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Abstract. Distributed systems are challenging for runtime verification. Central-
ized specifications provide a global view of the system, but their semantics requires
totally-ordered observations, which are often unavailable in a distributed setting.
Scalability is also problematic, especially for online first-order monitors, which
must be parallelized in practice to handle high volume, high velocity data streams.
We argue that scalable online monitors must ingest events from multiple sources
in parallel, and we propose a general model for input to such monitors. Our model
only assumes a low-resolution global clock and allows for out-of-order events,
which makes it suitable for distributed systems. Based on this model, we extend
our existing monitoring framework, which slices a single event stream into inde-
pendently monitorable substreams. Our new framework now slices multiple event
streams in parallel. We prove our extension correct and empirically show that the
maximum monitoring latency significantly improves when slicing is a bottleneck.

1 Introduction

Runtime verification (or monitoring) is a technique that verifies systems while they run
in their operational environment. It is realized using monitors, which are programs that
systematically validate a specification by searching for counterexamples in sequences of
observations recorded during system execution. Online monitors incrementally process
the observations, which arrive as an unbounded stream while the system is running [4].

The specification language used significantly influences the monitors’ efficiency.
Monitors for propositional languages are very efficient and can process millions of ob-
servations per second [5,36,37]. However, these monitors are limited as they distinguish
only a fixed, finite set of observations. The observations are often parameterized by val-
ues from (possibly) infinite domains, such as IP addresses and user names. Propositional
monitors cannot look for patterns that take such parameters into account. In contrast,
first-order monitors [10,15,30,31,38,39,42] do not suffer from this limitation, but they
must be parallelized to reach the performance of propositional monitors [6,29,38-41].

In practice, even small IT systems are often built from many interacting subsys-
tems, which are distributed across multiple machines. When monitored, each subsystem
provides information about its behavior as a separate observation sequence. Some
approaches adopt specification languages that refer to multiple observation sequences ex-
plicitly [21,33], or whose semantics is defined on partially-ordered observations [35,43].
However, it is challenging to express global system properties using such decentralized
specification languages [25] as they couple the system’s behavior with its distributed ar-
chitecture. Moreover, the specifications must be adapted whenever the system’s runtime
architecture changes, e.g., when the system is scaled up or down.

We instead focus on centralized specification languages [25] that provide a global
view of the distributed system. These languages abstract from the system architecture
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and are thus resilient to its changes. However, centralized specifications often assume
totally-ordered observations and without additional information, the multiple observation
sequences obtained from distributed systems induce only a partial order. Checking
centralized specifications then becomes intractable, since exponentially many compatible
total orders must be checked [8]. One therefore needs alternative solutions.

Some approaches opt for a global clock to tag every observation across every subsys-
tem with the time when it was made. A global clock abstracts over a collection of local
clocks used by each subsystem and synchronized using a clock synchronization protocol
like NTP [34]. A clock’s resolution is the number of its increments in a time period.
The global clock establishes the true total order of observations if the local clocks have
sufficient resolutions and are accurate [20] up to a small-enough error. In practice, it is
difficult to achieve both conditions for distributed systems that provide observations at
high rates [17]. Moreover, even when the observations are totally ordered, they may be re-
ceived by a monitor in a different order. This can occur if the observations are transmitted
over unreliable channels where messages can be delayed, dropped, or reordered [11].

Finally, existing monitors for centralized specifications typically verify a single
observation sequence. This single-source design limits the monitors’ throughput and
thus their applicability to the online monitoring of large distributed systems. In previ-
ous work, scalable monitors with more than one source have so far been restricted to
propositional [14, 18] or decentralized specifications [23,33] (Section 2).

In this paper we develop a multi-source monitoring framework for centralized first-
order specifications that takes multiple observation sequences as parallel inputs. It
extends our scalable monitoring framework [40,41], which parallelizes the online mon-
itoring of specifications expressed in Metric First-Order Temporal Logic (MFOTL) [10].
The main idea behind the existing framework is to slice the input stream into multiple
substreams (Section 3). Each substream is monitored independently and in parallel by a
first-order (sub)monitor, treated as a black box. When instantiated by a concrete submoni-
tor, the framework becomes an online monitor. However, the existing framework supports
only a single source, which hampers scalability. It also cannot handle partially-ordered
observations, which arise in distributed systems. We address both limitations in this work.

Our new multi-source framework can be used to monitor distributed systems. The
framework’s topology is independent of the system’s topology, and the framework itself
can be distributed. The notion of sources abstracts from the nature of the observation’s
origin. For example, each source could correspond to an independent component of the
monitored system, but it may also be the result of aggregating other streams.

We require that all sources have access to a low-resolution global clock. Such a clock
must have sufficient resolution to decide whether the given specification is satisfied, but
it need not necessarily induce a total order on the observations. We argue that global
clocks cannot be avoided when monitoring metric specifications as they refer to differ-
ences in real time. We account for the fact that observations may have the same creation
time (according to the low-resolution clock) and in such cases restrict the specification
language to a fragment that guarantees unambiguous verdicts [8]. Our multi-source
framework additionally copes with out-of-order observations. This is important even
if the sources use reliable channels, as the framework interleaves observations from
different sources and its internal components exchange information concurrently.
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We generalize the concept of a temporal structure (TS), which models totally-ordered
observations, to a partitioned temporal structure (PTS), which represents partially-
ordered observations that may be received out-of-order from multiple sources (Sec-
tion 4.1). We introduce and explain the assumptions on the observation order in a PTS,
which are sufficient to uniquely determine whether the specification is satisfied. To
monitor a PTS, we add multiple input sources and a reordering step (Section 4.2) to our
existing monitoring framework. We prove that this extended framework remains sound
and complete: the submonitors collectively find exactly those patterns that exist in the
input PTS. We extended the implementation (Section 5) and empirically evaluated it,
showing that it significantly improves monitoring performance (Section 6).

