
Labeled Tableaux for Distributed Temporal Logic

David Basin

Department of Computer Science

ETH Zurich, Switzerland

Carlos Caleiro

SQIG — Instituto de Telecomunicações and Department of Mathematics

IST, TU Lisbon, Portugal

Jaime Ramos

SQIG — Instituto de Telecomunicações and Department of Mathematics

IST, TU Lisbon, Portugal

Luca Viganò

Department of Computer Science

University of Verona, Italy

Abstract

DTL is a distributed temporal logic for reasoning about temporal properties of discrete

distributed systems from the local point of view of the system’s agents, which are assumed

to execute sequentially and to interact by means of synchronous event sharing. We present a

sound and complete labeled tableaux system for full DTL. To achieve this, we first formalize

a labeled tableaux system for reasoning locally at each agent and afterwards we combine the

local systems into a global one by adding rules that capture the distributed nature of DTL.

We also provide examples illustrating the use of DTL and our tableaux system.

Keywords: Distributed Temporal Logic, Discrete Time, Until and Since, Labeled
Tableaux System, Soundness and Completeness.

1 Introduction

The distributed temporal logic DTL [11] is a logic for reasoning about temporal prop-
erties of discrete distributed systems from the local point of view of the system’s
agents, which are assumed to execute sequentially and to interact by means of syn-
chronous event sharing. Distribution is implicit and properties of entire systems are
formulated in terms of the local properties of the system’s agents and their interac-
tion. DTL is closely related to the family of temporal logics whose semantics are
based on the models of true concurrency, introduced and developed in [21, 22, 28].
In particular, the semantics of these logics are based on a conflict-free version of
Winskel’s event structures [37], enriched with information about sequential agents.

1

Several different versions have been given, reflecting different perspectives on how
non-local information can be accessed by each agent.

DTL was first proposed in [11] as a logic for specifying and reasoning about dis-
tributed information systems. The logic has also been used in the context of security
protocol analysis to reason about the interplay between protocol models and security
properties [5, 6]. However, all of the previous results have been obtained directly by se-
mantic arguments. It would be reassuring and generally useful to have a deductive sys-
tem for DTL for carrying out such proofs. There are several possibilities for deduction
in temporal logics, including Hilbert calculi, resolution, sequent and tableaux systems,
and model-checking [3, 7, 8, 14, 15, 16, 17, 18, 19, 20, 23, 24, 29, 30, 31, 32, 33, 36, 38].
We explore in this paper two options for deduction in DTL.

First, we give a decision procedure for DTL entailment by reducing it to entail-
ment in LTL using a polynomial-time syntactic translation. Furthermore, we show
that, under this translation, DTL is well-suited for efficient model checking. In this
way, existing decision procedures for LTL, as well as other automated tools for LTL,
such as [3, 8], may be used for DTL. However, while decision procedures are fine for
machines, they are often ill-suited for humans. In particular, our translation-based
procedure does not reflect the arguments used in natural reasoning in DTL. This is
also the case for Hilbert calculi, resolution and model-checking based approaches, as
well as for unlabeled tableaux procedures based on a Fischer-Ladner-style construc-
tion [13, 27, 38], even if built specifically for DTL.

In contrast, an attractive possibility is a labeled tableaux system as deductions will
then naturally follow semantic arguments. This is the second option we pursue, which
is the main focus and contribution of this paper. We present a sound and complete
labeled tableaux system for DTL. To this end, we first introduce a labeled tableaux
system for LTL, where reasoning is local. Afterwards, we take one such local tableaux
system for each agent and combine them with rules that capture the distributed
nature of DTL, via communication. The tableaux systems for local reasoning (in
LTL) are, as expected, built from formulas labeled with local state information and
relations between these labels (order and equality). We integrate these systems into
a system for global reasoning, where we introduce an additional relation expressing
synchronization. We prove the soundness and completeness of the system with respect
to DTL entailment and provide examples of its use.

The tableaux system thus obtained is natural in that it closely formalizes proofs
made using semantic arguments. For example, an eventuality simply leads to a future
time point. This is in contrast to a Fischer-Ladner-style construction, based on the
fixedpoint characterizations of the temporal operators, where an eventuality becomes
a condition that must be verified over the structure of a graph. We do not address the
question of efficient proof search and we include an infinite closure rule that captures
eventualities that are always delayed. Building a decision procedure by including
loop checking directly on top of our tableaux system does not appear to be possible.
Modifying our rules for the temporal operators to introduce “control points” needed
to check for loops, by following more closely the fixedpoint properties of the operators,
should be possible, but would lead to an unnatural result. We choose not to go this
route as we already have decidability and our emphasis is on naturality. To our
knowledge, this is the first labeled system given for full, discrete-time LTL with the

2

until and since operators.1

Organization

In Section 2, we introduce DTL. In Section 3, we present our tableaux system for local
reasoning and establish its soundness and completeness with respect to entailment. In
Section 4, we extend the local system into a system for global reasoning by including
a new synchronization relation between local labels and we also prove soundness
and completeness with respect to entailment. Afterwards, in Section 5, we present
examples that illustrate the use of our tableaux system. We conclude, in Section 6, by
comparing with related work and discussing future work. For examples of applications
of the logic, we refer the reader to [5, 6, 11, 12].

2 The distributed temporal logic DTL

2.1 The syntax and semantics of DTL

The syntax of the distributed temporal logic DTL is defined over a distributed signa-
ture Σ = 〈Id , {Propi}i∈Id 〉 of a system, where Id is a finite set of agents and, for each
i ∈ Id , Propi is a set of local state propositions. The global language LDTL is defined
by the grammar

LDTL ::= @i1 [Li1] | · · · | @in [Lin] ,

for Id = {i1, . . . , in}. The Li, for each i ∈ Id , are local languages, defined by

Li ::= Propi | ¬Li | Li ⇒Li | Li U Li | Li S Li | c©j [Lj] ,

with j ∈ Id . A global formula @i[ϕ] means that ϕ holds for agent i. Local formulas,
as the name indicates, hold locally for the different agents. For instance, locally for
an agent i, the operators U and S are the usual (strong) until and since temporal
operators, respectively, while the communication formula c©j [ψ] means that agent
i has just communicated (synchronized) with agent j, for whom ψ held.2 We will

use L6 c©
i to denote the set of all purely temporal formulas of Li, that is, excluding

communication formulas.
Other logical connectives (⊥, ⊤, conjunction, disjunction, etc.) and temporal

1In [1] we gave a labeled system for the future-only fragment of DTL.
2Note that the DTL syntax here differs slightly from the original presentation in [11]. Previously,

the operator c©i was overloaded with @i and its interpretation was therefore context dependent.

3

operators can be defined as abbreviations. For example:

Xϕ ≡ ⊥ U ϕ tomorrow (next)
Fϕ ≡ ⊤ U ϕ sometime in the future
F◦ ϕ ≡ ϕ ∨ Fϕ now or sometime in the future
Gϕ ≡ ¬F¬ϕ always in the future
G◦ ϕ ≡ ϕ ∧ Gϕ now and always in the future
ϕW ψ ≡ (Gϕ) ∨ (ϕ U ψ) weak until (unless)
Yϕ ≡ ⊥ S ϕ yesterday (previous)
Pϕ ≡ ⊤ S ϕ sometime in the past
P◦ ϕ ≡ ϕ ∨ Pϕ now or sometime in the past
Hϕ ≡ ¬P¬ϕ always in the past
H◦ ϕ ≡ ϕ ∧ Hϕ now and always in the past
ϕ B ψ ≡ (Hϕ) ∨ (ϕ S ψ) weak since (back to)
∗ ≡ H⊥ in the beginning
ϕ≫j ψ ≡ ϕ⇒ c©j [ψ] calling

Here we use the subscript ◦ to denote the reflexive versions of the operators. Note
also that calling is specific to DTL as it involves communication: @i[ϕ≫j ψ] means
that if ϕ holds for agent i then he calls (synchronizes with) agent j, for whom ψ must
hold.

A local life-cycle of agent i is a countable (finite or infinite), discrete, well-founded
total order λi = 〈Ei,≤i〉, where Ei is the set of local events and ≤i the local order of
causality. We define the corresponding local successor relation →i ⊆ Ei × Ei to be
the relation such that e→i e

′ if e <i e
′ and there is no e′′ such that e <i e

′′ <i e
′. As

a consequence, we have that ≤i = →∗
i , i.e., ≤i is the reflexive and transitive closure

of →i.
A distributed life-cycle is a family λ = {λi}i∈Id of local life-cycles such that ≤

= (
⋃

i∈Id
≤i)

∗ defines a partial order of global causality on the set of all events
E =

⋃

i∈Id
Ei. Note that communication is modeled by event sharing and thus for

some event e we may have e ∈ Ei ∩ Ej , for i 6= j. In that case, requiring ≤ to be a
partial order amounts to requiring that the local orders are globally compatible. This
excludes the existence of another e′ ∈ Ei ∩ Ej , where both e <i e

′ and e′ <j e.
A local state of agent i is a finite set ξ ⊆ Ei that is downward-closed for local

causality, that is, if e ≤i e′ and e′ ∈ ξ then also e ∈ ξ. The set Ξi of all local states
of an agent i is totally ordered by inclusion and has ∅ as the minimal element. In
general, each non-empty local state ξ of agent i is reached, by the occurrence of an
event that we call lasti(ξ), from the local state ξ \ {lasti(ξ)}. The local states of each
agent are totally ordered as a consequence of the total order on local events. Since
they are discrete and well-founded, we enumerate them as follows: ∅ is the 0th state;
{e}, where e is the minimum of 〈Ei,≤i〉, is the first state; and, in general, if ξ is the
kth state of agent i and lasti(ξ) →i e

′, then ξ ∪ {e′} is the (k + 1)th state of agent
i. We denote by ξki the kth state of agent i. Note that ξ0i = ∅ is the initial state
and ξki is the state reached from the initial state after the occurrence of the first k
events. In fact, ξki is the only state of agent i that contains k elements, i.e., where
|ξki | = k. Given e ∈ Ei, observe that (e↓ i) = {e′ ∈ Ei | e′ ≤i e} is always a local state.
Furthermore, if ξ is non-empty, then (lasti(ξ)↓ i) = ξ.

An interpretation structure µ = 〈λ, σ〉 consists of a distributed life-cycle λ and

4

i e1 // e4 // e5 // e8 // . . .

j e2 // e4 // e7 // e8 // . . .

k e3 // e4 // e6 // e7 // e9 // . . .

Figure 1: A distributed life-cycle for agents i, j and k.

σi(∅) // σi({e1}) // σi({e1, e4}) // σi({e1, e4, e5}) // . . .

Figure 2: The progress of agent i.

a family σ = {σi}i∈Id of labeling functions. For each i ∈ Id , σi : Ξi → ℘(Propi)
associates a set of local state propositions to each local state. We denote 〈λi, σi〉 by
µi and define the global satisfaction relation by

• µ
DTL @i[ϕ] iff µi
i ϕ iff µi, ξ
i ϕ for every ξ ∈ Ξi,

where the local satisfaction relations at local states are defined by

• µi, ξ
i p if p ∈ σi(ξ);

• µi, ξ
i ¬ϕ if µi, ξ 6
i ϕ;

• µi, ξ
i ϕ⇒ ψ if µi, ξ 6
i ϕ or µi, ξ
i ψ;

• µi, ξ
i ϕUψ if |ξ| = k and there exists ξni ∈ Ξi such that k < n with µi, ξ
n
i
i ψ,

and µi, ξ
m
i
i ϕ for every k < m < n;

• µi, ξ
i ϕSψ if |ξ| = k and there exists ξni ∈ Ξi such that n < k with µi, ξ
n
i
i ψ,

and µi, ξ
m
i
i ϕ for every n < m < k;

• µi, ξ
i c©j [ϕ] if |ξ| > 0, lasti(ξ) ∈ Ej , and µj , (lasti(ξ)↓j)
j ϕ.

We say that µ is a model of Γ ⊆ LDTL if µ globally satisfies every formula in Γ, and
given δ ∈ LDTL we say that Γ entails δ, written Γ �DTL δ, if every global model of
Γ is also a model of δ. Given Φ ∪ {ψ} ⊆ Li, we write Φ �i ψ to denote the fact
that every local model of Φ is also a model of ψ, or equivalently, that {@i[ϕ] | ϕ ∈
Φ} �DTL @i[ψ].3

Figure 1 illustrates the notion of a distributed life-cycle, where each row comprises
the local life-cycle of one agent. In particular, Ei = {e1, e4, e5, e8, . . . } and →i cor-
responds to the arrows in i’s row. We can think of the occurrence of the event e1 as
leading agent i from its initial state ∅ to the state {e1}, and then of the occurrence
of the event e4 as leading to state {e1, e4}, and so on; the state-transition sequence
of agent i is displayed in Figure 2. Shared events at communication points are high-
lighted by the dotted vertical lines. Note that the numbers annotating the events are
there only for convenience since no global total order on events is in general imposed.

3Note that we employ a floating temporal semantics, as opposed to a semantics anchored at the
initial state. This is not a restriction since we can express the local initial states using ∗.

5

ξ

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

i e1
ϕ

// e4
¬ϕ

// e5
ϕ

// e8
ϕ

// . . .

j e2
ψ

// e4
ψ

// e7
ψ

// e8
c©i[ϕ]

// . . .

Figure 3: Satisfaction of formulas.

Figure 3 illustrates the satisfaction relation with respect to communication formu-
las. Clearly, µj , ∅
j ψU c©i[ϕ], because µj , {e2, e4, e7, e8}
j c©i[ϕ] and all intermedi-
ate states of j satisfy ψ. However, µj , {e2, e4} 6
j c©i[ϕ], although µi, {e1, e4, e5}
i ϕ
and ξ = {e1, e2, e4, e5} constitutes a “global state” compatible with the local state
{e1, e4, e5} of i and {e2, e4} of j. Note that global states are not necessary in this
paper; for more details about them see, for instance, [11].

