
Anchored LTL Separation

Grgur Petric Maretić
Department of Computer Science

ETH Zürich
pgrgur@inf.ethz.ch

Mohammad Torabi Dashti
Department of Computer Science

ETH Zürich
torabidm@inf.ethz.ch

David Basin
Department of Computer Science

ETH Zürich
basin@inf.ethz.ch

Abstract
Gabbay’s separation theorem is a fundamental result for linear
temporal logic (LTL). We show that separating a restricted class of
LTL formulas, called anchored LTL, is elementary if and only if the
translation from LTL to the linear temporal logic with only future
temporal connectives is elementary. To prove this result, we define
a canonical separation for LTL, and establish a correspondence
between a canonical separation of anchored LTL formulas and
the ω-automata that recognize these formulas.

The canonical separation of anchored LTL formulas has two
further applications. First, we constructively prove that the safety
closure of any LTL property is an LTL property, thus proving the
decomposition theorem for LTL: every LTL formula is equivalent
to the conjunction of a safety LTL formula and a liveness LTL for-
mula. Second, we characterize safety, liveness, absolute liveness,
stable, and fairness properties in LTL. Our characterization is effec-
tive: We reduce the problem of deciding whether an LTL formula
defines any of these properties to the validity problem for LTL.

Categories and Subject Descriptors Theory of computation
[Logic]: Modal and temporal logics; Theory of computation [For-
mal languages and automata theory]: Automata over infinite ob-
jects; Theory of computation [Formal languages and automata
theory]: Regular languages

Keywords Linear Temporal Logic, ω-automata, Safety, Liveness

1. Introduction
The linear temporal logic with both past and future temporal con-
nectives (LTL), and the linear temporal logic with only future tem-
poral connectives (FLTL) are equally expressive [GPSS80]. This is
because one can translate from LTL to FLTL using Gabbay’s sepa-
ration algorithm [G87]. This may result in a nonelementary blow-
up in the formula size.

The exact status of the blow-up, also referred to as the succinct-
ness gap, is unknown. Markey [M03] has shown that LTL is at least
exponentially more succinct than FLTL, i.e. there are arbitrarily
large LTL formulas that cannot be expressed in FLTL without at
least an exponential blow-up in the formula size. A tight bound
on separation is also unknown. While it is expected that separation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603139

is nonelementary, the succinctness gap is believed to be elemen-
tary [HR05]. The latter belief has become folklore, possibly due to
a misinterpretation of Wilke’s construction of FLTL formulas from
counter-free automata on finite words [W99]. Our main technical
result connects the succinctness gap to the complexity of separat-
ing a strict subset of LTL formulas, called anchored formulas.

We use Gabbay’s separation theorem, stating that every LTL
formula can be rewritten into a separated form, i.e. as a Boolean
combination of future-only formulas and past-only formulas. We
introduce a canonical form for separated formulas with a unique
structure that simplifies our reasoning. We focus on the (canonical)
separation of anchored LTL formulas. An anchored formula has
the property that its semantics is the same at each moment in time.
Intuitively, such a formula is bound to the initial time. For any
given formula, we can obtain an equivalent anchored formula using
simple syntactic manipulation.

Canonical separation of anchored formulas has two useful fea-
tures. First, to translate an LTL formula ϕ into FLTL it suffices to
separate its anchored equivalent. Second, separating anchored for-
mulas appears to be easier than separating arbitrary formulas: We
show that there is an elementary algorithm for separating anchored
formulas if and only if there is an elementary algorithm for trans-
lating LTL to FLTL.

Canonical separation of anchored formulas is of further inter-
est. We constructively prove that any property expressible in LTL
is the intersection of a safety property and a liveness property, both
expressible in LTL. This sharpens Alpern and Schneider’s safety-
liveness decomposition [AS87] for ω-regular languages, and im-
proves on our previous construction [PMTDB]. As a side result,
we constructively show that for any safety LTL formula ϕ, there is
a one-to-one correspondence between the conjuncts of any canon-
ical separation of anchored ϕ and the states of a minimal deter-
ministic Büchi automaton that recognizes the language of ϕ; see
Section 5.2. Furthermore, we characterize safety, liveness, absolute
liveness, stable and fairness LTL formulas in terms of the separa-
tion of their anchored equivalents. The characterizations are effec-
tive, reducing the decision problem of recognizing such formulas
to the validity problem for LTL.

Road Map. In Section 2 we recall linear temporal logic, safety and
liveness, and ω-automata. In Section 3 we introduce canonical sep-
aration, and in Section 4 we relate the canonical separation of an-
chored formulas to Büchi automata, thereby relating the problem
of separating anchored formulas to the problem of translating LTL
to FLTL. In Section 5 we introduce an equivalence relation on the
set of finite traces that generalizes the canonical separation of an-
chored formulas to arbitrary properties. Furthermore, we charac-
terize safety and liveness in terms of this equivalence relation, con-
structively proving that the safety closure of every LTL formula
is in LTL, and that LTL can be decomposed into safety and live-
ness within LTL. In Section 6 we characterize stable, absolute live-

ness, and fairness properties in LTL. In Section 7 we discuss related
work.

2. Preliminaries
For a finite set AP of atomic propositions, we fix the alphabet Σ =
2AP. Let Σω be the set of all countably infinite sequences over Σ, Σ+

be the set of all finite nonempty sequences over Σ, and Σ∗ = Σ+∪{ε},
where ε is the empty sequence. An element of Σω is a path, and a
property is any set of paths. A trace is an element of Σ+. The
length of a trace t = p0 p1 · · · pi, denoted |t|, is i + 1.

For a path π = p0 p1 p2 · · · , its prefix πi is the trace p0 p1 · · · pi,
and its suffix πi is the path pi pi+1 · · · . For a trace t and a path
(or a trace) π, the concatenation of t and π is denoted tπ. The
concatenation of ε and π is π.

2.1 Linear Temporal Logic
Our definitions in this section are standard; see for example [G87,
M03, HR05].

Definition 1 (LTL Syntax). The syntax of Linear Temporal Logic,
LTL, is given by the grammar

ϕ ::= > | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | #ϕ | ϕSϕ | ϕU ϕ,

where a ∈ AP. We write ⊥ for ¬>, ϕ → ψ for ¬ϕ ∨ ψ, ϕ ↔ ψ
for (ϕ→ ψ)∧ (ψ→ ϕ), _ϕ for >Sϕ, �ϕ for ¬_¬ϕ, ^ϕ for >U ϕ,
and �ϕ for ¬^¬ϕ. 4

The size of an LTL formula is defined inductively over its
structure: |>| = 1, |a| = 1 for a ∈ AP, |•ϕ| = 1 + |ϕ| for • ∈
{¬, ,# }, and |ϕ ? ψ| = 1 + |ϕ| + |ψ| for ? ∈ {∨,∧, S , U }.

Definition 2 (LTL Semantics). For a path π = p0 p1 p2 · · · and i ∈
N, the satisfaction relation for LTL formulas is defined inductively
over the formula structure:

π, i |= >
π, i |= a if a ∈ pi
π, i |= ¬ϕ if π, i 6|= ϕ
π, i |= ϕ ∨ ψ if π, i |= ϕ or π, i |= ψ
π, i |= ϕ ∧ ψ if π, i |= ϕ and π, i |= ψ
π, i |= ϕ if i > 0 and π, i − 1 |= ϕ
π, i |= #ϕ if π, i + 1 |= ϕ
π, i |= ϕSψ if there is a j ≤ i such that π, j |= ψ

and π, k |= ϕ for all j < k ≤ i
π, i |= ϕU ψ if there is a j ≥ i such that π, j |= ψ

and π, k |= ϕ for all i ≤ k < j

When π, i |= ϕ, we say π satisfies ϕ at time i and we say ϕ is
satisfiable if there is a path π such that π, 0 |= ϕ. The formula ϕ
is valid if ¬ϕ is not satisfiable. An LTL formula ϕ expresses the
property L(ϕ) = {π ∈ Σω | π, 0 |= ϕ}. 4

A past LTL formula is a formula that does not use the future
temporal connectives # and U . A future LTL formula is a for-
mula that does not use the past temporal connectives and S .

