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Abstract

Being able to permanently erase data is a security requirement in many
environments. But what that actually means for a concrete setting varies
widely. This article explores different approaches to securely deleting data
and identifies key ways to classify them. We describe adversaries that
differ in their capabilities, we show how secure deletion approaches can
be integrated into systems at different interface layers, and we identify
the assumptions made about the interfaces. Finally, we examine the main
properties of secure deletion approaches.
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1 Introduction

During New York City’s 2012 Thanksgiving day parade, sensitive personal data
rained from the sky. Makeshift confetti, formed out of shredded police case
reports and personnel files, landed on spectators who observed something pecu-
liar about it: having been shredded horizontally, entire stretches of text (names,
social security numbers, arrest records, etc.) were completely legible [1]. It is
likely that the documents were shredded to securely delete the sensitive data
they contained (and not simply to make confetti).

Secure data deletion is the task of deleting data from a physical medium (any-
thing that stores data, such as a hard drive, a phone, or a blackboard) so that
the data is irrecoverable. This irrecoverability is what distinguishes secure dele-
tion from regular file deletion, which deletes unneeded data only to reclaim
resources. We securely delete data to prevent an adversary from gaining access
to it.

The Need for Secure Deletion In the physical world, the importance of
secure deletion is well understood: sensitive mail is shredded; published gov-
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ernment information is selectively redacted; access to top secret documents is
managed to ensure all copies can be destroyed when necessary. In the digital
world, the importance of secure deletion is also well recognized. Legislative or
corporate requirements can require secure deletion of data prior to disposing
or selling hard drives; particularly when the data is considered to be sensitive,
for example, health data, financial data, trade secrets, and privileged communi-
cations. Regulations may change or new ones enforced, causing data assets to
become data liabilities. This can entail the sudden need to securely delete vast
quantities of data. An example of this is the United Kingdom’s demand that
Google securely delete Wi-Fi data illegally collected by Google’s Street View
cars, wherever and however it was stored [2].

Secure deletion is not limited to one-off events. A network service operator may
collect logs for intrusion detection or other administrative purposes. However,
a privacy-focused network service (such as an anonymous message board, mix
network, or Tor relay) may wish to securely delete any log data once it is no
longer needed, requiring secure deletion on a continuous basis. Network services
may also need secure deletion simply to comply with regulations regarding their
users’ private data. Two examples are the European Union’s right to be for-
gotten [3] that would force companies to store personal data in a manner that
supports the secure deletion of all data about a particular user upon request,
and California’s legislation that enforces similar requirements only for minors.

Secure deletion is also needed to achieve other security properties. An example
is forward secrecy : the desirable property that ensures that the compromise of
a user’s long-term cryptographic key does not affect the confidentiality of past
communications. This is often achieved by protecting the communications with
session keys securely negotiated using the long-term key. Forward secrecy then
requires secure deletion to ensure that both session keys and negotiation param-
eters are irrecoverable. Another example is the Ephemerizer [4], which provides
users with ephemeral communication by associating each message with a time-
based key; the eponymous trusted-third party uses secure deletion to ensure
that these keys expire at the correct time, making the communications they en-
crypt irrecoverable. Secure deletion is required to implement the ephemerizer’s
key expiration functionality.

Find and Delete As is often the case in the digital world, a straightforward
security problem is fraught with challenges and complications, and secure dele-
tion is no exception. Digital data is effortlessly replicated, often without any
record. Simply finding where data is stored over a vast number of computer sys-
tems and storage media may present a logistical nightmare, particularly when
servers replicate data, go offline indefinitely, crash during copy operations, and
have their hardware swapped around. Even a single copy on a single hard drive
may be duplicated without notice, for instance, when the file system rearranges
its storage during defragmentation.
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Even when all the locations where data is stored can be found, it still may not
be possible to securely delete the data. Overwriting magnetic data may still
leave analog remnants available to adversaries with forensic equipment. Flash
memory cannot be efficiently overwritten directly and so new versions of files are
instead written to a new location with the old one left behind. High-capacity
magnetic tapes must be written end-to-end; worse, they are then often shipped
off to a vault for off-line archiving. Optical discs like DVDs are a kind of
WORM medium—write once, read many—and such media only achieve secure
deletion through physical destruction. The steps to achieve secure deletion vary
depending on the actual storage medium being used.