As expected, one can extend the satisfaction relation to derived operators by using
their corresponding abbreviations. In particular, the following are the satisfaction
conditions for the most common temporal operators:

• µi, ξ
i Fϕ if |ξ| = k and there exists ξni ∈ Ξi such that k < n with µi, ξ
n
i
i ϕ;

• µi, ξ
i Pϕ if |ξ| = k and there exists ξni ∈ Ξi such that n < k with µi, ξ
n
i
i ϕ;

• µi, ξ
i Gϕ if |ξ| = k and µi, ξ
n
i
i ϕ for every ξni ∈ Ξi such that k < n;

• µi, ξ
i Hϕ if |ξ| = k and µi, ξ
n
i
i ϕ for every ξni ∈ Ξi such that n < k;

• µi, ξ
i Xϕ if |ξ| = k, ξk+1
i ∈ Ξi exists and µi, ξ

k+1
i
i ϕ;

• µi, ξ
i Yϕ if |ξ| = k > 0 and µi, ξ
k−1
i
i ϕ;

• µi, ξ
i ϕW ψ if |ξ| = k and µi, ξ
n
i
i ϕ for every ξni ∈ Ξi with k < n; or there

exists ξni ∈ Ξi such that k < n with µi, ξ
n
i
i ψ, and µi, ξ

m
i
i ϕ for every

k < m < n;

• µi, ξ
i ϕ B ψ if |ξ| = k and µi, ξ
n
i
i ϕ for every ξni ∈ Ξi with n < k; or there

exists ξni ∈ Ξi such that n < k with µi, ξ
n
i
i ψ, and µi, ξ

m
i
i ϕ for every

n < m < k.

For instance, the formula @i[p ⇒ F c©j [X q]] holds in a model if whenever the
proposition p holds locally at a state of agent i then there must be a future state of
agent i where he has just synchronized with agent j, for whom q will hold in the next
state.

Note that, as is well known, the expressive power of the set of operators {U, S} is
identical to the set {F,P,X,Y,G,H,W,B} since

ϕ U ψ ≡ (Fψ) ∧ (ϕW ψ) and ϕ S ψ ≡ (Pψ) ∧ (ϕ B ψ) .

6

2.2 Decidability and trace-consistency of DTL via LTL

It is not difficult to show, as suggested in [11], that DTL is decidable by a translation
to LTL. An LTL signature is simply a set Prop of propositional symbols and the
language LLTL is defined by the grammar

LLTL ::= Prop | ¬LLTL | LLTL ⇒LLTL | LLTL U LLTL | LLTL S LLTL .

Note that, excluding communication formulas, local DTL formulas coincide with LTL
formulas. That is, LLTL = L6 c©

i provided that Prop = Propi. The usual interpretation
structure for LTL is a map τ : N0 → ℘(Prop), where we write N0 to denote the natural
numbers with 0. We also use N to denote N0 \ {0}. The satisfaction of LTL formulas
by τ is defined as for local DTL formulas. That is, if we define λi = 〈Ei,≤i〉 = 〈N,≤〉
then we have as local states Ξi = {ξ0i , ξ

1
i , ξ

2
i , ξ

3
i , . . . } = {∅, {1}, {1, 2}, {1, 2, 3}, . . .}.

Letting σi(ξ
k
i) = τ(k), we define τ, k
LTL ϕ if µi, ξ

k
i
i ϕ, and τ
LTL ϕ if µi
i ϕ.

The entailment relation �LTL is defined similarly.
Given a DTL signature Σ = 〈Id ,Prop〉, we define the corresponding LTL signature

Prop = {@i | i ∈ Id} ∪
⊎

i∈Id
Propi. In the following, we assume that the element

p ∈ Propi is represented in Prop by pi. The translation of global formulas is then
given by the function α : LDTL → LLTL such that

• α(@i[ϕ]) = @i⇒ αi(ϕ),

and for each i ∈ Id , the function αi : Li → LLTL translates local formulas to LTL
formulas as follows:

• αi(p) = pi;

• αi(¬ϕ) = ¬αi(ϕ);

• αi(ϕ⇒ ψ) = αi(ϕ) ⇒ αi(ψ);

• αi(ϕ U ψ) = (@i⇒ αi(ϕ)) U (@i ∧ αi(ψ));

• αi(ϕ S ψ) = (@i⇒ αi(ϕ)) S (@i ∧ αi(ψ));

• αi(c©j [ϕ]) = @j ∧ αj(ϕ).

We first observe that entailment in DTL is preserved by this translation.

Lemma 1 Let Γ∪{δ} ⊆ LDTL. If Γ �DTL δ then α(Γ)∪{∗⇒ (
∧

i∈Id
@i)} �LTL α(δ).

Proof We translate into DTL all the LTL interpretations τ that satisfy the property
(∗ ⇒ (

∧

i∈Id
@i)), that is, τ must be such that {@i | i ∈ Id} ⊆ τ(0). Consider the

map β from LTL interpretation structures to DTL interpretation structures such that
β(τ) = 〈λ, σ〉, with λi = 〈Ei,≤i〉, where:

• Ei = {n ∈ N |@i ∈ τ(n)};

• ≤i is the restriction of the usual order on N, with n →i m if n,m ∈ Ei and
there is no k ∈ Ei such that n < k < m;

• σi(∅) = {p ∈ Propi | pi ∈ τ(0)} and σi({m ∈ Ei |m ≤ n}) = {p ∈ Propi | pi ∈
τ(n)}, for each n ∈ Ei.

7

λj :

λi :

τ : 0

@i

@j

1

1

1

@i

@j

2

2

@i

3

3

@j

4

5

5

@i

6

6

6

@i
@j

· · ·

· · ·

· · ·// // // // // // //

// // // //

// // //

β

��

Figure 4: Translating τ to λi and λj .

In this proof, we will assume that lasti(∅) = 0. We start by showing that for ϕ ∈ Li,
β(τ)i, ξ

k
i
i ϕ if and only if τ, lasti(ξ

k
i)
LTL αi(ϕ), for every ξki ∈ Ξi. The proof

follows by induction on ϕ. If ϕ is a propositional symbol p, then β(τ)i, ξ
k
i
i p iff p ∈

σi(ξ
k
i) iff pi ∈ τ(lasti(ξ

k
i)) iff τ, lasti(ξ

k
i)
LTL αi(p). The propositional connectives

are also straightforward. Assume that τ, lasti(ξ
k
i)
LTL αi(ϕUψ). Then, there exists

n′ > lasti(ξ
k
i) such that τ, n′

LTL @i ∧ αi(ψ). Hence n′ ∈ Ei, (n′ ↓ i) = ξni for some
n > k, and so lasti(ξ

n
i) = n′. Therefore, by the induction hypothesis, β(τ)i, ξ

n
i
i ψ.

Moreover, τ,m′

LTL @i⇒ αi(ϕ) for every m′ such that lasti(ξ

k
i) < m′ < n′. Given

k < m < n, we have that lasti(ξ
k
i) < lasti(ξ

m
i) < lasti(ξ

n
i) = n′. Moreover, since

lasti(ξ
m
i) ∈ Ei, it follows that τ, lasti(ξ

m
i)
LTL @i. Since we have τ, lasti(ξ

m
i)
LTL

αi(ϕ), using the induction hypothesis, we then also have that β(τ)i, ξ
m
i
i ϕ. We can

conclude that β(τ)i, ξ
k
i
i ϕ U ψ. The converse is similar, and so is the proof for S.

Finally, assume that β(τ)i, ξ
k
i
i c©j [ϕ]. Then lasti(ξ

k
i) ∈ Ej and β(τ)i, last(ξki) ↓

j
j ϕ. By the induction hypothesis, τ, lastj(lasti(ξ
k
i) ↓ j)
LTL αj(ϕ). Furthermore,

lastj(lasti(ξ
k
i) ↓ j) = lasti(ξ

k
i) ∈ Ej so @j ∈ τ(lasti(ξ

k
i)), that is, τ, lasti(ξ

k
i)
LTL @j.

Hence τ, lasti(ξ
k
i)
LTL @j ∧ αj(ϕ), i.e, τ, lasti(ξ

k
i)
 αi(c©j[ϕ]). Once again, the

converse is similar.
Now it is straightforward to conclude that, for every γ ∈ LDTL, β(τ)
DTL γ if

and only if τ
LTL α(γ). Assume that β(τ) 6
DTL @i[ϕ]. Then there is a ξki such
that β(τ)i, ξ

k
i 6
i ϕ. By the previous result, it follows that τ, last(ξki) 6
LTL αi(ϕ).

We also know that τ, last(ξki)
LTL @i. Hence τ, last(ξki) 6
LTL @i ⇒ αi(ϕ), i.e.
τ, last(ξki) 6
LTL α(@i[ϕ]). Hence τ 6
LTL α(@i[ϕ]). Conversely, assume that τ 6
LTL

α(@i[ϕ]). Then there is an n ∈ N0 such that τ, n 6
LTL @i⇒ αi(ϕ), i.e. τ, n
LTL @i
and τ, n 6
LTL αi(ϕ). From the first condition, it follows that either n = 0, in which
case we postulate that (0 ↓ i) = ∅, or n ∈ Ei and so lasti(n ↓ i) = n. Once again, by
the previous result, it follows that β(τ)i, n↓ i 6
i ϕ. Hence β(τ) 6
DTL @i[ϕ].

The result now follows. Assume that Γ �DTL δ and let τ be an LTL model
satisfying α(Γ) ∪ {∗ ⇒ (

∧

i∈Id
@i)}. Then we know that β(τ)
DTL Γ and thus

also β(τ)
DTL δ. Therefore, τ
LTL α(δ) and we can conclude that α(Γ) ∪ {∗ ⇒
(
∧

i∈Id
@i)} �LTL α(δ). �

In Figure 4, we illustrate this translation with a simple example where the LTL
interpretation τ is translated into the life-cycles λi and λj .

8

We now show that entailment in DTL is also reflected by the translation.

Lemma 2 Let Γ∪{δ} ⊆ LDTL. If α(Γ)∪{∗⇒ (
∧

i∈Id
@i)} �LTL α(δ) then Γ �DTL δ.

Proof We now translate interpretation structures in the opposite direction. Given a
DTL interpretation structure µ it is always possible to linearize its underlying global
order on events 〈E,≤〉. That is, one can define an injective function f : E → N that
preserves the global causality relation, i.e., if e < e′ then f(e) < f(e′). We follow [2],
for instance.

For each DTL interpretation structure µ and linearization f of 〈E,≤〉, we define
an associated LTL interpretation structure τµ,f by

τµ,f (n) =











{@i, pi | i ∈ Id , p ∈ σi(∅)} if n = 0 ,

{@i, pi | e ∈ Ei, p ∈ σi(e↓ i)} if f(e) = n ,

∅ if 0 < n 6∈ f(E) .

Observe that, by construction, τµ,f is a model of (∗⇒ (
∧

i∈Id
@i)).

By a simple inductive argument, similar to the one in the previous lemma, we also
have that, for every ϕ ∈ Li, τµ,f , f(lasti(ξi))
LTL αi(ϕ) if and only if µi, ξi
i ϕ.
This implies that, for every γ ∈ LDTL, τµ,f
LTL α(γ) if and only if µ
DTL γ.

Assume now that α(Γ)∪{∗⇒ (
∧

i∈Id
@i)} �LTL α(δ) and let µ be a DTL model of

Γ. Then, we have that τµ,f
LTL α(Γ)∪{∗⇒(
∧

i∈Id
@i)} and therefore τµ,f
LTL α(δ).

Hence, µ
DTL δ and we can conclude that Γ �DTL δ. �

Putting the two previous lemmas together, we have:

Corollary 3 Let Γ ∪ {δ} ⊆ LDTL. Then

Γ �DTL δ if and only if α(Γ), (∗ ⇒ (
∧

i∈Id
@i)) �LTL α(δ).

As a consequence, since LTL is decidable (see [3], for instance), any decision pro-
cedure for LTL can also be used for DTL. The asymptotic complexity is identical
since our syntactic translation function α is polynomial. The result is actually in-
dependent of the chosen linearization function f and in general there may be many
such functions. This means that DTL is trace-consistent in the precise sense of [35].
Namely, DTL properties can be checked by considering one arbitrary linearization
of the distributed model, as opposed to checking all possible linearizations. This
fact makes DTL properties particularly well-suited for efficient model checking using
partial-order reduction techniques [25], which has been explored in [12].

3 Tableaux for local reasoning

3.1 The local tableaux system

We first present a labeled tableaux system for reasoning locally at each agent. This
essentially amounts to a labeled tableaux system for full discrete LTL with the until
and since operators, which is, to our knowledge, a novelty. As defined in the previous
section, we can use the set {U, S} as a complete set of operators for our logic. However,

9

for simplicity and readability of the tableaux rules of our system, we will instead take
the operators F,P,G,H,X,Y,W and B as primitive. In this context, as noted above,
the strong versions of until and since can be seen as derived operators.

From now on, we consider fixed a distributed signature Σ. Our tableaux for local
reasoning will handle four kinds of local judgments for each agent i ∈ Id : labeled local
formulas (excluding communication), equality between labels, inequality between la-
bels, and a special judgment indicating absurdity. Labels will denote the local states
of agents. To define the language of labels, for the given signature Σ, we assume fixed
a family V = {Vi}i∈Id of sets of label variables and also use a family F = {Fi}i∈Id of
sets of Skolem function symbols defined as follows:

Fi = {fϕWψ | ϕ, ψ ∈ L6 c©
i } ∪ {f¬(ϕWψ) | ϕ, ψ ∈ L6 c©

i } ∪

{fϕBψ | ϕ, ψ ∈ L6 c©
i } ∪ {f¬(ϕBψ) | ϕ, ψ ∈ L6 c©

i } .

The syntax of local labels of agent i ∈ Id is defined by

Ti ::= N0 | V i + Z | Fi(Ti) + Z ,

Si ::= (i, Ti) .

Labels involving the Skolem function symbols will be used in the tableaux to guar-
antee the existence of certain local states associated with the satisfaction of formulas
involving the weak until and since operators. Although the use of fresh variables
suffices in some cases, until and since, as well as their negations, may all require the
existence of states in the model with specific properties. This fact makes the use of
the Skolem functions an essential ingredient of our system. We write v to denote an
arbitrary label variable, x, y, and z to denote arbitrary label terms, and si to denote
an arbitrary element of Si. We abbreviate x+ 0 as x. Moreover, for c ∈ N, we write
x− c instead of x+ (−c), as usual.

The syntax of local judgments for each agent i can now be defined by

Ji ::= Si : L6 c©
i | Si = Si | Si < Si | closed .

