
Model Driven Security

David Basin
ETH Zürich

Joint work with Jürgen Doser and Torsten Lodderstedt

David Basin 1

Talk Objectives

Present a methodology for automatically constructing
secure, complex, distributed, applications.

Formal: Has a well defined mathematical semantics.

General: Ideas may be specialized in many ways.

Usable: Based on familiar concepts and notation.

Wide spectrum: Integrates security into overall design process.

Tool supported: Compatible too with UML-based design tools.

Scales: Initial experiments positive.

David Basin 1

Talk Objectives

Present a methodology for automatically constructing
secure, complex, distributed, applications.

Formal: Has a well defined mathematical semantics.

General: Ideas may be specialized in many ways.

Usable: Based on familiar concepts and notation.

Wide spectrum: Integrates security into overall design process.

Tool supported: Compatible too with UML-based design tools.

Scales: Initial experiments positive.

Submessage: formal and semiformal can live harmoniously together

and the results can be practically useful.

David Basin 2

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

• Experience and conclusions

David Basin 3

Motivation

How do we go from requirements to secure systems?

David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.

David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.

• As described by process models.

Analysis

Implementation

Design

Deployment

Testing

Models

Code
Code

Mostly Text

Iterative Process
(in theory)

David Basin 4

From Requirements to Systems

• Ideally: Automated synthesis from specifications.

� The Holy Grail of Software Engineering!

� But problem is not recursively solvable.

• As described by process models.

Analysis

Implementation

Design

Deployment

Testing

Models

Code
Code

Iterative Process
(in theory)

short cut

Mostly Text

• In practice: code-and-fix.

Adequate in-the-small. But poor quality control and scalability.

David Basin 5

From Requirements to Systems: Security

• Engineering security into system design is usually neglected.

Analysis

Implementation

Design

Deployment

Testing

Tool support?
?

?
?

How?

• Ad hoc integration has a negative impact on security.

• Two gaps to bridge:

Requirements Analysis

Security Policies

Implementation

Design Models

David Basin 6

An Example: A Meeting Scheduler

Functional requirements:

System should maintain a list of users and records of meetings. A meeting

has an owner, a list of participants, a time, and a place. Users may carry

out operations on meetings such as creating, reading, editing, and deleting

them. A user may also cancel a meeting, which deletes the meeting and

notifies all participants by email ...

Security requirements:

1. All users can create new meetings and read all meeting entries.

2. Only owners may change meeting data, cancel meetings, or delete

meeting entries.

3. However, a supervisor can cancel any meeting.

David Basin 7

Example — Some Questions

• How do we formalize both kinds of requirements?

• How are requirements refined into multi-tier architectures with support

for GUIs, controllers, database back ends ...?

• Can this be done in a way that supports modern standards/technology

for modeling (UML), middleware (EJB, CORBA, ...), and security?

• How are security infrastructures kept consistent, even when

requirements change and evolve, or the underlying technologies

themselves change?

We present a methodology & tool addressing these concerns.

David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation

David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation

Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

to Model Driven Security.

David Basin 8

Approach: Specialize Model Driven Architecture

Application Server

A

B

A B

System Model

Target System

Model Transformation

Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

to Model Driven Security.
Requirements Analysis

Security Policies

Implementation

Design Models

David Basin 9

Components of MDS
Application Server

A

B

A B Customer

+ Extentions

+ Security Infrastructure

System Model + Security Model

Target System

Model Transformation

(RBAC, assertions, etc.)

<<secuml.Role>>
<<secuml.Permission>>

Models:

• Modeling languages combine security and design languages.

• Models specify security and design aspects.

Security Infrastructure: code + standards conform infrastructure.

Assertions, configuration data, calls to interface functions, . . .

Transformation: parameterized by component standard (e.g.,

J2EE/EJB, .NET, CORBA, ...).

Ideas very general.
Approach open with respect to languages and technology.

David Basin 10

Road Map

• Motivation and objectives

☞ Background

• Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

• Experience and conclusions

David Basin 11

Background

☞ Model Driven Architecture

• Unified Modeling Language

• Extensibility and Domain Specific Languages

• Code generation

David Basin 12

MDA: the Role of Models

• A model presents a view of the system useful for conceptual

understanding,

• When the models have semantics, they constitute formal specifications

and can also be used for (rigorous) analysis, and refinement.

• MDA: A model-centric development process

Analysis

Implementation

Design

Deployment

Testing
Code

Mostly Text

Process
MDA

Code (Platform Infrastructure)

Code (+ Business Logic)

Crucial difference: much of transformation is automated.

David Basin 13

MDA: the Role of Standards

• MDA is an emerging Object Management Group standard.

� Standards are political, not scientific, constructs.

� They are valuable, however, for building interoperable tools

and for the widespread acceptance of tools and notations used.

• MDA is based on standards for

Modeling: the Unified Modeling Language, for defining graphical,

view-oriented models of requirements and designs.

Metamodeling: the Meta-Object Facility, for defining modeling

languages, like UML.

We will selectively introduce both of these standards.

David Basin 14

Background

• Model Driven Architecture

☞ Unified Modeling Language

• Extensibility and Domain Specific Languages

• Code generation

David Basin 15

UML

• Family of 9 graphical languages for OO-modeling. Each language:

� is suitable for formalizing a particular view of systems;

� has an abstract syntax defining primitives for building models;

� has a concrete syntax (or notation) for display.

• Also includes the Object Constraint Language.

� Specification language loosely based on first-order logic.

� Used to formalize invariants, and pre- and post-conditions.

• A mixed blessing

+ Wide industrial acceptance and considerable tool support.

– Semantics just for parts. Not yet a Formal Method.

We focus here on class diagrams and statecharts, presenting the main
ideas by example.

David Basin 16

Class Diagrams

Describe structural aspects of systems. A class formalizes a set of objects
with common services, properties, and behaviors. Services are described
by methods and properties by attributes and associations.

