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Abstract

We present a model of adaptive attacks which we combine with infor-
mation-theoretic metrics to quantify the information revealed to an adap-
tive adversary. This enables us to express an adversary’s remaining uncer-
tainty about a secret as a function of the number of interactions with the
system under attack. We present algorithms and approximation methods
for computing this function. The main application area for our approach
is the analysis of side-channels in cryptographic algorithms and we give
examples of how it can be used to characterize the vulnerability of hard-
ware implementations to timing and power attacks. We also show the
generality of our approach by using it to quantify the information leaked
by a security protocol.

1 Introduction

Problem Statement Side-channel attacks against cryptographic algorithms
aim at breaking cryptography by exploiting information that is revealed by
the algorithm’s physical execution. Characteristics such as running time [11,
26], cache behavior [41], power consumption [27], and electromagnetic radiation
[22, 44] have all been exploited to recover secret keys from implementations
of different cryptographic algorithms. Side-channel attacks are now so effective
that they pose a real threat to the security of devices like smart-cards, which can
be subjected to different kinds of measurements. This threat is not covered by
traditional notions of cryptographic security and a number of alternative models
for proving resistance against such attacks have been proposed [14, 37, 51].
Two factors determine whether an adversary can successfully mount a side-
channel attack on a system and recover a secret key (or other secret data).
First, the adversary must be able to gather sufficient information about the key
from his side-channel measurements. Second, the adversary must have sufficient



computational resources to recover the key from this information. To prove that
a system is resistant to side-channel attacks, one must therefore ensure that no
realistic adversary fulfills both conditions.

In theory, the recovery of a secret may be computationally infeasible, even
if the secret is completely revealed in an information-theoretic sense. For ex-
ample, an RSA public key contains all the information about the corresponding
private key, but it is considered infeasible to derive the private key from this in-
formation. For side-channel attacks, however, computational complexity is typ-
ically not a barrier: side-channels are properties of individual implementations
and are, in general, objects of unknown mathematical structure. In particular,
side-channels are typically not associated with any computational security guar-
antees. Indeed, past experience shows that keys can been effectively recovered
from side-channel information from a broad range of cryptographic algorithms
on different platforms, e.g., [11, 13, 15, 27, 41]. In the absence of computational
security, the security of a system against side-channel attacks depends entirely
on the amount of secret information that the side-channel reveals.

Intuitively, increasing the number of side-channel measurements yields more
information about the secret key. Moreover, in many attack scenarios, the
adversary can increase the information he obtains from his measurements by
influencing the system’s computations, for example, by adaptively choosing the
ciphertexts that the system decrypts. However, the adversary’s interactions
with the system are often expensive or limited, and their number needs to
be considered when reasoning about a system’s vulnerability to side-channel
attacks. For example, the system may bound the number of times it re-uses
a secret, such as a session key, or it may refuse multiple interactions with the
same agent.

These observations suggest characterizing the security of a system in terms
of the quantity of secret information that an adaptive adversary can extract
with a given number of side-channel measurements. This quantity is a worst-
case bound for what a realistic, computationally bounded adversary can deduce
about the key. Defining and computing this bound for a given system has been
an open problem prior to this work.!

Approach In this paper, we propose a solution to this problem for deter-
ministic systems. We develop a model that enables us to express the quantity
of information that an adaptive adversary can extract from a system and we
present an algorithm and approximation methods for computing this quantity.

Our model is based on a definition of attack strategies, which are explicit
representations of the adaptive decisions made by an adversary during attacks.
We combine attack strategies with information-theoretic entropy measures; this
enables us to express the adversary’s expected uncertainty about the secret af-
ter he has performed an attack, following a given strategy. By quantifying over
all attack strategies of a fixed length n, we express what adversaries can, in
principle, achieve in n attack steps. We use this to define a function & that

IThis paper extends and generalizes the results of [30].



gives a lower bound on the expected uncertainty about the key as a function
of the number of side-channel measurements. Since the bounds given by ® are
information-theoretic, they hold for any kind of analysis technique that a com-
putationally unbounded adversary might apply to analyze the measurements.

We give an algorithm with double-exponential time complexity for comput-
ing ®. Furthermore, we present two heuristic methods that reduce this complex-
ity and thereby enable us to estimate a system’s vulnerability for state-space
sizes for which the direct computation of ® is infeasible.

Our approach is parametric in the model of the system under attack. For
analyzing side-channels, we use a deterministic model of the physical charac-
teristics of the target implementation. For analyzing security protocols, we use
a model of the computations performed by an agent in a given protocol step.
Furthermore, our approach accommodates different entropy measures. As we
will show, this enables us to derive both worst-case and average-case guarantees
for the remaining guessing effort for recovering the key after an attack.

Finally, we have implemented our approach and we report on experimen-
tal results using our prototype. We have analyzed hardware implementations
of cryptographic algorithms for their resistance to timing and power attacks,
obtaining the following results.

1. An adversary can extract one operand’s Hamming weight from the timing
of a direct implementation of integer multiplication, but a more defensive
implementation reveals no information.

2. Only a few timing measurements are needed to extract the entire exponent
from the finite-field exponentiation algorithm of [20].

3. One power trace of a finite-field multiplication algorithm contains all in-
formation about one of its operands.

These results illustrate the potential of our approach both for detecting possible
side-channel attacks and for showing their absence.

We have also applied our model to analyze a simple protocol describing the
interaction of applications with the API of a hardware security module. Our
analysis answers an open question about the rate at which API error messages
leak a secret PIN. This example illustrates that our approach can also be used to
analyze information leaks beyond those implemented by physical side-channels.

Contributions Our main contributions are twofold. Theoretically, we de-
velop a simple, but powerful, model for adaptive attacks that connects infor-
mation-theoretic notions of security to models for the physical characteristics of
computations. Practically, we show that our model can be applied to nontrivial
hardware implementations of cryptographic algorithms and we use it to analyze
their vulnerability to power and timing attacks.

Outline This paper is structured as follows. In Section 2 we introduce our
model of adaptive attacks and in Section 3 we extend it with information-
theoretic measures. In Section 4 we give algorithms and complexity bounds for



computing these measures and we report on experimental results in Section 5.
We present related work in Section 6 and draw conclusions in Section 7.

2 A Model of Adaptive Attacks

In this section, we present a formal model of adaptive side-channel attacks. The
model formalizes the information that can by gained by an adversary who can
measure different properties of the computation of cryptographic functions.

An example is an adversary who tries to deduce the secret key used by an
implementation of a decryption algorithm. Here we would assume that the
adversary may run the implementation on arbitrary ciphertexts and measure
the time required for decryption. Hence, he can collect pairs of ciphertexts
and corresponding execution times, which he can analyze to reconstruct the
key, see e.g., [11, 26]. Moreover, his strategy for selecting ciphertexts may
be adaptive in that the ciphertexts are chosen with respect to the results of
previous measurements. Note that we are modeling the adversary’s information
gain from the side-channel information alone; the plaintext returned by the
decryption algorithm plays no role here.

2.1 Adversaries and Side-Channels

Attack Scenario We consider systems that compute functions of type F': K x
M — D, where K is a finite set of keys, M is a finite set of messages, and D
is an arbitrary set. We assume that the input to F' is provided by two different
callers. One caller is an honest agent that provides a secret argument k& € K and
the other caller is a malicious agent (the adversary) that provides the argument
m € M. Examples of F' are encryption and decryption functions and MACs.
We assume that the adversary can make physical observations about F’s
implementation Ir that are associated with the computation of F(k,m). Ex-
amples of such observations are the power consumed or the time used by Ip
during the computation, see [27, 36] and [11, 13, 26, 41], respectively.
Typically, the key k is a long-term secret that remains constant during dif-
ferent calls to F. The malicious agent performs an attack in order to gain
information for deducing k or narrowing down the range of its possible values.
Such an attack consists of a sequence of attack steps, each with two parts:

1. a query phase in which the adversary chooses a message m and sends it
to the system, and

2. a response phase in which he observes Ir while the system computes
F(k,m).