In summary, our main contributions are: 1) the definition of the partitioned temporal
structure as an input model for multi-source monitors; 2) the extension of our monitoring
framework to support multiple sources; 3) its correctness proof, which has been formally
verified in the Isabelle proof assistant; and 4) an empirical evaluation showing a signif-
icant performance improvement over the single-source framework. Overall, our work
lays the foundations for the efficient, scalable, online monitoring of distributed systems
using expressive centralized specifications languages like MFOTL.

2 Related Work

Centralized Monitors. Parametric trace slicing [38,39] performs data slicing on a single
input stream to improve monitoring expressivity, rather than its scalability. The stream-
based language Lola 2.0 [26] extends parametric trace slicing with dynamic control over
the active parameter instances. Lola 2.0 supports multiple input streams, but they must
be modeled explicitly in the specification and, moreover, their monitoring is centralized.

Basin et al. [8] monitor distributed systems using a single-source, centralized monitor.
They preprocess and merge locally collected traces prior to monitoring. Preprocessing
assumes that observations with equal time-stamps happen simultaneously and restricts
the specification to a fragment where the order of such observations does not influence the
monitor’s output. Our approach generalizes this idea, whereby it becomes a special case.

Monitors that handle missing and out-of-order observations [11, 13] are resilient to
network failures, which commonly occur in large distributed systems. These centralized
monitors, which support MTL and its variant with freeze quantifiers, are orthogonal to
our approach and can be instantiated within our monitoring framework.

Decentralized Monitors. Our work builds on top of existing work on parallel black-box
monitoring. Basin et al. [6] introduce the concept of slicing temporal structures. They
provide composable operators that slice both data and time and support parallel offline
monitoring using MapReduce. In prior work [40,41], we generalized their data slicer
and implemented it using the Apache Flink stream processing framework [19].

According to the distributed monitoring survey’s terminology [27], the organization
of our monitoring framework can be seen as orchestrated or choreographed. In the survey,
the notion of a global clock implies the true total observation order, while we assume
a low-resolution global clock. Our monitoring framework supports a more expressive
specification language than the state-of-the-art alternatives reported on in the survey,
which are mostly limited to LTL and the detection of global state predicates.
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Bauer and Falcone [14] exploit the locality of the observations in monitored subsys-
tems to organize the monitors hierarchically based on the structure of an LTL formula.
In contrast, our parallel monitors each monitor the same (global) formula. By decompos-
ing the specification, Bauer and Falcone reduce the communication overhead, but the
monitors still must synchronize on every time-point in the trace. Similarly, El-Hokayem
and Falcone [23, 24] propose a framework for decentralised monitoring of LTL and
(automata-based) regular specifications. However, they focus only on propositional
specifications, which limits the expressiveness of their framework.

Leucker et al. [33] describe a concurrent online monitor for multiple non-synchronized
input streams. Unlike our work, the authors assume the existence of a global clock that
establishes a total order. It is difficult to compare their specification language TeSSLa
with ours. TeSSLa refers to multiple input streams directly, while our specification
language specifies (global) properties of distributed systems. It is generally easier to
write a centralized specification when observations can originate from multiple streams.
In TeSSLA, one must either encode all possible interactions between the streams, or
merge the streams first, which offsets any gains from the concurrent evaluation.

Stream Processing. A common mechanism for dealing with out-of-order observations
in database and stream processing systems [3] is watermarks [2], which are special
markers inserted in the data streams to provide a lower bound on the progress of time.
Alternatively, a slack parameter [1] can be specified, which denotes the maximum number
of positions that any observation can be delayed at a stream operator. It is used to allocate
an appropriately sized buffer for each input of the stream operator to perform reordering.
Observations delayed more than the slack value are discarded. Punctuations [45] are
more general than watermarks in that they indicate the end of some subset of the stream.
The semantics of punctuations can vary, e.g., there will be no more observations having
certain attribute values in the stream. Heartbeats [44] resemble watermarks and can be
seen as special punctuations about temporal attribute values.

3 Preliminaries

We recap the syntax and semantics of Metric First-Order Temporal Logic [10] and sum-
marize our scalable monitoring framework [40], which slices a single temporal structure.

Metric First-Order Temporal Logic (MFOTL). We fix a set of names [E and for simplicity
assume a single infinite domain ID of values. The names r € [E have associated arities
«(r) € N. An event r(dy,...,d,) is an element of [E x D*. We further fix an infinite set
V of variables, such that V, D, and E are pairwise disjoint. Let I be the set of nonempty
intervals [a,b) :={x € N|a < x<b}, where a € N, b € NU{eo}, and a < b. Formulas ¢
are defined inductively, where ¢;, r, x, and I range over VUD), E, V, and [, respectively:

pr=rtn.. ) (=0~ leVe|Ixe | @1¢ | Ore|eSie|eUre.

Formulas of the form r(z,..., I ,)) are called event formulas. The temporal operators
@®; (previous), Oy (next), Sy (since), and U; (until) may be nested freely. We derive
other operators: truth T := Jx. x & x, inequality #; # £, := —(f; = t), conjunction
@AY= (- V), implication ¢ — ¥ := —@ Vi, eventually O;¢ := T Uj ¢, always
O;¢:=-0; ¢, and once 4;¢ := T S; . The set V, denotes the set of free variables
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vikEr(ty, ... ty) ifr(v(ty),...v(ty)) €D; | viEEIx. g ifvix — d], i |= ¢ for some d € D
wiEth~n ifv(t)) = v(tz) Vi@ ifi>0,7,—71i_1 €l andv,i—1 ¢
v i ifv,ifEe viEOrp iftiyi—1i€landv,i+1E¢
viEeVy ifv,iEgorv,iEy

v, iE ¢Sy ifv, j =y forsome j <i,7;—7; €I, and v, k = ¢ for all k with j <k <i
viEeUry ifv, jl=yforsome j>i,7j—7; €I, and v, k = @ forall k with i <k < j

Fig. 1. Semantics of MFOTL

of ¢. A formula has bounded future iff all subformulas of the form Oy, ) @ and @ U, ;) B
(including derived operators) satisfy b < oo.