When convenient, we write si < s′i < s′′i instead of si < s′i and s′i < s′′i . The
intended meaning of a labeled formula (i, x) : ϕ is that ϕ holds at the local state
(denoted by) x of agent i. Equalities and inequalities of local labels of agent i are
interpreted directly over the causality ordering. To make this formal, we extend
our notion of interpretation structure with information concerning labels. We will
interpret labels as natural numbers in such a way that the interpretation of a given
local label identifies, by its value, the local state of the corresponding agent. An
assignment on label variables is a family ρ = {ρi}i∈Id of functions ρi : Vi → N0. We
also need to consider a fixed interpretation structure µ. The denotation of labels over
µ and ρ, for each agent i ∈ I, in symbols [[·]]µ,ρ : Si → N0, is then defined as the
following partial function

• [[(i, k)]]µ,ρ = k;

• [[(i, v)]]µ,ρ = ρi(v);

• [[(i, fϕWψ(x))]]µ,ρ = n provided that

10

si : ¬¬ϕ
si : ϕ (¬¬)

si : ϕ si : ¬ϕ
closed

(Abs)
si : ϕ⇒ ψ

si : ¬ϕ | si : ψ
(⇒)

si : ¬(ϕ⇒ ψ)

si : ϕ , si : ¬ψ
(¬⇒)

Figure 5: Rules for the logical connectives.

– [[(i, x)]]µ,ρ is defined;

– n > [[(i, x)]]µ,ρ is the least number, if it exists, such that

∗ ξni ∈ Ξi and µi, ξ
n
i
i ψ;

∗ µi, ξ
k
i
i ϕ, for every k such that [[(i, x)]]µ,ρ < k < n;

• [[(i, f¬(ϕWψ)(x))]]µ,ρ = n, provided that

– [[(i, x)]]µ,ρ is defined;

– n > [[(i, x)]]µ,ρ is the least number, if it exists, such that

∗ ξni ∈ Ξi, µi, ξ
n
i 6
i ϕ and µi, ξ

n
i 6
i ψ;

∗ µi, ξ
k
i 6
i ψ, for every k such that [[(i, x)]]µ,ρ < k < n;

• [[(i, fϕBψ(x))]]µ,ρ = n, provided that

– [[(i, x)]]µ,ρ is defined;

– n < [[(i, x)]]µ,ρ is the greatest number, if it exists, such that

∗ ξni ∈ Ξi and µi, ξ
n
i
i ψ;

∗ µi, ξ
k
i
i ϕ, for every k such that n < k < [[(i, x)]]µ,ρ;

• [[(i, f¬(ϕBψ)(x))]]µ,ρ = n, provided that

– [[(i, x)]]µ,ρ is defined;

– n < [[(i, x)]]µ,ρ is the greatest number, if it exists, such that

∗ ξni ∈ Ξi, µi, ξ
n
i 6
i ϕ and µi, ξ

n
i 6
i ψ;

∗ µi, ξ
k
i 6
i ψ, for every k such that n < k < [[(i, x)]]µ,ρ.

• [[(i, x+k)]]µ,ρ = [[(i, x)]]µ,ρ+k, provided that [[(i, x)]]µ,ρ is defined and [[(i, x)]]µ,ρ+
k ≥ 0.

For simplicity, when [[(i, x)]]µ,ρ depends only on ρi, we write ρi(x).
One reason why the denotation of labels is partial is that we do not consider

negative values. This is unproblematic as the labels appearing in our tableaux will
always denote non-negative values. A second reason for the partiality is due to the
interpretation of the Skolem functions. The interpretation of the function symbols
for negated until and since, that is f¬(ϕWψ) and f¬(ϕBψ), is defined depending on the
satisfaction of the corresponding formulas ¬(ϕW ψ) and ¬(ϕ B ψ), in which case the
interpretations will have the value of the first state in the future, or respectively in
the past, where ϕ does not hold. The interpretation of the function symbols for until
and since, that is fϕWψ and fϕBψ, do not mimic the satisfaction of the corresponding
formulas so closely. Actually, it is enough for our purposes that they are only defined
under the assumption that ϕ does not hold forever (in the future or in the past,

11

respectively). In this case, their interpretations will take the value of the first state
where ψ holds. In any case, the relevant labels of this form appearing in our tableaux
will always arise in contexts where their denotation is defined.

We can now define the satisfaction of local judgments of agent i at µ, given an
assignment ρ:

• µ, ρ
 si : ϕ if [[si]]µ,ρ is defined, ξ
[[si]]µ,ρ
i ∈ Ξi, and µi, ξ

[[si]]µ,ρ
i
i ϕ;

• µ, ρ
 si = s′i if [[si]]µ,ρ and [[s′i]]µ,ρ are both defined and [[si]]µ,ρ = [[s′i]]µ,ρ;

• µ, ρ
 si < s′i if [[si]]µ,ρ and [[s′i]]µ,ρ are both defined and [[si]]µ,ρ < [[s′i]]µ,ρ;

• µ, ρ 6
 closed.

Recall that ξ
[[si]]µ,ρ
i denotes the [[si]]

th
µ,ρ local state of agent i in µ. We can finally define

our tableaux for local reasoning.

Definition 4 The local tableaux system Ti for agent i ∈ Id, built over sets of local
judgments in Ji, consists of the rules shown in Figures 5–8.

We assume that the reader is familiar with standard terminology and notation for
tableaux, for example from [10]. As usual, a branch of a (possibly infinite) tableau is

• exhausted, if no more rules are applicable,

• closed, if it contains closed, and

• open, if it is exhausted but not closed.

A tableau is closed if all of its branches are closed. Moreover, any tableau whose root
is labeled by a given set of judgments Θ will be called a tableau for Θ. Note that we
will assume that Θ contains no Skolem function symbols, since these are meant to be
used only as an internal device of the tableaux system during proof construction.

The rules for the logical connectives in Figure 5 are straightforward. Figure 6
contains, in turn, the rules for the temporal operators. Most of them are standard
and simple to read. For instance, the rule (F) guarantees that in order for Fϕ to hold
at state x, there must exist a future state v where ϕ holds. In contrast, the rule (¬F)
concludes that if ¬Fϕ holds at state x, then ϕ cannot hold in any state y in the future
of x. The additional premise (i, y) : ψ is there to control the introduction of labeled
formulas. Mutatis mutandis, for the past, the same explanations apply to the rules (P)
and (¬P). The rules (G), (¬G), (H), and (¬H) are justified similarly. The rules (X)
and (Y) simply require the existence of a suitable next or previous state, respectively.
The rules (¬X) and (¬Y) follow a pattern similar to the ones above. Note however,
that the rules for the past-directed operators are not completely symmetric with
respect to their future-directed counterparts. This is because our models always have
an initial state, but may or may not be infinite to the future.

The rules for weak until and weak since follow closely the operators’ semantics.
However, some explanation is needed in order to clarify the use of the Skolem function
symbols. The rule (W1) splits the satisfaction of ϕ W ψ at state x into two cases:
either ϕ holds always in the future, or there is a future state fϕWψ(x) where ψ holds.
Of course this future state, which we have required to be the earliest possible, defines

12

(i, x) : Fϕ

(i, x) < (i, v) , (i, v) : ϕ
(F) [v fresh]

(i, x) : ¬Fϕ (i, x) < (i, y) (i, y) : ψ

(i, y) : ¬ϕ
(¬F)

(i, x) : Pϕ

(i, v) < (i, x) , (i, v) : ϕ
(P) [v fresh]

(i, x) : ¬Pϕ (i, y) < (i, x)

(i, y) : ¬ϕ
(¬P)

(i, x) : Gϕ (i, x) < (i, y) (i, y) : ψ

(i, y) : ϕ
(G)

(i, x) : ¬Gϕ

(i, x) < (i, v) , (i, v) : ¬ϕ
(¬G) [v fresh]

(i, x) : Hϕ (i, y) < (i, x)

(i, y) : ϕ
(H)

(i, x) : ¬Hϕ

(i, v) < (i, x) , (i, v) : ¬ϕ
(¬H) [v fresh]

(i, x) : Xϕ

(i, x+ 1) : ϕ
(X)

(i, x) : ¬Xϕ (i, x) < (i, y) (i, y) : ψ

(i, x+ 1) : ¬ϕ
(¬X)

(i, x) : Yϕ

(i, x− 1) : ϕ
(Y)

(i, x) : ¬Yϕ (i, 0) < (i, x)

(i, x− 1) : ¬ϕ
(¬Y)

(i, x) : ϕW ψ

(i, x) : Gϕ | (i, x) < (i, fϕWψ(x)) , (i, fϕWψ(x)) : ψ
(W1)

(i, x) < si < (i, fϕWψ(x))

si : ϕ , si : ¬ψ
(W2)

(i, x) : ¬(ϕW ψ)

(i, x) < (i, f
¬(ϕWψ)(x)) , (i, f

¬(ϕWψ)(x)) : ¬ϕ , (i, f
¬(ϕWψ)(x)) : ¬ψ

(¬W1)

(i, x) < si < (i, f
¬(ϕWψ)(x))

si : ¬ψ , si : ϕ
(¬W2)

(i, x) : ϕ B ψ

(i, x) : Hϕ | (i, fϕBψ(x)) < (i, x) , (i, fϕBψ(x)) : ψ
(B1)

(i, fϕBψ(x)) < si < (i, x)

si : ϕ , si : ¬ψ
(B2)

(i, x) : ¬(ϕ B ψ)

(i, f
¬(ϕBψ)(x)) < (i, x) , (i, f

¬(ϕBψ)(x)) : ¬ϕ , (i, f
¬(ϕBψ)(x)) : ¬ψ

(¬B1)

(i, f
¬(ϕBψ)(x)) < si < (i, x)

si : ¬ψ , si : ϕ
(¬B2)

Figure 6: Rules for the temporal operators.

together with x an interval where ϕ must hold. These requirements are then imposed
by the rule (W2), hence justifying the use of the Skolem function fϕWψ. The rules
for negated until (¬W1) and (¬W2) are similar. The same applies, symmetrically, to
the rules (B1), (B2), (¬B1), and (¬B2).

The rules in Figure 7 define the properties of the relations. Note that we use
θ(i, x) to denote any local judgment of agent i where x occurs as a subterm. The rule
(Pos) states that the values of the labels are either 0 or greater than 0. The rule
(Cong) expresses the congruence of =, that is, if two labels (i, x) and (i, y) denote
the same local state, then we may replace some occurrences of x by occurrences of y
in any judgment. Similarly, the rule (Refl) asserts the reflexivity of equality. With
the rule (Fill), we “fill down” the set of states: if (i, x) denotes a state and if (i, y)
is smaller than (i, x), then it should also denote a state (which we express by having

13

θ(i, x)

(i, x) = (i, 0) | (i, 0) < (i, x)
(Pos)

(i, x) = (i, y) θ(i, x)

θ(i, y)
(Cong)

θ(i, x)

(i, x) = (i, x)
(Refl)

si : ϕ s′i < si

s′i : ⊤
(Fill)

si : ϕ s′i : ¬ϕ

si < s′i | s′i < si
(Dif)

(i, x) < (i, y) θ(i, y + c)

(i, x) < (i, y + c)
(Mon) [c > 0]

(i, x) < (i, y) < (i, z)

(i, x) < (i, z − 1)
(DTrans)

θ(i, x+ 1)

(i, x) < (i, x+ 1)
(Succ)

(i, 0) < (i, x)

(i, x− 1) < (i, x)
(Pred)

(i, x) < (i, y) θ(i, y + c)

(i, x+ c) < (i, y + c)
(RShift) [c > 0]

(i, x) < (i, y) θ(i, x+ c)

(i, x+ c) < (i, y + c)
(LShift) [c < 0]

(i, x) < (i, x+ c)

closed
(NLoop) [c ≤ 0]

(i, x+ c) < (i, y) ∃∞c ≥ 0

closed
(Inf)

(i, x+ c) = (i, x+ c′)

closed
(Arith) [c 6= c′]

Figure 7: Rules for the relations.

truth hold there). With the rule (Dif), we force the labels of judgments containing
contradictory formulas to be distinct. The rule (Mon) is a form of transitivity, given
that y precedes y+c when c > 0. (DTrans) is discrete transitivity: if (i, x) is smaller
than (i, y) and (i, y) is smaller than (i, z), then (i, x) is also smaller than (i, z). In fact,
our rule is more specific and formalizes that (i, x) is actually smaller than (i, z − 1).
The rules (Succ) and (Pred) order successive states, under appropriate conditions.
(RShift) and (LShift) shift the precedence order along with addition, taking care
that no new states are introduced. The closure rule (NLoop) states that x cannot
precede x+ c when c ≤ 0. The rule (Inf) is an infinitary closure rule: if in a branch
there are infinitely many, distinct, non-negative constants that when added to (i, x)
denote a value smaller than (i, y), then that branch is closed. Finally, the closure rule
(Arith) expresses the fact that distinct arithmetic constants cannot be equal.

The rules in Figure 8 introduce controlled forms of trichotomy for the local order
relations. Note that they could all be replaced with one single rule expressing (full)
trichotomy between any two existing labels, namely

θ(i, x) θ(i, y)

(i, x) < (i, y) | (i, x) = (i, y) | (i, y) < (i, x)
(Tr) .

However, as this would increase branching in the tableaux, we opted for more con-
trolled forms, where we only use trichotomy when it is strictly necessary.

14

si : ¬Xϕ s′i < s′′i

si < s′i | si = s′i | s′i < si
(TrX)

si : ¬Fϕ s′i < s′′i

si < s′i | si = s′i | s′i < si
(TrF)

si : ¬Pϕ s′′i < s′i

si < s′i | si = s′i | s′i < si
(TrP)

si : Gϕ s′i < s′′i

si < s′i | si = s′i | s′i < si
(TrG)

si : Hϕ s′′i < s′i

si < s′i | si = s′i | s′i < si
(TrH)

(i, x) : ϕW ψ si < s′i

(i, x) < si | (i, x) = si | si < (i, x)
(TrW1)

(i, x) : ϕW ψ si < s′i

s′i < (i, fϕWψ(x)) | s′i = (i, fϕWψ(x)) | (i, fϕWψ(x)) < s′i
(TrW2)

(i, x) : ¬(ϕW ψ) si < s′i

(i, x) < si | (i, x) = si | si < (i, x)
(Tr¬W1)

(i, x) : ¬(ϕW ψ) si < s′i

s′i < (i, f
¬(ϕWψ)(x)) | s′i = (i, f

¬(ϕWψ)(x)) | (i, f
¬(ϕWψ)(x)) < s′i

(Tr¬W2)

(i, x) : ϕ B ψ s′i < si

(i, x) < si | (i, x) = si | si < (i, x)
(TrB1)

(i, x) : ϕ B ψ s′i < si

s′i < (i, fϕBψ(x)) | s′i = (i, fϕBψ(x)) | (i, fϕBψ(x)) < s′i
(TrB2)

(i, x) : ¬(ϕ B ψ) s′i < si

(i, x) < si | (i, x) = si | si < (i, x)
(Tr¬B1)

(i, x) : ¬(ϕ B ψ) s′i < si

s′i < (i, f
¬(ϕBψ)(x)) | s′i = (i, f

¬(ϕBψ)(x)) | (i, f
¬(ϕBψ)(x)) < s′i

(Tr¬B2)

Figure 8: Rules for trichotomy.