The attack is adaptive if the adversary can use the observations made during
the first n steps to choose the query for the n+1st step. An attack ends if either
the honest agent changes the key (assuming the independence of the old and
new keys) or if the adversary stops querying the system.



Modeling Side-Channels We assume that the adversary can make one side-
channel observation per invocation of the function F' and that this observation
is determined by the inputs to F'. Furthermore, we assume that the adversary
has full knowledge about the implementation Ip.

Formally, a side-channel is a function fr,: K x M — O, where O is the set of
possible observations, and fr,. is known to the adversary. We will usually leave
Ir implicit and abbreviate fr. by f. Modeling the adversary’s observations as a
function of the system’s input corresponds to the assumption that the physical
characteristics of Ip are deterministic and that any randomness in a physical
adversary’s measurements is input-independent noise. Knowledge of the values
of f then corresponds to the assumption of error-free measurements and is
a safe worst-case characterization of an adversary’s measurement capabilities.
This strong assumption is justified as our goal is to give bounds on what any
side-channel adversary can, in principle, achieve.

Examples 1 and 2 below show how timing and power side-channels can be
modeled, respectively. Example 3 illustrates how models of side-channels can
be built by sampling.

Example 1. Suppose that F is implemented in synchronous (clocked) hardware
and that the adversary is able to determine Ir’s running times up to single clock
cycles. Then the timing side-channel of Ir can be modeled as a function f: K x
M — N that represents the number of clock ticks taken for the computation of
F. A hardware simulation environment can be used to compute f. O

Example 2. Suppose F' is given in a description language for synchronous
hardware. Power estimation techniques such as [39, 55| can be used to derive a
function f: K x M — R™ that estimates an implementation’s power consump-
tion during n clock ticks. O

Example 3. Suppose a hardware implementation I of F' is given. We can use
average values of Ir’s time or power consumption for fixed input values k£ and
m to define f(k,m). O

The target of our information-theoretic analysis is the side-channel f, and
we assume that the adversary is oblivious to the result F'(k,m) of the compu-
tation. However, knowledge of the values of F' can be explicitly considered in
the analysis.

Example 4. Consider F: K x M — D and a side-channel f: K x M — O
of Ir. One can model that the adversary has access to the values of F' by
considering the function F' x f: K x M — D x O defined by (F x f)(k,m) =
(F(k,m), f(k,m)) as the side-channel. O

Note that the security of many cryptographic functions F' relies on compu-
tational assumptions rather than on information-theoretic considerations. Sub-
jecting F' to an information-theoretic analysis may therefore lead to overly pes-
simistic results. We return to this point and its implications in Section 3.3.



2.2 Attack Strategies

An adaptive adversary chooses his queries with the knowledge of previously
revealed side-channel information. We use trees to define attack strategies,
which formalize these adaptive choices. Subsequently, we also formalize non-
adaptive attacks. These are attacks in which the malicious agent gathers all
side-channel information before performing any analysis. To begin with, we
motivate an abstract view on attack steps, which is the key to the simplicity of
our model.

Adversary’s Choices and Knowledge During the query phase, the ad-
versary chooses a message m € M and sends it to the system. In the response
phase, he learns the value f(k, m). In general, he cannot deduce k from f(k, m).
What he can deduce though (assuming full knowledge about the implementa-
tion Ir and sufficient computational power) is the set of keys that are coherent
with the observation f(k,m). Namely, assuming a fixed f, we say that a key k
is coherent with o € O under m € M whenever f(k,m) = o holds. Two keys k
and k' are indistinguishable under m if f(k,m) = f(k’,m). Note that for every
m € M, indistinguishability under m is an equivalence relation on K. For every
o € O, the set of keys that are coherent with o under m forms an equivalence
class of indistinguishability under m. The set of keys that are coherent with the
adversary’s observation under the adversary’s input is the set of all keys that
could have led to this observation; we use this set to represent the adversary’s
knowledge about the key after an attack step.

Functions as Sets of Partitions We now provide an abstract formalization
of attack steps. As is standard, a partition P = {Bi,...,B,} of K is a set
of pairwise disjoint blocks with U2:1 B; = K. Observe that every equivalence
relation R on K corresponds to a partition Pg of K where the equivalence classes
of R are the blocks of Pr. In this way, a function f: K x M — O gives rise to
a set of partitions Py = {P,, | m € M}, where P, is the partition induced by
indistinguishability under m.

Example 5. Let K = {1,2,3,4}, M = {1,2,3}, and O = {0,1}. Now consider
the function f: K x M — O defined by

1 ifk<m
0 otherwise.

fkm) =

Then f gives rise to the set of partitions Py = {{{1},{2,3,4}}, {{1,2},{3,4}},
{{1,2,3}, {4}}} of K, where the mth partition in P corresponds to indistin-
guishability under m. O

In terms of the set of partitions Py, the two phases of an attack step can be
described as follows.

1. In the query phase, the adversary chooses a partition P € Py.



2. In the response phase, the system reveals the block B C P that contains
k.

Conversely, given a set of partitions P, one can easily define a (non-unique)
function f, with Py = P. In this sense, the partition-based and the functional
viewpoints are equivalent. Formalizing f in terms of Py only abstracts from the
concrete values that f takes, which are irrelevant for assessing the information
that is revealed by f. For clarity of presentation, we will subsequently focus on
the partition-based viewpoint.

To reason about partitions, we introduce additional notation. We say that
a partition @ of a set K refines a partition P of K (denoted by Q C P) if
every block of @ is contained in some block of P. For A C K, we define the
restriction of P to A as {ANB | B € P} and denote it by AN P. Clearly, AN P
is a partition of A. For partitions P and @, we define P N @ as the partition
{ANB | A€ PBe @} Clearlyy PNQ C P and PNQ C Q. We are now
ready to generalize from single attack steps to entire attacks.

Formalizing Attack Strategies To model adaptive attacks, we proceed as
follows. We assume a fixed set of partitions P of K and we use a tree whose
vertices are labeled with subsets of K to model the adversary’s decisions with
respect to his possible observations.

In this tree, the label of each vertex is the set of keys that are coherent with
the adversary’s observations at this point. The root is labeled with K. This
models that, before the attack, every k € K is a possible key candidate. An
attack step is represented by a vertex together with its children. The label A
of the parent node represents the basis for the adversary’s decision. The labels
of the children form a partition of A. We require that this partition is of the
form AN P for some P € P. This corresponds to the adversary’s choice of P as
a query. By observing the system’s response, the adversary learns which block
of the successors actually contains the key. This vertex is the starting point
for subsequent attack steps. With this formalization of an attack strategy, an
actual attack corresponds to a path from the root in this tree.

Example 6. Let K = {1,2,3,4} and consider the set of partitions P =
{{{1},{2,3,4}}, {{1,2},{3,4}}, {{1,2,3}, {4}}} of K. Suppose that the ad-
versary picks {{1,2},{3,4}} as his first query. If the system responds {1, 2},
the adversary chooses {{1},{2,3,4}} as his next query. Otherwise, he chooses
{{1,2,3},{4}}. In this way, he can determine any key in two steps. The cor-
responding attack strategy is depicted on the left-hand side of Figure 1. In
contrast, suppose that the adversary picks {{1},{2,3,4}} as his first query. A
response of {1} determines the key. Otherwise, suppose the adversary chooses
{{1,2},{3,4}} as his subsequent query. A response of {2} determines the key.
Otherwise, a further attack step with query {{1,2,3},{4}} is required to dis-
tinguish the keys 3 and 4. The corresponding attack strategy is depicted on the
right-hand side of Figure 1. O

Formally, let T = (V, E) be a tree with vertices V, edges E C V x V, and
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Figure 1: Attack Strategies

root v* € V. The height of a tree T is the length of a longest path from the
root to a leaf in 7.