Lemma 3. Let F be a future formula and let P be a past formula.
Then for every i ∈ N and every path π ∈ Σω

1. π, i |= F iff tπi, |t| |= F, for every trace t ∈ Σ+, and
2. π, i |= P iff πiσ, i |= P, for every path σ ∈ Σω. N

Informally, the satisfaction of future formulas is independent of
changing the past and the satisfaction of past formulas is indepen-
dent of changing the future. This justifies the following definition of
satisfaction for past formulas on finite traces. For a past formula P
and a trace t ∈ Σ+, we write t |= P if tπ, |t| − 1 |= P, for any path π.

Definition 4. We define two equivalence relations on LTL formu-
las.

1. The formulas ϕ and ψ are globally equivalent, denoted ϕ ≡g ψ,
if ∀π ∈ Σω. ∀i ∈ N. (π, i |= ϕ ⇐⇒ π, i |= ψ).

2. The formulas ϕ and ψ are initially equivalent, denoted ϕ ≡ ψ,
if ∀π ∈ Σω. (π, 0 |= ϕ ⇐⇒ π, 0 |= ψ). 4

Global equivalence implies initial equivalence, but the converse
is false. For example, the formulas > and ⊥ are initially equiv-
alent, but they are not globally equivalent. Note that ϕ ≡ ψ if and
only if L(ϕ) = L(ψ). Checking the global equivalence of ϕ and ψ
can be reduced to the validity problem for LTL. Namely, ϕ ≡g ψ if
and only if the formula �(ϕ↔ ψ) is valid.

The separation theorem of Gabbay [G87] states that every LTL
formula is globally equivalent to a Boolean combination of past
and future formulas. Furthermore, Gabbay gives an algorithm for
separation. It is easy to rewrite Gabbay’s Boolean combination as
a conjunction of implications as stated in the following theorem.

Theorem 5 (LTL Separation). Each LTL formula ϕ is globally
equivalent, through a sequence of rewrites, to a formula

(P1 → # F1) ∧ · · · ∧ (Pn → # Fn),

where Pi are past formulas and Fi are future formulas. N

We call this formula a separation of ϕ. We write (P → # F)n
to denote a separation consisting of n conjuncts. Each conjunct is
an implication Pi → # Fi, and we call the formulas Pi and Fi the
past part and the future part of the conjunct, respectively.

We remark that Gabbay’s algorithm results in a nonelementary
blow-up: there is no constant k ∈ N such that for any formula ϕ
the size of its separation is bounded from above by a k-story expo-
nential function in the size of ϕ; for a definition of nonelementary
complexity see [M74]. We refer to the minimum blow-up in the for-
mula size that is introduced by separation as the separation gap.
The exact status of the separation gap is an open problem [HR05].

Example 6. We use the formula ϕ = �(a → _b) as our running
example. This formula expresses a simple precedence property, for
example that access to some resource (a) must be preceded by a
request (b). A separation of ϕ is given by the formula

ψ = ((�¬b ∧ a)→ #⊥) ∧ (�¬b→ # (�¬a ∨ ¬aU b)).

Intuitively, with no requests in the past, access is prohibited in the
present, and a request will be made in the future before the first
access, or no access will ever be made in the future. 4

2.2 Safety and Liveness
According to Lamport [L77], a safety property states that some-
thing (usually “bad”) never happens. For example, the elevator door
never opens while the elevator is moving. A liveness property states
that something (usually “good”) eventually happens. For example,
every process in a multitasking system will eventually be granted
CPU time. There are various formalizations of safety and liveness,
such as [LPZ85], but Alpern and Schneider’s formalization [AS85]
has become widely accepted.

Definition 7 ([AS85]). A set S of paths is a safety property if for
every π < S there is an i ∈ N such that πiσ < S for all pathsσ ∈ Σω.

A set L of paths is a liveness property if for every t ∈ Σ∗ there
is a path π such that tπ ∈ L. 4

Intuitively, every path that is not in a safety property S has
a finite “bad” prefix, while every trace has a “good” suffix for a
liveness property L. For an LTL formula ϕ, we say ϕ is a liveness,
respectively safety, formula if L(ϕ) is a liveness, respectively safety,
property. From this point on, whenever confusion is unlikely, we
identify a formula with the property it expresses.

Every property can be expressed as the intersection of a safety
property and a liveness property [AS85]. Moreover, for every prop-
erty L we can define its safety closure dLe as the smallest safety

property containing L. In [PMTDB], we prove that for every prop-
erty expressible in LTL, its safety closure is also expressible in LTL.
As a consequence, the decomposition into safety and liveness is
possible within LTL.

Theorem 8 ([PMTDB]). For every LTL formula ϕ, the safety
closure dL(ϕ)e of L(ϕ) is expressible by an LTL formula. N

Theorem 9 (Safety-Liveness Decomposition in LTL [PMTDB]).
For every LTL formula ϕ, there are LTL formulas σ and λ such
that L(σ) is safety, L(λ) is liveness, and ϕ ≡ σ ∧ λ. N

In Section 5.2 we use canonical separation to constructively
prove these theorems and to characterize safety and liveness in
LTL. See Section 7 for our comparison with [PMTDB].

2.3 ω-automata
We assume that the reader is familiar with automata on finite words
and regular expressions. For background see [H79, M71]. We take
the definition of Büchi automata from [T90].

Definition 10. A Büchi automaton over the alphabet Σ is a tu-
ple A = (Q, q0,∆, F) with a finite set Q of states, an initial
state q0 ∈ Q, a transition relation ∆ ⊆ Q×Σ×Q, and a set F ⊆ Q of
accepting states. A Büchi automaton is deterministic if ∆ : Q×Σ→
Q is a partial transition function.

A run of A on a path π = p0 p1 · · · ∈ Σω is a sequence of
states s0 s1 · · · such that s0 = q0 and (si, pi, si+1) ∈ ∆, for i ∈ N.
The run is accepting if some state of F occurs infinitely often in
the run. A accepts π if there is an accepting run of A on π. The
property L(A) = {π ∈ Σω | A accepts π} is the property recognized
byA.

For t ∈ Σ+ we define (s, t, s′) ∈ ∆+ if there is a sequence of
states s0, s1, · · · , s|t| such that s = s0, s′ = s|t| and (si, ti, si+1) ∈ ∆,
for 0 ≤ i < |t|. 4

For a non-deterministic Büchi automaton, we allow a set of
initial states Q0 ⊆ Q instead of a single state q0. Formally, the
notationA = (Q,Q0,∆, F) is a short-hand for the automatonA′ =
(Q ∪ {q0}, q0,∆

′, F), where q0 < Q and the relation ∆′ is defined
as follows. For all states p, q ∈ Q ∪ {q0} and every a ∈ Σ, the
tuple (p, a, q) is in ∆′ if (p, a, q) ∈ ∆, or p = q0 and there is a
state s ∈ Q0 such that (s, a, q) ∈ ∆.

Several types of ω-automata have been studied in the litera-
ture. These include generalized Büchi automata; see for exam-
ple [GO01]. They differ from Büchi automata only in their accep-
tance condition. In a generalized Büchi automaton, we have F ⊆ 2Q

and a run is accepting if it visits at least one element from each set
in F infinitely often.

3. Canonical Separation
We start with an informal account of canonical separation and
anchored formulas and provide the definitions afterward.