Note that the rules are not independent. For instance, one may obtain the rule
(Abs) using (Dif) and (NLoop). The rule (NLoop) can also be obtained from (Inf)
by infinitely many applications of (RShift) and (DTrans). The rules (Succ) and
(Arith) are interderivable using the other rules of the system. Also the rules for
G and H can be obtained from their corresponding abbreviations, using F and P,
respectively.

We illustrate the use of the tableaux system with several examples.

Example 5 We prove that the following formula is a theorem:

((ϕW ψ) ∧ X(¬ψ)) ⇒ Xϕ .

A closed tableau for the negation of this formula is depicted in Figure 14.

15

Example 6 Globally, the formula ϕ⇒ Xϕ states that whenever ϕ holds in a state,
then it will also hold in the next state. The usual induction schema for LTL guarantees
that ϕ⇒ Gϕ follows. This is confirmed by the closed Ti-tableau for {(i, 0) : G◦(ϕ⇒
Xϕ), (i, v) : ¬(ϕ⇒Gϕ)} depicted in Figure 15. Note that we write ∧ : G◦ to abbreviate
the unfolding of the definition of G◦ and the split of the two conjuncts. Note also the
dotted line labeled with (Inf) in the rightmost branch of the tableau abbreviates an
infinite branch built systematically to obtain an infinite ascending chain (i, v), (i, v +
1), (i, v + 2), . . . below (i, v′). Finally, note that we systematically use boxes to avoid
repeating sub-tableaux in the figures. For instance, the label T1 on the left stands
for the sub-tableau enclosed in the box called T1 on the right.

3.2 Soundness

We now proceed to establish the soundness and completeness of our tableaux system
Ti. We first prove soundness where, as usual, a rule is sound if every structure and
assignment that satisfies its premises also satisfies at least one of its conclusions,
modulo a free choice for fresh variables. Of course, a closure rule, that is, a rule
whose conclusion is closed, is sound if no model satisfies its premises.

Proposition 7 The rules of Ti are sound.

Proof Let µ be an arbitrary model and ρ an assignment. The rules for the logical
connectives are straightforward. For example:

(¬¬): If µ, ρ
 si : ¬¬ϕ, then µi, ξ
[[si]]µ,ρ
i
i ¬¬ϕ, which implies that µi, ξ

[[si]]µ,ρ
i
i

ϕ and so µ, ρ
 si : ϕ.

The proofs for the rules for the other connectives are similar. Let us consider now
the rules for the temporal operators. Given the symmetry between past and future
and the duality of some operators (like F and G), we present only the proof for some
of the rules.

(F): Assume that µ, ρ
 (i, x) : Fϕ. Then µi, ξ
[[(i,x)]]µ,ρ
i
i Fϕ. This implies that

there exists ξki ∈ Ξi, with [[(i, x)]]µ,ρ < k such that µi, ξ
k
i
i ϕ. As v is fresh, we

can assume that ρi(v) = k. Hence we have [[(i, v)]]µ,ρ = k, µ, ρ
 (i, x) < (i, v)
and µ, ρ
 (i, v) : ϕ.

(H): Assume that µ, ρ
 (i, x) : Hϕ and µ, ρ
 (i, y) < (i, x). Then µi, ξ
[[(i,x)]]µ,ρ
i
i

Hϕ and, as [[(i, y)]]µ,ρ < [[(i, x)]]µ,ρ, then µi, ξ
[[(i,y)]]µ,ρ
i
i ϕ. That is, µ, ρ

(i, y) : ϕ.

(X): Assume that µ, ρ
 (i, x) : Xϕ. Then µi, ξ
[[(i,x)]]µ,ρ
i
i Xϕ, which implies

that µi, ξ
[[(i,x)]]µ,ρ+1
i
i ϕ. But [[(i, x)]]µ,ρ + 1 = [[(i, x + 1)]]µ,ρ and hence µ, ρ

(i, x+ 1) : ϕ.

(¬Y): If µ, ρ
 (i, 0) < (i, x), that is 0 = [[(i, 0)]]µ,ρ < [[(i, x)]]µ,ρ, then [[(i, x −

1)]]µ,ρ = [[(i, x)]]µ,ρ − 1 and the local state ξ
[[(i,x−1)]]µ,ρ
i exists. Furthermore, if

µ, ρ
 (i, x) : ¬Yϕ, then it must be the case that µ, ρ
 (i, x− 1) : ¬ϕ.

16

(W1): Assume that µ, ρ
 (i, x) : ϕWψ. Then, µi, ξ
[[(i,x)]]µ,ρ
i
i ϕWψ and either (1)

µi, ξ
n
i
i ϕ for every ξni ∈ Ξi such that [[(i, x)]]µ,ρ < n or (2) there exists ξni ∈ Ξi

such that [[(i, x)]]µ,ρ < n with µi, ξ
n
i
i ψ and µi, ξ

m
i
i ϕ for every [[(i, x)]]µ,ρ <

m < n. In the first case, µi, ξ
[[(i,x)]]µ,ρ
i
i Gϕ and therefore µ, ρ
 (i, x) : Gϕ. In

the second case, we know that [[(i, fϕWψ(x))]]µ,ρ is defined to be the least such n.

In particular, [[(i, x)]]µ,ρ < [[(i, fϕWψ(x))]]µ,ρ and µi, ξ
[[(i,f

ϕWψ
(x))]]µ,ρ

i
i ψ. That
is, µ, ρ
 (i, x) < (i, fϕWψ(x)) and µ, ρ
 (i, fϕWψ(x)) : ψ.

(W2): Assume that µ, ρ
 (i, x) < si < (i, fϕWψ(x)). Then [[(i, fϕWψ(x))]]µ,ρ is
defined and [[(i, x)]]µ,ρ < [[si]]µ,ρ < [[(i, fϕWψ(x))]]µ,ρ. From the definition of
the interpretation of the Skolem symbols, it follows that µi, ξ

[[si]]µ,ρ
i ϕ, i.e.,
µ, ρ
 si : ϕ. Furthermore, [[(i, fϕWψ(x))]]µ,ρ is the least value greater than

[[(i, x)]]µ,ρ such that µi, ξ
[[(i,f

¬(ϕWψ)(x))]]µ,ρ

i
i ψ. Hence, µi, ξ
[[si]]µ,ρ 6
i ψ, i.e.,

µ, ρ
 si : ¬ψ.

(¬W1): Assume that µ, ρ
 (i, x) : ¬(ϕ W ψ). Then µi, ξ
[[(i,x)]]µ,ρ
i 6
i ϕ W ψ. In

particular, there exists n > [[(i, x)]]µ,ρ such that µi, ξ
n
i 6
i ϕ, and µi, ξ

m
i 6
i ψ

for [[(i, x)]]µ,ρ < m ≤ n. We know that [[(i, f¬(ϕWψ)(x))]]µ,ρ is defined to be
the least such n. Hence, [[(i, x)]]µ,ρ < [[(i, f¬(ϕWψ)(x))]]µ,ρ, i.e, µ, ρ
 (i, x) <
(i, f¬(ϕWψ)(x)). Furthermore, clearly, µ, ρ
 (i, f¬(ϕWψ)(x)) : ¬ϕ and µ, ρ

(i, f¬(ϕWψ)(x)) : ¬ψ.

(¬W2): Assume that µ, ρ
 (i, x) < si < (i, f¬(ϕWψ)(x)). Then [[(i, f¬(ϕWψ)(x))]]µ,ρ
is defined and [[(i, x)]]µ,ρ < [[si]]µ,ρ < [[(i, f¬(ϕWψ)(x))]]µ,ρ. From the definition of

the interpretation of the Skolem symbols, it follows that µi, ξ
[[si]]µ,ρ 6
i ψ, i.e.,

µ, ρ
 si : ¬ψ. Furthermore, [[(i, fϕWψ(x))]]µ,ρ is the least value greater than

[[(i, x)]]µ,ρ such that µi, ξ
[[(i,f

¬(ϕWψ)(x))]]µ,ρ

i 6
i ϕ. Hence, µi, ξ
[[si]]µ,ρ
i ϕ, i.e.,

µ, ρ
 si : ϕ.

We now turn to the rules for judgments about the relations and prove the sound-
ness of two of them. The remaining ones are mostly trivial.

(Dif): Assume that µ, ρ
 si : ϕ and µ, ρ
 s′i : ¬ϕ. Then µi, ξ
[[si]]µ,ρ
i
i ϕ and

µi, ξ
[[s′i]]µ,ρ
i 6
i ϕ. Hence ξ

[[si]]µ,ρ
i 6= ξ

[[s′i]]µ,ρ
i and, as Ξi is totally ordered, either

[[si]]µ,ρ < [[s′i]]µ,ρ or [[s′i]]µ,ρ < [[si]]µ,ρ, which implies that µ, ρ
 si < s′i or
µ, ρ
 s′i < si.

(Inf): [[(i, x)]]µ,ρ and [[(i, y)]]µ,ρ are natural numbers. Hence, there cannot be in-
finitely many distinct non-negative constants c such that [[(i, x)]]µ,ρ+c < [[(i, y)]]µ,ρ.

The soundness of the trichotomy rules is straightforward, given that the local orders
are trichotomic. �

3.3 Completeness

Before we establish completeness, we recall [26] some technical results about integer
constraints of the form x ≤ y, where (i, x) and (i, y) are local labels in Si. It is

17

clear that any such constraint is of the form u1 + n ≤ u2 + m, where u1 and u2

are either label variables, label terms whose head is a Skolem function, or 0. Let
A = {A1, A2, . . . } be a (possibly infinite) set of such constraints. The constraint
graph for A is a weighted, directed graph GA = 〈VA, EA〉 constructed as follows:

• VA = V(A)∪{0}, where V(A) is the set of variables V i and of label terms headed
by a Skolem function occurring in A;4

• EA = {u1
m−n
−→ u2 | u1 + n ≤ u2 +m ∈ A} ∪ {0

0
→ u | u ∈ V(A)}.

As notation, u1
c
→ u2 represents the directed edge (u1, u2) with weight c. Intu-

itively, this means that u1 is at most c larger than u2. Hence, for instance, edges of the

second kind, 0
0
→ u, express that 0 ≤ u+ 0, which is satisfied when u is non-negative,

i.e., a natural number. As usual, a path in a graph is a finite sequence of vertices
u1, . . . , un, where (ui, ui+1) is an edge, for all i such that 1 ≤ i ≤ n. The weight of a
path is the sum of the weights of its edges.

Proposition 8 A (possibly infinite) set of constraints A is satisfiable if and only if
for each non-zero node in GA, there exists a minimum-weight path in GA among all
the paths from 0 to that node.

Proof (⇒) Assume that A is satisfiable and consider an arbitrary path in GA from
0 to some u

0
c0→ u1

c1→ . . .
cn−1
→ un

cn→ u .

This corresponds to the constraints

0 ≤ u1 + c0
...

un−1 ≤ un + cn−1

un ≤ u+ cn .

Summing up both sides yields 0 ≤ u+ (c0 + · · ·+ cn−1 + cn). This means that, given
that the constraints are satisfiable, for each path from 0 to u with weight c, 0 ≤ u+ c
must hold. Assume now that there is no minimum-weight path from 0 to u. This
means that there is an infinite decreasing succession {ci}i∈N of integers such that
there is a path from 0 to u with weight ci, which means that 0 ≤ u + ci, for every
i ∈ N, which is clearly impossible. Hence there must be a minimum-weight path.

(⇐) Assume that, for every vertex u, there is a minimum-weight path from 0 to
u, and let δ(u) denote its weight. Obviously, δ(0) = 0. Let ρi(u) = −δ(u) for each
u. We claim that ρ is a satisfying assignment for all the constraints in A. Namely,
consider a constraint u1 + n ≤ u2 + m. There is an edge (with weight m − n) from
u1 to u2 and by the triangle inequality, δ(u2) ≤ δ(u1) + m − n. From the definition
of ρi, −ρi(u2) ≤ −ρi(u1) + m − n and therefore ρi(u1) + n ≤ ρi(u2) + m. Thus the
constraint is satisfied. �

4At this point, labels whose head is a Skolem function symbol are treated as if they were simply
variables.

18

We now show how integer constraints can help us establish the completeness of
our tableaux system. To begin with, observe that, in our tableaux, every judgment of
the form (i, x) < (i, y) can be equivalently stated as a constraint of the form x ≤ y−1.
Similarly, a judgment of the form (i, x) = (i, y) can be equivalently formalized as the
pair of constraints x ≤ y and y ≤ x. We then have the following two lemmas:

Lemma 9 Let A be the set of integer constraints extracted from an exhausted branch
of a Ti-tableau. Then A is satisfiable if and only if the branch is open.

Proof (⇒) Assume that the branch is closed by the rule (Inf). Hence, there are
labels (i, x), (i, y) ∈ Si and distinct non-negative constants {cn}n∈N such that x+cn <
y ∈ A. We can assume, without loss of generality, that the constants are ordered
increasingly. Furthermore, (i, x) is either (i, k) or (i, u + k). Similarly, (i, y) is either
(i, k′) or (i, u′ + k′). Let us consider just the case where (i, x) is (i, u + k) and (i, y)
is (i, u′ + k′). Hence, u + (k + cn) < u′ + k′ ∈ A, for every n ∈ N. By the rule
(LShift), u < u′ + (k′ − (k + cn)). Let c′n = k′ − (k + cn). Clearly, {c′n}n∈N is a
strictly decreasing succession of integers. By the rule (Pos), depending on whether u
is variable or a label headed by a Skolem function, either u = 0 ∈ A (and, by (Cong),
0 < u′ + c′n ∈ A) or 0 < u ∈ A (and, by (DTrans), 0 < u′ + (c′n − 1) ∈ A). In either
case, we may conclude that there is no minimum-weight path from 0 to u′, which
implies that A is not satisfiable. If the branch is closed by (NLoop) then this means
that there is a negative cycle in GA and so A is not satisfiable. Note that we need not
consider the case where the branch is closed by (Abs) as that rule can be obtained
from (Dif) and (NLoop), as we remarked above. The same applies to closing with
(Arith), although it is clear that A would then be impossible to satisfy.