Definition 1. Let P be a set of partitions of K. An attack strategy against
P is a triple (T,v*,L), where T = (V, E) is a tree, v* € V is the root, and
L:V — 2% is a vertex labeling with the following properties:

1. L(v*) = K, and
2. for every v € V, there is a P € P with L(v) N P = {L(w) | (v,w) € E}.

An attack strategy is of length [ if T has height . An attack is a path (v*,... )
in T that starts at the root v* of T

Requirement 1 of Definition 1 expresses that, a priori, every key in K is
possibly chosen by the honest agent. Requirement 2 expresses that the labels
of the children of each vertex form a partition of their parent’s label and that
this partition is obtained by intersecting the label with a P € P. A simple
consequence of requirements 1 and 2 is that the labels of the leaves of an attack
strategy partition the label of the root vertex. This leads to the following
definition.

Definition 2. The partition induced by the attack strategy a = (T,v*, L) is
the set {L(v) | v is a leaf of T}, which we denote by P,. We define the set of
keys that are coherent with an attack a = (v*,...,t) as L(t).

Observe that this definition of coherence corresponds to our prior definition
considering attacks (v*,t) of length 1: The keys that are coherent with an
observation o under m form the block L(¢) that the system reveals when queried
with P,,.

To clearly distinguish between adaptive and non-adaptive attacks, we sketch
how the latter can be cast in our model.

Non-adaptive Attack Strategies An attack strategy is non-adaptive if the
adversary does not have access to the system’s responses until the end of the at-
tack. Thus, when choosing a message, he cannot take into account the outcomes
of his previous queries. In our model, this corresponds to the adversary choosing
the same partition in all vertices at the same level of the attack strategy.



Formally, the level of a vertex v € V in an attack strategy a = (T, v*, L),
with T'= (V, E), is the length of the path from the root v* to v. A tree is full
if all leaves have the same level.

Definition 3. An attack strategy a = (T, v*, L) is non-adaptive if T is full and
for every level i there is a P; € P such that L(v) N P; = {L(w) | (v,w) € EY},
for every v of level i.

Note that we require the tree to be full to exclude observation-dependent
termination of attacks. The structure of non-adaptive attacks is simpler than
that of adaptive attacks and we can give explicit representations of the induced
partitions.

Proposition 1. Let a be a non-adaptive attack strategy of length | against P.

Then we have -
Po=()Pi,
i=0

where P; € P is the partition chosen at level i € {0,...,1 — 1} of a.

Proof. We prove this assertion by induction on the length [ of a = (T,v*, L). If
I =0, we have P, = L(v*) = K = (0. If I > 0, consider the full subtree T" of
height [ —1 of . We have P, = {L(w) | w is a leaf of T} =J, {L(w) | (v,w) €
E}, where v ranges over the leaves of 7”. By Definition 1 and the induction
hypothesis, we conclude P, = |J, L(v) N P—1 = ﬂi;é PNP_,= ﬂi;é P, O

Observe that, since N is commutative, the order of the queries is irrelevant.
This is coherent with the intuitive notion of a non-adaptive attack, as the side-
channel information is only analyzed when the attack has finished.

Adaptive attacks are strictly more powerful than non-adaptive attacks in
the sense that they can induce finer partitions in a given number of attack
steps. To see this, consider again the set of partitions P from Example 6. The
adaptive strategy depicted on the left-hand side of Figure 1 determines every
key in two attack steps. It is not difficult to see that this cannot be achieved by
any non-adaptive attack strategy in the same number of steps.

In the next section, we will extend the model presented with measures for the
quantitative evaluation of attack strategies. Afterwards, we use this quantitative
model to give bounds on what adversaries can possibly achieve in a given number
of attack steps.

3 Quantitative Evaluation of Attack Strategies

In Section 2, we used the induced partition P, to represent what an adversary
learns about the key by following an attack strategy a. Intuitively, the adversary
obtains more information (or equivalently, reduces the uncertainty) about the
key as P, is refined. Information-theoretic entropy measures can be used to
express this remaining uncertainty. Focusing on the remaining entropy instead



of the adversary’s information gain provides a concrete, meaningful measure
that quantifies the adversary’s effort for key recovery by brute-force guessing
under the worst-case assumption that he can actually determine the set of keys
that are coherent with his observations during the attack. The viewpoints are
informally related by the equation

initial uncertainty = information gain + remaining uncertainty,

which we will make explicit in the following.

3.1 Measures of Uncertainty

We now introduce three entropy measures, which correspond to different notions
of resistance against brute-force guessing. Presenting these different measures
serves two purposes. First, it accommodates the fact that different types of
guesses and different notions of success for brute-force guessing correspond to
partially incomparable notions of entropy [12, 34, 48]. Second, it demonstrates
how the possibilistic model presented in Section 2 can serve as a basis for dif-
ferent probabilistic extensions.

In the following, assume a probability measure p is given on K and is known
to the adversary. For a random variable X : K — X with range X', we define
px X — [0,1] as px(2) = > pcx-1(,) P(k), which in the literature is often
denoted by p(X = z). For a partition P of K, there are two random variables
of particular interest. The first is the random variable U that models the choice
of a key in K according to p (i.e., U = idg). The second is the random variable
Vp that represents the choice of the enclosing block (i.e., Vp : K — P, where
k € Vp(k)). For an attack strategy a, we abbreviate Vp, by V,.

Shannon Entropy The (Shannon) entropy [47] of a random variable X :
K — X is defined as

H(X) == px(x)logypx(x) .

reX

The entropy is a lower bound for the average number of bits required for rep-
resenting the results of independent repetitions of the experiment associated
with X. Thus, in terms of guessing, the entropy H(X) is a lower bound for
the average number of binary questions that need to be asked to determine X's
value [12].

Given another random variable Y : K — ), one denotes by H(X|Y = y)
the entropy of X given Y = y, that is, with respect to the distribution px|y—,.
The conditional entropy H(X|Y') of X given Y is defined as the expected value
of H(X|Y =y) over all y € Y, namely,

HX|Y) =Y pr(HX|Y =y) .
yey

10



Entropy and conditional entropy are related by the equation H (X Y)=H(Y)+
H(X|Y), where XY is the random variable defined as XY (k) = (X (k),Y (k)).
Consider now an attack strategy a and the corresponding Varlableb U and V.
H(U) is the adversary’s initial uncertainty about the key and H(U|V, = B) is
the adversary’s remaining uncertainty about the key after learning the key’s
enclosing block B € P,. H(U|V,) is the adversary’s expected remaining uncer-
tainty about the key after performing an attack with strategy a. As the value
of V, is determined by that of U, we have H(UV,) = H(U). The equation
H(U) = H(Vy) + H(U|V,) is the formal counterpart of the informal equation
given at the start of this section.

Guessing Entropy The guessing entropy of a random variable X is the av-
erage number of questions of the kind “does X = z hold” that must be asked
to guess X’s value correctly [34]. The difference between guessing entropy and
Shannon entropy is that Shannon entropy quantifies the effort for determin-
ing the value of X by asking arbitrary binary questions, whereas the guessing
entropy quantifies this effort when the questions are restricted to equality tests.

As we assume p to be public, the optimal way to guess the value of X is to
try each of the possible values in order of their decreasing probabilities. Without
loss of generality, let X' be indexed such that px (z;) > px(x;), whenever ¢ < j.
Then the guessing entropy G(X) of X is defined as G(X) = >2; ;x| iPx ().
Analogously to the conditional Shannon entropy, one defines the conditional
guessing entropy G(X|Y) as

GX]Y) = ZPY GX[Y =y) .
yey

This represents the expected number of guesses needed to determine X when the
value of Y is already known. Hence, G(U|V,) is a lower bound on the expected
number of off-line guesses that an adversary must perform for key recovery after
having carried out a side-channel attack with strategy a.