Consider the following scenario. A system that has been running
for some time is required to satisfy a property expressed by an LTL
formula ϕ (at the initial moment in time). The past behavior, logged
as a trace t, determines which future system behavior is allowed
and which would falsify ϕ. Intuitively, a separated formula ψ =
(P1 → # F1) ∧ · · · ∧ (Pn → # Fn) has a suitable structure for
this scenario: the past formulas Pi stand for the possible pasts,
while the corresponding future formulas Fi describe the allowed
futures. Specifically, our goal is to produce a separated formula ψ
such that for every trace t there is a unique index i such that t |= Pi
(determines the past) and that for every path π the path tπ satisfies ϕ
if and only if π, 0 |= Fi. We will show that ψ .g ϕ, but ψ can
be constructed from ϕ. We require that the separation ψ meets the
following conditions.

(1) For every t ∈ Σ+, there is a unique i such that t |= Pi.

(2) For every π ∈ Σω, if there is a k ∈ N such that π, k |= ψ
then π, 0 |= ϕ.

(3) For every π ∈ Σω, if π, 0 |= ϕ then π, k |= ψ, for any k ∈ N.

(4) For all i, j, if i , j then Fi . F j.

The intuition behind these conditions is as follows. The first
condition guarantees that ψ defines a partition on the set of finite
traces. From the second condition, it follows that if t |= Pi then
for every path π that satisfies Fi, the path tπ satisfies ϕ initially.
The third condition ensures that if t |= Pi and π falsifies Fi, the
path tπ falsifies ϕ initially. The last condition requires that we group
together all traces that allow exactly the same future behaviors.

In general, a separation of the formula ϕ need not satisfy any of
these conditions. We first define anchored formulas and prove that
anchored ϕ satisfies (2) and (3) for any formula ϕ. Note that any
separation of anchored ϕ, being globally equivalent to anchored ϕ,
therefore also satisfies (2) and (3). We then define the notion of a
canonical separation to satisfy the remaining two conditions for ψ.

Definition 11. We say an LTL formula ψ is anchored if, for every
path π, either π satisfies ψ at every time i or π falsifies ψ at every
time i. For an LTL formula ϕ, we refer to the formula �_ϕ as
anchored ϕ. 4

Note that anchored LTL formulas should not be confused with
Manna and Pnueli’s “anchored temporal framework” [MP89].

It is immediate that anchored ϕ is initially equivalent to ϕ. That
anchored ϕ is indeed anchored is entailed by the following lemma.

Lemma 12. For every LTL formula ϕ, anchored ϕ satisfies condi-
tions (2) and (3).

Proof. Let π ∈ Σω and i ∈ N be such that π, i |= �_ϕ. In
particular, π, 0 |= _ϕ and therefore π, 0 |= ϕ, proving (2).

Let π ∈ Σω such that π, 0 |= ϕ. Then, π, j |= _ϕ for every j ∈ N.
In particular, for every i ∈ N whenever j ≤ i then also π, j |= _ϕ.
Thus, π, i |= �_ϕ for every i, proving (3). N

We now define a canonical separation that satisfies the remain-
ing two conditions for ψ. Intuitively, it is a separation that satis-
fies (1) and (4); moreover, it has a distinguished conjunct with an
unsatisfiable future part, and the past part of all other conjuncts is
satisfiable. We then constructively prove that such a formula exists,
that it can be constructed from any separation, and that all such
formulas have the same structure, justifying the name “canonical”.

Definition 13 (Canonical Separation). For an LTL formula ψ,
a canonical separation of ψ is a separation (P → # F)n that
satisfies the following properties.

• For every t ∈ Σ+, there is a unique i such that t |= Pi.
• For all i, j, if i , j then Fi . F j.
• There is an i such that Fi ≡ ⊥.
• If there is an i such that Pi ≡g ⊥, then Fi ≡ ⊥. 4

We show that any separation can be transformed into a canonical
one. Below, we write [1, n] for the set {1, · · · , n}.

Construction 14. Let (P → # F)n be any separation of an LTL
formula ψ. Consider the formula∧

I⊆[1, n]

(((∧
i∈I

Pi

)
∧

(∧
j∈[1, n]\I

¬P j

))
→ #

∧
i∈I

Fi

)
,

where
∧

i∈∅ = >. We refer to the past and future parts of the con-
juncts of this formula by P′i and F′i , respectively. Note that the past
parts are pairwise inconsistent. It is immediate that this formula is

also a separation of ψ. We apply the following transformations, in
order.

(i) For every i, if P′i ≡g ⊥, eliminate the conjunct.
(ii) Add the conjunct (⊥ → #⊥).

(iii) For every i, if there is a j , i such that F′i ≡ F′j, merge both
conjuncts to a single conjunct (P′i ∨ P′j → F′i).

It is immediate that this process terminates and that the resulting
formula is a canonical separation of ψ. 4

Since every separation of any LTL formula is globally equiva-
lent to the formula, it follows from Lemma 12 that any canonical
separation of anchored ϕ satisfies conditions (2) and (3). Therefore,
for any formula ϕ, every canonical separation of anchored ϕ satis-
fies conditions (1)–(4).

Example 15. We construct a canonical separation of anchored ϕ
for the precedence property ϕ = �(a → _b). A separation of
anchored ϕ is given by the formula (P1 → # F1) ∧ (P2 → # F2),
where P1 = �¬b, F1 = (¬aU b) ∨ �¬a, P2 = ¬�(a → _b),
and F2 = ⊥. We apply Construction 14 to transform this separation
into a canonical separation of anchored ϕ, which is the conjunction
of the following three formulas:

(�(a→ _b) ∧ _b) → #>,
�(¬a ∧ ¬b) → # ((¬aU b) ∨ �¬a),
_(a ∧ �¬b) → #⊥. 4

We are only interested in the semantics of a canonical separa-
tion’s conjuncts, and not in their particular syntax. The following
theorem states that canonical separations are canonical in the sense
that for any formula ψ, all canonical separations of ψ have the same
structure. More precisely, we show that there is no semantic distinc-
tion between corresponding conjuncts of two canonical separations
of the same formula.

Theorem 16. Let (P → # F)n, and (P′ → # F′)m be two canon-
ical separations of the LTL formula ψ. Then, they have the same
structure, namely

1. n = m, and
2. for every i there is a j such that Pi ≡g P′j and Fi ≡ F′j.

Proof. Let P → # F be a conjunct from the first canonical sepa-
ration such that P is satisfiable. Take any trace t such that t |= P.
By the definition of canonical separation, there is a conjunct P′ →
F′ in the second canonical separation such that t |= P′. It fol-
lows that for every π ∈ Σω, the satisfaction tπ, |t| − 1 |= ψ is
equivalent to π, 0 |= F and to π, 0 |= F′. Therefore, F and F′ are
initially equivalent. Assume P .g P′. Without loss of generality,
let t′ |= P′ and t′ 6|= P. Then there is another conjunct, P′′ → # F′′,
in the first canonical separation such that t′ |= P′′. Now, it follows
that F′ ≡ F′′, but then F′′ ≡ F, which contradicts the definition of
a canonical separation.

In case one of the canonical separations has a conjunct P→ # F
such that P is satisfiable and F ≡ ⊥, it follows that the other sepa-
ration has such a conjunct as well. Otherwise, both formulas must
have a conjunct ⊥ → #⊥. This gives us a one-to-one correspon-
dence between the conjuncts of both formulas, and thus n = m. N

To simplify discussions, for any canonical separation, we will
use the distinguished index⊥ to refer to the conjunct (P⊥ → # F⊥),
where F⊥ ≡ ⊥.

4. Connection to ω-Automata
In this section, we establish a connection between canonical sepa-
ration of anchored formulas and ω-automata. This will allow us to

give upper bounds on the number of conjuncts and the size of the
past parts in the separation. Furthermore, we show that separating
anchored formulas is elementary if and only if the translation from
LTL to FLTL is elementary.