The Deletion Confusion Another challenge in secure deletion is that many
users are unaware that additional steps are needed to sanitize their storage
media. All modern file systems offer users the ability to “delete” their files.
However, they all implement this feature by just unlinking the file. Abstractly,
unlinking a file only changes file system metadata to state that the file is now
“deleted”; the file’s full contents remain available. This is done for efficiency
reasons—deleting a file would require changing all its data, while unlinking a
file requires only changing one bit. File system designers have consistently made
the assumption that the only reason a user deletes a file is to recover storage
resources to allocate to new files. The resources are assumed to be free, but it
is only when they are needed that they are reclaimed by another entity.

Even for those who know the best practices for secure deletion, the nature of
digital information makes it hard to verify that the data is indeed irrecoverable.
The user interfaces for deleting digital data simply do not provide the same rapid
assurance of secure deletion as does a pile of (vertically) shredded mail. Forensic
investigators of Chelsea Manning’s1 laptop, for instance, discovered that he had
tried to securely delete the contents of his laptop by overwriting its contents
35 times—an aggressive approach—but, unknown to him, the operation had
stopped midway and left most of the data intact [5].

2 Adversarial Capabilities

Having now established secure deletion as an important security problem, the
next step is to consider exactly from whom we are deleting the data, i.e., our
adversarial model. Different adversaries have different strengths and so a secure
deletion approach must be designed to thwart the appropriate adversary. Here
we describe three dimensions in the space of adversaries.

1Known as Bradley Manning at the time of the investigation.

3



The Unanticipated Adversary In the waning days of East Germany—after
the Berlin wall had fallen—the secret police were kept busy frantically destroying
their vast collection of paper documents to avoid their own prosecution. Being
an organization bent on collecting as much data as possible—literally kilometres
of filing cabinets—their own high-power shredders were too limited and broke
under the strain. The agents worked around the clock for three months, manu-
ally ripping up documents that now form the pieces of the world’s largest jigsaw
puzzle [6].

The lesson for us is that the adversary can arrive unanticipatedly. Much ex-
isting research focuses on the case where users hand over their storage media
to an adversary, but can first perform elaborate sanitization procedures and
only yield control after completion. In this case, factors such as efficiency and
wear are less relevant in the design of an approach. In the real world, how-
ever, adversaries can arrive without warning: your mobile phone can be stolen,
your computer systems can be broken into, and police can seize your storage
media when executing a warrant or subpoena. In these cases, no elaborate,
extraordinary sanitization can be performed; the only assurance of secure dele-
tion available is that which comes from the precautions taken as a matter of
routine. Consequently, issues such as efficiency, device wear, and other inconve-
niences become relevant. Typically, this manifests itself as the classic security
versus usability trade-off: prompter secure deletion (more security) at the cost
of convenience (less usability). Approaches that destroy the storage medium or
securely delete all data thereon are no longer suitable against an adversary that
can strike without warning.

The Forensic Adversary Peter Gutmann famously observed that, for mag-
netic media, the precise analog voltage of a stored bit offers insight into the
medium’s previously held values [7]. This is because analog-to-digital conver-
sion operates analogously to an error-correcting code: a range of analog values
are mapped to a single binary digit. The larger space of analog values can there-
fore accommodate more data, independent of the “official” bit stored in that
location. Precision can be improved by using more advanced equipment; stor-
age manufacturers, generally developing next generation hardware with double
the precision as the hardware available on the consumer market, are better able
to view these analog remnants on older drives that clumsily wrote on twice as
many molecules as are now needed.