(⇐) Assume that A is not satisfiable. Then there is a strictly decreasing succession
{cn}n∈N such that there is a path from 0 to some u with weight cn, which implies
that either 0 < u + (cn + 1) ∈ A or 0 = u + cn ∈ A. Clearly, equality can happen at
most once: if 0 = u+cn ∈ A and 0 = u+cm ∈ A with cn 6= cm then using (Cong) we
would have u + cn = u + cm ∈ A and we could close the branch using rule (Arith).
Thus, c0 − cn > 0 as {cn}n∈N is strictly decreasing and we can apply (RShift) so
that c0 − cn < u + c0 + 1 ∈ A for every n. By the rule (Inf), it follows that A is
closed. �

Lemma 10 Let A be the set of integer constraints extracted from an open branch of
a Ti-tableau. Let ρi be the assignment extracted from GA according to Proposition 8.
If ρi(u) = k then the branch contains either (i, u) = (i, k) or (i, k − 1) < (i, u).

Proof Note that by Lemma 9, A is satisfiable and so we can extract an assignment
ρi on variables and Skolem-headed labels that satisfies all the constraints in A. We
consider first the case where u is a variable or a Skolem-headed label. Furthermore,
assume also that k = 0. By (Pos), either u = 0 ∈ A or 0 < u ∈ A. But if 0 < u ∈ A
then, as ρi satisfies A, 0 < ρi(u), contradicting the initial assumption. Hence, we can
conclude that u = 0 ∈ A.

Assume now that k > 0 and that ρi(u) = k. Then there is a path from 0 to u
with weight −k. That is, there is a path in GA from 0 to u

0
c0→ u1

c1→ u2
c2→ . . .

cn→ u

19

such that
∑n

i=0 ci = −k. In fact, without loss of generality, we can assume that
∑p
i=0 ci < 0 for all p such that 0 ≤ p ≤ n. Hence, the following constraints must be

in A:
0 < u1 + c0 + 1

...
un−1 < un + cn−1 + 1
un < u+ cn + 1 .

Therefore, a simple inductive argument using (LShift) and (DTrans) allows us to
conclude that also 0 < u + (c0 + · · · + cn) + 1 ∈ A. If k − 1 > 0 then, by using
(RShift), we conclude that k − 1 < u ∈ A. If k − 1 = 0 then −k + 1 = 0 and the
result follows trivially.

The general result for labels follows from a direct application of the rules (RShift)
and (LShift). �

We can now prove completeness for the tableaux system Ti. Since the Skolem
function symbols are only used as an internal mechanism within our system, we will
assume that the initial set of judgments contains no Skolem functions.5

Proposition 11 Ti is complete, that is, a set of local judgments Θ without Skolem
functions is satisfiable if and only if there is a Ti-tableau for Θ with an open branch.

Proof If there is no open tableau for Θ then a simple inductive argument, using
Proposition 7, establishes the unsatisfiability of Θ. We now prove the converse. As-
sume that there is an open tableau for Θ and let ∆ be the set of judgments that
appear in an open branch (which include Θ). Note that ∆ is closed under the rules.

1. Let A be the set of linear constraints extracted from ∆. By Lemma 9, this
set is satisfiable and so, using Proposition 8, we can extract an assignment ρi
satisfying all linear constraints.

2. Let λi = 〈Ei,≤i〉 be defined as follows:

• Ei = {ρi(x) | (i, x) : ϕ ∈ ∆ and ρi(x) > 0};

• e ≤i e
′ is the usual order on N.

To continue the proof, we first establish an auxiliary lemma.

Lemma 12 If k ∈ Ei then there is some (i, x) : ϕ ∈ ∆ such that ρi(x) = k− 1.

Proof Assume that k ∈ Ei. Clearly we have that k > 0. Then there is some
(i, y) : ϕ ∈ ∆ such that ρi(y) = k and by Lemma 10, either k − 1 < y ∈ A or
y = k ∈ A. In the first case, by (Fill), (i, k − 1) : ⊤ ∈ ∆. In the second case,
as (i, k) > (i, 0) ∈ ∆, by (Pred) and (Cong), (i, k − 1) < (i, y) ∈ ∆ and once
again by (Fill), (i, k − 1) : ⊤ ∈ ∆. Hence choose (i, x) to be (i, k − 1). �

5Note that this requirement could be dropped if (1) we added additional constraints to the
graphs GA imposing the required ordering between labels whose heads are Skolem functions and
their subterms (e.g., stating that (i, si) < (i, fϕWψ(si))), and (2) we split each of the rules (W1),
(¬W1), (B1), and (¬B1) in two rules, one for introducing the Skolem symbols and one for introducing
their properties.

20

From this lemma, we may conclude that if k ∈ Ei and k > 1, then k − 1 ∈ Ei
and, furthermore, 〈Ei,≤i〉 is a countable, discrete, well-founded total order.
Local states are of the form {1, . . . , e}. We consider any distributed interpre-
tation structure µ such that µi = 〈λi, σi〉, where σi(∅) = {p | (i, x) : p ∈
∆ and ρi(x) = 0} and σi({1, . . . , e}) = {p | (i, x) : p ∈ ∆ and ρi(x) = e}. We
also fix any compatible distributed assignment ρ.

3. We show that µ, ρ
 (i, x) : ϕ for every (i, x) : ϕ ∈ ∆. Simultaneously, we must
also prove that ρi(f(z)) = [[(i, f(z))]]µ,ρ, for every Skolem function symbol f .
We will push the proof of this later fact to the application of the until and since
rules, as we assume that no Skolem functions appear in Θ. The proof follows
by induction on ϕ. If x : p ∈ ∆, then the result follows by construction. If
(i, x) : ¬ p ∈ ∆, then, by (Abs), (i, x) : p 6∈ ∆. If (i, y) : p ∈ ∆ then, by (Dif),
either (i, x) < (i, y) ∈ ∆ or (i, y) < (i, x) ∈ ∆. In either case, we can conclude

that p 6∈ σi([[(i, x)]]µ,ρ), i.e., µi, ξ
[[(i,x)]]µ,ρ
i
i ¬ p and so µ, ρ
 (i, x) : ¬ p. The

proof for implication, negated implication, and double negation follows by the
induction hypothesis.

Assume that x : Fψ ∈ ∆. Then by the rule (F), (i, v) : ψ ∈ ∆ and (i, x) <
(i, v) ∈ ∆. By the induction hypothesis, µ, ρ
 (i, v) : ψ and, since [[(i, x)]]µ,ρ <
[[(i, v)]]µ,ρ, then µ, ρ
 (i, x) : Fψ.

Assume that (i, x) : ¬ Fψ ∈ ∆. Let k ∈ Ei, such that [[(i, x)]]µ,ρ < k. (If
such a k does not exist, then the result follows immediately.) Then there is
some (i, y) : ϑ ∈ ∆ such that [[(i, y)]]µ,ρ = k. Hence, by Lemma 10, either
y = k ∈ A or k − 1 < y ∈ A. In the first case, using (Pred) and (Cong) we
also have k − 1 < y ∈ A. Using (TrF), then either (i, x) < (i, k − 1) ∈ ∆ or
(i, x) = (i, k − 1) ∈ ∆ or (i, k − 1) < (i, x) ∈ ∆. As A is satisfied by ρi, the
third case is excluded. If (i, x) < (i, k−1) ∈ ∆, then, by (DTrans) and (Mon),
(i, x) < (i, y) ∈ ∆. If (i, x) = (i, k−1) ∈ ∆, then, by (Cong), (i, x) < (i, y) ∈ ∆.
In each case, we may apply (¬F) to conclude that (i, y) : ¬ψ ∈ ∆. By the
induction hypothesis, µ, ρ
 (i, y) : ¬ψ, i.e., µi, ξ

k
i 6
i ψ for every k > [[(i, x)]]µ,ρ.

Hence µi, ξ
[[(i,x)]]µ,ρ
i 6
i Fψ and therefore µ, ρ
 (i, x) : ¬ψ.

Assume that (i, x) : Pψ ∈ ∆. Then by (P), (i, v) : ψ ∈ ∆ and (i, v) < (i, x) ∈ ∆.
By the induction hypothesis, µ, ρ
 (i, v) : ψ and since [[(i, v)]]µ,ρ < [[(i, x)]]µ,ρ
then µ, ρ
 (i, x) : Pψ follows.

Assume that (i, x) : ¬Pψ ∈ ∆. Furthermore, let k ∈ Ei such that k <
[[(i, x)]]µ,ρ. (If such a k does not exist, then the result follows immediately.) Then
there is some (i, y) : ϑ ∈ ∆ such that [[(i, y)]]µ,ρ = k. Hence, by Lemma 10, ei-
ther k − 1 < y ∈ A or y = k ∈ A. By an argument similar to (¬F), we
have k − 1 < y ∈ A. Applying (TrF), we have either (i, x) < (i, y) ∈ ∆ or
(i, x) = (i, y) ∈ ∆ or (i, y) < (i, x) ∈ ∆. The first two conditions are excluded
because A is satisfiable ([[(i, x)]]µ,ρ > k = [[(i, y)]]µ,ρ). Hence (i, y) < (i, x) ∈ ∆.
By (¬P), (i, y) : ¬ψ ∈ ∆ and by the induction hypothesis, µ, ρ
 (i, y) : ¬ψ,

i.e., µi, ξ
k
i 6
i ψ for every k < [[(i, x)]]µ,ρ. Hence µi, ξ

[[(i,x)]]µ,ρ
i 6
i Pψ, which

implies that µ, ρ
 (i, x) : ¬Pψ.

The proofs for G and H are similar to the ones above, given their corresponding
abbreviations.

21

Assume that (i, x) : Xψ ∈ ∆. Then using the rule (X), (i, x+1) : ψ ∈ ∆. By the
induction hypothesis, µ, ρ
 (i, x+ 1) : ψ, which implies that µ, ρ
 (i, x) : Xψ.

Assume that (i, x) : ¬Xψ ∈ ∆. If [[(i, x)]]µ,ρ is the maximum of Ei (if one
exists) then there is no successor and so µ, ρ
 (i, x) : ¬Xψ. Otherwise, there
is a k ∈ Ei such that [[(i, x)]]µ,ρ < k. As k ∈ Ei, there is some (i, y) : ϑ ∈ ∆
such that [[(i, y)]]µ,ρ = k. By Lemma 10, either y = k ∈ A or k− 1 < y ∈ A. By
an argument similar to the cases above, we may conclude that k − 1 < y ∈ A
anyway. Hence, by (TrX), either (i, x) < (i, k−1) ∈ ∆ or (i, x) = (i, k−1) ∈ ∆
or (i, k− 1) < (i, x) ∈ ∆. Once again, since A is satisfiable, the third possibility
is excluded. If (i, x) < (i, k − 1) ∈ ∆, we may apply (Fill) and (¬X). If
(i, x) = (i, k − 1) ∈ ∆, by (Cong), we have (i, x) < (i, y) ∈ ∆. Once again, we
may apply (¬X). In each case, we conclude that (i, x+1) : ψ ∈ ∆. Hence, by the
induction hypothesis, µ, ρ
 (i, x+1) : ψ, which implies that µ, ρ
 (i, x) : ¬Xψ.

Assume that (i, x) : Yψ ∈ ∆ then, by (Y), (i, x − 1) : ψ ∈ ∆. By the induction
hypothesis, µ, ρ
 (i, x− 1) : ψ and thus µ, ρ
 (i, x) : Yψ.

Assume that (i, x) : ¬Yψ ∈ ∆. By (Pos), either (i, x) = (i, 0) ∈ ∆ or (i, 0) <
(i, x) ∈ ∆. If (i, x) = (i, 0) ∈ ∆, since A is satisfiable, then [[(i, x)]]µ,ρ = 0 and

therefore µi, ξ
[[(i,x)]]µ,ρ
i 6
i Yψ. If (i, 0) < (i, x) ∈ ∆, then (¬Y) may be applied

and (i, x − 1) : ¬ψ ∈ ∆. By the induction hypothesis, µ, ρ
 (i, x − 1) : ¬ψ,
which implies that µ, ρ
 (i, x) : ¬Yψ.

Assume that (i, x) : ϕ W ψ ∈ ∆. Then, using the rule (W1), either (i, x) :
Gϕ ∈ ∆, or (i, x) < (i, fϕWψ(x)) ∈ ∆ and (i, fϕWψ(x)) : ψ ∈ ∆. In the first
case, it follows directly from the completeness for G that µ, ρ
 (i, x) : Gϕ,
and therefore µ, ρ
 (i, x) : ϕ W ψ. In the second case, we can conclude that
[[(i, x)]]µ,ρ < ρi(fϕWψ(x)). Furthermore, by the induction hypothesis, µ, ρ

(i, fϕWψ(x)) : ψ. Consider now k ∈ Ei such that [[(i, x)]]µ,ρ < k < ρi(fϕWψ(x)).
Then there is (i, y) : ϑ ∈ ∆ such that [[(i, y)]]µ,ρ = k. As before, using Lemma
10, (Pred) and (Cong) we can conclude that k − 1 < y ∈ A. Hence, using
(TrW1) either k − 1 < x ∈ A or k − 1 = x ∈ A or x < k − 1 ∈ A. Since
A is satisfiable, the first condition is excluded. If k − 1 = x ∈ A by (Cong),
we have (i, x) < (i, y) ∈ ∆. If x < k − 1 ∈ A then by (DTrans) and (Mon)
we have again (i, x) < (i, y) ∈ ∆. Using now (TrW2), we have that either
y < fϕWψ(x) ∈ A or y = fϕWψ(x) ∈ A or fϕWψ(x) < y ∈ A. Again, since A is
satisfiable, the last two conditions are excluded. Hence (i, y) < (i, fϕWψ(x)) ∈ ∆
and we may apply (W2) and conclude that (i, y) : ϕ ∈ ∆ and (i, y) : ¬ψ ∈ ∆.
By the induction hypothesis, µ, ρ
 (i, y) : ϕ and µ, ρ
 (i, y) : ¬ψ. From the
conditions on k, we may finally conclude that ρi(fϕWψ(x)) = [[(i, fϕWψ(x))]]µ,ρ
and µ, ρ
 (i, x) : ϕW ψ.