Min-Entropy The min-entropy captures the probability of correctly deter-
mining the value of a random variable X in a single guess. From this probability,
it is straightforward to derive bounds on the probability for correctly determin-
ing the value of X in an arbitrary number of guesses. The success probability
of a single guess can also be estimated using the conditional Shannon entropy,
e.g. using Fano’s inequality. However, as pointed out in [48], this estimation is
not always accurate. Hence, it is preferable to use min-entropy to compute the
success probability of single guesses.
Formally, the min-entropy H is defined as Hy, (X) = — log, (max,cx px (z)).

The conditional min-entropy Ho (X|Y) is defined by

oo (X[Y) = —log, z;py(y) max pix|y —y ()
ye

11



This quantifies the expected probability of correctly determining the secret in
one guess after having observed the outcome of Y [48]. As before, Ho. (U|V,)
quantifies the expected probability of correctly determining the secret in one
guess after having carried out a side-channel attack with strategy a.

Relationships between Entropy Measures The presented entropy mea-
sures are related as follows. Massey [34] shows that one can give lower bounds
for G(X) in terms of H(X), but that there are no general upper bounds for
G(X) in terms of H(X). Min-entropy and Shannon entropy are related by
H(X) < H(X), with equality if X is uniformly distributed. For the random

variable X with px(1) = % and px(i) = 5=, for i € {2,...,n}, we obtain

2
H(X) = 1log,4n and Hw(X) = log, 2. This example shows that there can be

no general upper bound for H(X) in terms of Ho.(X).

Uniform Distributions If p is uniformly distributed, one can derive simple
explicit formulae for the entropy measures presented so far.

Proposition 2. Let a be an attack strategy with Py = {Bu,..., B}, |B;i| = n;,
and |K| = n. If p is uniformly distributed, then

1. HUVy) = =37 nilogy ny,
2. GUIV,) = =30 n?+ 1, and

2n
8. Hoo(U|Vy) =log % .
Proof.

1. The entropy of a uniformly distributed random variable with finite range X
is given by log, |X] (see, e.g. [3]). Consequently, H(U|V, = B;) = log, n;
and H(U|Vy) =31 2 H{U|Va = B;) = L 37 | n;logy n;.

i=1 n
2. We have G(U|Vy) = Y1, %GU|Ve = B;) = Y, Y0 j4 =
T i+1)n; T
%21:1 = +2 e — %Zizl n; +%'
3. See [48] for a proof of this assertion.

O

Worst-Case Entropy Measures All of the entropy measures presented so
far are average-case measures. We use the example of guessing entropy to il-
lustrate this and to show how they can be adapted to accommodate stronger,
worst-case guarantees.

The conditional guessing entropy G(U|V,) weights each value G(U|V, = B)
by the probability that a randomly chosen key from K is contained in B € P,.
As G(U|V, = B) measures the difficulty of guessing a key if its enclosing block
B is known, G(U|V,) quantifies whether keys are, on the average, hard to guess
after an attack with strategy a.

12



Our model also accommodates entropy measures for a worst-case analysis, in
the sense that they quantify the guessing effort for the keys in K that are easiest
to guess. To capture this, we define the minimal guessing entropy G(U|V,) of
U given Vg as G(U|V,) = min{G(U|Vy = B) | B € P,}. The value G(U|V,) is
a lower bound on the expected guessing effort for the weakest keys in K.

The following example illustrates the difference between worst-case and average-
case entropy measures.

Example 7. Consider a set of uniformly distributed keys K = {1,...,10}
and the partitions P = {{1},{2,...,10}} and Q = {{1},...,{10}}. We have
G(U|Vp) = 1, which reflects that there exists a key that is trivial to guess
given knowledge of its enclosing block in P. The conditional guessing entropy
yields G(U|Vp) = 4.6 which reflects that, on the average, still 4.6 guesses are
necessary for key recovery. Note that G(U|Vp) = G(U |Vo) and that G(U|Vg) =
1 < G(U|Vp). That is, only the average-case measure can distinguish between
the partitions P and Q. O

Ultimately, it depends on the application whether worst-case or average-case
measures are appropriate. For the remainder of this paper, we will focus solely
on average-case measures as they are better suited for distinguishing between
partitions. All of our technical results, however, carry over to the worst-case
versions with only minor modifications.

Given entropy measures for evaluating attack strategies, we can now define
optimal attacks and give bounds for what an adversary can, in principle, achieve
by performing a side-channel attack.

3.2 Measuring the Resistance to Optimal Attacks

There is a trade-off between the number of attack steps and the adversary’s
uncertainty about the key. More side-channel measurements reduce the uncer-
tainty, which means that fewer guesses are needed. In the following, we give a
formal account of this for the entropy measures introduced. We then define a
function ®¢ that is parameterized by an entropy measure £ € {H, G, H,, } and
whose value is the expected remaining uncertainty about the key after n steps
of an optimal attack strategy. As we will show, ®¢ can be used to assess an
implementation’s vulnerability to side-channel attacks.

When assessing the vulnerability of an implementation to active side-channel
attacks, we make the worst-case assumption that the adversary proceeds opti-
mally. A strategy is optimal if an adversary who follows it can expect to have
less uncertainty about the key than with any other strategy of the same length.

Definition 4. Let a = (T,v*, L) be an attack strategy of length [ against a
set of partitions P of K. We call a optimal with respect to £ € {H,G, Ho} iff
E(U|Vy) < E(UVy) for all attack strategies b against P of length at most [.

Next, we define the expected remaining uncertainty as a function of the
number of attack steps taken by an optimal adversary. In this way, we relate
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two important aspects of a system’s vulnerability: how much information an
adversary can obtain and how many queries he needs for this.

Definition 5. Let P be a set of partitions of K and let £ € {H,G, Hy}. We
define the resistance ®¢ to an attack against P by

De(n)=EU|Vy) ,
where a is an optimal attack of length n with respect to €.

We now formally justify the intuition that more attack steps lead to less un-
certainty about the key. In particular, we prove that ®¢ decreases monotonously.
As notation, we say that an attack strategy a = (T,v*, L) is the prefiz of an
attack strategy b = (T7,v',L’) if T is a subtree of T, v* = v/, and L and L’
coincide on 7. We denote this by a < b.

Proposition 3. Let £ € {H,G, Hy} be an entropy measure and let a and b be
attack strategies.

1. a < b implies E(U|V,) > E(UVG).
2. For alln € N, we have ®g(n) > Pe(n+1).

Proof. To prove 3.1, first observe that a < b implies P, J P,. Hence it suffices to
show that £(U|Vp) decreases as P is refined. We show this for £ € {H,G, Hy}.
For & = H, recall that H(U) = H({U|Vp) + H(Vp). For P, J P, the
value of V, is determined by the value of V4, hence H(V,) < H(V;). Hence,
H(U|Vy) > H(U|Vy) follows.
For £ = G, consider a partition P of K. We have

| Bl |B|

GU|Ve) =Y pv(B) Zl pov=p(@f) = ipu(=f),

BeP BeP i=1

where the elements ® of block B are indexed in order of their decreasing
probabilities. Observe that the probabilities in the sum on the right-hand side
are independent of the partition P and remain constant as P is refined. In
contrast, the indices of the elements decrease as P is refined: the blocks become
smaller, but the relative ordering within each block is preserved. Hence, the
assertion follows.