Gutmann’s solution to this problem is to overwrite data multiple times; the
most aggressive of his proposed solutions involves 35 passes over the data, each
time writing with different patterns. While such time-consuming methods may
no longer be needed on modern magnetic hard drives, it remains safe to say
that each additional overwrite does not make the data easier to recover—in the
worst case it simply provides no additional benefit. More importantly, Gut-
mann’s results highlight that analog-to-digital conversion can leave remnants
on any storage medium. When securely deleting data, it is important to con-
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sider the “secrecy” of the data with respect to the adversary’s sophistication.
An adversary who steals your phone for your passwords uses less sophisticated
methods than an extremely well-funded one determined to exfiltrate as much
data as possible.

The Coercive Adversary Some may not worry about sanitizing their stor-
age media before disposal because they always used full-disk encryption, thus
ensuring that no data is ever written to their storage medium in plain-text.
Without the secret key or password, the adversary is helpless to recover this
data. There is no need to overwrite it 35 times!

There are still cases, however, where encryption alone is insufficient: keys can
be compromised, for example, weak passwords can be guessed. Moreover, there
are coercive adversaries that can force users to reveal their secret keys and
passphrases. Two real-world examples are crossing (particular) national borders
and legal subpoenas. In both cases, users may not only be forced to give access
to their storage media but also to provide any keys or passphrases required to
access the data—under threat of obstruction of justice, or worse. A coercive
adversary is equivalent to the user trying to recover the data: data is only
securely deleted if the user’s own best efforts are unable to recover the data.

How does a coercive border crossing adversary differ from an adversary with
a subpoena? In the same way that selling a hard drive differs from its theft:
whether the user or the adversary chooses the physical medium’s access time.
Before crossing a border, the user is free to execute any costly, elaborate, ex-
traordinary, secure-deletion proceedure, whereas in the latter case the user must
rely only on established routine practices for secure deletion.

3 Deletion by Layers

If given access to a storage medium and told to securely delete some data,
how would you do it? Presumably, you would first check for a secure deletion
feature in the medium’s interface, and failing that, use the available interface
functions in a creative way to achieve the goal. In the physical world there are
many options at your disposal: you can scribble on the paper, shred it, or set
it ablaze. In the digital world, however, your interface to the storage medium
is often constrained.

There are many abstraction layers between the user and the physical storage
medium. A secure deletion approach can be integrated into any of these lay-
ers. The further away from the actual storage medium you are, however, the
less able you are to directly manipulate stored data. Storage medium access
becomes more abstracted as additional layers are added, such as virtualiza-
tion. The only recourse to compensate for this is to make stronger assumptions
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about that interface’s actual behaviour. Overwriting files with zeros, for ex-
ample, makes the assumption that this actually replaces the unique copy on
the storage medium. Degaussing a hard drive, in contrast, makes only simple
electromagnetic assumptions.

This problem of granularity is pervasive to low-layer secure deletion approaches.
While the access to the physical medium is less abstracted, the information
about what actually should be deleted—a file, an SMS, a row in a database—is
simply not available.

The choice of layer for a secure deletion approach is a trade-off between these
factors. At the physical layer, we can ensure that a data object is truly irrecov-
erable, and at the user layer, we can easily identify the data object that should
be made irrecoverable. Indirect information is given to the file system, e.g., by
unlinking a file or hole-punching a sparse file. However, no information goes
further down; the file system knows the space is free and may reallocate it for
another file at a later time. The storage medium, however, assumes the data
should be retained until it is replaced with a new version.

Physical Interfaces and Digital Controllers The lowest layer is always
the physical medium itself. Its interface is also physical: depending on the
medium it can be degaussed, incinerated, or shredded, and NIST provides an
extensive description of how to faithfully destroy all data on a variety of storage
media [8]; in many cases the physical destruction of the storage medium is a
consequence of the operation. For example, floppy disks must be shredded or
incinerated; compact discs must be incinerated or subjected to an optical disk
grinding device. Not all approaches work for all media types—you can put any
medium in an NSA/CSS-approved degausser; whether or not this results in any
secure deletion depends on whether the data is stored with magnetic alignment.