MFOTL formulas are interpreted over temporal structures (TS), which model totally-
ordered observation sequences (or streams). A temporal structure p is an infinite se-
quence (7, D;);en, Where 7; € N is a discrete time-stamp, and the database D; € DB =
P(E x D*) is a finite set of events that happen concurrently in the monitored system.
Databases at different time-points i # j may have the same time-stamp 7; = 7;. The se-
quence of time-stamps must be monotone (Vi. 7; < 1;41) and progressing (V1. Ji. T < 1)).

The relation v, i |=, ¢ defines the satisfaction of the formula ¢ for a valuation v at
an index i with respect to the temporal structure p = (7, D;);en; see Fig. 1. Whenever p
is fixed and clear from the context, we omit the subscript on |=. The valuation v is a
mapping V, — D, assigning domain elements to the free variables of . Overloading
notation, v is also the extension of v to the domain V,UID, setting v(¢) = r whenever r € ID.
We write v[x — d] for the function equal to v, except that the argument x is mapped to d.

Monitors. An online monitor for a formula ¢ receives time-stamped databases that are a
finite prefix  of some TS p (denoted by 7 < p). The monitor incrementally computes a
verdict, which is a set of valuations and time-points that satisfy ¢ given x. (Typically, one
is interested in the violations of a specification Ly, which can be obtained by monitoring
- instead.) A monitor is sound if the verdict for & contains (v,i) only if v, i =, ¢ for all
p = . Itis complete if whenever m < p is such that v, i |=, ¢ for all po' = m, then there is
another prefix 7’ < p for which the verdict contains (v,i). In our formal treatment, we
consider the monitor’s output in the limit as the input prefix grows to infinity. Thus, a
monitor implements an abstract monitor function My, : (N xDB)* — P((V, — D) x N)
that maps a TS p to the union of all verdicts obtained from all possible prefixes of p.
We shall assume that the monitor implementing M, is sound and complete. If ¢ has
bounded future, it follows that M (p) = {(v, i) | v, i |=, ¢}.

Slicing Framework. In prior work, we parallelized online first-order monitoring by slic-
ing [40,41] the temporal structure into N temporal structures that can be independently
monitored. Figure 2 shows the dataflow graph constructed by our monitoring framework
to monitor a given formula ¢. The framework utilizes N parallel submonitors, which
are independent instances of the monitor function M,,. Let [n] denote the set {1,...,n}.
The slicer S, is parameterized by a slicing strategy g : [N| — P(V, — D) satisfying
Urerv) &(k) = (V, — D). The slicing strategy specifies the set of valuations g(k) for
which the submonitor k& is responsible. Next, we describe which events the submonitor k
receives to evaluate ¢ correctly on all v € g(k). Given an event e, let sfinatches(g, ) be the
set of all valuations v for which there is an event subformula i in ¢ with v(y) = e. (Here
v is extended to event subformulas, such that v(r(t1,...,1,)) = r(v(t1),...,v(t)))s
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Fig. 2. Dataflow in the single-source monitoring framework

and we assume that ¢’s bound variables are disjoint from its free variables.) For
a database D and a set of valuations R, we write D | R for the restricted database
{e € D | sfimatches(p,e) "R # @}. The same notation restricts the TS p = (74, D;)jen
pointwise, i.e., p | R = (7;,D; | R)en. Then, it is sufficient if the submonitor k receives
the slice Sy (p) = p | g(k). The slicer S, thus outputs N streams Sg 1(0), . .., Sen(p).

The output of the monitor function M, on p can be reconstructed from the parallel
submonitors’ output on the N slices. Formally, My(p) = Uren) (Fex(My(Sex(0)))),
where F, x(X) = XN (g(k) x N). Note that Figure 2 illustrates the right-hand side of
the equation defining M, (p). In [40], we proved this equation assuming a stronger
completeness property of the online monitor. However, it can also be shown for the
abstract function M, which operates on a TS. The intersection with g(k) x N is needed
to avoid spurious verdicts for some formulas, such as those involving equality.

Example 1. Consider an access control policy for a service operating on medical records,
where whenever a user requests to process a record, the service does so only if the user
was authorized to access that record. The policy is formalized in MFOTL as [ @; with
@ = VYu. proc(u,r) — #auth(u,r). The formula proc(u,r) denotes that u requested to
process r and auth(u,r) denotes that u is authorized to access r. For the sake of this
example, we leave r as the only free variable and assume numeric identifiers for  and r.

We monitor ¢ = =@ as shown in Figure 2, using the slicing strategy g(k) = {v |
v(r)mod3 = k— 1} with N = 3 slices. Recall that the set g(k) contains valuations, which
are mappings from the free variables {r} to D. The TS p models a service execution
with the first database D = {auth(1,1), auth(1,2), auth(1,3), proc(1,3), proc(1,4)}.
The submonitor 1 receives D | g(1) = {auth(1,1), proc(1,4)} as its first database and
reports the verdict {({r— 4},0)} as a violation of @}, which is the only violation evident
from D. Submonitors 2 and 3 receive databases {auth(1,2)} and {auth(1,3), proc(1,3)}
and output empty verdicts after processing them, respectively.

Example 2. Now consider a centralized system running many instances of the service
from the previous example. Each service handles user requests either by directly pro-
cessing a record, or by recursively triggering requests to other (local) services. So, now
a service is allowed to process a record only if this was initially requested by a user
authorized to access the record. Notice that data processing can now happen after a chain
of requests involving multiple services. Therefore, we assume that the services attach a
unique session number s to all requests caused directly or indirectly by a user’s request.

The MFOTL formula O @, with @, = (#req(u, s)) A proc(s,r) — 4 auth(u,r) for-
malizes the new specification, now with free variables {u, s,r}. The new event formulas
are req(u, s) (user u sends a request, starting a session s), and proc(s, r) (record r is pro-
cessed within the session s). Let N =8 and g(k) = {v | 4- (v(u) mod2)+2-(v(s) mod2) +
v(r)mod2 = k— 1} be a slicing strategy. Note that according to g, submonitor 1 receives
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only valuations where each variable has an even value. When we monitor p with the first
database D = {req(2,2), auth(2,1), proc(2,2)}, each event in D is sent to two submon-
itors. For instance, req(2,2) is sent both to submonitors 1 and 2, whereas proc(2,2) is
sent to submonitors 1 and 5. Such a slicing scheme ensures that submonitor 1 receives
sufficient information to output the verdict { ({u +— 2,5 — 2,r — 2},0)}.

