̄ , k) |= φ, for all k with j < k ≤ i

(D̄, τ̄ , i) |= φUI ψ iff there is some j ≥ i with τj − τi ∈ I , (D̄, τ̄ , j) |= ψ,
and (D̄, τ̄ , k) |= φ, for all k with i ≤ k < i

� Syntactic Sugar: �I φ := true SI φ, �I φ := ¬ �I ¬φ, . . .

14

Remarks on time model

� Zoo of temporal logics: CTL, LTL, PSL, ITL, MTL, TPTL, . . .
∗∗∗ Dedicated temporal operators; temporal reasoning restricted to a few

cases
∗∗∗ Underlying time models differ [Alur&Henzinger ’92]

� Why time-points with time-stamps?
∗∗∗ Event-based view
∗∗∗ Temporal reasoning with points is “simpler” than with intervals

(see [Basin et al. ’11])
∗∗∗ State predicates can often be mimicked with the S operator

� Why a discrete time domain?
∗∗∗ Clocks have limited precision
∗∗∗ Minor impact on monitoring

� Linear time versus branching time
∗∗∗ In monitoring, we observe a single trace

15

Policy specification language
Metric First-Order Temporal Logic [Koymans ’90]

���∀e. ∀r . publish report(e, r)→
�≤10 ∃m.manager(m, e) ∧ approve report(m, r)

� First-order for expressing relations on data

� Temporal operators for reasoning about time

� Metric information adds timing constraints

16

Syntax

� A signature S is a tuple (C ,R)

C is a finite set of constant symbols and R is a finite set of
predicates, each with an associated arity

� (MFOTL) formulas over a signature S and set of variables V

φ ::= t1≈ t2
∣∣ t1≺ t2

∣∣ r(t1, . . . , tn) | ∃x . φ
∣∣

¬φ
∣∣ φ ∨ φ ∣∣ I φ

∣∣ ###I φ
∣∣ φ SI φ

∣∣ φUI φ

where I is an interval of N

17

Semantics

-
τ0

D0

τ1

D1

τ2

D2

τ3

D3 . . .

. . .

� A temporal structure (over S) is a pair (D̄, τ̄).

∗∗∗ Sequence τ̄ = (τ0, τ1, . . .) of timestamps, τi ∈ N
monotonically increasing and progressing

∗∗∗ Sequence of structures D̄ = (D0,D1, . . .)

constant domains and rigid interpretation of constant symbols

� (D̄, τ̄ , v , i) |= φ denotes MFOTL satisfaction

(D̄, τ̄) is a temporal structure, v a valuation, i ∈ N, and φ a formula

� Standard semantics for first-order part

18

Differences to other FO monitoring approaches

� Temporal past and future operators
As we will see, the operator S will be particularly handy

� Fixed (infinite) domain |D̄|
But multiple (finite) events at each time point

(Alice, 234)∈ approve reportDi and

(Bob, 248), (Charlie, 249)∈ publish reportDi

� Quantification(
D̄, τ̄ , v , i

)
|= ∃x . φ iff

(
D̄, τ̄ , v [x 7→ d], i

)
|= φ, for some d ∈ |D̄|

Alternatives:
∗∗∗ freeze quantification (“half-order” [Henzinger ’94])
∗∗∗ guarded quantification [Garg et al. ’11, Chowdhury et al. ’14]
∗∗∗ range restricted to data items occurring at current time point

[Hallé&Villemaire ’12, Bauer et al. ’09]

� For monitoring, we will impose syntactic restrictions

19

Policy revisited and simplified

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� Publishing and approving events are logged with time-stamps

...

...

...
...
...
...

2013-03-04 archive report (Alice, #104)

2013-03-04 approve report (Alice, #248)
...
...
...

...

...

...
2013-03-13 approve report (Alice, #234)

publish report (Bob, #248)
...
...
...

...

...

...