Room

floor : int

number : int

Person

name : string

e-mail : string

Meeting

start : date

duration : time

notify()

cancel()

1

0..*

+location

1

0..*

1..*

0..*

+participants

1..*

0..*

1
0..*

+owner

1
0..*

Sample requirements: The system should manage information about meetings.
Each meeting has an owner, a list of participants, a time, and a place. Users may carry
out standard operations on meetings such as creating, reading, editing, and deleting
them. A user may also cancel a meeting, which deletes the meeting and also notifies all
participants by email.

David Basin 17

Statecharts

Describes the behavior of a system or class in terms of states and events

that cause state transitions.

ListMeetings

EditMeeting

CreateMeeting

insert

update

delete / deleteMeeting

cancel / cancelMeeting

edit

create

Sample requirements: Users are presented with a list of meetings.
They can perform operations including creating meetings, editing existing
meetings, deleting and canceling meetings.

David Basin 18

Background

• Model Driven Architecture

• Unified Modeling Language

☞ Extensibility and Domain Specific Languages

• Code generation

David Basin 19

Domain Specific Languages

• UML provides general modeling concepts, yet lacks a vocabulary for

modeling Domain Specific Concepts. E.g.,

Business domains like banking, travel, or health care

System aspects such as security

• There are various ways, however, to extend UML

1. by defining new profiles, or

2. at the level of metamodels.

We will use both of these in our work, to define domain specific

modeling languages for security and system design.

David Basin 20

1) Profiles: Extending Core UML

• UML is defined by a metamodel: core UML.

• Core UML can be extended by defining a UML profile.

For instance, stereotypes can be declared that introduce modeling

primitives by subtyping core UML types and OCL constraints can be

used to formalize syntactic well-formedness restrictions.

• Example:

A class with stereotype <<Entity>>

represents a business objects with an

associated persistent storage mechanism

(e.g., table in a relational database).

• Profiles useful for light-weight specializations.

Substantial changes use metamodels to define languages directly.

David Basin 21

2) Metamodels

• A metamodel defines the (abstract) syntax of other models.

Its elements, metaobjects, describe types of model objects.

• MOF is a standard for defining metamodels.

Meta level Description Example elements

M3 MOF Model MOF Class, MOF Attribute
M2 Metamodel, defines a language Entity, Attribute
M1 Model, consisting of instances of

M2 elements
Entities“Meeting”and“Person”

M0 Objects and data Persons“Alice”and“Bob”

M2 M1

Attribute

name : string

Entity

name : string

getAttributeByName()

0..*
1

attributes

0..*

entity

1
 EntityAttributes

ExampleLanguage

<<metamodel>>

Meeting

+ start : date

+ duration : int

<<Entity>>

Person

+ name : string

+ eMail : string

<<Entity>>

David Basin 22

2) Metamodeling (cont.)

M2 M1

Attribute

name : string

Entity

name : string

getAttributeByName()

0..*
1

attributes

0..*

entity

1
 EntityAttributes

ExampleLanguage

<<metamodel>>

Meeting

+ start : date

+ duration : int

<<Entity>>

Person

+ name : string

+ eMail : string

<<Entity>>

• Abstract syntax of metamodels defined using MOF.

� Metamodels may be defined using UML notation.

� Supports OO-metamodels, using concepts like subtyping.

• Concrete syntax of DSL defined by a UML profile.

• MOF/UML tools automatically translate models in concrete syntax

into models in abstract syntax for further processing.

David Basin 23

Background

• Model Driven Architecture

• Unified Modeling Language

• Extensibility and Domain Specific Languages

☞ Code generation

David Basin 24

MDA: Translation

Application Server

A

B

A B

System Model

Target System

Model Transformation

• Fix a platform with a security architecture: J2EE/EJB, .NET, ...

• Consider EJB standard. Beans are:

1. Server-side components encapsulating application business logic.

2. Java classes with appropriate structure, interfaces, methods, ...

+ deployment information for installation and configuration.

• Generation rules explain how each kind of model element is translated

into part of an EJB system.

• Translation produces Java code and XML deployment descriptors.

David Basin 25

MDA Generation by Example

Room

+ floor : int

+ number : int

<<Entity>>

Meeting

+ start : date

+ duration : int

+ notify()

+ cancel()

<<Entity>>

0..1

0..*

+location

0..1

0..*

Person

+ name : string

+ e-mail : string

<<Entity>>

0..*
0..*

+participants

0..*
0..*

1
0..*

+owner

1
0..*

• Entity 7→ EJB component with implementation

class, interfaces (local, remote, home, ...),

factory method create, finder method findByPrimaryKey, ...

• Entity Attribute 7→ getter/setter methods
date getStart () { return start;}

void setStart(date start) { this.start = start; }

• Entity Method 7→ method stub
void notify () { }

• Association Ends 7→ schema for maintaining references
Collection getParticipants () { return participants; }

void addToParticipants(Person participant)

{ participants.add(participant); }

void deleteFromParticipants(Person participant)

{ participants.remove(participant); }

David Basin 26

Road Map

• Motivation and objectives

• Background

☞ Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

• Experience and conclusions

David Basin 27

Context: Models
and Languages

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• A Security Design Language glues two languages together.

Approach open (modulo some minimal semantic requirements).

• Each language is equipped with an abstract and concrete syntax, a

semantics, and a technology dependent translation function.

• Dialect bridges design language with security language

by identifying which design elements are protected resources.

• UML employed for

Metamodeling: Object oriented def. of language syntax (MOF).

Notation: Concrete language syntax for security design models.

David Basin 28

Secure Components

☞ Role-Based Access Control

• Generalization to SecureUML

• Component modeling and combination

We address here relevant concepts and their syntactic representation.

Semantics will be handled subsequently.

David Basin 29

Security Policies Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• Many policies address the confidentiality and integrity of data.

Confidentiality: No unauthorized access to information

Integrity: No unauthorized modification of information

• Example: Users may create new meetings and view all meetings, but

may only modify the meetings they own.

• These can be formalized as Access Control Policies detailing which

subjects have rights (privileges) to read/write which objects.

• Can be enforced using a reference monitor as protection mechanism.

Checks whether authenticated users are authorized to perform actions.

• We will focus on Access Control Policies/Mechanisms in following.

David Basin 30

Access Control

• Two variants usually supported.