Given a trace t and a formula ϕ, a canonical separation (P →
F)n of anchored ϕ can be used to determine the necessary and
sufficient condition for a continuation π such that tπ satisfies ϕ. We
simply find an index i such that t |= Pi and the condition is given
by Fi. Let us consider a Büchi automaton A = (Q, q0,∆, F) rec-
ognizing L(ϕ), and let Qt = {s′ ∈ Q | (q0, t, s′) ∈ ∆+}. The set Qt
consists of all the end states of finite runs of A on t. Let At =
A[q0 ← Qt] be the automaton (Q,Qt,∆, F), in which the initial
state q0 is replaced by the set of states Qt. We show that Qt charac-
terizes a subset of the set of all traces t′ such that t′ |= Pi, whileAt

recognizes exactly the paths π such that π, 0 |= Fi.

Theorem 17. Let A be a Büchi automaton and let t be a trace. A
path π is accepted by the automatonAt if and only if tπ ∈ L(A).

Proof. Assume there is an accepting run s0 s1 · · · of A on tπ. It is
immediate that s|t| ∈ Qt, and therefore s|t|s|t|+1 · · · is an accepting
run of At on π. Conversely, let π ∈ L(At), and let s0 s1 · · · be an
accepting run on π. By definition, s0 ∈ Qt, and therefore there is
a finite run p0 p1 · · · p|t| of A on t such that p|t| = s0. It follows
that p0 p1 · · · p|t|s1 s2 · · · is an accepting run ofA on tπ. N

This establishes a connection between Büchi automata and a
canonical separation of anchored ϕ, as stated in the following
corollaries.

Corollary 18. Let ϕ be an LTL formula and let (P → # F)n
be a canonical separation of anchored ϕ. For any automaton A
recognizing ϕ, the following holds.

∀t ∈ Σ+.∀i ∈ [1, n]. t |= Pi =⇒ L(At) = L(Fi). N

Corollary 19. Let ϕ be an LTL formula and let (P → # F)n
be a canonical separation of anchored ϕ. For any automaton A
recognizing ϕ and any two traces t, t′ ∈ Σ+ the following holds.

L(At) = L(At′)⇒ ∀i ∈ [1, n]. (t |= Pi ⇐⇒ t′ |= Pi). N

Note that Theorem 17 and its consequences translate easily
to other types of ω-automata, in particular generalized Büchi au-
tomata. The proof is almost identical to the proof of Theorem 17.

The following example further explains the connection between
canonical separations of anchored LTL formulas and their corre-
sponding ω-automata. We assume that the reader is familiar with
ω-regular expressions. We follow the usual precedence conven-
tions: concatenation has highest priority, followed by the Kleene
star (·∗) and cross (·+), ω-closure (·ω), complement (·), and finally
set union (· + ·). For simplicity we use propositional formulas as
syntactic sugar, where a formula Φ stands for the union of all liter-
als l ∈ Σ = 2AP that represent a truth assignment satisfying Φ. For
example, if AP = {a, b}, the formula Φ = a stands for the regular
expression ({a} + {a, b}).

Example 20. Let ϕ be an LTL formula and let (P → # F)n
be a canonical separation of anchored ϕ. For any automaton A
recognizing ϕ, the following holds.

∀t, t′ ∈ Σ+. Qt = Qt′ ⇒ ∀i ∈ [1, n]. (t |= Pi ⇐⇒ t′ |= Pi).

This statement is a special case of Corollary 19. The statement’s
converse is however false. In fact, there are formulas for which one
cannot construct an automaton such that all traces that satisfy the
same past part reach exactly the same set of states. Let ϕ be the
formula

�
(
^(¬a ∧ b) ∧ ^(¬a ∧ ¬b) ∧ ^(a ∧ ¬b) ∧ ^(a ∧ b)

)
.

Figure 1. Automaton recognizing the fairness formula of Exam-
ple 20

q1

q2

q3

q4

q0 a ∧ ¬b

>

¬a ∧ b

a ∨ ¬b

¬a ∧ ¬b

a ∨ b

a ∧ b

¬a ∨ ¬b

>

Intuitively, ϕ requires that all four combinations of truth values of a
and b occur infinitely often. A canonical separation of anchored ϕ
is given by (> → #ϕ) ∧ (⊥ → #⊥). It is immediate that all finite
traces satisfy the same past part, namely >.

A Büchi automaton with the least number of states recognizing ϕ
is given in Fig. 1. Even though all traces are equivalent with respect
to the satisfaction of ϕ, the automaton has one non-accepting state
for each combination of truth values of a and b, as well as an
additional accepting state that serves to monitor that the four
combinations all occur infinitely often. 4

While the separation gap is believed to be nonelementary [HR05],
the connection between a canonical separation and ω-automata al-
lows us to prove elementary bounds on the number of conjuncts
and the size of the past parts of a canonical separation of anchored
LTL formulas. Furthermore, we show that the size of the future
parts is related to the succinctness gap between LTL and FLTL,
which is believed to be elementary [HR05].

Let ϕ be an LTL formula and let Aϕ be a non-deterministic ω-
automaton with m states that recognizes L(ϕ). It follows from
Corollary 18 that for any canonical separation (P → # F)n of an-
chored ϕ, n ≤ 2m. Gastin and Oddoux [GO01] show that for any
LTL formula ϕ, one can construct a generalized Büchi automa-
ton Aϕ with at most 2|ϕ|+1 states. The following theorem is now
immediate.

Theorem 21. For any LTL formula ϕ, the number of conjuncts of
a canonical separation of anchored ϕ is at most double exponential
in the size of ϕ. N

We have thus established an elementary upper bound on the
number of conjuncts of canonical separations of anchored LTL
formulas. Now, we turn to the size of the past parts.

Theorem 22. Let ϕ be an LTL formula. There exists a canonical
separation (P → # F)n of anchored ϕ where the size of each past
part Pi is at most quadruple exponential in the size of ϕ.

Proof. Let Aϕ = (Q, q0,∆, F) be a generalized Büchi automa-
ton recognizing L(ϕ). We consider this automaton as a non-
deterministic finite state automaton on finite words (NFA) with
no accepting states. More precisely, we consider the NFA AF =
(Q, q0,∆, ∅). We then determinize the NFA, using the standard sub-
set construction, and obtain a deterministic finite automaton on
finite words (DFA) D = (2Q, {q0},∆

′, ∅). The key to the proof is
that for each past part Pi of the separation, there is a set F i ⊆ D

such that the DFA Di = (2Q, {q0},∆
′,F i) recognizes L(Pi). This

implies that Di is counter-free. We may then use the construction
from [MP90, W99] to construct the formula Pi. The size of this
formula is double exponential in the number of states ofDi, whose
size is in turn double exponential in the size of ϕ.

To construct F i, take any state S ∈ D and find all S ′ ∈ D such
that Aϕ[q0 ← S] = Aϕ[q0 ← S ′]. By Corollary 19, any trace t
reaching S and any trace t′ reaching S ′ satisfy the past part of the
same conjunct, say Pi. N

We are ready to prove our main theorem.

Theorem 23. The following statements are logically equivalent:

(a) The separation gap for anchored LTL is elementary.
(b) The succinctness gap between LTL and FLTL is elementary.

Proof. One direction is immediate. Take an arbitrary LTL for-
mula ϕ. First, we anchor and then separate ϕ. Second, in every
past formula in the separation, we iteratively replace ψ1 Sψ2 by ψ2
and ψ by ⊥. This results in an FLTL formula, denoted ϕF , that is
initially equivalent to ϕ. The size of ϕF is clearly smaller than the
size of the separation. Therefore, assuming that the separation gap
for anchored LTL formulas is elementary, there is an elementary
bound on the succinctness gap between LTL and FLTL.