- time
.2013–03–04

archive report(Alice,#104)

2013–03–09

approve report(Alice,#248)

2013–03–13

approve report(Alice,#234)

publish report(Bob,#248)

� Simplified policy in MFOTL:

���∀e.∀r . publish report(e, r)→ �≤10 ∃m. approve report(m, r)

20

Policy revisited

1. Reports must be approved before they are published.
2. Approvals must happen at most 10 days before publication.
3. The employees’ managers must approve the reports.

� Being someone’s manager is a state property, with a duration
∗∗∗ Log events that mark start and end points

- time
.2013–01–01

managerstart(Alice,Charlie)

managerstart(Alice,Bob)

2013–15–01

managerend(Alice,Charlie)

∗∗∗ State predicate as syntactic sugar

manager(m, e) = ¬managerend(m, e) S managerstart(m, e)

� Policy in MFOTL:
���∀e.∀r . publish report(e, r)→

�≤10 ∃m.manager(m, e) ∧ approve report(m, r)

21

Separation of duty requirements
Principle for preventing fraud and errors

� Requires involvement of multiple users in critical processes.

� Usually formulated on top of Role-Based Access Control.

∗∗∗ Users are assigned to roles, which have associated permissions.

∗∗∗ SoD constraints specified in terms of mutually exclusive roles.

� Signature (formalizing both RBAC and SoD)

∗∗∗ U, R, A, O, and S represent the sets of users, roles, actions, objects, and
sessions associated with a (RBAC) system

∗∗∗ UA(u, r): user u assigned role r

∗∗∗ PA(r , a, o): role r can carry out action a on object o

∗∗∗ roles(s, r): role r is active in session s

∗∗∗ X (r , r ′): roles r and r ′ are mutually exclusive

∗∗∗ exec(s, a, o): action a is executed on object o in session s

22

Separation of duty requirements
Principle for preventing fraud and errors

� Requires involvement of multiple users in critical processes.

� Usually formulated on top of Role-Based Access Control.

∗∗∗ Users are assigned to roles, which have associated permissions.

∗∗∗ SoD constraints specified in terms of mutually exclusive roles.

� Signature (formalizing both RBAC and SoD)

∗∗∗ U, R, A, O, and S represent the sets of users, roles, actions, objects, and
sessions associated with a (RBAC) system

∗∗∗ UA(u, r): user u assigned role r

∗∗∗ PA(r , a, o): role r can carry out action a on object o

∗∗∗ roles(s, r): role r is active in session s

∗∗∗ X (r , r ′): roles r and r ′ are mutually exclusive

∗∗∗ exec(s, a, o): action a is executed on object o in session s

22

Formalizing SoD requirements

� Static SoD: no user may be assigned to two mutually exlusive roles

���∀r .∀r ′.X (r , r ′)→ ¬∃u.UA(u, r) ∧ UA(u, r ′)

(Assumption: X irreflexive and symmetric)

� Simple dynamic SoD: a user may be assigned to two exclusive roles
provided he does not activate them both in the same session

���∀r . ∀r ′.X (r , r ′) →
¬∃s. roles(s, r) ∧

(
¬Send(s) S roles(s, r ′)

)
(Assumptions: session always associated with one user who remains
constant over the session’s lifetime, . . .)

23

SoD requirements (cont.)

� Object-based SoD: a user may be assigned to two exclusive roles and
also activate them both in the same session, but he must not carry
out actions on the same object through both.

��� ∀r .∀r ′.X (r , r ′) →
¬∃s.∃o.