Declarative: u ∈ Users has p ∈ Permissions :⇐⇒ (u,p) ∈ AC.

Programmatic: via assertions at relevant program points.

System environment provides information needed for decision.

• Role Based Access Control is a commonly used declarative model.

� Roles are used to group privileges.

� Other additions (e.g., hierarchies) are possible.

• These are often combined to make stateful decisions, e.g.,

a user in the role customer may withdraw money from an account

when he is the owner and the amount is less than 1,000 SFr.

David Basin 31

Access Control — Declarative

• Declaratively: access control amounts to a relation.

A user is granted access iff he has the required permission.

u ∈ Users has p ∈ Permissions :⇐⇒ (u, p) ∈ AC.

• Example:

User
Alice
Bob
John

User Permission
Alice read file a
Alice write file a
Alice start application x
Alice start application y
Bob read file a
Bob write file a
Bob start application x
John read file a
John write file a
John start application x

Permission
read file a
write file a

start application x
start application y

David Basin 32

Role-Based Access Control

• Role-Based Access Control decouples users and permissions by roles

representing jobs or functions.

• Formalized by a set Roles and the relations UA ⊆ Users × Roles and

PA ⊆ Roles× Permissions, where

AC:=PA ◦ UA

i.e., AC := {(u, p) ∈ Users× Permissions |
∃r ∈ Roles : (u, r) ∈ UA ∧ (r, p) ∈ PA} .

• Example: User Role
Alice User
Alice Superuser
Bob User
John User

Role
User

Superuser

Role Permission
User read file a
User write file a
User start application x

Superuser start application y

Result is increased abstraction and more manageable policies.

David Basin 33

RBAC — Extensions

1. Role hierarchy (for ≥ a partial order):

AC := PA ◦ ≥ ◦ UA

Larger roles inherit permissions from all smaller roles

User

Superuser

2. Hierarchies on users (UA) and permissions (PA).

3. Authorization Constraints: formulae used to make stateful access

control decisions.

Example: a user in the role customer may withdraw money from an

account when he is the owner and the amount is less than 1,000 SFr.

David Basin 34

Secure Components

• Role-Based Access Control

☞ Generalization to SecureUML

• Component modeling and combination

David Basin 35

SecureUML – Syntax

• Abstract syntax defined by a MOF metamodel.

• Concrete syntax based on UML and defined with a UML profile.

• Syntax and semantics based on an extension of RBAC.

• The key idea:

� Access Control formalizes the permissions to perform actions on

(protected) resources.

� We leave these open as types whose elements are not fixed.

� Elements specified during combination with design language (via

subtyping from existing types).

David Basin 36

Users, Roles and Typed Permissions

AtomicAction
User
 Group

Subject

*

*

*

*

UserHierarchy

AuthorizationConstraint

Role

*
 *
*

RoleHierarchy

*

*
*
 *
*

UA

CompositeAction

Resource

0..1
*
 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..*
 *
1..*
 *

PA
 Action

*

*

*

*

ActionHierarchy

*
 1
*
 1

RA

*
 1..*
*
 1..*

AA

*
 0..1
*

/ActionDerivation

0..1

• Left hand part: essentially Standard RBAC

• Right hand part: permissions are factored into the ability to carry out

actions on resources.

� Resource is the base class of all model elements representing

protected resources (e.g. “Class”,“State”, ’Action”).

� Actions of a“Class”could be“Create”,“Read”,“Delete” ...

David Basin 37

Hierarchies over Users, Roles and Actions

AtomicAction
User
 Group

Subject

*

*

*

*

UserHierarchy

AuthorizationConstraint

Role

*
 *
*

RoleHierarchy

*

*
*
 *
*

UA

CompositeAction

Resource

0..1
*
 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..*
 *
1..*
 *

PA
 Action

*

*

*

*

ActionHierarchy

*
 1
*
 1

RA

*
 1..*
*
 1..*

AA

*
 0..1
*

/ActionDerivation

0..1

• UserHierarchy: Users (and groups) are organized in groups.

• RoleHierarchy: Roles can be in an inheritance hierarchy.

• ActionHierarchy: E.g.,“FullAccess” is a super-action of“Read”.

• ActionDerivation/ResourceDerivation: Details technical & omitted.

David Basin 38

Authorization Constraints

AtomicAction
User
 Group

Subject

*

*

*

*

UserHierarchy

AuthorizationConstraint

Role

*
 *
*

RoleHierarchy

*

*
*
 *
*

UA

CompositeAction

Resource

0..1
*
 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..*
 *
1..*
 *

PA
 Action

*

*

*

*

ActionHierarchy

*
 1
*
 1

RA

*
 1..*
*
 1..*

AA

*
 0..1
*

/ActionDerivation

0..1

• A permission can be restricted by an authorization constraint.

E.g., user is account owner and amount is less than 1,000 EUR.

• This assertion describes an additional condition on

� the state of the resources of the assigned actions,

� properties of method arguments (name of the calling user) or

� global system properties (time, date)

that must hold in order to grant access.

David Basin 39

Roles
and Users

<<User>> <<Role>>
Bob User

<<User>> <<Role>>
SupervisorAlice

<<UA>>

<<UA>>

• Users, Roles, and Groups (here none) defined by stereotyped classes.

• Hierarchies defined using inheritance.

• Relations defined using steroretyped associations.

NOTE: User administration is not a design-time issue and hence usually
not part of the model. In practice, these assignments are made after
system deployment by system administrators.

David Basin 40

Permissions

• Modeling permissions require that actions and resources have already

been defined.

Possible only possibly after language combination. (Coming up!)

• A permission binds one or more actions to a single resource.

• Concrete syntax could directly reflect abstract syntax

Specify two relations: Permission ⇔ Action and Action ⇔ Resource.

• Alternative: use association class to specify a ternary relation.

� Attributes of association relate permissions with actions.

� Actions identified by resource name and action name

David Basin 41

Permissions (Cont.)