4 Monitoring Distributed Systems

We consider the online monitoring of a distributed system. A first problem that we
must solve is the lack of a total order on the observations of the individual subsystems
(machines, processes, threads, etc.). As explained in the introduction, such a total order
is required by the semantics of centralized specifications, but it does not exist unless the
subsystems’ execution is perfectly synchronized. This cannot be assumed in general as
one usually desires some parallelism in distributed systems.

A second problem is that distributed systems are often developed to achieve scala-
bility, and online monitors used with such systems should be scalable as well. A monitor
that physically combines observations from different sources into a single stream cannot
satisfy this requirement: if the workload increases and additional events are generated,
the processes working with the single stream will eventually be overloaded. Scalable
online monitors must therefore ingest observations in parallel.

We solve the above problems by viewing online monitoring as an instance of dis-
tributed stream processing. Observations enter the monitor in multiple parallel streams,
called sources. We give a general model of sources that captures a variety of distributed
monitoring scenarios, while still allowing the efficient monitoring of metric specifi-
cations (Section 4.1). The model logically decouples the monitor from the monitored
system, which ensures that the system’s topology can be chosen independently. We then
extend the slicing framework to utilize multiple sources (Section 4.2). The resulting
multi-source framework does not require a total order on the observations, and it scales
better than the single-source version, even if the monitored system is not truly distributed.

4.1 Input Model

We model the monitor’s input as a Partitioned Temporal Structure (PTS), which we
define formally later in this section. We believe that this model is useful beyond our
implementation using slicing. The model is based on several assumptions about the
problem at hand. Below, we explain these assumptions, show how they are reflected in
the PTS, and give examples of possible applications.

Assumption 1. We assume that the monitored specification has the form @ = -,
where ¢ has bounded future. We also assume that the specification is centralized, i.e.,
its event formulas are interpreted over all events from the entire system.

The restriction on the formula’s structure is common for first-order monitors. It guar-
antees that every violation can be detected in finite time [10]. The assumption that the
specification is centralized rules out various monitoring approaches. We already argued
that centralized monitors are ill-suited for scalable distributed systems. Moreover, note
that centralized specifications cannot be easily split into smaller parts that are handled
by local monitors, as illustrated by the following example.
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Example 3. Consider now the services from Example 2 deployed on a microservice
architecture that is running on a cluster of machines. Each service generates its own TS.
As requests span arbitrarily many machines, the specification cannot be checked locally.

We therefore treat the monitored system and the monitor as independent entities. They
are connected by M sources, which are parallel observation streams. The sources may
correspond the monitored system’s components, e.g., the services in Example 3. This
is not required by the model, which we will show in a later example.

The next assumption imposes an important restriction: it must be possible to ar-
rive at a definite monitoring verdict even if the observations are only partially ordered.
Otherwise, we would need to construct all possible interleavings of the concurrent obser-
vations, which is generally infeasible. We avoid relying on system-specific information,
such as vector clocks, to reduce the number of interleavings [35] as this would diminish
the generality of our approach.

Assumption 2. There exists a TS p* that describes the actual sequence of events as they
occur in real time. The time-stamps in p* are obtained from the real time truncated to the
precision used in the specification. (We do not assume that p* can be observed directly.)
The sources must have access to a global clock that provides time-stamps from p* as
well as sufficient information about the event order to decide whether p* satisfies @.

Note that the system satisfies the specification @ iff p* satisfies @. We model the infor-
mation provided by the global clock using indices, which are natural numbers attached to
every observation. If the index of observation o is less than the index of observation o;,
then o1 must have happened before 0;. At one extreme, the index is simply the position
of the observation in p*, i.e., a global sequence number. Then every specification has
a definite verdict. A distributed system providing such sequence numbers would need
a global clock with very high resolution, which is often unrealistic. However, centralized
applications, which have access to sequence numbers, can be more efficiently monitored
with a multi-source monitor than with a single-source monitor.

Example 4. Kernel event tracing creates streams with high event rates [22]. We may im-
prove the monitor’s throughput by distributing the events over multiple streams (see Sec-
tion 6). For a single processor, its hardware counters provide global sequence numbers.

At the other extreme, the indices could simply be the time-stamps. We say that a
clock providing such indices is low resolution, as its resolution may not be high enough
to establish the true total order. Yet not all specifications can be monitored if the indices
have lower resolution than global sequence numbers. We follow the collapse approach
by Basin et al. [8], where events with the same time-stamp are collapsed into a single in-
stantaneous observation. We generalize the collapse from time-stamps to indices, which
unifies the presentation. We then rephrase the requirement on the global clock from
Assumption 2 in terms of the collapse: monitoring the collapsed sequence must result in
essentially the same output as monitoring p*. To make this precise, we add the indices
to p* itself, which results in the indexed temporal structure p*.

Definition 1. An indexed temporal structure (ITS) is a TS over extended tuples («;,7;, D;),
where a; € N are indices. The indices must increase monotonically (Vi. a; < aj41), and
they must refine time-stamps (Vi.Vj. a; < a; = 17, < 1))
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Definition 2. The generalized collapse C(p) = (7§, D5); of an ITS p is characterized by
the unique monotone and surjective function f : N — N that maps (only) positions with
the same index to a common value (Vi.Vj. a; = aj <= f(i) = f(j)). Then Vi. Tho = Ti

and ' j. DS = U{D: | f(i) = j}- |

Since p* is the idealized totally-ordered sequence, its indices must increase mono-
tonically. Indices must also refine time-stamps so that the generalized collapse is a TS.
This requirement, which may seem quite strong, is necessary because the semantics
of a metric specification language (like MFOTL) is defined with respect to a TS. Note,
however, that the resolution of time-stamps is not fixed (Assumption 2). The resolution
of time-stamps and thus indices can be quite low as long as it is possible to formalize
the specification faithfully.