(
∃a. exec(s, a, o) ∧ roles(s, r) ∧ PA(r , a, o)

)
∧(

¬Send(s) S ∃a′. exec(s, a′, o)∧
roles(s, r ′) ∧ PA(r ′, a′, o)

)

24

Chinese Wall

� Policy to avoid conflict-of-interest situations

“Subject s must not access object o when s has previously
accessed another object in a different dataset than o and
both datasets are in the same conflict-of-interest class”

� A possible formalization (with timing constraints):

���∀s. ∀o.∀d . ∀d ′. access(s, o) ∧ dataset(o, d)∧(
∃o ′. (�<4 access(s, o ′)) ∧ dataset(o ′, d ′)

)
→

¬conflict(d , d ′)
Assume that:
∗∗∗ At each time point, conflict is irreflexive and symmetric
∗∗∗ At each time point, dataset is a partial function from objects to datasets

� Different types of predicates:
∗∗∗ Event predicate: accessing an object happens at a time point
∗∗∗ State predicate: being in a dataset has a duration (start and finish)
∗∗∗ Datasets and conflict-of-interest classes might change over time

25

Experience

MFOTL is well suited to formalize a wide range of policies

But:

� Precision must precede formalization

∗∗∗ “Data must be securely stored.”

� Gap between high-level policies and system information

∗∗∗ “Data must be deleted within 30 days.”
∗∗∗ “Data should be used for statistical purposes only.”

� Not all policies are trace properties

∗∗∗ “Average response time, over all executions, should be less than 10ms.”
∗∗∗ “Actions of high users have no effect on observations of low users.”

26

Monitoring

27

Monitoring Objective

� For a policy given as an MFOTL formula φ

���∀c .∀t. ∀a. trans(c , t, a) ∧ th < a→ ���<6 report(t)

� and a prefix of a temporal structure given by system events or logs

- time
τ0

trans cID tID amount
Bob #34 $100’000
Eve #37 $1’000

report tID

τ1

trans cID tID amount
Eve #45 $999’999

report tID
#34

. . . τi

trans cID tID amount
Bob #78 $24
Mallory #99 $333’333

report tID

. . .

� monitor should report all policy violations (either online or offline)

28

Monitoring Objective

� For a policy given as an MFOTL formula φ

��� ∀c .∀t.∀a. trans(c , t, a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(c , t ′, a′) ∧ ���<6 report(t ′)
)

→
���<3 report(t)

� and a prefix of a temporal structure given by system events or logs

- time
τ0

trans cID tID amount
Bob #34 $100’000
Eve #37 $1’000

report tID

τ1

trans cID tID amount
Eve #45 $999’999

report tID
#34

. . . τi

trans cID tID amount
Bob #78 $24
Mallory #99 $333’333

report tID

. . .

� monitor should report all policy violations (either online or offline)

28

Monitoring Objective

� For a policy given as an MFOTL formula φ

��� ∀c .∀t.∀a. trans(c , t, a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(c , t ′, a′) ∧ ���<6 report(t ′)
)

→
���<3 report(t)

� and a prefix of a temporal structure given by system events or logs

- time
τ0

trans cID tID amount
Bob #34 $100’000
Eve #37 $1’000

report tID

τ1

trans cID tID amount
Eve #45 $999’999

report tID
#34

. . . τi

trans cID tID amount
Bob #78 $24
Mallory #99 $333’333

report tID

. . .

� monitor should report all policy violations (either online or offline)

28

Restrictions

-
τ0

D0

τ1

D1

τ2

D2

τ3

D3 . . .

. . . ?

6|= φ

Not every MFOTL-definable property can be effectively monitored on a
temporal structure

� Structures D0,D1, . . . have only finite relations

� Formula φ must be of the form ���φ′

∗∗∗ Temporal future operators in φ′ only refer finitely into the future
So φ describes an ω-safety property

∗∗∗ Further restrictions on φ′ to guarantee finiteness of intermediate results

r(x) ∧ �<7 ¬q(x) ; r(x) ∧ ¬ �<7 q(x)

Related to domain independence of database queries
(see, e.g., [Fagin 1982])

29

Preprocessing: Negation and Rewriting

� Input formula φ

���∀t.∀c .∀a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

→
���<3 report(t)

� Negate, rewrite, and drop outermost ��� and ∃ quantifier(s), yielding ψ

��� ∃t. ∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

∧
¬ ���<3 report(t)

PPP��
�

� For monitoring: for each i ∈ N, determine elements satisfying ψ:{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are the transactions that should have been reported at time point i