ReadAndNotify

<<ClassAction>> Meeting : read

<<ClassMethodAction>> Meeting_notify : execute

Person

name : string

e-mail : string

<<Entity>>
Meeting

start : date

duration : time

notify()

cancel()

<<Entity>>

0..*
0..*

+participants

0..*
0..*

1
0..*

+owner

1
0..*

User

<<Role>>

<<Permission>>

model anchor

action references

1

2

• Represented as an association class connecting a role and a class

(model anchor).

• Permission (action references) may assign actions to (1) the model

anchor or (2) its sub-elements.

E.g., the first action says that users have permission to read meetings.

We will see this means they may execute all side-effect free methods

and access all attribute ends of meetings.

David Basin 42

Authorization Constraints

ReadAndNotify

<<ClassAction>> Meeting : read

<<ClassMethodAction>> Meeting_notify : execute

caller = self.owner.name

Person

name : string

e-mail : string

<<Entity>>
Meeting

start : date

duration : time

notify()

cancel()

<<Entity>>

0..*
0..*

+participants

0..*
0..*

1
0..*

+owner

1
0..*

User

<<Role>>

<<Permission>>

• Expressions are given in an OCL subset

� constant symbols: self and caller (authenticated name of caller)

� attributes and side-effect free methods

� navigation expressions (association ends)

� Logical (and, or, not) and relational (=, >, <, <>) operators

� Existentially quantified expressions

• Example: “caller = self.owner.name”

David Basin 43

Secure Components

• Role-Based Access Control

• Generalization to SecureUML

☞ Component modeling and combination

David Basin 44

A Design Modeling Language for Components

• ComponentUML: a class based language for data modeling.

EntityAssociation
EntityAssociationEnd

2
 1
2
 1

EntityAttribute
 EntityMethod

Entity

1
 0..*

+type

1
 0..*

0..*
0..*
 0..*
0..*

• Example design: group meeting administration system.

Each meeting has an owner,

participants, a time, and possibly

a location. Users carry out operations

on meetings like create, read, edit,

delete, or cancel (which notifies the

participants).

Room

+ floor : int

+ number : int

<<Entity>>

Meeting

+ start : date

+ duration : int

+ notify()

+ cancel()

<<Entity>>

0..1

0..*

+location

0..1

0..*

Person

+ name : string

+ e-mail : string

<<Entity>>

0..*
0..*

+participants

0..*
0..*

1
0..*

+owner

1
0..*

David Basin 45

Combination with SecureUML
Modeling Language

Modeling Language
System Design

Dialect

Security

1. Combine syntax of both modeling languages

Merge abstract syntax by importing SecureUML metamodel into

metamodel of ComponentUML.

Merge notation and define well-formedness rules in OCL.

E.g., restrict permissions to those cases with stereotype «Entity».

2. Identify protected resources

3. Identify resource actions

4. Define action hierarchy

First task is automated. Remainder are creative tasks.
They constitute what we have called a dialect or glue.

David Basin 46

Defining a Dialect

Security Modeling Language = SecureUML

AtomicAction
User
 Group

Subject

*

*

*

*

UserHierarchy

AuthorizationConstraint

Role

*
 *
*

RoleHierarchy

*

*
*
 *
*

UA

CompositeAction

Resource

0..1
*
 0..1

ResourceDerivation

*

Permission

0..1

*

0..1

*

CA

1..*
 *
1..*
 *

PA
 Action

*

*

*

*

ActionHierarchy

*
 1
*
 1

RA

*
 1..*
*
 1..*

AA

*
 0..1
*

/ActionDerivation

0..1

System Design Modeling Language = Component UML

EntityAssociation
EntityAssociationEnd

2
 1
2
 1

EntityAttribute
 EntityMethod

Entity

1
 0..*

+type

1
 0..*

0..*
0..*
 0..*
0..*

What are the resources and actions of ComponentUML?

David Basin 46

Defining a Dialect

Composite Action
(from SecureUML)

Resource
(from SecureUML)

EntityAssociationEndEntity

EntityUpdateEntityReadEntityFullAccessAtomic Action
(from SecureUML)

EntityAttribute EntityMethod

create fullaccess read updatedelete

• Resources identified using subtyping.

• Resource actions defined using named dependencies from resource

types to action classes (either atomic action or a subtype of

composite action).

David Basin 46

Defining a Dialect — Action Hierarchy

resource type action subordinated actions (with blue atomic actions)

Entity full access create, read, update and delete of the entity

Entity read read for all attributes and association ends of the entity

execute for all side-effect free methods of the entity

Entity update update for all attributes of the entity

add and delete all association ends of the entity

execute for all methods with side-effects of the entity

Attribute full access read and update of the attribute

Association End full access read, add and delete of the association end

OCL formulae used to formalize hierarchy. E.g., following states that
the composite action EntityFullAccess is larger than the actions create,
read, update, and delete of the entity the action belongs to.

context EntityFullAccess inv:
subordinatedActions = resource.actions->select(

name=”create” or name=”read” or name=”update” or name=”delete”)

David Basin 47

Modeling a Security Policy

1. All users can create new meetings and read all meeting entries.

2. Only owners may change meeting data or delete meeting entries.

3. However, a supervisor can cancel any meeting.

UserMeeting

<<EntityAction>> Meeting : read

<<EntityAction>> Meeting1 : create

OwnerMeeting

<<EntityAction>> Meeting : update

<<EntityAction>> Meeting1 : delete

SupervisorCancel

<<EntityMethodAction>> Meeting.cancel : execute

<<EntityMethodAction>> Meeting.notify : execute

caller = self.owner.name

User

<<Role>>

Supervisor

<<Role>>

Person

name : string

e-mail : string

<<Entity>>
Meeting

+ start : date

+ duration : time

+ notify()

+ cancel()

<<Entity>>

<<Permission>>

<<Permission>>

<<Permission>>

0..*
 0..*
0..*

+participants

0..*

0..*
 1
0..*

+owner

1

Room

floor : int

number : int

<<Entity>>

0..*

0..1

0..*

+location

0..1

David Basin 48

Road Map

• Motivation and objectives

• Background

• Secure components

☞ Semantics (What do all these boxes and arrows actually mean?)

Here we provide only a sketch. Full details provided in TOSEM paper.