Assume now that (i, x) : ¬(ϕ W ψ) ∈ ∆. By the rule (¬W1), we have (i, x) <
(i, f¬(ϕWψ)(x)), (i, f¬(ϕWψ)(x)) : ¬ϕ, (i, f¬(ϕWψ)(x)) : ¬ψ ∈ ∆. Hence, we have
that [[(i, x)]]µ,ρ < ρi(f¬(ϕWψ)(x)). By the induction hypothesis, we also have that
µ, ρ
 (i, f¬(ϕWψ)(x)) : ¬ϕ and µ, ρ
 (i, f¬(ϕWψ)(x)) : ¬ψ. If k ∈ Ei is such
that [[(i, x)]]µ,ρ < k < ρi(f¬(ϕWψ)(x)), then by an argument similar to the case of
W, using now the trichotomy rules for ¬W, we can conclude that there is (i, z)
such that [[(i, z)]]µ,ρ = k and (i, x) < (i, z) < (i, f¬(ϕWψ)(x)) ∈ ∆. Then, by the
rule (¬W2), (i, z) : ϕ, (i, z) : ¬ψ ∈ ∆ and hence, by the induction hypothesis,

22

we have µ, ρ
 (i, z) : ϕ and µ, ρ
 (i, z) : ¬ψ. We may finally conclude that
ρi(f¬(ϕWψ)(x)) = [[(i, f¬(ϕWψ)(x))]]µ,ρ and µ, ρ
 (i, x) : ¬(ϕW ψ).

The proofs for B are analogous to those for W. �

As a consequence, we can reason about entailment in the logic:

Corollary 13 Given Φ ∪ {ψ} ∈ Li, Φ �i ψ if and only if every exhausted Ti-tableau
for {(i, 0) : G◦ ϕ | ϕ ∈ Φ} ∪ {(i, v) : ¬ψ} is closed.

Our previous examples also illustrate this. Example 5 proves that �i ((ϕW ψ) ∧
X(¬ψ)) ⇒ Xϕ. Moreover, the proof in Example 6 establishes that (ϕ ⇒ Xϕ) �i

(ϕ⇒ Gϕ).

4 Tableaux for global reasoning

4.1 The global tableaux system

Our aim now is to build a tableaux system T for full DTL by capitalizing on the local
tableaux systems for each agent i ∈ Id . To do so, we now introduce an additional kind
of global judgment : synchronization between labels. Labeled local formulas will also
be unrestricted, i.e., communication formulas are allowed. Of course, the language of
labels is now distributed, that is, if Id = {i1, . . . , in} then

S ::= Si1 | · · · | Sin .

Here, the local labels of each agent i ∈ Id are defined, as before, by

Ti ::= N0 | V i + Z | Fi(Ti) + Z ,

Si ::= (i, Ti) ,

but the Skolem symbols are extended to the full language, that is,

Fi = {fϕWψ | ϕ, ψ ∈ Li} ∪ {f¬(ϕWψ) | ϕ, ψ ∈ Li} ∪
{fϕBψ | ϕ, ψ ∈ Li} ∪ {f¬(ϕBψ) | ϕ, ψ ∈ Li} .

The syntax of global judgments can now be defined by

J ::= Ji1 | · · · | Jin | Si ⊲⊳ Sj ,

where the local judgments are extended to also incorporate communication formulas

Ji ::= Si : Li | Si = Si | Si < Si | closed .

The intended meaning of a synchronization judgment (i, x) ⊲⊳ (j, y) is that the
event leading to state x of agent i is synchronized with the event leading to state
y of agent j. Semantically, we require a distributed assignment on label variables
ρ = {ρi}i∈Id . The denotation of labels is defined as before, given an interpretation
structure µ. The satisfaction of judgments is also just extended with

23

(i, x) : c©j [ϕ]

(j, v) : ϕ , (i, x) ⊲⊳ (j, v)
(c©) [v fresh]

(i, x) : ¬ c©jϕ , (i, x) ⊲⊳ (j, y)

(j, y) : ¬ϕ
(¬ c©)

Figure 9: Rules for communication.

(i, x) ⊲⊳ (i, y)

(i, 0) < (i, x)
(Evt)

si ⊲⊳ sj

sj ⊲⊳ si
(Sym)

si ⊲⊳ s
′

i

si = s′i
(Self)

si ⊲⊳ sj sj ⊲⊳ sk
si ⊲⊳ sk

(Trans)
si ⊲⊳ sj s′i ⊲⊳ sk

si < s′i | si = s′i | s′i < si
(Tr ⊲⊳)

si1 ⊲⊳ si2 si2<s
′

i2
s′i2

⊲⊳ si3 si3<s
′

i3
. . . s′ip ⊲⊳ s

′

i1

si1<s
′

i1

(Order)

Figure 10: Rules for synchronization.

• µ, ρ
 si ⊲⊳ sj if ξ
[[si]]µ,ρ
i 6= ∅, ξ

[[sj]]µ,ρ
j 6= ∅, and lasti(ξ

[[si]]µ,ρ
i) = lastj(ξ

[[sj]]µ,ρ
j).

We can finally define our tableaux for global reasoning, which we then show to be
sound and complete.

Definition 14 The global tableaux system T for DTL, built over sets of global judg-
ments in J , consists of the rules of Ti for each agent i ∈ Id, together with the global
rules in Figures 9–10.

The rules for communication in Figure 9 closely follow the semantics. Consider,
for instance, the rule (c©): if agent i, in state x, just communicated with agent j, for
whom ϕ held, then the event leading to state x is synchronized with an event leading
to some state v of agent j, where ϕ holds (and where v is fresh). In a similar way, for
rule (¬ c©), if agent i in state x does not communicate with agent j in a state where
ϕ holds, but the event leading to x is synchronized with the event leading to some
state y of j, then it must be the case that ϕ cannot hold in y for j.

Figure 10 contains the rules for synchronization. Rule (Evt) guarantees that syn-
chronization is only possible in states following the initial state, given that the initial
state of an agent is not reached by an event. Rules (Sym) and (Trans) express the
symmetry and transitivity of the synchronization relation. Rule (Self) ensures that
self-synchronization is not allowed. Finally, rule (Tr ⊲⊳) applies trichotomy to any
two states of agent i involved in the synchronizations and rule (Order) guarantees
that local orders are globally compatible. If there is a chain of synchronizations link-
ing two events of agent i, then these two events preserve the ordering imposed by
the synchronization chain. For instance, assume that the events leading to states si
and s′i of agent i have just synchronized with the events leading to states sj and s′j
of agent j, respectively. Furthermore, assume that sj precedes s′j . Then this order
must be reflected in agent i and so si must precede s′i. This extends to more than
two agents in a straightforward way.

We illustrate the use of the tableaux system with a short example. More substan-
tial examples are given in Section 5.

24

. . .i // •
c©j [⊤]

. . . •
c©k[⊤]

// . . .

. . .j // •
c©i[⊤]

// •
c©k[⊤]

. . . // . . .

. . .k // •
c©j [⊤]

// •
c©i[⊤]

// . . .

Figure 11: A life-cycle for Example 15.

Example 15 To show

{@i[c©j [⊤] ⇒ c©j [X c©k[⊤]]],@j[c©k[⊤] ⇒ c©k[X c©i[⊤]]]} �DTL @i[c©j [⊤] ⇒ F c©k[⊤]]

it is enough (as will follow from the completeness result we give below) to build a
closed T -tableau for the corresponding judgments, as depicted in Figure 16 (where we
write Abs : ¬⊤ to abbreviate the closure of the unfolding of ¬⊤). Figure 11 shows
a possible life-cycle. The formula @i[c©j [⊤] ⇒ c©j [X c©k[⊤]]] expresses that if agent i
synchronizes with agent j then, in the next state (of j), agent j will synchronize with
agent k. Similarly, the formula @j [c©k[⊤] ⇒ c©k[X c©i[⊤]]] expresses that if agent j
synchronizes with agent k then, in the next state (of k), agent k will synchronize with
agent i. These two formulas entail that if agent i synchronizes with agent j then he
will eventually also synchronize with agent k. However, observe that synchronization
between agents i and k need not necessarily take place after two local state transitions
of agent i. Between the synchronization with j and the synchronization with k, agent
i might have changed state many times.

4.2 Soundness

We now proceed to establish the soundness and completeness of our tableaux system
Ti. We first prove the soundness of the rules.

Proposition 16 The rules of T are sound.

Proof The soundness of the rules of Ti, for each i ∈ Id , follows from Proposition 7.
To show the soundness of the communication and synchronization rules, let µ be an
arbitrary model and ρ an assignment.

(c©): Assume that µ, ρ
 (i, x) : c©j [ϕ]. Then µi, ξ
[[(i,x)]]µ,ρ
i
i c©j [ϕ]. Hence, we

have that lasti(ξ
[[(i,x)]]µ,ρ
i) ∈ Ej and µj , (lasti(ξ

[[(i,x)]]µ,ρ
i) ↓ j)
j ϕ. As v is

fresh, let ρj(v) be the number of the local state (lasti(ξ
[[(i,x)]]µ,ρ
i) ↓ j) of agent

j ∈ Id , that is, ξ
[[(j,v)]]µ,ρ
j = (lasti(ξ

[[(i,x)]]µ,ρ
i) ↓ j). Thus, µj , ξ

[[(j,v)]]µ,ρ
j
j ϕ,

i.e., µ, ρ
 (j, v) : ϕ. Furthermore, as lastj(ξ
[[(j,v)]]µ,ρ
j) = lastj((lasti(ξ

[[(i,x)]]µ,ρ
i)↓

j)) = lasti(ξ
[[(i,x)]]µ,ρ
i), then µ, ρ
 (i, x) ⊲⊳ (j, v).

The proof for (¬ c©) is similar. Let us now turn to the rules for synchronization.

25

(Evt): Assume that µ, ρ
 (i, x) ⊲⊳ (j, y). By definition, ξ
[[(i,x)]]µ,ρ
i 6= ξ0i = ∅.

Clearly, then, [[(i, x)]]µ,ρ 6= 0 and therefore [[(i, x)]]µ,ρ > [[(i, 0)]]µ,ρ = 0. Hence,
µ, ρ
 (i, 0) < (i, x).

(Order): Assume µ, ρ
 si1 ⊲⊳ si2 , si2 < s′i2 , s
′
i2

⊲⊳ si3 , si3 < s′i3 , . . . , s
′
ip

⊲⊳

si2 . It follows that [[si1]]µ,ρ, [[s
′
i1

]]µ,ρ, [[si2]]µ,ρ, [[s
′
i2

]]µ,ρ, . . . , [[sip]]µ,ρ, [[s
′
ip

]]µ,ρ 6= ∅,

and also [[si2]]µ,ρ < [[s′i2]]µ,ρ, . . . , [[sip]]µ,ρ < [[s′ip]]µ,ρ. Hence, lasti1(ξ
[[si1]]µ,ρ
i1

) =

lasti2(ξ
[[si2]]µ,ρ
i2

) < lasti2(ξ
[[s′i2]]µ,ρ

i2
) = · · · = lastip(ξ

[[sip]]µ,ρ
ip

) < lastip(ξ
[[s′ip]]µ,ρ

ip
) =

lasti1(ξ
[[s′i1]]µ,ρ
i1

). Since< is a partial order of global causality, we have lasti1(ξ
[[si1]]µ,ρ
i1

) <

lasti1(ξ
[[s′i1]]µ,ρ

i1
), which implies [[si1]]µ,ρ < [[s′i1]]µ,ρ. Therefore, µ, ρ
 si1 < s′i1 .

The soundness of the remaining rules is straightforward. �

4.3 Completeness

We can now prove the completeness of the T system. The proof follows the lines
taken above to show the completeness of Ti.

Proposition 17 T is complete, that is, a set of global judgments Θ without Skolem
functions is satisfiable if and only if there is a T -tableau for Θ with an open branch.

Proof Once again, if there is no open tableau for Θ, then by Proposition 16, Θ is
not satisfiable. Hence, let us assume that we have an open tableau for Θ and let ∆
be the set of judgments that appear in an open branch.

1. Let Ai be the set of linear constraints extracted from ∆ involving agent i. By
Proposition 8, each of these sets is satisfiable and these sets do not interact
with one another. Hence, we can extract an assignment ρ on label variables
satisfying all linear constraints.

2. For each i ∈ Id , let Fi = {(i, ρi(x))|(i, x) : ϕ ∈ ∆ and ρi(x) > 0} and F =
⋃

i∈Id
Fi. Define ≈ ⊆ F ×F to be the reflexive closure of the relation such that

(i, ρi(x)) ≈ (j, ρj(y)) if (i, x) ⊲⊳ (j, y) ∈ ∆. The rules (Sym) and (Trans) ensure
that ≈ is an equivalence relation. Let E = F/ ≈ and Ei = {e ∈ E | e∩ Fi 6= ∅}.
For every i ∈ Id , define ≤i⊆ Ei × Ei to be the relation such that e ≤i e′ if
there are (i, n), (i, n′) ∈ Fi such that (i, n) ∈ e, (i, n′) ∈ e′, and n ≤ n′, on the
natural numbers. It is not difficult to see that, with this construction, 〈Ei,≤i〉
is a local life-cycle (see Proposition 11 for details). Note that for every e ∈ E,
using (Self), |e∩Fi| ≤ 1. This means that there is at most one local event from
each individual in each global event e. Therefore, rule (Order) guarantees that
the induced global causality relation ≤ is indeed a partial order.

Let µ = 〈λ, σ〉, where each λi = 〈Ei,≤i〉 and σi are defined as in the local case.

3. Finally, we show that µ and ρ satisfy every judgment in ∆. The proof, by
induction, follows exactly the same pattern as the one for the local case: showing
that ρi(x) = [[(i, x)]]µ,ρ for every label x. We focus on the new judgments.

26

Assume that (i, x) : c©j [ϕ] ∈ ∆. Then, by rule (c©), (j, v) : ϕ ∈ ∆ and (i, x) ⊲⊳

(j, v) ∈ ∆. By the induction hypothesis, µ, ρ
 (j, v) : ϕ, i.e., µj , ξ
[[(j,v)]]µ,ρ
j
j ϕ.

Moreover, we also know that [[(i, x)]]µ,ρ = (i, ρi(x)) ≈ (j, ρj(v)) = [[(j, v)]]µ,ρ.