A physical medium is often operated by a controller that translates between the
physical medium’s analog format (e.g., magnetic voltages) and the data format
(e.g., binary) used at higher layers. Several standardized interfaces exist for
controllers that permit reading and writing of fixed-sized blocks (e.g., ATA and
SCSI). Given the controller interface, there are different actions one can take to
securely delete data. Either a single block can be overwritten with a new value
thereby displacing the old one, or all blocks can be overwritten. However, unless
you know exactly which device blocks store the data you want deleted (i.e., the
file system’s organization of data into blocks) then it is not possible to securely
delete with precision. Instead, the controller must sanitize every block to achieve
secure deletion. Indeed, both ATA and SCSI offer such a sanitization command,
called either secure erase or security initialize. They work like a button that
erases all data on the device by exhaustively overwriting every block. NIST
recommends using these commands to securely delete magnetic hard drives in
a non-destructive way.

6



User-Level Approaches At the other extreme, user-level approaches are
simple utility programs that users can run on their computers. The program’s
interface to the storage medium is limited to what is offered by the file sys-
tem; typically a POSIX-compliant file system interface. Achieving the secure
deletion of files must be done with this limited interface, which provides only
file manipulation such as reading, writing, creating and unlinking. Little else is
guaranteed about the behaviour of the file system, the underlying device driver,
and the further underlying hardware controller; any of which may complicate
secure deletion.

There are two classes of user-level approaches to secure deletion, which we call
overwriting and filling. Overwriting approaches work by opening the file to be
deleted and overwriting its contents with new, insensitive data, e.g., all zeros.
When the file is later unlinked, only the contents of the most recent version
are stored on the physical medium. Overwriting assumes that each file block
is stored at known locations and when the file block is updated, then all old
versions are replaced with the new version—we call this in-place updates. Note,
however, if the file system does not perform in-place updates, then user-level
overwriting tools may silently fail. The majority of sophisticated file systems do
not, in fact, use in-place updates because journalling is an out-of-place update
technique. Usability concerns also exist, because users are expected to use
these tools whenever deleting sensitive files—they must change their routine
behaviour. Care must be taken to avoid applications that create and delete
their own files: a word processor that creates temporary swap files (possibly a
near-exact replica of the file) probably does not securely delete these files with
any non-default tool.

The other class is filling. Filling approaches work by filling the entire storage
medium’s empty capacity with insensitive data, e.g., zeros. Users do not need to
take any special actions when using their applications and deleting their files;
at some later point the file system’s empty space is filled, hopefully securely
deleting anything that has been previously deleted. Filling approaches rely on
the assumption that the file system reports itself as unwritable only when there
are no longer any unused blocks on the storage medium. It turns that the
filling assumption holds true for many more file systems than the overwriting
assumption. After all, using all the available space on a storage medium is a
fundamental feature of any file system, while in-place updates are intention-
ally avoided for crash recovery, copy-on-write versioning, and rapid (seek-free)
writes. Filling comes with a cost, however, as its running time is proportional
to the empty space on the file system. Moreover, if the storage medium is sus-
ceptible to wear, such as flash memory, then the frequency of filling must also
be controlled. Since filling runs only periodically, data may be deleted at one
time and only securely deleted when filling is subsequently run, resulting in an
increased deletion latency—the time the user must wait until data is securely
deleted.
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Block-Based File System Approaches A variety of approaches integrate
secure deletion features into the file system itself. This is sensible because file
systems are designed to know exactly when data is no longer needed. File
systems can also compensate for the secure-deletion complications introduced
by additional features the file system adds, such as journalling, versioning, and
replication. Users do not need to remember to use special tools to securely
delete their files; the file system automatically securely deletes the data when
files are unlinked, truncated, or sparsified.

Secure deletion approaches have been developed for a variety of block-based
file systems; block-based file systems are the predominant file system design
paradigm, where data is stored and retrieved by accessing fixed-sized indexed
blocks on the storage medium. These approaches generally work by having
a sanitization daemon running in the background that overwrites discarded
blocks before putting them on the free-block list. Of course, this makes the
assumption that the device driver actually performs these updates in-place.
These approaches often support a sensitive file attribute, which allows the user
to mark files as sensitive at any point in the files’ lifetime; the file system then
provides secure deletion only for data from sensitive files.