• Generating security infrastructures

• Secure controllers

• Experience and conclusions

David Basin 49

SecureUML formalizes two kinds of AC decisions

Declarative Access Control where decisions depend on static information: the

assignments of users u and permissions (to actions a) to roles.

AC decision formalized by SRBAC |= φRBAC(u, a)

Programmatic Access Control where decisions depend on dynamic information:

satisfaction of authorization constraints in the current system state.

AC decision formalized as SSt |= φp
st

Where

• SRBAC is a first-order structure formalizing the static (RBAC) information

• φRBAC(u, a) is a first-order formula formalizing that user u can perform action a

• SSt is a first-order structure formalizing the system state

• φp
st is a first-order formula formalizing restriction on permission p

Decisions are combined. Roughly 〈SRBAC,SSt〉 |= φAC(u, a), where φAC states that

u has permission to execute action a and associated authorization constraint holds.

David Basin 50

Declarative
Semantics

• Order-sorted signature ΣRBAC = (SRBAC,FRBAC,PRBAC).

SRBAC = {Users, Subjects, Roles, Permissions, Actions} ,

FRBAC = ∅ ,

PRBAC = {≥Subjects,UA,≥Roles,PA,AA,≥Actions} ,

• Users is a subsort of Subjects.

• Types as expected, e.g., UA has type Subjects× Roles.

• UA, PA, and AA correspond to identically named associations in metamodel.

• ≥Subjects, ≥Roles, and ≥Actions name hierarchies on users, roles and actions.

David Basin 51

Declarative
Semantics
(cont.)

• A SecureUML model straightforwardly defines a ΣRBAC-structure SSt.

� Users (Roles, ...) in model 7→ elements of set Users (Roles ...).

� Associations (e.g., between users & roles) 7→ tuples in associated relations (e.g., UA).

• φRBAC(u, a) formalizes standard RBAC semantics (here without hierarchies)

� “Can user u perform permission p?”
φRBAC(u, p) ⇐⇒ (u, p) ∈ AC, where AC := PA ◦ UA.

� is refined to: “Does user u have the permission to carry out action a?”
φRBAC(u, a) ⇐⇒ (u, a) ∈ AC, where AC := AA ◦ PA ◦ UA, i.e.

� In first-order logic:

φRBAC(u, a) ⇐⇒ ∃r, p : UA(u, r) ∧ PA(r, p) ∧ AA(p, a)}

• AC Decision Problem is: SRBAC |= φRBAC(u, a).

David Basin 52

Adding
Hierarchies

• Additional ordering relations ≥Subjects, ≥Roles, and ≥Actions:

� ≥Subjects interpreted by reflexive, transitive closure of

UserHierarchy, where a group is larger than all its contained

subjects.

� ≥Roles and ≥Actions are interpreted analogously using

ActionHierarchy and ActionHierarchy.

• φRBAC now formalizes ≥Actions ◦AA ◦PA ◦≥Roles ◦UA ◦≤Subjects

i.e., φRBAC(u, a) = ∃s ∈ Subjects, r1, r2 ∈ Roles, p ∈ Permissions, a′ ∈ Actions.
u ≤Subjects s ∧UA(s, r1) ∧ r1 ≥Roles r2∧
PA(r2, p) ∧AA(p, a′) ∧ a′ ≥Actions a ,

David Basin 53

Authorization Constraints

• Authorization constraints are OCL formulae, attached to permissions.

business hours: time.hour >= 8 and time.hour <= 17

caller is owner: caller = self.owner.name

• Straightforward translation into sorted FOL, e.g.,

hour(time) ≥ 8 ∧ hour(time) ≤ 17
caller = name(owner(self))

• The signature ΣSt. for constraints is determined by the design

modeling language

SSt: sort for each class in the system model

FSt: function symbol for each attribute, side-effect free method, and

n-1 association.

PSt: predicate symbol for each m-n association.

David Basin 54

Constraint Semantics

• A system snapshot during

execution defines a state duration = 2 hours
start = 1.1.2004

participants

owner
Name = "Bob Smith"
email = "bobs@ethz.ch"

Email = "aj@mpi−sb.mpg.de"
Name = "Alice Jones"

location

Meeting

Person

Person

Room

Number = 220
Floor = 2

• In general, there are finitely many objects of each class

C, each with its own attribute values and references to other objects.

• Interpretation idea

� Each sort interpreted by a finite set of“objects”.

� Attributes and references define functions (or relations) from objects

to corresponding values.

� Currently executing object of class C gives interpretation for selfC.

• A constraint φSt is satisfied iff SSt |= φSt.

David Basin 55

Semantic
of Combinations

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

RBAC + class diagrams

Modeling language

based on

• SecureUML semantics has a fixed static part plus a stateful part,

dependent on the notion of state defined by design modeling language.

• What is the semantics of the combination?

Intuitively: system with access control should behave as before,

except that certain actions are disallowed in certain states.

Formally: semantics defined in terms of labeled transition systems.

• Minimal assumptions required on semantics of design language:

Semantics must be expressible as an LTS, whose states provide a

structure for interpreting OCL assertions.

David Basin 56

Semantic Requirements of Design Language

Semantics definable as a LTS ∆ = (Q,A, δ)

− set Q of nodes consists of ΣSt-structures

− edges are labeled with elements from a set of actions A

− δ ⊆ Q×A×Q is transition relation

System behavior defined by traces as is standard:

s0
a0→ s1

a1→ . . . is a trace iff (si, ai, si+1) ∈ δ, for all i, 0 ≤ i.

David Basin 57

Combination with SecureUML

• Combining ∆ with SecureUML yields LTS ∆AC = (QAC, AAC, δAC).

� QAC = QRBAC ×Q, combines system states with RBAC

Here QRBAC denotes universe of all finite ΣRBAC-structures.

� AAC = A is unchanged.

� Transition function defined by

δAC = {((qRBAC, q), a, (qRBAC, q′)) |
(q, a, q′) ∈ δ ∧〈qRBAC, q〉 |= φAC(u, a)}

• In δAC, just those traces with prohibited actions are removed.

• This account is both general and independent of UML.