Thus, lasti(ξ
[[(i,x)]]µ,ρ
i) = lastj(ξ

[[(j,v)]]µ,ρ
j) and so it follows that (lasti(ξ

[[(i,x)]]µ,ρ
i)↓

j) = (lastj(ξ
[[(j,v)]]µ,ρ
j)↓j) = ξ

[[(j,v)]]µ,ρ
j . Hence µj , (lasti(ξ

[[(i,x)]]µ,ρ
i)↓j)
j ϕ. This

allows us to conclude that µ, ξ
[[(i,x)]]µ,ρ
i
i c©j [ϕ], that is, µ, ρ
 (i, x) : c©j [ϕ].

Assume that (i, x) : ¬ c©j [ϕ] ∈ ∆. If there is no (j, y) such that (i, x) ⊲⊳ (j, y) ∈

∆ then [(i, ρi(x))] 6∈ Ej . Hence µi, ξ
[[(i,x)]]µ,ρ
i 6
i c©j [ϕ], which implies that

µ, ρ
 (i, x) : ¬ c©j [ϕ]. Assume now that (i, x) ⊲⊳ (j, y) ∈ ∆. Then, by rule
(¬ c©), (j, y) : ¬ϕ ∈ ∆ and, by the induction hypothesis, µ, ρ
 (j, y) : ¬ϕ. By
an argument similar to the above, we may conclude that µ, ρ
 (i, x) : ¬ c©j [ϕ].

Assume that (i, x) ⊲⊳ (j, y) ∈ ∆. Rule (Evt) guarantees that both [[(i, x)]]µ,ρ > 0
and [[(i, y)]]µ,ρ > 0, thus yielding that (i, [[(i, x)]]µ,ρ) ≈ (j, [[(i, y)]]µ,ρ). Hence, we

have that lasti(ξ
[[(i,x)]]µ,ρ
i) = lastj(ξ

[[(i,y)]]ρ
j), since both take precisely the value

of their equivalence class, and so µ, ρ
 (i, x) ⊲⊳ (j, y). �

As a consequence, we may reason deductively about entailment in DTL.

Corollary 18 Given Γ∪{@i[ϕ]} ∈ LDTL, Γ �DTL @i[ϕ] if and only if every exhausted
T -tableau for {(j, 0) : G◦ ψ | @j[ψ] ∈ Γ} ∪ {(i, v) : ¬ϕ} is closed.

5 A detailed example

In this section, we formalize and reason about a simplified version of a two-phase com-
mit protocol from [34], used to commit a transaction in a distributed system. In this
protocol, one process acts as the coordinator and works with multiple subordinates.
We designate the coordinator by C and assume that there are two subordinates, A and
B. The behavior of the three agents is depicted as transition diagrams in Figures 12
and 13. The commit protocol begins when the coordinator informs her subordinates
that she is starting the protocol and that they should prepare to commit. She does
this by executing an action (denoted by prep) that is synchronized with the actions of
the subordinates (denoted by req). When a subordinate receives the commit request,
he checks if he is ready to commit. When he is ready, he sends a message to the
coordinator (reply) informing her of this. The corresponding replyA or replyB action
is triggered in the coordinator. The protocol ends when the coordinator receives the
replies from both subordinates.

We begin by introducing the distributed signature Σ = 〈Id , {Propi}i ∈ Id〉 includ-
ing the propositional symbols used to construct a model of the states of the processes:

• Id = {A,B,C}

• PropA = PropB = {work, pend}

• PropC = {active, gotA, gotB}

We can then define the transition diagram states using the following abbreviations:

27

idle

prep

��

waitAB

replyA

zzuu
uuuu

uuu

replyA

replyB

��

replyB

$$II
III

III
I

waitB

replyB $$IIIIIIIII
waitA

replyAzzuuuuuuuuu

done

Figure 12: Transition diagram for the coordinator.

free

req

��

busy

reply

��

ready

Figure 13: Transition diagram for the subordinates.

• idle ≡ (¬ active) ∧ (¬ gotA) ∧ (¬ gotB)

• waitAB ≡ active ∧ (¬ gotA) ∧ (¬ gotB)

• waitA ≡ active ∧ (¬ gotA) ∧ gotB

• waitB ≡ active ∧ gotA ∧ (¬ gotB)

• done ≡ active ∧ gotA ∧ gotB

Since there are only five states, we will also employ the following constraints:

• gotA ⇒ active

• gotB ⇒ active

Similarly, we define the subordinates’ states as:

• free ≡ work ∧ (¬ pend)

• busy ≡ work ∧ pend

• ready ≡ (¬work)

and employ the following state constraint:

• pend ⇒ work

28

DTL can be extended with actions (as we do, for instance, in [5]), but we do not
need them here as we can model the occurrence of an action by a process changing
from one state to another. To model the coordinator’s actions, we define the following
abbreviations:

• prep ≡ waitAB ∧ Y idle

• replyA ≡ gotA ∧ Y(¬ gotA)

• replyB ≡ gotB ∧ Y(¬ gotB)

Note that the replyA and replyB actions may occur independently or even simulta-
neously. With these definitions, we have not yet fully formalized the transitions in
Figure 12. In particular, the states satisfying gotA are waitB and done whereas the
states satisfying ¬ gotA are idle, waitAB, and waitA. Therefore, replyA specifies a pos-
sible transition from any of the states idle, waitAB, and waitA to either waitB or done.
Note that this allows more transitions than those in our transition diagram and hence
we further restrict them as follows:

• ∗⇒ idle

• idle ⇒ (idle W prep)

• waitAB ⇒ (waitAB W (replyA ∨ replyB))

• waitA ⇒ (waitA W replyA)

• waitB ⇒ (waitB W replyB)

• gotA ⇒ (GgotA)

• gotB ⇒ (GgotB)

Similarly, we define the subordinates’ actions as follows:

• req ≡ busy ∧ Y free

• reply ≡ ready ∧ Ybusy

As above, we restrict these to the transitions in Figure 13 with the propositions:

• pend ⇒ work

• ∗⇒ free

• free ⇒ (free W req)

• busy ⇒ (busy W reply)

• ready ⇒ (G ready)

Finally, the synchronization is specified as follows:

• @C [prep ≫A req]

• @C [prep ≫B req]

29

• @A[reply ≫C replyA]

• @B[reply ≫C replyB]

With respect to this specification, we prove the property:

{@A[req ⇒ (F reply)],@B[req ⇒ (F reply)]} � @C [prep ⇒ (F done)] .

This property expresses that, under certain fairness assumptions on the subordinates
(given by the two premises), if the coordinator begins the commit protocol, she will
eventually receive a reply from both subordinates. The tableau for this proof is de-
picted in Figures 17–20. In Figure 17, we present the first part of the tableau, focusing
on local reasoning for the coordinator C (where the leftmost branch is identical to
the branch on the right and hence we omit it). This part of the tableau ends with the
interaction between the coordinator C and the subordinates A and B. As before, we
systematically use boxes to avoid repeating sub-tableaux in the figures. The reasoning
depicted in T1 can be repeated on the leftmost branch, by means of a straightforward
application of the rule (Cong). A similar comment applies also to the sub-tableau
T2, in Figure 18, where we depict local reasoning for the subordinate A, triggered
by the interaction with the coordinator. Note that we write ∧ : replyA to abbreviate
the unfolding of the definition of replyA and the split of the two conjuncts. This part
of the tableau ends with interaction between A and C. A similar flow of reasoning
applies to the subordinate B, which we refrain from showing. In any case, both must
be considered in subsequent reasoning, where they are denoted by Figure 18[A] and
Figure 18[B], their corresponding variables being decorated with one prime (like v′C)
or two primes (like v′′C), respectively. In Figures 19 and 20, we show the last part of
the tableau, which is a mixture of local reasoning for the coordinator C and of the
interaction between the subordinates and the coordinator. In these figures, we write,
for instance, T3[B] to denote the sub-tableau T3[A] with A replaced by B. Moreover,
we also write ¬∧ : done to abbreviate the unfolding of the definition of done and the
split of the three resulting disjuncts.

6 Related and future work

We have given the first sound and complete tableaux system for the distributed tem-
poral logic DTL. To do so, we first gave a system for reasoning locally (in LTL) at each
agent and afterwards we combined the local systems into one for global reasoning.

A number of tableaux and other deductive systems have been given for different
versions of temporal logic, e.g. [3, 14, 15, 16, 23]. For LTL, in particular, many of
the proposed systems are based on the Fischer-Ladner approach [13, 27, 38] and take
advantage of the fixedpoint definitions of the temporal operators to build a graph
for checking the satisfaction of eventualities [17, 20, 32, 33, 38]. As noted in the
introduction, this approach leads to a decision procedure based on loop checking in
the graph.

Other systems, such as ours, use labels to naturally capture the logics’ semantics.
There are labeled systems for different temporal logics [7, 18, 19, 24, 29, 30, 31, 36].
However, these are not for full discrete LTL. In this respect, the systems closest to ours
are [7, 18, 30, 31]. [18] considers time points as labels for formulas, whereas [7, 30, 31]

30

consider time intervals. Schmitt and Goubault-Larrecq employ constraint graphs to
reason about completeness of their rules where labels are time intervals, similar to
what we did for our time-point labels. Most importantly, different fragments of the
logic are considered in the different systems to cope with the difficulties of the full
logic, e.g., the difficulties of formalizing rules for until and since. The manuscript [30]
is an attempt to give a labeled tableaux system for the full logic, but unfortunately
it has never been completed. None of these provides a decision procedure. Note also
that [19, 24, 29] include tableaux-based decision procedures for versions of temporal
logic without since and until, or with until but over general (not necessarily discrete)
time, thus avoiding the problems of induction.

We have designed our systems with the aim of providing tableaux for full DTL,
including past. However, it is interesting to note that our system for local reasoning
seems to be closely related to the natural deduction system for future-time LTL of [4],
which was developed in parallel with our work. We have begun investigating whether
similar rules would also be suited for the extension to global reasoning in both past
and future-time DTL and plan to report on this soon.

As we remarked above, we chose not to address decidability in the context of our
tableaux system and have thus given an infinite closure rule that captures eventualities
which are always delayed. If one really wants to hard-wire loop checking in our system,
then exploring different rules, for instance those of [4], may be interesting. It may be
possible here to capitalize on the constraint graphs we used in our tableaux system.
Actually, in the finite case, our Lemma 8 is well known to amount to checking that
there are no cycles with negative weight in the graph [26], which can be done efficiently
using the Bellman-Ford algorithm [9].

Another direction for future work will be to extend our system to the Distributed
Temporal Protocol Logic DTPL that we have devised to reason about models and
properties of security protocols. In [5, 6], we have applied DTPL in two different ways:
first to verify (or refute) that security protocols provide claimed security properties,
and second to prove metatheoretic properties of protocol models that can be used
to simplify the verification of protocols or to search for attacks against them. All of
these results have been obtained directly by semantic arguments. Hence, extending
the tableaux system given here to DTPL will allow us to formalize, and possibly
implement, (meta)reasoning about security protocols. We will report on this in a
forthcoming paper.

Acknowledgments

David Basin was partially supported by the Hasler Foundation, ManCom project
2071. Carlos Caleiro and Jaime Ramos were partially supported by FCT and EU
FEDER via the project KLog PTDC/MAT/68723/2006 of SQIG-IT. Luca Viganò
was partially supported by the FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR:
Automated Validation of Trust and Security of Service-oriented Architectures” (www.
avantssar.eu). We thank Matthias Schmalz, and the anonymous referees for their
useful comments on a draft of this paper.

31

References

[1] D. Basin, C. Caleiro, J. Ramos, and L. Viganò. A Labeled Tableaux System
for the Distributed Temporal Logic DTL. In Proc. TIME 2008, pages 101–109.
IEEE Computer Society Press, 2008.

[2] E. Best and C. Fernández C. Nonsequential processes – A Petri net view.
Springer-Verlag, 1988.

[3] L. Bolc and A. Sza las, editors. Time and logic: a computational approach. UCL
Press Ltd., London, UK, 1995.

[4] A. Bolotov, O. Grigoriev, and V. Shangin. Automated Natural Deduction for
Propositional Linear-Time Temporal Logic. In Proc. TIME07, pages 47–58. IEEE
Computer Society Press, 2007.

[5] C. Caleiro, L. Viganò, and D. Basin. Metareasoning about Security Protocols
using Distributed Temporal Logic. In Proc. ARSPA’04, pages 67–89. ENTCS
125(1), 2005.

[6] C. Caleiro, L. Viganò, and D. Basin. Relating strand spaces and distributed tem-
poral logic for security protocol analysis. Logic Journal of the IGPL, 13(6):637–
664, 2005.

[7] S. Cerrito and M. Cialdea Mayer. Labelled tableaux for propositional linear time
logic over finite frames. In D. Basin, M. D’Agostino, D. M. Gabbay, S. Matthews,
and L. Viganò, editors, Labelled Deduction. Kluwer Academic Publishers, 2000.

[8] J. Clarke, Edmund M., O. Grumberg, and D. A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press, 2001.

[10] M. D’Agostino, D. M. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of
Tableau Methods. Kluwer Academic Publishers, 1999.

[11] H.-D. Ehrich and C. Caleiro. Specifying communication in distributed informa-
tion systems. Acta Informatica, 36:591–616, 2000.

[12] H.-D. Ehrich, M. Kollmann, and R. Pinger. Checking object system designs
incrementally. Journal of Universal Computer Science, 9(2):106–119, 2003.

[13] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979.

[14] M. Fisher. Implementing Temporal Logics: Tools for Execution and Proof. In
Proc. CLIMA VI, LNAI 3900, pages 129–142. Springer-Verlag, 2006.

[15] M. Fisher, D. M. Gabbay, and L. Vila, editors. Handbook of Temporal Reasoning
in Artificial Intelligence I. Elsevier, 2005.

32

[16] R. Gore. Tableau methods for modal and temporal logics. In D’Agostino et al.
[10].

[17] G. D. Gough. Decision procedures for temporal logic. Technical Report UMCS-
89-10-1, Department of Computer Science, University of Manchester, 1984.

[18] R. Hähnle and O. Ibens. Improving Temporal Logic Tableaux Using Integer
Constraints. In Proc. ICTL’94, LNAI 827. Springer-Verlag, 1994.

[19] A. Indrzejczak. A labelled natural deduction system for linear temporal logic.
Studia Logica, 75:345–376, 2003.

[20] O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and
completeness. Logic Journal of the IGPL, 8(1), 2000.