30

Preprocessing: Negation and Rewriting

� Input formula φ

���∀t.∀c .∀a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

→
���<3 report(t)

� Negate, rewrite, and drop outermost ��� and ∃ quantifier(s), yielding ψ

��� ∃t. ∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

∧
¬ ���<3 report(t)

PPP��
�

� For monitoring: for each i ∈ N, determine elements satisfying ψ:{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are the transactions that should have been reported at time point i

30

Preprocessing: Negation and Rewriting

� Input formula φ

���∀t.∀c .∀a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

→
���<3 report(t)

� Negate, rewrite, and drop outermost ��� and ∃ quantifier(s), yielding ψ

��� ∃t. ∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. t 6≈ t ′ ∧ trans(t ′, c , a′) ∧ ���<6 report(t ′)
)

∧
¬ ���<3 report(t)

PPP��
�

� For monitoring: for each i ∈ N, determine elements satisfying ψ:{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= ψ

}
These are the transactions that should have been reported at time point i

30

Preprocessing: Reduction to First-Order Queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. . . . ∧ ���<6 report(t ′)︸ ︷︷ ︸
pα1︸ ︷︷ ︸

pα2

)
∧ ¬ ���<3 report(t)︸ ︷︷ ︸

pα3

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

∃c .∃a. trans(t, c , a) ∧ pα2(c , t) ∧ ¬pα3(t)

� For monitoring:

∗∗∗ For each i ∈ N, extend Di to D̂i , where for each temporal subformula α

pD̂i
α =

{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= α̂

}
∗∗∗ For each i ∈ N, query extended first-order structure D̂i{

ā
∣∣ (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to construct pD̂i

α for each i ∈ N

31

Preprocessing: Reduction to First-Order Queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. . . . ∧ ���<6 report(t ′)︸ ︷︷ ︸
pα1︸ ︷︷ ︸

pα2

)
∧ ¬ ���<3 report(t)︸ ︷︷ ︸

pα3

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

∃c .∃a. trans(t, c , a) ∧ pα2(c , t) ∧ ¬pα3(t)

� For monitoring:

∗∗∗ For each i ∈ N, extend Di to D̂i , where for each temporal subformula α

pD̂i
α =

{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= α̂

}
∗∗∗ For each i ∈ N, query extended first-order structure D̂i{

ā
∣∣ (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to construct pD̂i

α for each i ∈ N

31

Preprocessing: Reduction to First-Order Queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. . . . ∧ ���<6 report(t ′)︸ ︷︷ ︸
pα1︸ ︷︷ ︸

pα2

)
∧ ¬ ���<3 report(t)︸ ︷︷ ︸

pα3

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

∃c .∃a. trans(t, c , a) ∧ pα2(c , t) ∧ ¬pα3(t)

� For monitoring:

∗∗∗ For each i ∈ N, extend Di to D̂i , where for each temporal subformula α

pD̂i
α =

{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= α̂

}
∗∗∗ For each i ∈ N, query extended first-order structure D̂i{

ā
∣∣ (D̂i , v [x̄/ā]) |= ψ̂

}

Next: how to construct pD̂i
α for each i ∈ N

31

Preprocessing: Reduction to First-Order Queries

� For each temporal subformula α in ψ, introduce an auxiliary predicate pα

∃c .∃a. trans(t, c , a) ∧
(

�<31 ∃t ′.∃a′. . . . ∧ ���<6 report(t ′)︸ ︷︷ ︸
pα1︸ ︷︷ ︸

pα2

)
∧ ¬ ���<3 report(t)︸ ︷︷ ︸

pα3

� Replace each α by a corresponding pα, yielding first-order formula ψ̂

∃c .∃a. trans(t, c , a) ∧ pα2(c , t) ∧ ¬pα3(t)

� For monitoring:

∗∗∗ For each i ∈ N, extend Di to D̂i , where for each temporal subformula α

pD̂i
α =

{
ā
∣∣ (D̄, τ̄ , v [x̄/ā], i) |= α̂

}
∗∗∗ For each i ∈ N, query extended first-order structure D̂i{

ā
∣∣ (D̂i , v [x̄/ā]) |= ψ̂

}
Next: how to construct pD̂i

α for each i ∈ N
31

Constructing the Auxiliary Relations

- time
τ0

D0 . . .