David Basin 58

Example: SecureUML + ComponentUML

• ComponentUML as LTS ∆ = (Q,A, δ)

� Q is the universe of all possible system states: interpretations over

the signature ΣSt with finitely many objects for each entity.

� Family of actions A defined by methods and their parameters.

E.g., the action (setat, e, v) denotes setting the attribute at of

entity e to value v.

� δ defined by semantics of methods themselves.

E.g., above setter action would lead to a new state where only the

term representing e is changed to reflect the update of a with v.

• Combined semantics ∆AC = (QAC, AAC, δAC) as just described.

David Basin 59

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

☞ Generating security infrastructures

• Secure controllers

• Experience and conclusions

David Basin 60

Generating Security Infrastructures

☞ Generating EJB Infrastructures.

� Motivation

� Basics of EJB and EJB access control

� Generation rules

• Generating .NET infrastructures.

David Basin 61

Why Transform?

Decreases burden on programmer.

Faster adaption to changing requirements.

Scales better when porting to different platforms.

Correctness of generation can be proved, once and for all.

☞ enables a faster, cheaper, and more secure development process.

Let’s look at this first for Enterprise Java Beans (EJBs), a widely used
component architecture.

David Basin 62

EJB: Declarative AC

<method-permission>

<role-name>Supervisor</role-name>

<method>

<ejb-name>Meeting</ejb-name>

<method-intf>Remote</method-intf>

<method-name>cancel</method-name>

<method-params/>

</method>

</method-permission>

• Deployment descriptors record information for declarative AC.

• EJB supports only vanilla RBAC without hierarchies, where protected

resources are individual methods.

David Basin 63

EJB: Programmatic AC

if(!(ctxt.isCallerInRole("SuperVisor")

|| ctxt.getCallerPrincipal.getName().equals(

getOwner.getName()))){

throw new AccessControlException("Access Denied");

}

These assertions use programmatic access control support of EJB Server

to access security-relevant data of the current user, e.g., his name or his

roles.

David Basin 64

Transformation Rules
RBAC

For each atomic action a:

• determine the corresponding EJB method(s) m.

• compute the set of Roles R that have access to the action a:

R := {r ∈ Roles | (r, a) ∈ ≥Actions ◦ AA ◦ PA ◦ ≥Roles} .

☞ generate the following deployment-descriptor code (with R = {r1, . . . , rn}):

<method-permission>

<security-role>r1</security-role>

...

<security-role>rn</security-role>

<method>m</method>

</method-permission>

David Basin 65

Transformation Rules: Assertions

For each atomic action a on a method m:

• compute the set of permissions P for this action:

P := {p ∈ Permissions | (p, a) ∈ ≥Actions ◦ AA}

• for each p ∈ P , compute the set of roles R(p) assigned to the permission p:

R(p) := {r ∈ Roles | (r, p) ∈ PA ◦ ≥Roles}

• Check, if one of the p ∈ P has an authorization constraint attached.

☞ if yes, include at the start of the method m the assertion:

if (!(
_
p∈P

““ _
r∈R(p)

ctxt.isCallerInRole(r)
”
∧ Constraint(p)

”
))

throw new AccessControlException("Access denied."); ,

where Constraint(p) is attached constraint (or true) in Java syntax.

David Basin 66

Example

generates both RBAC configuration data and Java code:

<method-permission>

<role-name>User</role-name>
<role-name>Supervisor</role-name>
<method>

<ejb-name>Meeting</ejb-name>
<method-intf>Remote</method-intf>
<method-name>setStart<//method-name>

</method>

</method-permission>

public void setStart(Date start)

{

if (!((ctxt.isCallerInRole("User") ||

ctxt.isCallerInRole("Supervisor"))

&& ctxt.getCallerPrincipal.getName().equals(

getOwner().getName())))

)) throw new AccessControlException("Access

denied.");

...

}

David Basin 67

Overall Model

UserMeeting

<<EntityAction>> Meeting : read

<<EntityAction>> Meeting1 : create

OwnerMeeting

<<EntityAction>> Meeting : update

<<EntityAction>> Meeting1 : delete

SupervisorCancel

<<EntityMethodAction>> Meeting.cancel : execute

<<EntityMethodAction>> Meeting.notify : execute

caller = self.owner.name

User

<<Role>>

Supervisor

<<Role>>

Person

name : string

e-mail : string

<<Entity>>
Meeting

+ start : date

+ duration : time

+ notify()

+ cancel()

<<Entity>>

<<Permission>>

<<Permission>>

<<Permission>>

0..*
 0..*
0..*

+participants

0..*

0..*
 1
0..*

+owner

1

Room

floor : int

number : int

<<Entity>>

0..*

0..1

0..*

+location

0..1

Generates 179 lines of XML and 268 lines of Java.
Which would you rather maintain or port?

David Basin 68

Generating Security Infrastructures

• Generating EJB infrastructures.

☞ Generating .NET infrastructures.

David Basin 69

.NET versus EJB (from the AC perspective)

• Like with EJB, the protected resources are the component methods.

• .NET also supports both declarative and programmatic access control.

• Declarative access control is not configured in deployment descriptors,

but by“attributes”of the methods, which name the allowed roles.

• Programmatic access control is conceptually very similar to EJB.

For our purposes, the differences are only in the method names.

☞ Transformation function must be changed only slightly.

David Basin 70

Example

generates the following C#-code:

[SecurityRole("User")]

[SecurityRole("SuperVisor")]

public void setStart(Date start){

if (!((ctxt.isCallerInRole("User")

|| ctxt.isCallerInRole("Supervisor"))

&& ctxt.OriginalCaller.AccountName ==

getOwner().getName()))

throw new UnauthorizedAccessException("Access

denied.");

...

}

First two lines are“attributes”, naming the allowed roles.

David Basin 71

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

• Generating security infrastructures

☞ Secure controllers

• Experience and conclusions

David Basin 72

What are Controllers?

• A controller defines how a system’s behavior may evolve.

Definition in terms of states and events, which cause state transitions.

• Examples

� A user-interface of an application changes its state according to

clicks on certain menu-entries.

� A washing machine goes through different washing/drying modes.

� A control process that governs the launch sequence of a rocket.