For & = H,, consider a partition P of K. As Vp is determined by U, we
have Hoo(U|Vp) = —log, (3 gep maxiep pu(k)) (see [48]). The values of py
and the relative ordering of probabilities within each block remain constant as
the partition is refined, but the number of blocks increases. Hence, the assertion
follows.

Finally, Assertion 3.2 is a simple consequence of 3.1. O

14



3.3 Computational vs. Information-theoretic Security

The function ®¢ characterizes the security of a system in terms of information-
theoretic entropy measures. This abstracts from the computational cost of re-
covering the secret from the available information, which may range from trivial
to infeasible. We illustrate this with two examples from cryptography. In both
examples, the full key information is revealed, but only in the first example is the
system insecure with respect to adversaries that are computationally bounded.

Example 8. Consider the one-time pad &: K xM — D, where K = M =D =
{0,1}"* for some w € N and suppose that the adversary can provide messages m
and observe the output £ @ m. Then m and k & m contain all the information
about k, that is @y (1) = 0. Moreover, k can be efficiently obtained from these
values by computing k = (k & m) & m. O

Example 9. Let K = {0,...,d — 1} and let O = {¢°,¢,..., 9%} be a finite
cyclic group of order d, with generator g. Define f: K x M — O as f(k,m) =
g*. Then f(k,m) and g contain all the information about k, that is ®z (1) =
0. However, there is no known efficient algorithm for computing k£ from this
information, that is, for computing discrete logarithms. O

Example 9 illustrates that the availability of secret information does not nec-
essarily entail that a system is vulnerable to computationally bounded adver-
saries. Hence, an information-theoretic analysis may lead to overly pessimistic
assertions about a system’s security. However, this is typically not the case for
the side-channels arising in practice: many attacks [11, 13, 15, 27, 41] show that
computational limitations are typically not the limiting factor for recovering
keys. Hence, information-theoretic bounds are indeed realistic.

4 Automated Vulnerability Analysis

In the following, we first analyze the time complexity of computing ®¢ by brute-
force. The resulting bounds are double exponential and hence infeasible for real-
istic parameter sizes. Afterwards we present a more efficient heuristic algorithm
that addresses this problem.

Throughout this section, let P be a set of partitions of K and let » > 2 be
the maximum number of blocks of a partition in P, i.e., r = max{|P| | P €
P}. We assume that partitions are represented using standard disjoint-set data
structures with operations UNION and FIND (see, e.g., [19]). Furthermore, we
assume that O and K are ordered sets for which two elements can be compared
in O(1). It is not difficult to see that, given a function f: K x M — O, one can
build disjoint-set data structures for P in time O(|M||K|log|K]|), under the
assumption that f can be computed in time O(1).

4.1 Computing o,

We begin by establishing an upper bound on the number of attack strategies
of a given length; we will use this later when we compute ®¢ by enumerating
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strategies.

Lemma 1. The number of attack strategies of length n against P is bounded

from above by |M|7‘T:11. Furthermore, every attack strategy of length n can be
encoded by an r™-tuple over {1,...,|M|}.

Proof. A straightforward argument shows that the partition induced by an at-
tack strategy of length n has at most ™ blocks. We prove Lemma 1 by in-
duction on n. For n = 0, the bound is clearly valid. Assume now that there

are at most |M \% attack strategies of length m. Each such attack strat-

egy can be extended to an attack strategy of length n + 1 by assigning one

of the | M| partitions to every block of the induced partition. There are at

most 7™ blocks, so there are at most |[M|"" possible extensions. In total, there
n n—+1

are at most |M|% M = |M|% attack strategies of length n + 1,

which concludes our inductive proof. Now observe that the choices of partitions

at level j can be encoded by a ri-tuple (ij1,... yij i) over {1,... |M|}. As
Z;l:_ol 7 = =L <™ the entire strategy can be encoded by a r"-tuple. O

Computing ®¢(n) requires identifying an optimal attack of length n. We
may compute ®¢(n) directly by brute force: enumerate all attack strategies and
compute £ for each induced partition. This algorithm yields an upper bound
on the time-complexity for computing ®¢.

Theorem 1. The value ®g(n) can be computed in time
O(n |M["" |K| log| K|)
under the assumption that € can be computed in time O(|K|).

Proof. Let (ig;...5%n—1,1,-.-,0p—1,m-1), with 1 <1i; <|M], represent an attack
strategy a of length n, where the choices of partitions at each level are encoded
as in the proof of Lemma 1 and where the individual levels are separated by ;.
We iterate over all k € K. For each k, we call FIND(k) on the representation of
the partition iy to obtain the index j of k’s enclosing block in P;,. Use FIND(k)
to obtain k’s block in F;, .. Repeat this procedure until &’s block in the partition
at depth n is determined. Save these n block indices in a list and store it in an
array I at index k. Performing this procedure for all £ € K has time complexity
O(n|K|log|K|). Two keys are in the same block of the partition induced by a
if and only if their corresponding index lists coincide. To obtain the equivalence
classes, we sort K according to the lexicographic order given by the lists in I
in O(n|K|log|K]), which dominates the running time for evaluating £ on the
resulting partition. Performing this procedure for all attack strategies yields an
overall running time of O(n |M|""|K| log |K]). O

4.2 Approximating &g

Brute-force computation of ®¢ requires time doubly exponential in the number
of attack steps and is hence infeasible even for small parameter sizes. To address
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this problem, we present a more efficient algorithm based on a greedy heuristic,
and we exhibit formal connections between ®¢ and the function computed by
the heuristic algorithm.

A Greedy Heuristic Consider an adversary who has performed a number
of attack steps against a set of partitions P and has narrowed down the set of
possible keys to a subset A C K. A greedy choice for the subsequent query is a
partition P € P that minimizes the remaining entropy of AN P. To formalize
this, consider the random variable Uy = id4 that models the random choice
of a key according to the conditional probability distribution p(:|A), and the
random variable Vpna: A — P N A that models the choice of the enclosing
block in PN A.

Definition 6. An attack strategy a = (T,v*, L) against P, with T' = (V, E),
is greedy with respect to € € {H,G,W,} if for every v € V and all P,Q € P,
{L(w) | (v,w) € E} = L(v) N P implies E(UL ) Vi(w)np) < EWULw)VLw)ng)-

We next define an approximation (/I;g of ®¢ based on the partition induced
by a greedy strategy. Note that greedy strategies are not unique and that the
induced partitions of two greedy strategies of the same length need not even
have the same entropy. Hence to define an approximation ®¢ we assume a
fixed greedy strategy a of sufficient length [ whose underlying tree is full. For
all n <[, we denote the full prefix of a with length n by a(n). We define ®¢
as @g(n) = E(U|Vam)), for all n < 1. We only use a to consistently resolve
the nondeterminism of greedy strategies of different lengths. From now on, we
assume that a greedy strategy a of sufficient length is fixed and write ®¢ instead
of ®%.

Theorem 2. The value ®g(n) can be computed in time
O(nr |M||K[?)
under the assumption that € can be computed in time O(|K|).

Proof. For computing intersections of partitions, we assume a list representation
of the blocks of every partition, in which every list is ordered with respect to the
order on K. This can be extracted from the given disjoint-set data structures
in time O(|M||K|?). For a fixed subset of K that is represented as an ordered
list, a greedy refinement can then be computed by intersecting it with each of
the (at most r) blocks of each of the | M| partitions. As the set representations
are ordered, this can be done in time O(r |M||K|). As the number of blocks in
every partition of K is bounded by | K|, computing n greedy steps can be done
in time O(nr|M||K|?). O

We next exhibit inequalities between the values of ®¢ and (/I\)g, which we will
later use when interpreting our experimental results.
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Relating &¢ and (/I;g The definition of a greedy strategy raises the question
of whether such strategies are also optimal. The following example illustrates
that this is not the case in general.