. . . τi−1

Di−1

τi

Di

D̂i

τi+1

Di+1 . . .

. . .

� Construct auxiliary relations pα
D̂i inductively over α’s formula structure and using

also relations from both previous and subsequent structures

� Case where α has form I β: pα
D̂i =

{
β̂D̂i−1 if i > 0 and τi − τi−1 ∈ I

∅ otherwise

� Case where α has form ###I β: pα
D̂i =

{
β̂D̂i+1 if τi+1 − τi ∈ I

∅ otherwise

∗∗∗ Construction depends on relations in D̂i+1 for which the predicates occur in β̂

∗∗∗ Monitor constructs pα
D̂i with a delay of at least one time step

32

Construction for S[0,∞)

� The construction for α = β S[0,∞) γ reflects the logical equivalence

α↔ γ ∨ (β ∧ α)

� Assume that β and γ have the same free variables. Then

pα
D̂i = γ̂D̂i ∪

{
∅ if i = 0

β̂D̂i ∩ pα
D̂i−1 if i > 0

� Uses relations just for subformulas and previous time point

� Constructions for metric SI and UI slightly more involved

33

Monitoring Algorithm

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

{(
α, 0,waitfor(α)

) ∣∣α temporal subformula of ψ
}

4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relation for α in D̂j .
8: Discard auxiliary relation for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(ψ) do

11: Output violations ψ̂D̂q and time-stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

{(
α, i + 1,waitfor(α)

) ∣∣α temporal subformula of ψ
}
∪{(

α, j ,
⋃
α′∈update(S,τi+1−τi)

waitfor(α′)
) ∣∣ (α, j , S) ∈ Q and S 6= ∅

}
15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Counters q (query) and i (lookahead) into input sequence

34

Monitoring Algorithm

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

{(
α, 0,waitfor(α)

) ∣∣α temporal subformula of ψ
}

4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relation for α in D̂j .
8: Discard auxiliary relation for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(ψ) do

11: Output violations ψ̂D̂q and time-stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

{(
α, i + 1,waitfor(α)

) ∣∣α temporal subformula of ψ
}
∪{(

α, j ,
⋃
α′∈update(S,τi+1−τi)

waitfor(α′)
) ∣∣ (α, j , S) ∈ Q and S 6= ∅

}
15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Q maintains list of unevaluated subformula (α, j , S) for past time points

34

Monitoring Algorithm

1: i ← 0 % lookahead index in sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ←

{(
α, 0,waitfor(α)

) ∣∣α temporal subformula of ψ
}

4: loop
5: Carry over constants and relations of Di to D̂i .
6: for all (α, j , ∅) ∈ Q do % can build relation for α in D̂j

7: Build auxiliary relation for α in D̂j .
8: Discard auxiliary relation for α in D̂j−1 if j − 1 ≥ 0.

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while relations p
D̂q
α are built for all temporal subformulas α of ψ do

11: Output violations ψ̂D̂q and time-stamp τq.
12: Discard structure D̂q−1 if q > 0.
13: q ← q + 1
14: Q ←

{(
α, i + 1,waitfor(α)

) ∣∣α temporal subformula of ψ
}
∪{(

α, j ,
⋃
α′∈update(S,τi+1−τi)

waitfor(α′)
) ∣∣ (α, j , S) ∈ Q and S 6= ∅

}
15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Given relations for all temporal subformulas, output policy violations

34

Finite Relations

� In each iteration, monitor stores auxiliary relations

� Problem: must restrict negation and quantification

∗∗∗ Consider the formula p(x) ∧ ¬q(x)

∗∗∗ In (i + 1)st iteration, monitor constructs auxiliary relation pD̂i

 ¬q(x)

� Solution: rewrite to a formula so that auxiliary relations are finite

∗∗∗ p(x) ∧ ¬q(x) is rewritten to p(x) ∧
(
¬q(x) ∧### p(x)

)
∗∗∗ Heuristic!