• Mathematical abstraction: a transition system or some (hierarchical or

parallel) variant.

David Basin 73

Modeling Controllers

• Let’s consider a language for modeling controllers for multi-tier

architectures.

• A common pattern for such systems is the Model-View Controller.

Visualization tier: for viewing information. Typically within a web

browser.

Persistence tier: where data (model) is stored, e.g., backend

data-base system.

Controller tier: Manages control flow of application and dataflow

between visualization and persistence tier.

• Our models must link“controller classes”with (possibly persistent)

state with visualization elements.

David Basin 74

Abstract Syntax — ControllerUML

Metamodel (MOF):

ViewState
SubControllerState
 StatemachineAction

Event
Controller

1
 +controller
1

StateTransition

0..1
effect
 0..1

1

trigger

1

Statemachine

1

behavior

1

State
 0..n
1

incoming

0..n
target
1

0..n
1

outgoing

0..n
source

1
n

states

n

0..*
0..1

+substates

0..*

StateHierarchy

container

0..1

• A Statemachine formalizes the behavior of a Controller.

• The statemachine consist of states and transitions.

• Two state subtypes: SubControllerState refers to a sub-controller,

ViewState represents an user interaction.

• A transition is triggered by an Event and the (optionally) assigned

StatemachineAction is executed during the state transition.

David Basin 75

Controller Example

create

back

edit

End

exit

Startdelete / deleteMeeting

select

cancel / cancel/Meeting
apply / update

<<Controller>>

− selectedMeeting:Meeting

MainController

CreationController
<<Controller>>

MainController’s Statechart

<<ViewState>>
ListMeetings

<<SubControllerState>>
CreateMeeting

<<ViewState>>
EditMeeting

David Basin 76

Dialect as a Bridge
• Security Modeling Language = SecureUML

SubjectAssignment

CompositeAction

Resource

0..1

*

0..1

ResourceDerivation

*

Action

*

*

*

*

ActionHierarchy

*
 1
*
 1

ResourceAction

AuthorizationConstraint
 AtomicAction

User

Permission

*
 1..*
*
 1..*

ActionAssignment

0..1

*

0..1

*

ConstraintAssignment

Role

*
 *
*

RoleHierarchy

*

1..*
 *
1..*
 *

PermissionAssignment

Group

Subject

*

*

*

*

*

*

*

*
 SubjectGroup

• System Design Modeling Language = ControllerUML

ViewState
SubControllerState
 StatemachineAction

Event
Controller

1
 +controller
1

StateTransition

0..1
effect
 0..1

1

trigger

1

Statemachine

1

behavior

1

State
 0..n
1

incoming

0..n
target
1

0..n
1

outgoing

0..n
source

1
n

states

n

0..*
0..1

+substates

0..*

StateHierarchy

container

0..1

What are ControllerUML’s protected resources? (States, Actions, ...?)

David Basin 77

Dialect Definition

ControllerActivateRecursive

CompositeAction

(from SecureUML)

AtomicAction

(from SecureUML)

StateActivateRecursive

Controller
 State

Resource

(from SecureUML)

StatemachineAction

execute
activateRecursive
 activate
 activateRecursive
activate

• Define resources

and actions:

• Define action hierarchy:

� State.activateRecursive: activate on the state, activateRecursive on

all substates, and execute on all actions on outgoing transitions

� Controller.activateRecursive: activate on the controller and

activateRecursive on all states of the controller

Result is a vocabulary for defining permissions on both high-level and

low-level actions.

David Basin 78

Semantics

• It is not difficult to give a transition system
semantics to a controller.

• Our general schema then provides a semantics
for combination with SecureUML.

• See paper for details.

David Basin 79

Example Policy: Permissions

CreationController

<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate

<<StateAction>> ListMeetings : activate

User

<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute

<<ActionAction>> ListMeetings.cancel : execute

<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner =

caller

Supervisor

<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>

<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting

<<SubControllerState>>

EditMeeting

<<ViewState>>

ListMeetings

<<ViewState>>
 back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

1. All users of the system can create new meetings and read all meeting
entries.

David Basin 80

Example Policy: Permissions

CreationController

<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate

<<StateAction>> ListMeetings : activate

User

<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute

<<ActionAction>> ListMeetings.cancel : execute

<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner =

caller

Supervisor

<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>

<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting

<<SubControllerState>>

EditMeeting

<<ViewState>>

ListMeetings

<<ViewState>>
 back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

2. Only the owner of a meeting may change meeting data and cancel or
delete the meeting.

David Basin 81

Example Policy: Permissions

CreationController

<<Controller>>

UserCreation

<<ControllerAction>> CreationController : activate_recursive

UserMain

<<ControllerAction>> MainController : activate

<<StateAction>> ListMeetings : activate

User

<<secuml.Role>>

<<secuml.Permission>>

OwnerMeeting

<<ActionAction>> ListMeetings.remove : execute

<<ActionAction>> ListMeetings.cancel : execute

<<StateAction>> EditMeeting : activate_recursive

self.currentMeeting.owner =

caller

Supervisor

<<secuml.Role>>

MainController

currentMeeting : Meeting

<<Controller>>

<<secuml.Permission>>

<<secuml.Permission>>

SuperVisorCancel

<<ActionAction>> ListMeetings.cancel : execute

<<secuml.Permission>>

Start

End

CreateMeeting

<<SubControllerState>>

EditMeeting

<<ViewState>>

ListMeetings

<<ViewState>>
 back

select

exit

create

edit

cancel / cancelMeeting

delete / deleteMeeting

apply / update

3. However, a supervisor can cancel any meeting.

David Basin 82

Generation (sketch)

• Generate web applications based on Java Servlet platform.

Each controller implemented as a servlet.

• Servlets process HTTP requests and create HTTP responses.

� Support RBAC, but only for requests from outside web server.

� Ill-suited for multi-tier (controller) based applications.

� We overcome this using programmatic access control.

• Assertions added as preconditions to methods for process activation,

state activation, and action execution.

• Tool generates complete controller and security infrastructure.

Business logic and view element“stubs”, for later elaboration.