To prove the converse, we show that the size of the future parts
is elementary in the size of ϕF . This, together with Theorems 21
and 22, proves our claim. So, assume that there is an elementary
bound on the size of ϕF . For every index i and trace t = t0t1 · · · t|t|−1
such that t |= Pi we know that tπ, 0 |= ϕF if and only if π, 0 |= Fi.
Intuitively, we will “partially evaluate” the satisfaction of ϕF on the
trace t to obtain Fi. The procedure is similar to semantic tableaux
for LTL. Every formula of the form ψ1U ψ2 is equivalent to the
formula ψ2 ∨ (ψ1 ∧ # (ψ1U ψ2)). Using this equivalence, we can
rewrite ϕF to a formula in which only propositional formulas are
not under the scope of the next time connective # . Since ϕF con-
tains no past temporal connectives, the satisfaction of all formulas
under the scope of the next time connective is independent of t0.
We can therefore replace each formula a that is not under the scope
of # with > if t0 |= a, and with ⊥ if t0 6|= a. We then rewrite
the resulting formula to #ϕF

1 . It is immediate that tπ, 0 |= ϕF iff
t1t2 · · · t|t|−1π, 0 |= ϕF

1 . We continue this procedure for the entire t,
and ultimately get tπ, 0 |= ϕF iff π, 0 |= ϕF

|t|. Therefore ϕF
|t| ≡ Fi.

Note that, due to Corollary 19, one can always choose a trace t
such that t |= Pi and the length of t is at most double exponential in
the size of ϕ.

To conclude the proof, we show that the size of ϕF
|t| is at most

exponential in |ϕF |. For any formula ψ, we define the set of sub-
formulas of ψ, denoted SF (ψ), inductively as follows. SF (>) =
{>}, SF (a) = {a} for a ∈ AP, SF (•ψ) = {•ψ} ∪ SF (ψ) for • ∈
{¬, ,# }, and SF (ψ1 ? ψ2) = {ψ1 ? ψ2} ∪ SF (ψ1) ∪ SF (ψ2)
for ? ∈ {∨,∧, S , U }. It is immediate that the number of elements
of SF (ϕF) is at most |ϕF | and that each formula ϕF

i is a Boolean
combination of formulas in SF (ϕF). In particular, ϕF

|t| is a Boolean
combination of formulas in SF (ϕF). It follows that we can write ϕF

|t|

using Boolean connectives and at most 2|ϕ
F | occurrences of subfor-

mulas of ϕF , each of size at most |ϕF |. N

5. Safety-Liveness Decomposition
In Section 3, we formalized how finite traces determine future
behavior with respect to properties expressed by LTL formulas.
Here, we generalize this idea to arbitrary properties. We show
in Section 5.1 that, for any property L, this reasoning can be
formalized as an equivalence relation, denoted ≈L. Furthermore,
the safety closure of L and the condition for L to be a liveness

property can be characterized in terms of equivalence classes of ≈L.
In Section 5.2, we turn to safety-liveness decomposition in LTL.

5.1 Decomposition of Arbitrary Properties
For a property L we define an equivalence relation ≈L that relates
two finite traces u and v if for every infinite continuation π either
both uπ and vπ satisfy the property (i.e. both belong to L), or both
falsify it. Intuitively, two finite traces are equivalent if they place
the same restrictions on future behaviors.

Definition 24. Let L be a property. We define the equivalence
relation ≈L ⊆ Σ+ × Σ+ as follows.

u ≈L v if ∀π ∈ Σω. (uπ ∈ L ⇐⇒ vπ ∈ L). 4

Definition 25 ([N58]). An equivalence relation ≈ on a set of
traces Σ+ is right invariant with respect to concatenation if for
all traces u, v, z ∈ Σ+, u ≈ v implies uz ≈ vz. 4

It is immediate that ≈L is right invariant. For a property L, if
there is a trace v ∈ Σ+ such that vπ < L for every π ∈ Σω, we define
the set L⊥ of irremediable traces as the equivalence class [v]≈L .
Otherwise, we define L⊥ = ∅. The safety closure of L and the
condition for L to be a liveness property can be characterized
using L⊥.

Lemma 26. For every property L, its safety closure dLe is the
set {π ∈ Σω | ∀i ∈ N. πi < L⊥}.

Proof. We show that S = {π ∈ Σω | ∀i ∈ N. πi < L⊥} is a safety
property containing L, and that it is a subset of every other such
property. It follows that S = dLe.

For any path π < S , there is an i ∈ N such that πi ∈ L⊥. It
follows that πiσ < S for every path σ and therefore S is a safety
property. Since πi ∈ L⊥, in particular π < L and thus L ⊆ S .
Finally, let S ′ be a safety property containing L. Then, for every
path π < S ′, there is an i ∈ N such that πiσ < S ′, for every path σ.
Since L ⊆ S ′, also πiσ < L for every path σ. Therefore, πi ∈ L⊥
and thus π < S . It follows that S ⊆ S ′. N

The following proposition shows that for any property L, the
relation ≈L is a refinement of ≈dLe.

Proposition 27. For any property L, for any u, v ∈ Σ+ if u ≈L v,
then u ≈dLe v. Furthermore, L⊥ = dLe⊥.

Proof. Let u ≈L v, and let π ∈ Σω be an arbitrary path. Since ≈L
is right invariant, it follows that for every i ∈ N also uπi ≈L vπi.
Therefore, there is an i such that uπi ∈ L⊥ iff there is an i such
that vπi ∈ L⊥ and thus uπ ∈ dLe iff vπ ∈ dLe. Hence u ≈dLe v.

For a trace u ∈ L⊥ it is immediate that uπ < dLe, for any π.
Therefore also u ∈ dLe⊥. Conversely, if v ∈ dLe⊥, then for every
path π it follows that vπ < dLe and, since L ⊆ dLe, also vπ < L.
Thus v ∈ L⊥. N

Intuitively, this proposition states that every property can be de-
fined by first choosing the set of finite irremediable traces (safety
closure), and then refining this safety property by excluding some
infinite paths (intersection with liveness). The following character-
ization of liveness follows immediately from the definition of L⊥.

Lemma 28. L is a liveness property if and only if L⊥ = ∅. N

5.2 Decomposition in LTL
For an LTL formula ϕ we define the sets

Ci =
{
t ∈ Σ+ | t |= Pi

}
,

where Pi is the past part of the i-th conjunct of a canonical sep-
aration of anchored ϕ. For an index i and a trace t ∈ Ci, we

have tπ, 0 |= ϕ iff π, 0 |= Fi. Thus, if t′ ∈ Ci, it follows that t ≈L(ϕ) t′.
Since a canonical separation cannot have two conjuncts with equiv-
alent future parts, if t ∈ Ci and t′ < Ci it follows that t 0L(ϕ) t′. This
proves the following theorem; recall that ⊥ is the distinguished in-
dex that refers to the conjunct where F⊥ ≡ ⊥.

Theorem 29. Let ϕ be an LTL formula and let L(ϕ) be the prop-
erty expressed by ϕ. The equivalence classes of the relation ≈L(ϕ)
are given by the sets Ci and ≈L(ϕ) is of finite index. Further-
more, L(ϕ)⊥ = C⊥. N

Example 30. The precedence property expressed by ϕ = �(a →
_b) can be written as the following ω-regular expression.

L(ϕ) = (¬a ∧ ¬b)∗bΣω + (¬a ∧ ¬b)ω.

Consider the sets C1 = (¬a ∧ ¬b)∗bΣ∗, C2 = (¬a ∧ ¬b)+, and C3 =
(¬a ∧ ¬b)∗(a ∧ ¬b)Σ∗. It is straightforward to prove that these
sets correspond to the equivalence classes of the relation ≈L(ϕ).
Furthermore, C3 = L(ϕ)⊥, because every trace in C3 is clearly
irremediable. In particular, from Lemma 28 it follows that ϕ is not
a liveness formula. Note that the equivalence classes correspond to
the past parts of the three formulas of the canonical separation of
Example 15. 4

Theorem 29 establishes a connection between the relation ≈L(ϕ)
and any canonical separation of anchored ϕ. Constructions of the
safety closure and the safety-liveness decomposition theorem for
LTL formulas are now immediate consequences of Lemma 26 and
Theorem 29.