∗∗∗ Related to domain independence of database queries, e.g., [Fagin ’82]

� Under reasonable assumptions, the size of the finite relations is
polynomially bounded w.r.t. to input

35

Finite Relations

� In each iteration, monitor stores auxiliary relations

� Problem: must restrict negation and quantification

∗∗∗ Consider the formula p(x) ∧ ¬q(x)

∗∗∗ In (i + 1)st iteration, monitor constructs auxiliary relation pD̂i

 ¬q(x)

� Solution: rewrite to a formula so that auxiliary relations are finite

∗∗∗ p(x) ∧ ¬q(x) is rewritten to p(x) ∧
(
¬q(x) ∧### p(x)

)
∗∗∗ Heuristic!

∗∗∗ Related to domain independence of database queries, e.g., [Fagin ’82]

� Under reasonable assumptions, the size of the finite relations is
polynomially bounded w.r.t. to input

35

� Implementation of our monitoring algorithm for MFOTL

∗∗∗ Usage: monpoly -sig signature -formula policy -log logfile
∗∗∗ Output: policy violations

� Open source, GNU public license

∗∗∗ Available at http://sourceforge.net/projects/monpoly
∗∗∗ Written in OCaml

� Also handles policies with aggregations:

���∀u.∀s.
[[[
SUMa a, t. �<31 withdraw(u, t, a)

]]]
(s; u)→ s � 5000

36

http://sourceforge.net/projects/monpoly

Performance Evaluation

� Generated log files with different event rates for a fixed time span
� Monitoring performance for complex transaction-report policy:

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

se
co

n
d

s

time units

2k events
time unit

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300

M
B

time units

2k events
time unit

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

se
co

n
d

s

event rates

•

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 500 1000 1500 2000 2500 3000 3500 4000

M
B

event rates

•

� PostgreSQL does not scale to larger log files
37

Case study: ’s data-collection campaign

� Phone data collected and propagated to databases:
location, call and SMS info, accelerometer, . . .

� Participants can view and delete their data

� Clear-text data used for personalized apps, e.g., location-history maps

� Anonymized data is used for research
38

Policies (sample)

1. Access-control rules restrict who accesses and modifies data in databases

(A) Only user script2 may delete data from db2

(B) Databases db1 and db2 are accessed by script1 account only while script1
is running

2. Data changes are propagated between databases

(C) Data deleted from db2 is deleted from db3 within 60 seconds

(D) Data inserted into db1 is, within 30 hours, either inserted into db2 or
deleted from db1

39

Logs

��
��

��
��

��
�����

���

� Log entries are produced at
multiple places

� Need to combine logs

� No total order on log entries

� Compliance might depend on order

Log sample
@unix time
event db user db data id

@1272902328
insert (eu.030, db1, 146368038)
insert (eu.031, db2, 122368122)
@1272902355
delete (script2, db2, 108031209)
select (res.012, db3, 146368038)
@1273158243
script end (script1)

40

Intractability

� Instead of monitoring a single trace, we must monitor a set of traces
0 3

3 9

log 2

log 1

14

14

7

� Policy violation: some trace/all traces

� Even for a very restrictive setting, corresponding decision problems
are intractable

Instance:

∗∗∗ propositional, past-only, non-metric linear-time temporal formula φ

∗∗∗ prefixes D̄1 and D̄2 of length n ≥ 1
with D̄ i = (D i

1, τ1) (D i
1, τ1) . . . (D i

n, τn), for i ∈ {1, 2}
Question WEAK: (D̄, 2n) 6|= φ, for some D̄ ∈ D̄1 |||||| D̄2 is NP-complete