Example 10. Consider the set of partitions

P={{{1},{2},{3,4,5}}, {{1},{2, 3,4}, {5}}, {{1,2,3}, {4,5}}} ,

a uniform distribution, and the guessing entropy as a measure. A greedy strategy
refines K to {{1},{2},{3,4,5}} in a first step, and to {{1},{2},{3,4},{5}} in
a second step. Optimally, however, one would first pick {{1,2,3},{4,5}} and
refine it to {{1}, {2}, {3}, {4}, {5}} in a second step. O

As the next example? shows, the approximation provided by a greedy strat-
egy can be arbitrarily bad.

Example 11. Let K = ({0,1}?")7 x {0,1}" and M = JU{0,1}" U {*}, where
J is a finite set disjoint from {+} and {0,1}". Define f(k,m) as follows. For
m € J, f(k,m) returns the mth component of k, i.e., a vector of 2n bits. For
m = x, f(k, m) returns the last n bits of k. Finally, for m € {0,1}", f(k,m) =k
if the last n bits of k are equal to m, and f(k,m) = % otherwise. The intuition
behind the definition of f is the following. Choosing an element of J as a query
reveals 2n bits of k, whereas choosing m = x or m € {0,1}" as queries reveals
less information about k, as confirmed by a simple calculation. Consequently,
a greedy adversary will iteratively query f with all messages from J to extract
the first |.J| 2n bits of k, and will then choose * as a query to obtain the last n
bits of k. In contrast, an optimal adversary will first query the system with *
and learn the last n bits of k. In the second step, the adversary will then use
these n bits as a the input to f, thereby obtaining the full key. O

Although Example 11 shows that the difference between EI;g and ¢ can be
arbitrarily large in general, we can establish the following relationships.

Proposition 4. For £ € {H,G, Hy}, we have
1. ®g(1) = dg(1),
2. for alln €N, ®g(n) > ®g(n), and

3. if e(n) = De(n + 1), then we have ®g(n') = de(n’) = dg(n), for all
n' >n.

Proof. Assertions 1 and 2 follow directly from Definitions 4 and 6. For Assertion
3, let a be the greedy strategy underlying the definition of ®¢. ®g(n) = Pe(n+1)
implies that P, cannot be refined by intersection with a partition from P.
Hence Py(n) = [\pep P, which refines every partition that can be induced by
intersecting elements from P. O

2The authors thank Dominique Unruh for suggesting this example.
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greedy :: [Part k] -> Int -> [k] -> Part k
greedy f n keys = app n (greedystep f) [keys]

greedystep :: [Part k] -> Part k -> Part k
greedystep f pt = concat (map refine pt)
where refine b = minimumBy order (restrict b f)

Figure 2: Computing EI\)g in Haskell

We will make use of Proposition 4 in our experiments. Proposition 4.1
shows that the first greedy choice is optimal. Proposition 4.2 implies that an
implementation that is shown to be vulnerable when analyzed with ®¢ is also
vulnerable with respect to ®¢. Proposition 4.3 implies that if ®¢ levels off, then
so does P¢, and their values coincide. Hence we do not need to compute ®¢ for
arguments beyond this point.

4.3 An Implementation

For our experiments we have implemented both ®¢ and EI;g in HASKELL [9].
Here, we present our implementation of @g. We have chosen simplicity over
efficiency, forgoing sophisticated data structures and optimizations. Instead, we
represent sets as lists and partitions as lists of lists and recursively compute
greedy refinements of partitions. The core routines for computing ®¢ are given
in Figure 2.

The function greedy takes as arguments a list of keys, a list of partitions f
of the list keys, and an integer n. It refines the trivial partition [keys] by the
n-fold application of a greedy refinement step using app. The refinement step
is implemented in greedystep, where each partition pt is refined by greedily
refining each individual block. This is done in refine, which maps each block
to its partition with minimal rank among those obtained by restricting the
elements of f to b with restrict. The rank of a partition is given by the
function order, which can be instantiated to £ € {H, G, Hy }. Applying order
to the result of greedy yields 55. The simplicity of this implementation shows
that an automation of our methods is indeed straightforward.

5 Experiments

We now report on case studies where we automatically derive bounds on the
information that security protocols and hardware implementations of crypto-
graphic algorithms leak to adaptive adversaries. Throughout this section, we
use the guessing entropy G as a measure of uncertainty. The reason for this
choice is that the guessing entropy has a direct interpretation in terms of an
attacker’s effort for recovering the key by exhaustive search and, hence, in terms
of security. We abbreviate &g by ® and &g by P, respectively. We assume a
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uniform probability distribution in our experiments and compute the remaining
uncertainty with the formula given in Proposition 2.2.

5.1 Side-Channel Attacks

We first apply our methods to analyze implementations of different crypto-
graphic algorithms with respect to their vulnerability to timing and power at-
tacks. Our methods can be applied to any implementation with a deterministic
side-channel model. As a proof of concept, we focus on implementations in
synchronous hardware since, in this setting, time and power consumption are
relatively easy to determine.

As examples, we analyze the timing behavior of circuits for multiplying in-
tegers and for exponentiation in finite fields Fow. We also analyze the power
consumption of a (constant-time) circuit for multiplication in Fow. Exponenti-
ation and multiplication over Fow are relevant, for example, in the generalized
ElGamal encryption scheme, where decryption consists of exponentiation fol-
lowed by multiplication [35].

5.1.1 Setup

Approximating & Computing ® using the algorithm from Theorem 1 is ex-
pensive. The time required is doubly exponential in the number of attack steps,
and the sizes of the key space and the message space are exponential in the
number of bits used to represent keys and messages, respectively. Hence, we
cannot feasibly compute ® for large parameter sizes.

We use two approximation methods to address this problem.

1. We approximate ® by ®. We will see that ® matches ® on our example
data, although this does not hold in general (see Example 10).

2. We parameterize each algorithm by the bit-width w of its operands. Our
working assumption is that regularity in the values of ® for w € {2, ..., Wmax }
reflects the structural similarity of the parameterized algorithm. This en-
ables us to extrapolate to values of w beyond wpax. To make this explicit,
we will write ®* to denote that ® is computed for operands of w bits.

For a fixed n, we depict the values of @w(n) along the w-axis. If this graph
exhibits regularity, we can extrapolate to larger values of k; this reflects the
working assumption that the graph’s regularity reflects the structural similarity
of the parameterized algorithms. Using both methods, we can estimate ®“(n)
for values of w and n for which direct computation is infeasible.

Time and Power Estimation with GEZEL We use the hardware description
language GEZEL [46] to describe and simulate circuits. Synchronous circuits
are modeled in GEZEL as automata, where one transition corresponds to one
clock cycle. The GEZEL environment comes with a compiler that maps circuit
descriptions into a synthesizeable subset of VHDL. The translation is cycle-true
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in that it preserves the circuit’s timing behavior within the granularity of clock
cycles. In this way, the timing guarantees obtained by formal analysis translate
to silicon implementations.

Precisely estimating a circuit’s power consumption is not possible at this level
of abstraction as it depends on the physics of the semiconductor technology used.
One needs to employ technology-dependent power models for accurate predic-
tions during simulation. In this paper, we take a simple, technology-independent
approach that is provided by the GEZEL environment to approximate a circuit’s
power consumption: we count the number of signal transitions during each cy-
cle. The rationale behind this is that, e.g., in CMOS technology, the power
dissipation of a signal that remains constant is negligible compared to a signal
that toggles. Counting signal transitions thus provides approximate information
about the actual power consumption, and we will use it for our proof of concept.

Note that formal bounds based on counting signal transitions must be in-
terpreted with care: practical power attacks often exploit technology-dependent
electrical effects that are not captured by this simple measure. However, it is
straightforward to replace this measure by those given by more realistic models.
In this way, the precision of our analysis is only bounded by the precision of the
available power models.