Theorem 31. Let ϕ be an LTL formula. The safety closure of
the property L(ϕ) is the property L(dϕe), expressed by the LTL
formula dϕe := �¬P⊥.

Proof. Take the correspondence of Lemma 26. We claim that
{π ∈ Σω | π, 0 |= �¬P⊥} = {π ∈ Σω | ∀i ∈ N. πi < L(ϕ)⊥}. The proof
is straightforward: π, 0 |= �¬P⊥ iff ∀i ∈ N. π, i |= ¬P⊥ iff ∀i ∈
N. π, i 6|= P⊥ iff ∀i ∈ N. πi 6|= P⊥ iff ∀i ∈ N. πi < C⊥. From
Theorem 29, this is equivalent to ∀i ∈ N. πi < L(ϕ)⊥. N

The following lemma establishes that if a trace is irremediable
for some formula, it cannot also be irremediable for its negation.

Lemma 32. For any LTL formula ϕ, L(¬ϕ)⊥ ⊆ L(ϕ)⊥.

Proof. Let t ∈ L(¬ϕ)⊥. Then, for an arbitrary path π, tπ, 0 6|= ¬ϕ
which is equivalent to tπ, 0 |= ϕ. It is immediate that t < L(ϕ)⊥. N

Note that the converse inclusion is generally false: take ϕ =
�a and t = aa. For the path π1 = aω, we have tπ1, 0 |= ϕ

and therefore t ∈ L(ϕ)⊥. In contrast, for the path π2 = bω, we
have tπ2, 0 |= ¬ϕ and therefore t < L(¬ϕ)⊥.

Theorem 33. Let ϕ be an LTL formula. The formula bϕc :=
ϕ ∨ ¬dϕe is a liveness formula.

Proof. It is immediate that L(bϕc)⊥ = L(ϕ)⊥ ∩ L(¬dϕe)⊥. From
Lemma 32, it follows that L(¬dϕe)⊥ ⊆ L(dϕe)⊥. Therefore, from
Proposition 27, it follows that L(¬dϕe)⊥ ⊆ L(ϕ)⊥. Thus, L(bϕc)⊥ =
∅ and by Lemma 28, the formula bϕc is liveness. N

We have used canonical separation to construct the formulas dϕe
and bϕc, for any LTL formula ϕ. We have shown that dϕe is a safety
formula and that bϕc is liveness. It is immediate that dϕe ∧ bϕc ≡ ϕ.
This establishes the following.

Corollary 34 (Safety-Liveness Decomposition in LTL). Every LTL
formula ϕ is initially equivalent to the conjunction of a safety
LTL formula and a liveness LTL formula, given by dϕe and bϕc,
respectively. N

Figure 2. Deterministic Büchi automaton recognizing �(a ∨
(bS c))

p1

p⊥

p2

a ∧ ¬c

c¬a ∧ ¬c

b ∨ c
a ∧ ¬b ∧ ¬c

¬a
∧ ¬

b ∧
¬c

>

These results can be used to construct a Büchi automaton ac-
cepting L(dϕe). We first use the Myhill-Nerode theorem [N58] to
construct a minimal DFA recognizing all the equivalence classes
except C⊥. Note that by changing the acceptance condition of an
automaton A = (Q, q0,∆, F) on finite words, we can see it as a
Büchi automaton. To satisfy the conditions of the Myhill-Nerode
theorem, we extend ≈L(ϕ) to encompass the empty word ε as fol-
lows. If there is an index i such that ϕ ≡ Fi, then we define ε ∈ Ci;
otherwise we define ε 0L(ϕ) t for every nonempty trace t ∈ Σ+.

Proposition 35. Let ϕ be an LTL formula andM be the minimal
DFA recognizing the union of equivalence classes of ≈L(ϕ) other
than C⊥. Then the automatonM considered as a Büchi automaton
recognizes L(dϕe). N

Corollary 36. Let ϕ be a safety LTL formula andM be the minimal
DFA recognizing the union of equivalence classes of ≈L(ϕ) other
than C⊥. The automaton M considered as a Büchi automaton
recognizes L(ϕ). Furthermore, it is minimal in the sense that it is
the deterministic Büchi automaton recognizing L(ϕ) with the least
number of states.

Proof. Since ϕ is safety, it follows that dϕe ≡ ϕ and M recog-
nizes L(ϕ), by Proposition 35.

For any deterministic Büchi automaton recognizing ϕ and any
trace t ∈ Σ+, the set Qt is a singleton set. From Corollary 18, such
an automaton must have at least n states, since (P → # F)n has n
conjuncts. Furthermore, if ϕ . Fi for every index i, then there is
no trace t such that Qt = {q0}, and the automaton must have at
least n+1 states. This is exactly the number of states ofM, proving
that it is minimal. N

Example 37. Consider the formula ϕ = �(a ∨ (bS c)). For ex-
ample, the property expressed by ϕ could state that access to a re-
source is not allowed (a) unless an authorized user logged into the
system (c) and has been active since (b). Without going into the de-
tails of the separation procedure, we separate anchored ϕ, and use
Construction 14 to obtain a canonical separation. The canonical
separation of anchored ϕ consists of three conjuncts. The past and
future parts are given below.

• P1 = �(a ∨ (bS c)) ∧ ¬(bS c),
• F1 = (�a ∨ (aU c)) ∧#�(b ∨ �a ∨ (aU c)),
• P2 = �(a ∨ (bS c)) ∧ (bS c),

• F2 = �(b ∨ �a ∨ (aU c)),
• P⊥ = ¬�(a ∨ (bS c)),
• F⊥ = ⊥.

The safety closure of ϕ is given by �¬P⊥ ≡g ��(a ∨ (bS c)).
It is easy to verify that this formula is initially equivalent to ϕ,
thus showing that ϕ is a safety formula. It is also simple to show
that F1 ≡ ϕ. Therefore, the equivalence classes of the relation ≈L(ϕ)
are given by the following regular expressions.

• C1 = ((a + cb∗)∗(a ∧ ¬b ∧ ¬c) + ε)(a ∧ ¬c)∗,
• C2 = (a + cb∗)∗cb∗,
• C⊥ = C1 + C2.

The construction of the minimal deterministic Büchi automaton
recognizing ϕ is now simple. The set of states is Q = {p1, p2, p⊥},
where the index determines the corresponding equivalence class.
The set of accepting states is F = {p1, p2}, and since ε ∈ C1, the
initial state is p1. Now, for each a ∈ Σ and every state qi, we take a
trace t ∈ Ci and define ∆(pi, a) = p j iff ta ∈ C j. The automaton is
given in Fig. 2. 4

6. Characterizing Classes of Temporal Properties
In this section, we use canonical separation of anchored formulas
to characterize liveness, safety, stable, absolute liveness, and fair-
ness properties. We also show that recognizing properties in these
classes in LTL can be reduced to deciding LTL validity.

We start with characterizing safety and liveness in LTL.

Theorem 38 (Characterization of Liveness). A formula ϕ is live-
ness if and only if the formula ^P⊥ is not satisfiable, i.e. ^P⊥ ≡ ⊥.

Proof. From Lemma 28 and Theorem 29 it follows that ϕ is live-
ness iff every trace t ∈ Σ+ falsifies P⊥. This is equivalent to the
condition that, for every path π ∈ Σω and every i ∈ N, π, i |= ¬P⊥.
Thus, ϕ is liveness iff π, 0 |= �¬P⊥ for every path π, and therefore
also π, 0 6|= ^P⊥. N

As a consequence, we obtain for LTL the following well-known
result from [AS85].