Definition 3. We call p adequate for the formula ¢ iff v,i =c(p) ¢ <= (3). f(J) =
iAV, j [=p @) for all v and i, where p is obtained from p by omitting the indices.

Monitoring a formula ¢ on the generalized collapse of an adequate ITS finds the same
satisfying valuations as monitoring the ITS itself (modulo the remapping of time-points).

Lemma 1. Suppose that p is adequate for the formula . Then My (C(p)) = {(v. f(j)) |
(v, ) € My(p)}, where f is as in Definition 2.

If the indices of an ITS are global sequence numbers (e.g., Vi. @; = i), the ITS is
adequate for all ¢. To gain intuition for other ITS, we focus again on the case where
indices are time-stamps (time-ITS, Vi. @; = 7;). Basin et al. [8] define the notion of
collapse-sufficient formulas, which are essentially those formulas that can be monitored
correctly on a time-based collapse. They provide an efficiently decidable fragment of
formulas with this property. (More precisely, a time-ITS p is adequate for ¢ iff ¢ satisfies
the properties (j=3) and (F~V) given in [8], which implies that @ = [J—¢ is collapse-
sufficient.) Often, a formula can be made collapse-sufficient by replacing subformulas
40,1 @ (note the interval’s zero bound) with #(o 00,0 @, and dually for ¢ . More
complicated replacements are however needed for S and U.

Example 5. To obtain a collapse-sufficient formula from the specification in Example 2,
we restrict the authorizations to happen at least one second before their use. Furthermore,
we ignore the order of requests and process events (using the O[] operator) as long
as they have the same time-stamp. The specification is formalized as [ @3 with @3 =
(# 00,0 rea(u, s)) Ause(s,d) — @1 60) auth(u,d).

It is common practice in distributed systems to process, aggregate, and store logging
information in a dedicated service. The observations fed to the monitor are then taken
from this service. In Example 3, the microservices could first send their events to
a distributed message broker such as Kafka [32]. As a result, events from different
services may be interleaved before they reach the monitor. We therefore allow that
individual sources provide observations in a different order than their temporal order.
This generalization adds almost no complexity to the monitor’s design (Section 4.2): we
must anyway reorder the observations, even for correctly ordered streams, to synchronize
them across sources. Handling out-of-order observations thus comes almost for free.

Assumption 3. Sources may provide observations in any order. However, the delay of
each observation must be bounded.
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Fig. 3. Dataflow in the multi-source monitoring framework

The latter condition ensures that the monitor does not get stuck. We enforce it by
adding watermarks, which are lower bounds on future indices, to the sources. Then, the
observations’ delay is bounded if the watermarks always eventually increase. In our
implementation, watermarks are interspersed between regular observations. We simplify
the formal definitions below by assuming that every database has an associated water-
mark, which is the one most recently seen. Note that an input model with watermarks is
strictly more permissive than one without. If we know that the observations will be in
the correct order, we can simply set each watermark equal to the next index.

We are now ready to give a formal definition of our input model. We recall the main
idea: The monitor’s input is a PTS, which partitions some ITS p* into multiple sources.
If p* is adequate for the formula ¢, it suffices to monitor the generalized collapse C(p*)
via the PTS to achieve the goal of monitoring p*.

Definition 4. A partitioned temporal structure (PTS) is a finite list p1,...,pp of M > 1
sources. A source py is an infinite sequence of tuples (@ ;,Br.i>Tk.i>Dr.i)icn, Where
ax,; € N is an index, Br; € N is a watermark, and ty; and Dy; are as in temporal
structures. For all k € [M], px must satisfy (P1) monotone watermarks (Vi. Br; < Bri+1);
(P2) progressing watermarks (V8. 3i. B < Bk.i); (P3) watermarks bound future indices
(Vi.Vj. i< j= Bri < ayj); and (P4) progressing time-stamps (V1. 3i. 7 < 1y ;).

A PTS py,...,py partitions an ITS (a;,7j,D;)jen iff it is (Q1) sound (Vk. Vi. 3.
ar;i = aj ATk =T; ANDy; C Dj); and (Q2) complete wrt. indices (Vj. 3k. Ji. ar; =
ajA\Tr; =T7;j)and events (Vj. Ve € D;. k. Ji. ap; = aj A1i; =7 Ne € Dy;).

Conditions P1-P3 have already been explained, while condition P4 is inherited from
temporal structures. Conditions Q1-Q2 encode that the PTS contains the same infor-
mation as the ITS. Specifically, the sources must have access to a low-resolution global
clock providing the time-stamps in p*. Its resolution is defined by the specification. For
instance, we could use NTP-synchronized time in seconds in Example 5, where the
specification requires recent authorization on the order of seconds.

We need both completeness wrt. indices and events (Q2) because the latter is trivially
true for empty databases, but we must ensure that the corresponding index (and time-
stamp) occurs in the PTS. Note that for every ITS, there is at least one PTS that partitions
itinto M > 1 sources: let (@i, Bk, Tki» Dii) = (@j,;,7j,D;j) with j=i-M+k—1.

4.2 Slicing Framework with Multiple Sources

Figure 3 shows the slicing framework’s dataflow after extending it to multiple sources.
Arrows represent streams of elements, and rectangles are stream transducers with pos-
sibly multiple inputs and outputs. The input consists of the M sources of a PTS. We
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apply the slicer S, independently to each source, using the given slicing strategy g. The
input of S, thus carries additional indices and watermarks. Since slicing only affects the
databases, we can easily lift it to source streams. Let the stream py i be the output of the
kth slicer on its k'th outgoing edge, where kK’ € [N]. The k'th instance of R (described
below) receives an interleaving of the streams py /,...,pp . Stream processor imple-
mentations usually do not guarantee a particular order for such an interleaving. This also
applies to our implementation (Section 5). Therefore, we assume that the interleaving is
nondeterministic, with the only guarantee being one of fairness, namely that every input
stream is visited infinitely often. We further assume that the elements in the streams oy, /
are tagged with their origin k.