Defining f For each algorithm and each bit-width w € {2, ..., 8}, we use the
GEZEL simulator to build value tables for the side-channel f: {0,1}* x{0,1}* —
O. For timing analysis, we use O = N to represent the number of clock ticks
required for the algorithm to terminate. For power analysis, we use O = N¢ to
represent the number of signal transitions in each of the d clock cycles.

5.1.2 Results

Timing Attacks against Shift-and-add Integer Multiplication We rep-
resent a natural number k < 2% as a sequence of w bits k;, with k = Ei“’:})lkﬂi.
To multiply two natural numbers m and k, the product m - Zi”;olkﬂi can be
expanded to (... ((kw—1-m)-24+ky_2-m)-2+...)-2+ ko -m, which can easily
be turned into an algorithm. Starting with p = 0, one iterates over all the bits
of k, beginning with the most significant bit. If k; = 1, one updates p by adding
m and then doubling p’s value. Alternatively, if k; = 0, one updates p by just
doubling its value. At the end of the loop, p = m - k. In our implementation,
the doubling and addition operations each take one clock cycle. Hence, the
running time reflects the number of 1-bits in k, that is, k’s Hamming weight.
For illustration purposes, we use k as the key and m as the message. For the
interpretation of Figure 3, first observe that ®*(1) = ®*(2) holds. Hence, by
Proposition 4, the graph actually depicts ®.

There are two conclusions to be drawn from Figure 3. First, the circuit’s
timing behavior depends on the number of 1-bits in the key. This leads to the
hypothesis that the Hamming weight of the key is revealed or, equivalently, that
two keys are indistinguishable if and only if they have the same Hamming weight.
The equivalence class of w-bit arguments with Hamming weight [ has precisely
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Figure 3: Integer Multiplication

(}) elements. Hence, by Proposition 2, the conditional guessing entropy for the

corresponding partition is given by 21,,% Z;”:O (?)2 + % The values computed

using this expression match the solid curve in Figure 3, which supports our
hypothesis and confirms a result from [29].

Second, Figure 3 shows that a single side-channel measurement is enough to
extract the maximal information revealed by the circuit’s timing behavior. This
follows as ®*(1) and ®%“(2) coincide and is due to the fact that the circuit’s
running time is independent of the message. It is out of the scope of information-
flow analysis, as in [29], to reason about the number of measurements needed
to obtain such information.

We have also implemented and analyzed a variant of the integer multipli-
cation algorithm described above, where we introduced a dummy computation
step whenever no addition operation takes place. In this way, the algorithm’s
timing behavior does not leak any information about the input parameters. This
is reflected by the dashed line in Figure 3, which matches the guessing entropy
for a key without side-channel information, given by 0.5(2* + 1).

Timing Attacks against Exponentiation in Fow We analyzed a GEZEL
implementation of the finite-field exponentiation algorithm from [20]. It takes
two arguments, the basis m and an exponent k, and it computes m* in Fow. The
algorithm is based on similar expansions as the integer multiplication algorithm
in the previous example, but is more complex due to nested loops. The results
of the analysis are depicted in Figure 4. To interpret the graph, observe that
o*(1) = (1) and ®» > ®" follow from Proposition 4. We conclude that one
timing measurement reveals a quantity of information larger than that contained
in the Hamming weight, but that it does not completely determine the key. A
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Figure 4: Finite-Field Exponentiation

second measurement, however, suffices to reveal all remaining key information.

Power Attacks against Multiplication in Fyw We analyzed the power
leakage of the finite-field multiplication circuit from the GEZEL package. It runs
in constant time and we analyzed the power traces given by counting signal
transitions, as previously explained. As in the case of integer multiplication,
we chose one operand to be secret and one to be public. Figure 5 shows that
the entire secret parameter is determined by one power trace. A silicon imple-
mentation with similar power consumption will hence be vulnerable to power
attacks.

Scaling-Up The algorithms presented in Section 4 rely on the complete enu-
meration of the key space and therefore do not scale.?> However, our data shows
regularity and we can successfully extrapolate to larger bit-widths. Under our
working assumption that this regularity reflects the structural similarity of the
parameterized algorithms, we conclude that the interpretations given for each
algorithm hold regardless of the implementation’s bit-width.

In all three examples, the number of attack steps performed is surprisingly
low compared to the sample size used in many published attacks, e.g., [11, 13, 26,
27]. This is due to the fact that noise in the measurements is typically dealt with
by increasing their number. Template attacks [15] use noise models to extract
the maximum information from every measurement and they demonstrate that
key recovery from only a few measurements is indeed possible.

3With precomputed value tables for the time consumption of the finite-field exponentiation
algorithm, the computation of ®8(2) took 40 minutes on a 2.4 GHz machine with 3 gigabytes
of RAM.
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5.2 Protocol Attacks

We report on a case study where we use our methods for the quantitative analysis
of a security protocol. The conceptual difference to the results just presented is
that we now analyze the protocol design rather than the implementation.

The protocol we analyze stems from the Application Programming Interface
(API) of a hardware security module for Automated Teller Machines (ATMs).
The attack is well-known [18], but a formal quantitative analysis was, until now,
lacking.

5.2.1 The PIN Integrity Check Protocol

When performing bank transactions using ATMs, customers are typically re-
quired to authenticate themselves with a Personal Identification Number (PIN).
For verification, the PIN is transferred from the ATM to the customer’s bank.
If there is no direct communication between the ATM and the customer’s bank,
the PIN must be passed through intermediate network switches.

To protect the PIN during the transfer, it is sent as an encrypted PIN block.
The ISO-0 standard describes such a PIN block format: each digit of the PIN is
XORed with a digit of the corresponding account number, where digits are rep-
resented by 4 bits.* The ISO-1, ISO-2, and ISO-3 standards describe alternative
PIN block formats. Each pair of adjacent switches shares a so-called transport
key, which is used for encrypting the PIN block transfer between them.

Upon reception, a switch decrypts the PIN block. To pass the result on to the
next switch, the PIN block may need to be transformed into another format. For
this, the PIN is extracted from the PIN block and checked for integrity, which is
explained below. This operation (and other operations that involve secret keys

4See, e.g., [8] for details.
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and unencrypted PINs) are performed by Hardware Security Modules (HSMs),
which are tamper-resistant cryptographic devices. HSMs are trusted, but they
are controlled by applications that run on the potentially compromised switches.
Hence, calls to the HSM’s API must not leak any information about the secret
keys or the PINs that the HSM processes.

A number of documented attacks exhibit major flaws in the PIN processing
API of HSMs [2, 8, 10, 18]. For example, the so-called PIN format attack
recovers the PIN by inducing errors in the integrity check of the reformatting
step. Clulow et al. [10] formalize the involved API calls in terms of a simple
protocol between the caller and the HSM, which we depict in Figure 6. Here,

A HSM
({PeY}k, Y')

M:=(PaY)®Y' <10

Figure 6: The PIN Integrity Check Protocol

HS M represents the HSM, A represents the application that controls the HSM,
and K is a secret key shared between A and HSM. The right-arrow represents
a function call and the left-arrow represents the return value. The protocol
formalizes the process of extracting the PIN from an encrypted ISO-0 buffer
and applying a simple integrity check, where it is verified that each of the PIN’s
digits is a decimal number. For simplicity, the protocol is formalized for single
digit PINs and account numbers.

As a first step, the encrypted PIN buffer {P®Y } ¢ and the account number
Y’ are provided to the HSM. The HSM decrypts the buffer with K and XORs
it with Y, that is, it computes P = (P @Y ) @ Y’. The HSM then verifies
that P’ is a decimal number, i.e. that P’ < 10, and returns M, the result of
this check. An honest caller will provide the correct account number, that is,
Y’ =Y (and therefore P’ = P). However, this benign behavior is not enforced
by the protocol. By suitably choosing values for Y’ and observing the results of
the corresponding integrity checks, A can deduce information about P’s value.