Media with Erase/Write Asymmetry We mentioned earlier that flash
memory does not support in-place updates of data. Before writing, flash memory
must be first “erased”—only then can it write new data. The catch is that the
granularity of erasures is orders of magnitude larger than the granularity of
reading and writing. By way of analogy, think of the storage media consisting
of a stack of punched cards. Once a hole is punched in a position (i.e., writing a
zero), it cannot be unpunched (writing a one). Instead, a new blank card must
replace it: all other data colocated on that card must be repunched (copied) on
the fresh card with the changed location unpunched; the old card can then be
destroyed. Flash memory consists of lines of floating-gate transistors: the charge
from each can be easily drained to write a zero, or not drained to write a one.
However, the charge can only be reset with high voltages at a large granularity
(e.g., 128 KiB); this operation even physically damages the medium, eventually
wearing it out.

An asymmetry between the write and erase granularities is not limited to flash
memory (and punch cards). For example, a tape archive consists of many mag-
netic tapes, each storing, say, half a terabyte of data. Each tape must be written
end-to-end in one operation; data intended to be archived on tape is heuristi-
cally bundled and written together. Later, to securely delete a single backup on
the tape, the entire tape is re-written to a new tape and the expired backup is
removed or replaced. The old tape is then erased and reused for new data in the
tape archive. This operation incurs cost: tapes have a limited erasure lifetime
and tape-drive time is an expensive resource for highly-utilized archives. An-
other example is an array of magnetic hard drives whose only accepted secure
deletion method is the controller’s secure erase command. The resulting erasure
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granularity is an entire hard drive, where colocated data must be first copied to
another array constituent. It also manifests itself in physical media comprised of
many write-once read-many units—units that are unerasable but replaceable—
such as a library of optical discs. In this case, each erasure requires destroying
one constituent of the archive, which can be expensive if done frequently.

The naive secure deletion approach for physical media with asymmetric write
and erase granularities is to immediately compact the erase unit that contains
the deleted data: copy the valid colocated data elsewhere and execute the era-
sure operation. There is no other immediate secure deletion approach based on
erasures that can do better than one erasure per deletion; something must be
actually erased from the storage media to achieve secure deletion. An obvious
alternative is to intermittently perform this compaction-based secure deletion.
This approach is no worse than the naive one in terms of execution time and
physical wear, although the deletion latency increases.

Batching-based compaction can be made more efficient by using encryption as
a compression technique. In the data-node-encrypted file system, each block
of data is encrypted with its own unique key [9]. Encryption keys are stored
tightly packed on a special area of the flash memory. To securely delete all the
data on the file system, it suffices to perform batching-based compaction on the
much smaller area storing the encryption keys, resulting in far fewer erasure
operations.

Another technique is a mixed-media approach. The medium with a large erasure
granularity is treated as persistent storage; data is stored on it encrypted with
an appropriate granularity. The encryption keys are then managed using key
wrapping and a medium that supports secure deletion. In Boneh and Lipton’s
approach [10], for example, a single master key is used to encrypt many data
backup keys that are stored alongside the encrypted data. To securely delete
data, a new master key is generated and new wrapped keys are provided for all
the backups that are not deleted.

TRIM Commands A TRIM command is a command issued from the file
system to a lower-layer device stating that a particular continuous range of
data is no longer needed by the file system [11]. TRIM commands are not a se-
cure deletion approach, but rather a widely-supported storage medium interface
feature that we can leverage for secure deletion. Data (contained in some file) is
logically removed from a file system in three ways: by overwriting the old data,
by unlinking the file, and by truncating or sparsifying (hole-punching) that part
of the file. Now, when we explicitly overwrite part of a file, the information
that the old version can be deleted is implicitly passed to the lower-layer: even
if writing is not done in-place, the fact that there is a “new” version of the
data is known to the lower layer. For file unlinking, truncating, and sparsify-
ing, however, no such indication is given. This is why so many secure deletion
approaches resort to the tedious writing of zeros; even if this is not sufficient
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to achieve secure deletion, it is at minimum necessary that this new-version
information is known. Similarly, the SQLite database offers a secure deletion
feature that overwrites deleted records with zeros: necessary, but not sufficient,
to achieve secure deletion. TRIM commands offer the file system a more ef-
ficient way of passing this information to lower layers: when deleting a file, a
TRIM command simply tells the lower-level the start address and the length of
the trimmed range.