Question STRONG: (D̄, 2n) 6|= φ, for all D̄ ∈ D̄1 |||||| D̄2 is coNP-complete
41

Collapsed Logs

� Policies should not care about the ordering of events with equal
time-stamps

���∀u.∀d . delete(u, db2, d)→ �<1s ���<60s ∃u′. delete(u′, db3, d)

� Monitoring the log in which events with equal time-stamps are
merged is sound and complete

0 3

3

7 7

3

99

0 7 9

14

14 14

14

merged and collapsed

log

log 2

log 1

� Checking if an MFOTL formula is order-independent is undecidable

∗∗∗ Inductive reasoning over formula structure often sufficient

∗∗∗ Approximation to order-independent properties possible

42

Collapsed Logs

� Policies should not care about the ordering of events with equal
time-stamps

���∀u.∀d . delete(u, db2, d)→ �<1s ���<60s ∃u′. delete(u′, db3, d)

� Monitoring the log in which events with equal time-stamps are
merged is sound and complete

0 3

3

7 7

3

99

0 7 9

14

14 14

14

merged and collapsed

log

log 2

log 1

� Checking if an MFOTL formula is order-independent is undecidable

∗∗∗ Inductive reasoning over formula structure often sufficient

∗∗∗ Approximation to order-independent properties possible

42

Results of Case Study

� Performance:
∗∗∗ One year of logged data: 220 million log entries (8GB)

policy time / space

easiest 17 minutes / 14 MB

hardest 1 hour / 3.3 GB (mostly within 600 MB)

∗∗∗ Processing times reasonable and space requirements manageable

� Compliance:
∗∗∗ System users attempted unauthorized actions

∗∗∗ Testing, debugging, and other improvement activities

∗∗∗ Bugs in scripts and triggers

� Value:
∗∗∗ Useful even in a benevolent environment where the enterprise is

committed to policy compliance

∗∗∗ Helpful to debug and sharpen controls

∗∗∗ Can be used to support audits, both internal and external
43

Conclusion

44

Conclusion ?!

� Policy enforcement is a challenging and increasingly relevant topic.
So is policy monitoring!

� Logical methods are well suited for reasoning about policies

MFOTL: expressive, yet monitoring practically feasible

� Tool support publicly available
at http://sourceforge.net/projects/monpoly

including sanitized log data from case study

� No silver bullet

∗∗∗ Not every policy can be formalized in MFOTL

∗∗∗ Running times and space consumption is still (always will be!) an issue

45

http://sourceforge.net/projects/monpoly

Challenges

MFOTL
temporal + first−order

MTL
LTL

of system model
richness

expressiveness
of policy language

efficiency
of algorithmic solution

� Scaling-up
How to monitor terabytes/petabytes of logged data?

� Distributed monitoring
(and enforcement)
How to (online) monitor distributed systems

in a distributed way?
What policies are enforceable in a

concurrent setting?

� Incomplete knowledge
How account for actions that are not logged (e.g., logging failures)?
What if observations are contradictory or imprecise?

46

References

� David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu.
Monitoring usage-control policies in distributed systems.
IEEE Transactions on Software Engineering, 2013.

� David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu.
MONPOLY: Monitoring usage-control policies.
Proceedings of the 2nd International Conference on Runtime Verification (RV’11).

� David Basin, Felix Klaedtke, Eugen Zăalinescu.
Algorithms for monitoring real-time properties
Proceedings of the 2nd International Conference on Runtime Verification (RV’11).

� David Basin, Felix Klaedtke, and Samuel Müller.
Policy monitoring in first-order temporal logic.
Proceedings of the 22nd International Conference on Computer Aided Verification (CAV’10).

� David Basin, Felix Klaedtke, and Samuel Müller.
Monitoring security policies with metric first-order temporal logic.
Proceedings of the 15th ACM Symposium on Access Control Models and Technologies (SACMAT’10).

� David Basin, Felix Klaedtke, Samuel Müller, and Birgit Pfitzmann.
Runtime monitoring of metric first-order temporal properties.
Proceedings of the 28th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’08).

47