[21] K. Lodaya, R. Ramanujam, and P. Thiagarajan. Temporal logics for communi-
cating sequential agents: I. Intern. Journal of Foundations of Computer Science,
3(1):117–159, 1992.

[22] K. Lodaya and P. Thiagarajan. A modal logic for a subclass of event structures.
In Proc. ICALP 14, LNCS 267, pages 290–303. Springer, 1987.

[23] Z. Manna and A. Pnueli, editors. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[24] M. Marx, S. Mikulas, and M. Reynolds. The mosaic method for temporal logics.
In Proceedings of Tableaux’00, LNAI 1847, pages 324–340. Springer-Verlag, 2000.

[25] D. Peled. All from one, one for all: on model checking using representatives. In
Proc. CAV ’93, pages 409–423. Springer-Verlag, 1993.

[26] V. Pratt. Two easy theories whose combination is hard. Technical report, MIT,
Cambridge, 1977.

[27] V. R. Pratt. A near-optimal method for reasoning about action. J. Comput.
Syst. Sci., 20(2):231–254, 1980.

[28] R. Ramanujam. Locally linear time temporal logic. In Proc. LICS 11, pages
118–127. IEEE Computer Society Press, 1996.

[29] M. Reynolds. The complexity of the temporal logic with “until” over general
linear time. J. Comput. Syst. Sci., 66:393–426, 2003.

[30] P. H. Schmitt and J. Goubault-Larrecq. A tableau system for full linear temporal
logic. Unpublished manuscript.

[31] P. H. Schmitt and J. Goubault-Larrecq. A Tableau System for Linear-TIME
Temporal Logic. In Proc. TACAS’97, LNCS 1217, pages 130–144. Springer-
Verlag, 1997.

[32] S. Schwendimann. A New One-Pass Tableau Calculus for PLTL. In
Proc. Tableaux’98, LNAI 1397, pages 277–291. Springer-Verlag, 1998.

33

[33] R. Scott, M. Fisher, and J. Keane. Parallel Temporal Tableaux. In Proc. Euro-
Par’98, LNAI 1470, pages 852–861. Springer-Verlag, 1998.

[34] A. S. Tanenbaum and M. van Steen. Distributed Systems - Principles and
Paradigms (Second Edition). Prentice Hall, 2006.

[35] P. S. Thiagarajan. A Trace Consistent Subset of PTL. In Proc. CONCUR’95,
LNCS 962, pages 438–452. Springer-Verlag, 1995.

[36] L. Viganò and M. Volpe. Labeled Natural Deduction Systems for a Family of
Tense Logics. In Proc. TIME 2008, pages 118–126. IEEE Computer Society
Press, 2008.

[37] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, edi-
tors, Petri Nets: Applications and Relationships to Other Models of Concurrency,
LNCS 255, pages 325–392. Springer, 1987.

[38] P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 110:119–136, 1985.

34

(i, v) : ¬(((ϕW ψ) ∧ X(¬ψ)) ⇒ Xϕ)

¬⇒

(i, v) : (ϕW ψ) ∧ X(¬ψ)
(i, v) : ¬Xϕ

∧

(i, v) : (ϕW ψ)
(i, v) : X(¬ψ)

X

(i, v + 1) : ¬ψ

Succ

(i, v) < (i, v + 1)

kkkkkkkkkkkkkkkk
W1

UUUUUUUUUUUUUUUU

(i, v) : Gϕ

G

(i, v) < (i, fϕWψ(v))
(i, fϕWψ(v)) : ψ

iiiiiiiiiiiiiiii
TrW2

RRRRRRRRRRRRR

(i, v + 1) : ϕ

¬X

(i, v + 1) < (i, fϕWψ(v))

W2

(i, v + 1) = (i, fϕWψ(v))

Cong

(i, fϕWψ(v)) < (i, v + 1)

DTrans

(i, v + 1) : ¬ϕ

Abs

(i, v + 1) : ϕ
(i, v + 1) : ¬ψ

¬X

(i, v + 1) : ψ

Abs

(i, v) < (i, v)

NLoop

Closed (i, v + 1) : ¬ϕ

Abs

Closed Closed

Closed

Figure 14: Tableau for ¬(((ϕW ψ) ∧ X(¬ψ)) ⇒ Xϕ).

35

(i, 0) : G◦(ϕ⇒ Xϕ)
(i, v) : ¬(ϕ⇒ Gϕ)

¬⇒

(i, v) : ϕ
(i, v) : ¬Gϕ

¬G

(i, v) < (i, v′)
(i, v′) : ¬ϕ

ppppppppppp
Dif

NNNNNNNNNNN

(i, v′) < (i, v)

DTrans

(i, v) < (i, v′)

∧:G◦

(i, v) < (i, v − 1)

NLoop

(i, 0) : ϕ⇒ Xϕ
(i, 0) : G(ϕ⇒ Xϕ)

ppppppppppp
Pos

NNNNNNNNNNN

closed (i, v) = (i, 0)

Cong

(i, 0) < (i, v)

G

(i, v) : ϕ⇒ Xϕ (i, v) : ϕ⇒ Xϕ

ooooooooooo
⇒

NNNNNNNNNNN

T1 (i, v) : ¬ϕ

Abs

(i, v) : Xϕ

X

T1

closed (i, v + 1) : ϕ

ppppppppppp
Dif

OOOOOOOOOOO

(i, v′) < (i, v + 1)

DTrans

(i, v + 1) < (i, v′)

Mon

(i, v) < (i, v)

NLoop

(i, 0) < (i, v + 1)

G

closed (i, v + 1) : ϕ⇒ Xϕ

ooooooooooo
⇒

QQQQQQQQQQQQQ

(i, v + 1) : ¬ϕ

Abs

(i, v + 1) : Xϕ

Inf

closed closed

Figure 15: Tableau for the usual temporal induction schema.

36

(i, 0) : G◦(c©j [⊤] ⇒ c©j [X c©k[⊤]])

(j, 0) : G◦(c©k[⊤] ⇒ c©k[X c©i[⊤]])
(i, vi) : ¬(c©j [⊤] ⇒ F c©k[⊤])

¬⇒

(i, vi) : c©j [⊤]

(i, vi) : ¬F c©k[⊤]

c©j

(j, vj) : ⊤
(i, vi) ⊲⊳ (j, vj)

∧:G◦

(i, 0) : c©j [⊤] ⇒ c©j [X c©k[⊤]]

(i, 0) : G(c©j [⊤] ⇒ c©j [X c©k[⊤]])

hhhhhhhhhhhhhhhhhh
Pos

ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

(i, vi) = (i, 0)

Cong

(i, 0) < (i, vi)

G

(i, vi) : c©j [⊤] ⇒ c©j [X c©k[⊤]]

iiiiiiiiiiiiiiii
⇒

VVVVVVVVVVVVVVVVVVV
(i, vi) : c©j [⊤] ⇒ c©j [X c©k[⊤]]

(i, vi) : ¬ c©j [⊤]

Abs

(i, vi) : c©j [X c©k[⊤]]

c©j

T2 T2

closed
(j, v′j) : X c©k[⊤]

(i, vi) ⊲⊳ (j, v′j)

X

(j, v′j + 1) : c©k[⊤]

c©k

(k, vk) : ⊤
(j, v′j + 1) ⊲⊳ (k, vk)

∧:G◦

(j, 0) : c©k[⊤] ⇒ c©k[X c©i[⊤]]
(j, 0) : G(c©k[⊤] ⇒ c©k[X c©i[⊤]])

hhhhhhhhhhhhhhhhhh
Pos

VVVVVVVVVVVVVVVVV

(j, v′j) = (j, 0)

Succ+Cong

(j, 0) < (j, v′j)

Mon

(j, 0) < (j, v′j + 1)

G

(j, 0) < (j, v′j + 1)

(j, v′j + 1) : c©k[⊤] ⇒ c©k[X c©i[⊤]]

iiiiiiiiiiiiiiii
⇒

VVVVVVVVVVVVVVVVVVV
T1 T1

(j, v′j + 1) : ¬ c©k[⊤]

Abs

(j, v′j + 1) : c©k[X c©i[⊤]]

c©k

closed
(k, v′k) : X c©i[⊤]

(j, v′j + 1) ⊲⊳ (k, v′k)

Sym+Trans+Self

(k, vk) = (k, v′k)

X

(k, v′k + 1) : c©i[⊤]

c©i

(i, v′i) : ⊤
(k, v′k + 1) ⊲⊳ (i, v′i)

Order+Succ

(i, vi) < (i, v′i)

¬F

(i, v′i) : ¬ c©k[⊤]

Sym+¬ c©k

(k, v′k + 1) : ¬⊤

Abs:¬⊤

closed

Figure 16: Tableau for {@i[c©j [⊤]⇒ c©j [X c©k[⊤]]],@j [c©k[⊤]⇒ c©k[X c©i[⊤]]]} �DTL

@i[c©j [⊤] ⇒ F c©k[⊤]].

37

(A, 0) : G◦(req ⇒ (F reply))
(A, 0) : G◦(reply ⇒ c©C [replyA])

(B, 0) : G◦(req ⇒ (F reply))
(B, 0) : G◦(reply ⇒ c©C [replyB])

(C, 0) : G◦(prep ⇒ c©A[req])
(C, 0) : G◦(prep ⇒ c©B[req])
(C, 0) : G◦(gotA ⇒ active)
(C, 0) : G◦(gotB ⇒ active)
(C, 0) : G◦(gotA ⇒ GgotA)
(C, 0) : G◦(gotB ⇒ GgotB)
(C, vC) : ¬(prep ⇒ F done)

¬⇒

(C, vC) : prep

(C, vC) : ¬F done

∧:G◦

(C, 0) : prep ⇒ c©A[req]
(C, 0) : G(prep ⇒ c©A[req])

jjjjjjjjjjjjjjj
Pos

TTTTTTTTTTTTTTT

(C, 0) = (C, vC)

Cong

(C, 0) < (C, vC)

G

(C, vC) : prep ⇒ c©A[req] (C, vC) : prep ⇒ c©A[req]

iiiiiiiiiiiiiiii
⇒

TTTTTTTTTTTTTTT

T1 (C, vC) : ¬ prep

Abs

(C, vC) : c©A[req]

∧:G 0

T1

Closed
(C, 0) : prep ⇒ c©B[req]

(C, 0) : G(prep ⇒ c©B[req])

G

(C, vC) : prep ⇒ c©B[req]

jjjjjjjjjjjjjjj
⇒

RRRRRRRRRRRRR

(C, vC) : ¬ prep

Abs

(C, vC) : c©B[req]

c©

Closed
(A, vA) : req

(C, vC) ⊲⊳ (A, vA)

c©

(B, vB) : req

(C, vC) ⊲⊳ (B, vB)

Fig. 18

Figure 17: Local reasoning for agent C.

38

Fig. 17

∧:G◦

(A, 0) : req ⇒ (F reply)
(A, 0) : G(req ⇒ (F reply))

llllllllllllll
Pos

RRRRRRRRRRRRRR

(A, 0) = (A, vA)

Cong

(A, 0) < (A, vA)

G

(A, vA) : req ⇒ (F reply) (A, vA) : req ⇒ (F reply)

kkkkkkkkkkkkkk
⇒

TTTTTTTTTTTTTTTT
T2

T2 (A, vA) : ¬ req

Abs

(A, vA) : F reply

F

Closed
(A, v′A) : reply

(A, vA) < (A, v′A)

DTrans

(A, 0) < (A, v′A − 1)

Mon

(A, 0) < (A, v′A)

∧:G◦

(A, 0) : reply ⇒ c©C [replyA]
(A, 0) : G(reply ⇒ c©C [replyA])

G

(A, v′A) : reply ⇒ c©C [replyA]

jjjjjjjjjjjjjjj
⇒

SSSSSSSSSSSSSSS

(A, v′A) : ¬ reply

Abs

(A, v′A) : c©C [replyA]

c©

Closed
(C, v′C) : replyA

(A, v′A) ⊲⊳ (C, v′C)

∧:replyA

(C, v′C) : gotA
(C, v′C) : Y¬ gotA

Fig. 19

Figure 18: Local reasoning for agent A.

39

Fig. 18[A]
Fig. 18[B]

Order

(C, vC) < (C, v′C)

¬F

(C, v′C) : ¬ done

kkkkkkkkkkkkkk
¬∧:done

SSSSSSSSSSSSSS

(C, v′C) : ¬ active (C, v′C) : ¬ gotA

Abs

(C, v′C) : ¬ gotB

Order

Fig. 20 [A] Closed (C, vC) < (C, v′′C)

¬F

(C, v′′C) : ¬ done

ccc

kkkkkkkkkkkkkk
¬∧:done

QQQQQQQQQQQQ

(C, v′′C) : ¬ active (C, v′′C) : ¬ gotA

kkkkkkkkkkkkkk
Tr⊲⊳

SSSSSSSSSSSSSS
(C, v′′C) : ¬ gotB

Abs

Fig. 20 [B] (C, v′C) < (C, v′′C)

∧:G◦

(C, v′C) = (C, v′′C)

Cong+Abs

(C, v′′C) < (C, v′C)

∧:G◦

Closed

(C, 0) : gotA ⇒ GgotA
(C, 0) : G(gotA ⇒ GgotA)

uuuuuuuuuuuuuuuuuuuuu

Pos

HHHHHHHHHHHHHHHHHHHH
Closed

(C, 0) : gotB ⇒ G gotB
(C, 0) : G(gotB ⇒ GgotB)

T3 [B]

(C, 0) = (C, v′C)

Cong

(C, 0) < (C, v′C)

G

T3 [A]

(C, v′C) : gotA ⇒ GgotA (C, v′C) : gotA ⇒ GgotA

kkkkkkkkkkkkkk
⇒

SSSSSSSSSSSSSS
T4

T4 (C, v′C) : ¬ gotA

Abs

(C, v′C) : GgotA

G

Closed (C, v′′C) : gotA

Abs

Closed

Figure 19: Reasoning about the last interaction.

40

Fig. 19

DTrans+Mon

(C, 0) < (C, v′C)

∧:G◦

(C, 0) : gotA ⇒ active

(C, 0) : G(gotA ⇒ active)

G

(C, v′C) : gotA ⇒ active

mmmmmmmmmmmm
⇒

PPPPPPPPPPPP

(C, v′C) : ¬ gotA

Abs

(C, v′C) : active

Abs

Closed Closed

Figure 20: Reasoning about the state constraints of the coordinator.

41