TRIM commands were actually invented as an efficiency measure for flash mem-
ory to prevent a thrashing effect that occurs once the device is full: unless the
flash controller knows which blocks of the file system are no longer needed, it
must assume that all blocks are necessary and therefore copies large amounts
of unnecessary data around when trying to free space for new data. Despite
TRIM commands original purpose, there is no reason that a device driver or
hardware controller cannot use information from TRIM commands to perform
secure deletion. TRIM commands are already widely supported and indicate
every time a file system block is discarded—there are no false negatives. It is not
possible, however, to restrict TRIM commands only to sensitive blocks without
the loss of the TRIM commands’ intended purpose. Therefore, the underlying
mechanism that securely deletes the data should be efficient.

4 Other Properties of Approaches

In the last two sections, we saw that a key aspect of the different secure deletion
approaches is the specific assumptions they make—assumptions on the adver-
sary and the interface to the storage medium that is available to use to achieve
secure deletion. When these assumptions are met, then the approach provides
secure deletion along with other properties that we now present.

Deletion Granularity The granularity of an approach is the approach’s dele-
tion unit. Secure deletion can have a per-physical-medium, per-file, or per-data-
block granularity. A per-physical-medium approach deletes all data on a phys-
ical medium. As such, we consider it an extraordinary measure—something we
may do once before crossing a border but not after deleting each email. At the
other extreme, we can securely delete data at the smallest granularity offered by
the physical medium: the data block size (also called sector size or page size).
Per-data-block approaches securely delete any deleted data from the file system.

Between these extremes lies per-file secure deletion, which targets files as the
deletion unit: a file remains available until it is securely deleted. While per-file
secure deletion approaches are widespread—and it is natural to reason about
data deletion in the context of file deletion—we caution that the file is not the
natural unit of deletion; it often provides similar utility as per-physical-medium
deletion. Long-lived files such as databases frequently store user data; the An-
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droid phone uses them to store text messages, emails, etc. A virtual machine
may store an entire file system within a file: per-file secure deletion means
that anything deleted from this virtual file system remains recoverable until
the user deletes the entire virtual machine’s storage medium. Consequently, in
such settings, per-file secure deletion requires the deletion of all stored data in
the DB or VM, which is an extraordinary sanitization proceedure similar to a
per-physical-medium approach.

Scope Many secure deletion approaches use the notion of a sensitive file. In-
stead of securely deleting all deleted data from the file system in an untargeted
way, they only securely delete known sensitive files, requiring the user to mark
sensitive files as such. We divide the approach’s scope into untargeted and tar-
geted. A targeted approach only securely deletes sensitive files; it can be turned
into an untargeted one by marking all files as sensitive.

While targeted approaches are more efficient than untargeted ones, there are
limits to their usefulness. First, as with granularity, the file is not necessarily
the correct unit to classify data’s sensitivity; an email database is an example
of a large file whose content has varying sensitivity. The benefits of targeting
therefore depend on the deployment environment. Second, some approaches do
not permit files to be marked as sensitive after their initial creation, such as
approaches that must encrypt data objects before writing them onto a physical
medium. Finally, targeted approaches introduce usability concerns and conse-
quently false classifications due to user error. Users must change their habits
to deliberately mark files as sensitive, or use different tools when deleting or
working with the files. A false positive costs some efficiency but, much worse, a
false negative may disclose confidential data.

A useful middle ground is to broadly partition the storage medium into a
securely-deleting user-data partition and a normal operating system partition.
Untargeted secure deletion is used on the user-data partition to ensure that
there are no false negatives and this requires no change in user behaviour or
applications. No secure deletion is used for the OS partition to gain efficiency
for files trivially identified as insensitive. Of course, one size does not fit all.
Some users may want to securely delete an application and ensure that there is
no evidence that it was ever used on their system, including metadata.