Corollary 39. A formula ϕ is liveness if and only if dϕe ≡ >. N

A formula ϕ is safety if and only if the property L(ϕ) is equal to
L(�¬P⊥). In other words, ϕ is safety iff ϕ ≡ dϕe. From Theorem 31
it follows that L(ϕ) ⊆ L(�¬P⊥). Therefore, it suffices to show that
there is no path π ∈ Σω such that π, 0 |= �¬P⊥ and π, 0 6|= ϕ. This
gives us the following characterization of safety.

Theorem 40 (Characterization of Safety). A formula ϕ is safety if
and only if the formula ¬ϕ ∧ �¬P⊥ is not satisfiable. N

To illustrate these results, we return to our running example.

Example 41. Consider again ϕ = �(a → _b). In Example 30,
we gave a canonical separation of anchored ϕ. It is immediate
that P⊥ = _(a ∧ �¬b). Consider the formula ^_(a ∧ �¬b). This
formula is satisfiable, for example by the path aω. Therefore, ϕ is
not liveness. We can explicitly construct the safety closure of ϕ as

dϕe = �¬_(a ∧ �¬b).
This formula is globally equivalent to ��(a → _b), and initially
equivalent to �(a → _b). Therefore, the formula ¬ϕ ∧ dϕe is not
satisfiable, proving that ϕ is a safety property. 4

We next characterize stable, absolute liveness, and fairness
properties in LTL. We follow Sistla’s definitions for these prop-
erties [S94].

Definition 42. Let ϕ be an LTL formula.

1. ϕ is stable if for every path π, the initial satisfaction π, 0 |= ϕ
implies πi, 0 |= ϕ, for all i ∈ N.

2. ϕ is absolute liveness if ϕ is satisfiable, and for all traces t and
every path π such that π, 0 |= ϕ, then tπ, 0 |= ϕ.

3. ϕ is fairness if it is both stable and absolute liveness. 4

Intuitively, a fairness property can neither be satisfied nor falsi-
fied in finite time. Note that Sistla’s definition of stable properties,
stating that π, 0 |= ϕ implies π, i |= ϕ, differs slightly from ours.
The two definitions coincide for FLTL, but the modification above
is necessary to formalize a stable property as a property containing
all suffixes of its elements in LTL.

Let ϕ be an LTL formula and let (P → # F)n be a canonical
separation of anchored ϕ. We first give necessary and sufficient
conditions for ϕ to be stable and absolute liveness. We combine
them to characterize fairness and conclude the section with an
example.

For any past formula ψ, we can find an initially equivalent
propositional formula. We just iteratively replace ψ1 Sψ2 by ψ2
and ψ by⊥. For every past part Pi, let us denote this propositional
counterpart by Ni.

The intuition for the following theorems is as follows. Let π
be a path satisfying a stable formula ϕ and consider a canonical
separation of anchored ϕ. Then for any k there is an index i such
that π, k |= Pi and π, k |= # Fi. If we remove a prefix of π of
length k, it is possible that πk, 0 |= P j, i.e. π, k |= N j, for some j , i.
In this case, it is necessary that π, k |= # F j for ϕ to be stable.
Analogous intuition holds for absolute liveness

Theorem 43. A formula ϕ is stable if and only if the formula
Ψ1(ϕ) =

∨n
i, j=1 ^(Pi ∧ N j ∧# Fi ∧ ¬# F j) is not satisfiable.

Proof. Let ϕ be stable and assume the contrary, i.e. there is a path
π ∈ Σω such that π, 0 |= Ψ1(ϕ). Then there exists a k ≥ 0 and indices
i, j such that π, k |= Pi, π, k |= N j, π, k |= # Fi, and π, k |= ¬# F j.
Since π, k |= Pi and π, k |= # Fi, it follows that π, 0 |= ϕ. From
π, k |= N j, it follows that πk |= P j. Since π, k |= ¬# F j, we also
have πk, 0 |= ¬# F j, and πk, 0 6|= ϕ. This contradicts the assumption
that ϕ is stable.

To prove the converse, suppose Ψ1(ϕ) is not satisfiable and ϕ is
not stable. Then, there exists a path π such that π, 0 |= ϕ and a k > 0
such that πk, 0 6|= ϕ. Let i and j be indices such that πk |= Pi and
πk |= N j. It follows that πk, 0 |= # Fi and πk, 0 6|= # F j. Therefore,
π, k |= Pi ∧ N j ∧ # Fi ∧ ¬# F j, and π, 0 |= Ψ1(ϕ), which is a
contradiction. N

Example 44. Let ϕ = �a. A canonical separation of anchored ϕ is
(_¬a → #⊥) ∧ (�a → #�a). To prove ϕ is a stable formula, by
Theorem 43 we show that the formulas ^(_¬a∧a∧#⊥∧¬#�a)
and ^(�a∧¬a∧#�a∧#>) are not satisfiable. This is immediate
because of the #⊥ in the first formula and �a ∧ ¬a in the second
formula. 4

The proof of the following theorem is similar to the proof of
Theorem 43.

Theorem 45. A formula ϕ is absolute liveness if and only if the
formula Ψ2(ϕ) =

∨n
i, j=1 ^(Pi∧N j∧¬# Fi∧# F j) is not satisfiable

and ϕ is satisfiable. N

Example 46. Let ϕ = ^a. A canonical separation of anchored ϕ is
(⊥ → #⊥) ∧ (_a → #>) ∧ (�¬a → #^a). It is immediate
that ϕ is a liveness formula, and therefore satisfiable. To prove
it is absolute liveness, by Theorem 45 we show that Ψ2(ϕ) is not
satisfiable. Since P⊥ = ⊥, we need only consider indices i, j , ⊥.
The two formulas we must check are ^(_a∧¬a∧#⊥∧#^a) and

Table 1. Reduction to UNSAT. A canonical separation of an-
chored ϕ is given by (P → # F)n. Note∗: for absolute liveness, ϕ
should also be liveness.

Property ϕ Characterization (UNSAT)
Safety ¬ϕ ∧ �¬P⊥
Liveness ^P⊥
Absolute Liveness ∗

∨n
i, j=1 ^(Pi ∧ PF

j ∧ ¬Fi ∧ F j)
Stable

∨n
i, j=1 ^(Pi ∧ PF

j ∧ Fi ∧ ¬F j)
Fairness ^¬Pi, for some i

^(�¬a∧ a∧¬#^a∧#>). It is immediate that neither formula is
satisfiable. 4

Combining the characterizations of stable and absolute liveness
properties results in a simple characterization for fairness.

Theorem 47. A formula ϕ is fairness if and only if a canonical
separation of anchored ϕ is of the form (⊥ → #⊥) ∧ (> → # F),
for some future formula F.

Proof. Let ϕ be fairness. In particular, ϕ is liveness, satisfiable,
and ^P⊥ ≡ ⊥. Assume that there are indices i , j and traces
u, v ∈ Σ+ such that u |= Pi and v |= P j. The formula Fi is then
satisfiable and let π be a path such that π, 0 |= Fi. Then uπ, 0 |= ϕ.
Since ϕ is stable, it follows that π, 0 |= ϕ. Since ϕ is absolute
liveness, vπ, 0 |= ϕ. Therefore π, 0 |= F j. By repeating this proof
with the indices exchanged, we get that Fi and F j are equivalent,
contradicting the initial assumption.

For the converse, the canonical separation satisfies the condi-
tions of Theorem 43 and Theorem 45. It is thus immediate that ϕ is
both stable and absolute liveness. N

Corollary 48 (Characterization of Fairness). A formula ϕ is fair-
ness iff it is satisfiable and there is an index i such that ^¬Pi ≡

⊥. N

Corollary 49. A formula ϕ is fairness if and only if a canonical
separation of anchored ϕ is of the form (⊥ → #⊥) ∧ (> → # F),
where F ≡ ϕ. N

This characterization implies that the LTL formula of Exam-
ple 20 expresses a fairness property.