The crucial new component is the reordering algorithm R, which fulfills two pur-
poses. First, it collapses databases according to their indices. This has an effect only if in-
dices are time-stamps, i.e., the underlying ITS is time-indexed. Second, R ensures that the
input to the monitor function M, is sorted correctly. Even if observations arrive in the cor-
rect order at PTS sources, reordering is necessary due to the shuffling between S, and R.

The pseudocode for R is given in Algorithm 1. It uses two global variables, marks
and buffer, both finite associative maps. The expression keys(m) denotes the set of keys
in the associative map m. If x € keys(m), then m[x] is the unique value that m associates
with x. The map marks stores the largest watermark seen so far for each input stream.
(Recall that the input to R is an interleaving of one slice from each input stream.) The
map buffer maps indices to pairs of time-stamps and databases. Intuitively, buffer keeps
all indices that may occur in the future as the watermarks have not advanced past them.

The procedure INITIALIZE(M) is called once when the monitor starts, where M is
the number of sources. The watermarks are initially zero, which is a lower bound for all
indices. The procedure PROCESS(x) is called for every stream element x received by R.
The first element of the tuple x = (k,,B,7, D) identifies the source from which it origi-
nates, while the remaining elements are from the sliced PTS. Line 4 restores the invariant
for marks. In lines 5-9, D’s contents are added to the buffer. If the index « is already
mapped by buffer, we take the union with the previously stored database to implement the
collapse. Otherwise, 7 and D are inserted into buffer. The value 6 computed in line 10 is
the minimum of all the latest watermarks across all inputs. By condition P3 of PTS (Defi-
nition 4), we know that all future indices that R will receive must be at least 8. Therefore,
it is safe (only) to output everything in buffer with a smaller index. This happens in
lines 11-13. Note that we iterate over the indices in ascending order, which ensures that
the output is sorted correctly. The sequence of R’s output elements (which are pairs of
time-stamps and databases) forms the stream that is sent to the monitor M, in Figure 3.

The following theorem establishes the correctness of the multi-source framework. It
is formalized [7] and verified along with Lemma 1 in the Isabelle/HOL proof assistant.

Theorem 1. Let py,...,pp be a PTS that partitions p*. For all slicing strategies g, the
result of the dataflow in Figure 3 (with inputs pi,...,pu) is equal to My (C(p*)).

Note that this theorem holds for all possible partitions of p* and all possible interleavings
that can result from the shuffling step. However, it is only a statement about the infinite se-
quence of verdicts. Each verdict may be delayed by an arbitrary (but finite) amout of time,
depending on the watermarks in the input and the shuffling implementation. Theorem 1
does not assume that p* is adequate for ¢ because it refers directly to the generalized



12 Basin et al.

Algorithm 1 Reordering algorithm R
1: procedure INITIALIZE(M)
2 marks < {k+— 0|k € [M]}, buffer < {}
3: procedure PROCESS((k,a,B,7,D))
4 marks[k] < B

5: if o € keys(buffer) then

6.

7

8

(7, D) == buffer|a]
buffer|a) « (7/,DUD")

: else
9: buffer|a] + (,D)
10: 60 := min{marks[k] | k € keys(marks)}
11: for i € keys(buffer) in ascending order, while i < 6 do
12: output buffer|i]
13: delete i from buffer

collapse C(p*). If we additionally know that p* is adequate, we get the same verdicts
as if we were monitoring p* directly, modulo the mapping of time-points (Lemma 1).

Example 6. We use the multi-source monitoring framework to monitor ¢ = ~®3 (Ex-
ample 5) on M = 2 distributed services (Example 3), using N = 8 submonitors and the
splitting strategy g (Example 2). The dataflow is shown in Figure 3. The input PTS con-
sists of two sources p; and p, with prefixes (0,0,0,{req(2,2)}), (3,0,3,{proc(1,1)}),
(1,0,1,{req(2,1)}), (4,4,4,{}) and (0,0,0,{proc(2,2), auth(2,1)}), (4,4,4,{}), respec-
tively. Note that the indices are equal to the time-stamps. As in Example 2, submonitor 1
receives events req(2,2) and proc(2,2) and produces the same verdict. However, the
reordering algorithm sends these events only after receiving watermark 4 from both
sources. All of the remaining events are sent to submonitor 3. The reordering algorithm
ensures that they are received in the order defined by their indices. Hence, auth(2,1)
is received first, followed by req(2,1), and then by proc(1,1). Due to the reordering,
submonitor 3 correctly produces an empty verdict for the given prefixes.

We conclude with a remark about the time and space complexity of Algorithm 1. Both are
unbounded in the worst case because of the problem with unbounded watermark delays
mentioned above. However, we obtain a more meaningful result under reasonable addi-
tional assumptions. For example, assume that each database in the input has size at most d,
that every index occurs at most ¢ times, and that the number of stream elements between
an index « and the time that 8 (line 10) becomes greater than « is at most z. The parame-
ter ¢ is upper bounded by the time-point rate (Section 6) multiplied by M. The parameter
z depends on the watermark frequency and the maximum (event) delay (Section 6), and
also on the additional delay introduced by the shuffle step between slicing and reordering.

There are at most z different keys in buffer at any given time, each mapping to a
database of size at most ¢ - d. The space complexity is thus O(M + c-d - z) in the uniform
RAM model, where M is the number of sources. By using a self-balancing search tree for
buffer and hash tables for the databases contained therein, one invocation of PROCESS
has an amortized average time complexity of O(M + d +logz), again in the uniform
model. The summand M can be reduced to log M by using a binary heap to maintain 6
instead of recomputing it in every invocation.
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5 Implementation