To quantify the information leaked, we cast the integrity check of a single
digit as a function f: K x M — {True,False}, where f(k,m) =k & m < 10
and K = M = {0,...,15}. Here, k represents one digit of the unencrypted
PIN buffer (i.e., P @®Y'), and m represents the adversary’s choice of a digit of
the account number (i.e., Y'). We assume that the adversary knows the correct
account number Y and, hence, his uncertainty about P @ Y corresponds to his
uncertainty about P.

5.2.2 Results

The results of the analysis of the PIN Integrity Check Protocol of a single digit
(that is, a 4 bit portion of the PIN buffer) are given in Figure 7.
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n=0|n=1|n=2|n=3|n=4,5,...

®d(n) | 85 | 475 | 275 | 1.75 1.5

Figure 7: Resistance of the PIN integrity check protocol

For n = 0, the resistance of 8.5 matches the guessing entropy of 0.5(2* + 1)
for an 4 bit PIN buffer prior to a run of the PIN integrity protocol. The guessing
entropy decreases with the number of interactions until, after only 4 attack steps,
it levels off at a value of 1.5. This value corresponds to the expected guessing
effort for a random variable with two equally likely alternatives. Indeed, an
inspection of the partition induced by an optimal attack shows that the blocks
are of the form {P, P®1}; hence, the PINs can be determined up to their parity.
Although this fact was already known [18], the derivation of quantitative bounds
for the leaked information was, until now, an open challenge (see [10]).

6 Related Work

There has been substantial work in information-flow security on detecting or
quantifying information leaks. Early approaches focus on quantifying the ca-
pacity of covert channels between processes in multi-user systems [23, 38, 54].
The models predate the first published side-channel attack against cryptogra-
phy [26] and are so general that it is unclear how they could be instantiated to
address the problem at hand.

A number of measures have been proposed for quantifying the information
flow in concrete programs. Di Pierro et al. [43] quantify the probability of
correctly distinguishing two processes in a probabilistic concurrent language.
This measure can, in principle, be used to characterize the adversary’s ability
to distinguish between program runs with different keys. Lowe [32] quantifies
information flow in a possibilistic process algebra by counting the number of
distinguishable behaviors. This measure is closely related to the information-
theoretic notion of channel capacity, which captures the maximal information
leakage with respect to all possible probability distributions. The information
measures proposed by Clark et al. [16] are closest to ours: the authors relate
observational equivalence to random variables and use Shannon entropy to quan-
tify the information flow to a passive observer. None of the measures mentioned
above captures adversaries that can adaptively interact with the system.

Clarkson et al. [17] consider adaptive adversaries. However, their measure
quantifies the accuracy of beliefs rather than the decrease in uncertainty. This
captures attack scenarios in which adversaries have strong prior beliefs about
the secrets (e.g., by overhearing a password), but does not seem suitable for
analyzing side-channel attacks.

Several approaches in language-based security use security type systems to
detect timing side-channels in both sequential and multithreaded settings, see
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[1, 5, 24| and [45, 49|, respectively. If a program successfully type checks, then an
adversary cannot gain any information about the secret, even if he exhaustively
runs the program on all possible public inputs. However, such strong guarantees
are of unclear significance in the absence of realistic timing models for high-level
languages. Information-flow analyses at the hardware level [52, 53] are based on
more realistic assumptions about the system, but do not model adaptive adver-
saries. For formal connections between bisimulation-based security properties
and the measure proposed in this paper, see [28].

There is a large body of work on side-channel cryptanalysis, in particular on
attacks and countermeasures. Chari et al. [14] are the first to present methods
for proving hardware implementations secure. They propose a generic coun-
termeasure for power attacks and prove that it resists a given number of side-
channel measurements. Kelsey et al. [25] show that some product ciphers can be
broken even if only a small amount of side-channel information is available to the
adversary. Micali et al. [37] propose a mathematical model that aims at provid-
ing provably secure cryptography in the presence of such bounded side-channel
leakage. Using a similar approach, Dziembowski and Pietrzak [21] recently ob-
tained the first positive results, where they construct a stream cipher that is
provably secure in the presence of bounded leakage. Recently, Naor and Segev
[40] proposed a public-key cryptosystem with similar properties. As ongoing
work, we are investigating the integration of our information-theoretic bounds
with such leakage-resilient cryptosystems.

The model of Micali et al. has been specialized to a framework for the eval-
uation of side-channel attacks by Standaert, Malkin, and Yung [51] (henceforth
called the SMY-model), with applications described in [33, 42, 50]. The SMY-
model uses two largely independent metrics for the evaluation of systems. The
information-theoretic metric considers only non-adaptive chosen-message adver-
saries and is not given a direct interpretation in terms of security. The security
metric characterizes the security of a system in terms of the success rate for re-
covering the correct key when applying a given algorithm (e.g., Bayesian classifi-
cation) to the measurement data. In this way, an analysis with the SMY-model
yields meaningful assertions about the effectiveness of the chosen key recovery
algorithm, but not necessarily worst-case bounds.

In contrast to the SMY-model, our metric abstracts from any concrete sta-
tistical analysis technique and captures adversaries that can adaptively interact
with the system. This enables us to derive sound worst-case bounds for what
can, in principle, be achieved in a side-channel attack. Clearly, such formal
bounds are practically relevant only if they are based on a valid system model.
For power analysis, the number of bit-transitions provides only a rough esti-
mation of the power consumption of a circuit; more precise power models are
required for deriving practically relevant security guarantees. For timing anal-
ysis, however, the number of clock ticks provides a reasonable, deterministic
abstraction of time. For this application domain, our metric offers the advan-
tage of a quantitative bound that is sound with respect to adaptive adversaries
and arbitrary statistical analysis techniques.

Finally, the model of side-channels presented in this paper serves as the
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basis for the quantitative analysis of systems with respect to unknown-message
attacks [4, 31]. By comparing the side-channel leakage in unknown-message
attacks to that in adaptive attacks, one can quantify the resistance gained by
applying message-blinding, the state-of-the art countermeasure against timing
attacks.

7 Conclusions and Future Work

We have presented a quantitative model that we use to measure a system’s
resistance to adaptive side-channel attacks. On the theoretical side, our model
provides a connection between information-theoretic notions of security and
physical models of hardware. Its simplicity is reflected in the three line program
(see Section 4.3) that implements this connection. On the practical side, we have
applied our model to analyze the resistance of realistic systems to adaptive side-
channel attacks. We have demonstrated that this analysis can be performed at
the push of a button and that the results are easily interpreted in terms of
an adversary’s remaining guessing effort for recovering the secret. Hence our
methods require minimal effort and expertise, which suggests that they can
become a valuable tool for the development of security-critical systems.

As ongoing work, we are extending our model with statistical techniques
for entropy estimation [6, 7]. This allows us to approximate ® for larger bit-
widths. Our initial experiments are encouraging: we are able to confirm that
the presented integer multiplication algorithm reveals one operand’s Hamming
weight—for implementations with 100 bits per operand and with an error of
less that 1%. However, the existing confidence intervals for this estimation are
too large for practical use and, as future work, we hope to improve them.

Another subject for future work is to investigate whether ® can be approx-
imated by language-based techniques, for example, by a security type system.
This would enable us to derive bounds for systems with larger or infinite state
spaces. Furthermore, it would be interesting to integrate randomness into our
model. This would lead to more accurate bounds for attacks in which noise is
an important factor, such as remote timing attacks. Finally, it is an open prob-
lem to determine information-theoretic bounds for attacks against systems with
state. Progress here would enable the quantitative analysis of cache attacks.
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