Metadata Recall that we securely delete data with the intention of ensuring
that it is unavailable to an adversary. Some users may want to securely delete
data that the adversary already has, to prevent the adversary from knowing that
the user has it too. In this case, the user should also delete file metadata: file
names, sizes, and so forth. Some file systems store file checksums in metadata
for integrity: an adversary could use this to confirm the exact copy of a file
they suspect the user of storing. Many high-level secure deletion approaches do
not specifically address file metadata, and user-level tools that do attempt to
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overwrite metadata are unsuccessful on most file systems. This is because most
file systems handle metadata in a log-structured manner, that is, by adding a
new version that supersedes the previous.

Deletion Latency Many secure deletion approaches offer immediate assur-
ances: use this tool to overwrite the file with zeros and the data is gone. As
we saw for flash memory, however, the only way we can achieve any kind of
efficiency is to batch deletions and perform periodic deletion. Hence, a delayed
approach executes intermittently and provides a larger deletion latency. If it
is run periodically, then it provides a fixed worst-case bound on the deletion
latency. The actual deletion latency for data is then a useful metric by which
to evaluate secure deletion approaches.

Example Comparison: Overwriting versus Filling We return to the two
classes of user-level approaches and compare their assumptions and properties.
Recall that both classes operate at the user-level. One works by overwriting a
file with zeros (and assumes that writes are in-place), while the other works by
filling the entire storage medium with a new, insensitive file (and assumes that all
unused blocks are allocated in the process). Overwriting has a file granularity :
files are used until they are securely deleted. Filling has a per-block granularity :
any unused block of data is allocated to the filling file. Overwriting has a targeted
scope: only the selected file is securely deleted. Filling has an untargeted scope:
all deleted data on the file system is securely deleted. Neither delete metadata,
however some file systems store metadata alongside data, in which case filling
also deletes this. Finally, overwriting is an immediate approach: after running
the program, the data is securely deleted. Filling can also securely delete data
immediately, but since the cost of executing it is quite high, it is an extraordinary
measure that is suitable only when the disclosure time is known. Since filling
is non-destructive, however, it can be run periodically (e.g., overnight) thereby
having a configurable upper bound on deletion latency.

5 Summary and Future Directions

Here we would like to summarize a few key points touched on in this article.

• Secure deletion is not only useful before selling or discarding a hard drive.
Sensitive data can be compromised at unexpected times by adversaries
capable of obtaining any secret keys required to access it. Sensitive data
should be securely deleted in a timely fashion.

• Overwriting a file with zeros probably does not securely delete it. It may
still be necessary to write zeros just to send a signal to lower-layers, even if
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these stored zeros are never later read. File systems should better support
hole-punching sparse files and pass this information immediately down as
TRIM commands.

• Secure deletion approaches that work at the granularity of a file are in-
sufficient. The file is not the only unit of deletion and often not the most
natural one. User data is often stored in databases as a single file that
remains on a system indefinitely.

• Secure deletion approaches that only target sensitive files must also ad-
dress usability concerns. If a user cannot reliably mark their data as sen-
sitive, then the approach provides little benefit. Approaches that securely
delete all deleted data, while less efficient, suffer no false negatives.

There are numerous areas where further research in secure deletion is direly
needed. New storage technologies invariably complicate secure deletion, often in
completely new ways. Storage technology advances the state of the art in many
ways: capacity, reliability, performance, and price. Secure deletion, however,
is not a design requirement and creative approaches to achieve it are usually
needed after new hardware is introduced.

In distributed cloud storage, secure deletion is particularly challenging because
the abstracting interfaces accumulate. This setting requires reliability and avail-
ability in spite of frequent expected failures. Secure deletion should be possible,
however, even when an entire computer or set of computers becomes unrespon-
sive while maintaining the target level of reliability and availability before the
data is deleted.
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