We implemented a multi-source online monitoring framework based on the ideas outlined
in Section 4. It extends our previous single-source framework [40,41] and is available
online [7]. The implementation instantiates the submonitors with MonPoly [12], which
supports a monitorable fragment of MFOTL [10] where, in particular, formulas must
have bounded future. We modified about 4k lines of code (3.2k added and 0.8k deleted).
In Section 4, we omitted many details, e.g., how events are delivered to and exchanged
within the framework, which effect the efficiency and usability of the framework. We
explain some implementation choices here and further details can be found in [28,40].
Our multi-source framework is built on top of Apache Flink [19], which provides
an API and a runtime for fault tolerant distributed stream processing. Fault tolerance
is important for distributed online monitors since increasing the number of machines
on which a monitor runs also increases the risk of failures, which would otherwise
disrupt the monitor’s operation. The implementation’s dataflow corresponds roughly to
the dataflow in Figure 3, except that the streams’ elements are individual events instead
of databases. The events are interleaved with other control elements that carry additional
metadata. We use Flink’s API to define the logical dataflow graph, whose vertices are
operators that transform potentially unbounded data streams. At runtime, operators can
have multiple instances as defined by their degree of parallelism. Each operator instance
works on a partition, i.e., a substream. Stream elements are repartitioned according to
some strategy if the degree of parallelism changes from one operator to the next. In
Figure 3, the parallelism changes from M to N at the shuffling step. Each slicer outputs
is a single stream of elements labeled with their destination submonitor. Based on these
labels, a stream partitioner ensures that the elements reach their intended destination.
We use two types of source operators (TCP and Kafka) with different trade-offs. In
Flink, sources are operators without incoming edges in the dataflow graph. Their degree
of parallelism, which must be chosen before execution starts, determines the number M
of input streams. The TCP source reads simple text streams from multiple sockets by con-
necting to a list of address and port pairs. It is fast and thus useful for benchmarking the
other components, but it is not fault tolerant. The Kafka [32] source operator implements
a distributed persistent message queue and provides fault tolerance. However, we exclude
it from the evaluation as it incurred a significant overhead in our preliminary experiments.
The slicer, submonitors, filtering, and verdict union are nearly unmodified (see [40]).
However, there are now multiple instances of the slicing operator. The reordering func-
tion R is a straightforward implementation of Algorithm 1. In our implementation, the
buffer is simply a hash table, and we access it by probing for increasing indices. A more
efficient approach can be used if this becomes a bottleneck. Our implementation currently
supports time-points and time-stamps as indices (see Section 4.1). With out-of-order
input, only time-stamps are supported, but it should be easy to generalize the framework
to time-points. We rely on order elements, which are a type of control elements, instead
of associating watermarks with every database. For in-order inputs, the order elements
are separators between databases, which are inserted by the input parser. In this case,
we can synthesize the watermark from the database’s time-point or time-stamp. If the
input is out-of-order, watermarks must be provided as annotations in the input data. The
input parser extracts the watermarks and embeds them in newly created order elements.
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@5 = P(x,y) A (9135 Q(x,2)) A 41 35 R(x,w))
@i = insert(u,dbl,p,d) Ad 3 null A= Qo 30 (3. insert(u',db2,p,d) V delete(u’,dbl,p,d))

@4 <(delete(u,db1,p,d) Ad % null A= g 304 3u’. 3p' insert(u’,dbl,p’,d)) v
(delete(u,dbl,p,d) Ad # null A (Fu'.3p’. (#0308 insert(u’,dbl,p’,d)) v
(Oro.30n insert(u’,db2,p’,d))))> A = QOp030n Ju'. 3p' delete(u’,db2,p',d)

Fig. 4. MFOTL formulas used in the evaluation

6 Evaluation

To assess the scalability of our extended framework we organized our evaluation (avail-
able online [7]) in terms of the following research questions (RQs).

RQ1: How do the input parameters affect the multi-source framework’s scalability?
RQ2: What is the impact of imbalanced input sources on performance?

RQ3: Can multiple sources be used to improve monitoring performance?

RQ4: How much overhead does event reordering incur?

RQI and RQ2 assess the impact of input parameters (specifically, the event rate and
time-point rate, defined below, as well as the number of inputs and submonitors) on our
framework’s performance. When events arrive out of order, we additionally control their
maximum delay and the watermark frequency. We assess RQ1 by monitoring multiple
traces with the same event rate, while for RQ2 we relax this restriction. RQ3 aims to
evaluate the overall performance gain of introducing multiple inputs. We aim to validate
our hypothesis that the slicer is no longer the performance bottleneck. We also assess the
overhead introduced by the newly added reorder function (RQ4).

We run our experiments on both synthetic and real traces. The former are monitored
with the collapse-sufficient formula ¢ (Figure 4), which is the common star database
query [16] augmented with temporal operators. It contains only past temporal opera-
tors because these can be monitored more efficiently, which puts a higher load on the
framework’s input and slicers. We use a trace generator [40] to create random traces
with configurable time span, event names, rate, and time-point rate. The trace’s time
span is the difference between the highest and the lowest time-stamp in the trace. Given
a trace and a time-stamp, the event rate is the number of events with that time-stamp,
while the time-point rate is the number of databases with that time-stamp. The generator
synthesizes traces with the same event and time-point rates at all time-stamps, choosing
randomly between the event names P, Q, and R. We configured the generator to produce
mostly R events (99.8%). The events’ parameters are sampled from the natural numbers
less than 10°. There is some correlation between the parameters of events with different
names (see [40]), which is not relevant for our experiments because of the prevalence
of R events. In general, it is highly unlikely that the generated traces satisfy ;.

The generator is extended to determine the order in which the events are supplied to
the monitor by explicitly generating the emission time for each event. The emission times
are relative to the monitoring start time. For traces received in-order, the events’ emission
times correspond to their time-stamps decreased by the value of the first time-stamp
in the trace. Otherwise, each event’s emission time is additionally delayed by a value
sampled from a truncated normal distribution A/(0, 0'2) over the interval (0,8,,4y). In our
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Experiment groups Syntheticy  Synthetic,  Synthetic; Nokia Nokiay
Formulas Ps Ps Ps Pi> Pd -1
Source distribution all uniform except in Synthetics, which also has (%, %, %, %), (%, %, %, %)
Event order total, partial partial partial partial partial
Ingestion order in-order  out-of-order  in-order in-order in-order
No. of input sources 1,2, 4 1,2,4 4 1,2,4 1,2,4
No. of submonitors 16 16 16 1,4,16 16
Acceleration 1 1 1 3k, 5k, 7k 3k, 5k, 7k
Trace time span 60s 60s 60s