Corollary 50. Recognizing safety, liveness, absolute liveness, sta-
ble and fairness properties can be reduced to the UNSAT problem
for LTL, summarized in Table 1. N

A formula ϕ of LTL expresses a safety, liveness, absolute live-
ness, stable or fairness property iff the respective formula in Table 1
is not satisfiable. Note that the characterization of absolute liveness
additionally requires that ϕ is satisfiable, but one can instead show
that ϕ is liveness. This is justified since every absolute liveness for-
mula is a liveness formula, and every liveness formula is satisfiable.

7. Related Work
The canonical separation of anchored formulas is inspired by the
(declarative) past implies (imperative) future paradigm of [G87],
which was used for the separated normal form (SNF) of Fisher
[F97] and is the underlying idea of MetateM [F92]. Intuitively, SNF
is a set of rules that describe which actions a system has to make
at the current time with respect to observations it has made in the
previous steps. Our reasoning is based on finite traces, while with
SNF one can only reason about the current moment in time, which
makes it necessary to start at the initial time 0.

Concerning the complexity of translating LTL to FLTL, a
nonelementary algorithm can be obtained using the separation
rewrite rules from [G87]. Hodkinson and Reynolds [HR05] state
that it is not clear whether this can be done without separation. An
elementary, but inefficient, algorithm for the translation certainly
exists if the succinctness gap is elementary. One can just check ini-
tial equivalence with respect to FLTL formulas of increasing size
until a match is found.

It appears that the existence of an elementary bound on the suc-
cinctness gap has become folklore. Since ω-automata recognizing
the language of any LTL formula can be efficiently constructed,
an elementary translation from ω-automata to FLTL would answer
the question. Several authors have proposed using a translation by
Wilke [W99] for this purpose. However, Wilke considers FLTL
on finite traces and generalizing the translation to FLTL on infi-
nite paths is not obvious. Gastin and Oddoux [GO01] generalize
Wilke’s result to infinite words, but their construction uses first or-
der logic as an intermediary step, which incurs a nonelementary
blow-up. Maler and Pnueli [MP94] give a translation from Muller
automata to LTL, but they use past temporal connectives. These
formulas can be translated to FLTL using Pnueli and Zuck’s algo-
rithm [PZ93]; the algorithm is however nonelementary.

Sistla [S94, S85] characterizes safety, stable, absolute liveness,
fairness, and other properties in FLTL, leaving the characterization
of liveness as an open problem. He also gives a decision procedure
for recognizing safety and liveness in FLTL and characterizes var-
ious properties in less expressive sub-logics of FLTL. Lichtenstein
et al. [LPZ85] characterize safety in LTL, but their characteriza-
tions do not result in a decision procedure. They also characterize
“liveness”, but their definition of liveness differs from Alpern and
Schneider’s (which we follow here). Manna and Pnueli [MP87] use
Gabbay’s separation to characterize liveness properties in LTL, re-
sulting in a characterization similar to ours. We are not aware of any
characterizations of stable, absolute liveness, and fairness proper-
ties in LTL.

Concerning the safety-liveness decomposition, Alpern and
Schneider [AS85] prove that every property is an intersection of a
safety and a liveness property. Moreover, they show that ω-regular
properties, i.e. the properties accepted by Büchi automata, can be
decomposed as an intersection of a safety ω-regular property and a
liveness ω-regular property [AS87]. Their decomposition does not
readily translate to LTL. This is because LTL formulas are only ca-
pable of expressing star-free ω-regular languages, which constitute
a strict subset of ω-regular languages [W83].

In previous work [PMTDB], we prove that the safety-liveness
decomposition is possible in FLTL using counter-free Büchi au-
tomata. The argument relies on a special case of a translation from
counter-free DFA to FLTL on finite words [W99] and the notion of
protected formulas from [PZ93]. The construction of the safety clo-
sure we present here is elementary, in contrast to the nonelementary
construction in [PMTDB].

Acknowledgments
This work was partially supported by the FP7-ICT-2009-5 Project
no. 257876, “Secure Provision and Consumption in the Internet of
Services” (http://www.spacios.eu). The authors would like to
thank Eugen Zălinescu and Ognjen Marić for valuable feedback
and suggestions.

References
[AS85] B. Alpern, and F. B. Schneider. Defining Liveness, Information

Processing Letters 21(4):181-185, 1985.

[AS87] B. Alpern, and F. B. Schneider. Recognizing Safety and Liveness,
Distributed Computing 2(3):117-126, 1987.

[F97] M. Fisher. A Normal Form for Temporal Logics and its Applications
in Theorem-Proving and Execution, J. Log. Comput. 7(4):429-456,
1997.

[F92] M. Fisher, and P. Noël. Transformation and Synthesis in MetateM
Part I: Propositional MetateM, Technical report, Department of
Computer Science, University of Manchester, 1992.

[G87] D. M. Gabbay. The Declarative Past and Imperative Future:
Executable Temporal Logic for Interactive Systems, Temporal Logic
in Specification, Lecture Notes in Computer Science 398:409-448.
Springer, 1987.

[GPSS80] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the
Temporal Basis of Fairness, POPL:163-173. ACM Press, 1980.

[GO01] P. Gastin, and D. Oddoux. Fast LTL to Büchi Automata Trans-
lation, CAV, Lecture Notes in Computer Science 2102:53-65. Springer
2001.

[HR05] I. M. Hodkinson, and M. Reynolds, Separation - Past, Present, and
Future, We Will Show Them! (2):117-142. College Publications, 2005.

[H79] J. E. Hopcroft, and J. D. Ullman, Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[L77] L. Lamport, Proving the Correctness of Multiprocess Programs,
IEEE Trans. Software Eng. 3(2):125-143, 1977.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The Glory of the Past,
Logic of Programs, Lecture Notes in Computer Science 193:196-218.
Springer, 1985.

[MP90] O. Maler, and A. Pnueli. Tight Bounds on the Complexity of
Cascaded Decomposition of Automata, FOCS:672-682. IEEE Computer
Society, 1990.

[MP94] O. Maler, and A. Pnueli. On the Cascaded Decomposition of
Automata, its Complexity and its Application to Logic, ACTS Mobile
Communication 48, 1994.

[MP87] Z. Manna, and A. Pnueli. A Hierarchy of Temporal Properties,
In Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’87. ACM, 1987.

[MP89] Z. Manna, and A. Pnueli. The anchored version of the temporal
framework, Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, LNCS 354:201-284. Springer, 1989.

[M03] N. Markey. Temporal logic with past is exponentially more succinct,
Concurrency Column, Bulletin of the EATCS 79:122-128, 2003.

[M71] R. McNaughton, and A. Papert. Counter-Free Automata, M.I.T.
research monograph no. 65. The MIT Press, 1971.

[M74] A. Meyer. The inherent complexity of theories of ordered sets, In
the Proceedings of the International Congress of Mathematics:477-482,
1974.

[N58] A. Nerode. Linear Automaton Transformations, In AMS 9. AMS,
1958.

[PMTDB] G. Petric Maretić, M. Torabi Dashti, and D. Basin. LTL is
Closed Under Topological Closure, Information Processing Letters,
114(8):408-413. Elsevier, 2014.

[PZ93] A. Pnueli, and L. D. Zuck. In and Out of Temporal Logic,
LICS:124-135. IEEE Computer Society, 1993.

[S85] A. P. Sistla. On Characterization of Safety and Liveness Properties
in Temporal Logic, PODC:39-48. ACM, 1985.

[S94] A. P. Sistla. Safety, Liveness and Fairness in Temporal Logic, Formal
Asp. Comput. 6(5):495-512, 1994.

[T90] W. Thomas. Automata on Infinite Objects, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics:133-192.
Elsevier and MIT Press, 1990.

[W99] T. Wilke. Classifying Discrete Temporal Properties, STACS 99,
Lecture Notes in Computer Science 1563:32-46. Springer, 1999.

[W83] P. Wolper. Temporal Logic Can Be More Expressive, Information
and Control 56(1/2):72-99, 1983.