David Basin 83

Road Map

• Motivation and objectives

• Background

• Secure components

• Semantics

• Generating security infrastructures

• Secure controllers

☞ Experience and conclusions

David Basin 84

Current Status

Foundational:

• Developed idea of Model Driven Security.

• General schema and various instances.

Practical/Tool: Prototype built on top of ArcStyler MDA Tool.

• Generators for J2EE (Bea EJB Server) and .NET.

• Industrial version developed by Interactive Objects Software GmbH.

Positive experience:

• In following, we briefly describe one of our case-studies: E-Pet Store.

• Standard J2EE example: an e-commerce application with web

front-ends for shopping, administration, and order processing.

• Carried out by Torsten Lodderstedt during his Ph.D.

David Basin 85

Pet Store Case Study

Analysis

Implementation

Design

Deployment

Testing
Code

Mostly Text

Process
MDA

Code (Platform Infrastructure)

Code (+ Business Logic)

• Requirements analysis: Use Case Model identifying 6 roles (2 kinds of

customers, 4 kinds of employees) and their tasks.

• Use Cases and their elaboration in Sequence Diagrams paved the way

for the design phase.

� 31 components

� 7 front-end controllers

� 6 security roles based on the Use Case roles.

• Security policy based on principle of least privilege.

Typical requirement: Customers need to create and read all catalog

data, to update their own customer data, to create purchase orders,

and to read their own purchase orders.

Let us look at a few snapshots from the model

David Basin 86Use Cases

Shopping
Add Item to Shopping Cart

Customer Registration
Login existing customer

Remove Item from Shopping Cart

Update Cart

Browse Catalog

<<includes>>

Browse Shopping Cart

<<includes>>

<<includes>>

Login Customer to Shop

<<includes>>
<<includes>>

Visitor
 Checkout

Change Account Data

Logout Customer

Browse Own Orders
Customer

<<uses>>

Back Office

Catalog Maintenance

populating the database via XML

Catalog Manager

Remove Customer

Maintain Customer Data

Direct Marketing

Customer

RelationsManager

Remove Order

Change Order Data

Check Pending Order
Order Processing

Manager

Checkout

Browse Catalog

Browse Customers

Browse Orders
Employee

(from Employees)

<<uses>>

David Basin 87

Component Model (partial)

Category

id : string

name : string

description : string

Profile

locale : string

Product

id : string

name : string

description : string

0..1

0..*

category
 0..1

products
 0..*

CatalogItem

description : string

imageLocation : string

itemId : string

listPrice : double

unitCost : double

0..1

0..*

product
 0..1

Items
 0..*

CreditCard

cardNummer : string

cardType : string

expiryDate : string

expiryMonth : string

expiryYear : string

Customer

1

1

customer

1

profile
 1

LineItem

quantity : int

unitPrice : float

1

catalogItem

1

Account

status : string

1

1

account
1

creditCard
1

1

1

customer
1

account
1

Address

city : string

country : string

state : string

streetName1 : string

streetName2 : string

zipCode : string

PurchaseOrder

orderDate : Date

orderId : string

state : string

totalPrice : double

0..*

lineItems

0..*

ContactInfo

email : string

familyName : string

givenName : string

phone : string

1
 1

account

1

contactInfo

1

1

1

contactInfo
1

address
1

1
 billingInfo
1
1
shippingInfo
 1

David Basin 88

Sequence Diagram for Checkout Use Case

user
 Shop
 OrderCreator
 order:PurchaseOrder
 LineItem

checkOut()

createOrder(ShoppingCart)

create(String,Customer,ContactInfo, ContactInfo)

create(CatalogItem, Integer, Double)

David Basin 89

Role Model

Visitor

<<Role>>

Customer

<<Role>>

Employee

<<Role>>

OrderProcessingManager

<<Role>>

CatalogManager

<<Role>>

CustomerRelationsManager

<<Role>>

Example of some Permissions

ReadOwnData

<<EntityAction>> PurchaseOrder : read

self.ownerId=caller

ReadCustomerData

<<EntityAction>> Customer : read

Owner

<<EntityAction>> Customer : fullAccess

CreateCustomerData

<<EntityAction>> PurchaseOrder : create

Employee

<<Role>>

Customer

<<Role>>

PurchaseOrder

orderDate : Date

orderId : string

ownerId : string

state : string

totalPrice : double

<<Permission>>
 <<Permission>>

<<Permission>>

OrderProcessingManager

<<Role>>

<<Permission>>

David Basin 90

Case Study — Evaluation

System

2,000 lines Java (overall 20,000)
5,000 lines XML (overall 13,000)

15 authorization constraints
60 permissions
6 roles

Model

Which would you
rather maintain?

David Basin 91

Evaluation (cont.)

• Expansion due to high-abstraction level over EJB.

Analogous to high-level language / assembler tradeoffs.

Also with regards to comprehensibility, maintainability, ...

• Claim: Least privilege would be not be practically implementable

without such an approach.

• Effort manageable: 2 days for designing access control architecture

(overall development time: 3 weeks).

• MDS process provides conceptual support for building models

� Fits well with a requirements/model-driven development process.

� Provides a good transition from semi-formal to formal modeling.

David Basin 92

Future Work

• Explore the parameter space.

� Security/privacy properties.

� Modeling languages.

Modeling Language

Modeling Language

Security Design Language

System Design

Dialect

Security

Privacy
Information flow

RBAC

Sequence diagrams

Class diagrams
Statecharts

• Exploit well-defined semantics.

� Analysis possible at model level.

Examples: model-consistency, model checking.

� So is a verifiable link to code.

Transform

AnalyzeDesigns

Systems

⇒ applications to building certifiably secure systems!

David Basin 93

Literature

• SecureUML: A UML-Based Modeling Language for Model Driven Security.

Lodderstedt/DB/Doser, UML 2002.

• Model Driven Security for Process-Oriented Systems.

DB/Doser/Lodderstedt, SACMAT 2003.

• Model Driven Security: From UML Models to Access Control

Infrastructures.

DB/Doser/Lodderstedt.

To appear in ACM Transactions on Software Engineering Methodology.