Event rate (1/s) 500k, 700k, ggpi 500K, 700k,

Time-point rate (1/s) | 1, 2k, 4k

a one day fragment
1 from the Nokia trace

Maximum de]ay (5) n/a 1 4 n/a with 9.5 million events
Watermark period (s) n/a 1,2,4 n/a

Use reorder function v v v v v, X
Repetitions 10 5 1 1 5

Table 1. Summary of the parameters used in the experiments

experiments we fix o = 2 and vary the maximum delay 6,,,, of events. The generator
also adds a watermark after fixed time-stamp increments called watermark periods.
Besides the synthetic traces, we also use a real system execution trace from Nokia’s
Data Collection Campaign [8]. The trace captures how Nokia’s system handled the
campaign’s data. Namely, it collected phone data of 180 participants and propagated it
through three databases: dbl, db2, and db3. The data was uploaded directly to dbl, while
the system periodically copied the data to db2, where data was anonymized and copied
to db3. The participants could query and delete their own data stored in db1l. The system
must propagate the deletions to all databases, which is formalized by formulas ¢; and
w4 (Figure 4). Since the trace spans a year, to evaluate our tool in a reasonable amount
of time, we pick a one day fragment (starting at time-stamp 1282921200) containing
roughly 9.5 million events with a high average event rate of about 110 events per second.
To perform online monitoring, we use a replayer tool [40] that emits the trace in real
time based on its time-stamps or (the generated) explicit emission times. The tool can be
configured to accelerate the emission of the trace proportionally to its event rate, which al-
lows for a meaningful performance evaluation since the trace characteristics are retained.
For our multi-source monitor we use one replayer instance per input source. We evaluate
only the implementation that uses TCP sockets. The k input sources are obtained by as-
signing each event to one of the sources based on a discrete probability distribution called
source distribution, e.g., the source distribution (, %, 1.1) is the uniform distribution for
k = 4. We use other source distributions to investigate RQ2. Both the Nokia and the syn-
thetic traces have explicit time-points, which are used as the partitions’ indices. To sim-
ulate partially-ordered events, we replace the indices with the appropriate time-stamps.
Table 1 summarizes the parameters used in all our experiments. There are five
experiment groups: three using the synthetic traces and two using the Nokia traces. We
perform a separate monitoring run for each combination of parameters within one group.
We used a server with two sockets, each containing twelve Intel Xeon 2.20GHz
CPU cores with hyperthreading. This effectively supports up to 48 independent parallel
computations. We measure the worst-case latency achieved during our experiments.
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Fig. 7. Results of the Nokia; experiment group

In general, monitor latency is the difference between the time a monitor consumes an
event and the time it finishes processing the event. Thus, at regular intervals, the replayer
injects a latency marker, which is a special event tagged with its creation time and a se-
quence number local to its source. Each such marker is then propagated by our framework,
preserving its order relative to other events from the same input source. It is treated as part
of the preceding event, effectively measuring its processing time. The slicers duplicate
and forward latency markers to all parallel submonitors, such that each submonitor re-
ceives every latency marker from each source. Finally, for every sequence number, the last
operator in the framework aggregates all latency markers (coming both from the different
input sources and the different parallel submonitors) and calculates the worst-case latency.
For a single monitoring run, we report the maximum of the worst-case latency aggregated
over the entire run. To avoid spurious latency spikes, some experiments are repeated (see
Table 1) and the mean value is reported with error bars showing two standard errors.

The results of our experiments are shown in Figures 5-8. The experiments Synthetic,
and Synthetic, (Figure 5) answer RQ1. Increasing the number of input sources decreases
the worst-case latency, which is particularly evident with high event rates. For instance,
when monitoring traces with event rate 900k, we improve the maximum latency by 10 sec-
onds if we double the number of input sources. The relationship between the maximum
event rate at a fixed latency and the number of sources appears to be slightly sublinear.
We conjecture that this is due to duplicate events that the slicers necessarily emit for
some formulas [40]. Therefore, having more slicers increases the framework’s total load.
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Fig. 8. Results of the Nokia, experiment group

As expected, Synthetic, shows that the watermark period and the maximum delay
establish a lower bound on the maximum latency. These parameters determine the
minimum amount of time the reorder function must buffer out-of-order events, which
our latency measurements capture. We note that the time-point rate has not influenced
the monitoring performance in our experiments; we therefore omitted the plots that show
different time-point rates and fix the time-point rate to 4000 in Synthetic,.

RQ2 is answered by experiment Synthetic; (Figure 6) where we fix the number of
input sources to 4 and change the source distribution. The maximum latency is only
affected for high event rates and highly skewed source distributions (i.e., when most of
the events belong to one source). Otherwise, our framework shows robust performance.

The results of Nokia, (Figure 7) answer RQ3 and validate our hypothesis that increas-
ing the number of sources can improve monitoring performance in realistic monitoring
use cases. Increasing the number of sources is ineffective only when parallel submonitors
are themselves the performance bottleneck (e.g., when using only one submonitor).

In Nokia, we monitor the Nokia trace without using the reorder function (RQ4). To
retain soundness, we monitor the formula —T. The experiment shows that the reorder
function introduces negligible overhead: less than 1 second of maximum latency.

7 Conclusion

We have developed the first scalable online monitor for centralized, first-order specifica-
tions that can efficiently monitor executions of distributed systems. Specifically, we have
defined a partitioned temporal structure (PTS) that models an execution of a distributed
system, i.e., a sequence of partially-ordered observations received out-of-order. We
have extended our monitoring framework to support multiple sources and proved its
correctness. Moreover, we empirically show a significant performance improvement over
the framework’s single-source variant. For example, in our experiments with real data,
we could more than double the event rate, from an average of about 330k to 770k events
per second by using two sources instead of one, while achieving the same maximum
latency. As future work, we plan to combine our framework with monitors that inherently
support out-of-order observations [13] or imprecise time-stamps [9], and make our (now
parallel) slicing adaptive [41] with respect to changes in the trace characteristics.
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