
Provably Repairing the ISO/IEC 9798 Standard

for Entity Authentication∗

David Basin, Cas Cremers, Simon Meier
Institute of Information Security

ETH Zurich, Switzerland

Abstract

We formally analyze the family of entity authentication protocols
defined by the ISO/IEC 9798 standard and find numerous weaknesses, both
old and new, including some that violate even the most basic authentication
guarantees. We analyze the cause of these weaknesses, propose repaired
versions of the protocols, and provide automated, machine-checked proofs
of their correctness. From an engineering perspective, we propose two
design principles for security protocols that suffice to prevent all the
weaknesses. Moreover, we show how modern verification tools can be used
for the falsification and certified verification of security standards. Based
on our findings, the ISO working group responsible for the ISO/IEC 9798
standard has released an updated version of the standard.

1 Introduction

Entity authentication is a core building block for security in networked systems.
In its simplest form, entity authentication boils down to establishing that a
party’s claimed identity corresponds to its real identity. In practice, stronger
guarantees are usually required, such as mutual authentication, agreement among
the participating parties on the identities of their peers, or authentication of
transmitted data [27,33].

The ISO (International Organization for Standardization) and IEC (Interna-
tional Electrotechnical Commission) jointly provide standards for Information
Technology. Their standard 9798 specifies a family of entity authentication
protocols. This standard is mandated by numerous other standards that require
entity authentication as a building block. Examples include the Guidelines on
Algorithms Usage and Key Management [13] by the European Committee for
Banking Standards and the ITU-T multimedia standard H.235 [24].

Analysis of previous versions of the ISO/IEC 9798 standard has led to the
discovery of several weaknesses [3, 8, 12]. The standard has been revised several

∗A preliminary version of this paper appeared in Proceedings of the 1st Conference on
Principles of Security and Trust (POST), 2012.

1

times to address weaknesses and ambiguities, with the latest updates before our
analysis stemming from 2010. One may therefore expect that such a mature
and pervasive standard is “bullet-proof” and that the protocols satisfy strong,
practically relevant, authentication properties.

On request by CRYPTREC, the Cryptography Research and Evaluation
Committee set up by the Japanese Government, we formally analyzed the
protocols specified in Parts 1–4 of the ISO/IEC 9798 standard from 2010,
using the Scyther tool [9]. To our surprise, we not only found that several
previously reported weaknesses are still present in the standard, but we also
found new weaknesses. In particular, many of the protocols guarantee only weak
authentication properties and, under some circumstances, even no authentication
at all. For the majority of implementations of the standard where only weak
authentication is required, these weaknesses will not lead to security breaches.
However, our findings clearly show that the guarantees provided by the protocols
are much weaker than might be expected. Moreover, in some cases, additional
assumptions are required to ensure even aliveness, the weakest possible form of
authentication.

We analyze the shortcomings in the protocols’ design and propose repairs.
We justify the correctness of our fixes by providing machine-checked proofs of the
repaired protocols. These proofs imply the absence of logical errors: the repaired
protocols provide strong authentication properties in a Dolev-Yao model, even
when multiple protocols from the standard are run in parallel using the same
key infrastructure. Consequently, under the assumption of perfect cryptography,
the repaired protocols guarantee strong authentication.

To generate the correctness proofs, we first extend the scyther-proof
tool [31] to handle bidirectional keys and injective authentication properties. We
then use the tool to generate proof scripts that are checked independently by the
Isabelle/HOL theorem prover. As input, scyther-proof takes a description of
a protocol and its properties and produces a proof in higher-order logic of the
protocol’s correctness. Both the generation of proof scripts and their verification
by Isabelle/HOL are completely automatic. The scyther-proof tool and the
protocol models that include the property specifications can be downloaded
at [1].

From an engineering perspective, we observe that applying existing principles
for constructing cryptographic protocols such as those of Abadi and Needham [2]
would not have prevented most of the discovered weaknesses. We therefore
additionally propose two design principles in the spirit of [2] whose application
would have prevented all of the weaknesses.

Based on our analysis, the ISO/IEC working group responsible for the 9798
standard has released an updated version of the standard, incorporating our
proposed fixes.

Summary of Contributions. First, we find previously unreported weak-
nesses in the 2010 version of the ISO/IEC 9798 standard. Second, we repair
this practically relevant standard, and provide machine-checked proofs of the

2

correctness of our repairs. Third, we propose two principles for engineering cryp-
tographic protocols in the spirit of [2] that would have prevented the weaknesses.
Finally, our work highlights how modern security protocol analysis tools can be
used for falsification and machine-checked verification of security standards.

Organization. In Section 2, we describe the ISO/IEC 9798 standard. In
Section 3, we model the protocols and model check them, discovering numerous
weaknesses. In Section 4, we analyze the sources of these weaknesses and present
two design principles that eliminate them. In Section 5, we explain how we
automatically generate machine-checked correctness proofs for these repaired
protocols. We describe related work in Section 6 and conclude in Section 7. In
Appendix A, we describe our extensions of the scyther-proof tool.

2 The ISO/IEC 9798 Standard

2.1 Overview

We give a brief overview of the standard, which specifies a family of entity
authentication protocols. We consider here the first four parts of the standard.
Part 1 is general and provides background for the other parts. The protocols are
divided into three groups. Protocols using symmetric encryption are described
in Part 2, those using digital signatures are described in Part 3, and those using
cryptographic check functions such as MACs are described in Part 4.

Because the standard has been revised, we also take into account the technical
corrigenda and amendments released prior to 2011. Our analysis covers the
protocols specified by the following documents. For the first part of the standard,
we cover ISO/IEC 9798-1:2010 [21]. For the second part, we cover ISO/IEC
9798-2:2008 [18] and Corrigendum 1 from 2010 [22]. For the third part, we cover
ISO/IEC 9798-3:1998 [16], the corrigendum from 2009 [19], and the amendment
from 2010 [23]. Finally, for the fourth part, our analysis covers ISO/IEC 9798-
4:1999 [17] and the corrigendum from 2009 [20]. In this paper, we write “the
standard” to refer to the above documents.

Table 1 lists the 17 associated protocols. For each cryptographic mechanism,
there are unilateral and bilateral authentication variants. The number of messages
and passes differs among the protocols as well as the communication structure.
Some of the protocols also use a trusted third party (TTP).

Note that there is no consistent protocol naming scheme shared by the
different parts of the ISO/IEC 9798 standard. The symmetric-key based protocols
are referred to in [18] as “mechanism 1”, “mechanism 2”, etc., whereas the
protocols in [16,20,23] are referred to by their informal name, e.g., “One-pass
unilateral authentication”. In this paper we will refer to the protocols consistently
by combining the document identifier, e.g., “9798-2” with a number n to identify
the n-th protocol in that document. For protocols proposed in an amendment,
we continue the numbering from the base document. Hence we refer to the first
protocol in [23] as “9798-3-6”. The resulting identifiers are listed in Table 1.

3

Protocol Description

Part 2: Symmetric-key Cryptography
9798-2-1 One-pass unilateral authentication
9798-2-2 Two-pass unilateral authentication
9798-2-3 Two-pass mutual authentication
9798-2-4 Three-pass mutual authentication
9798-2-5 Four-pass with TTP
9798-2-6 Five-pass with TTP

Part 3: Digital Signatures
9798-3-1 One-pass unilateral authentication
9798-3-2 Two-pass unilateral authentication
9798-3-3 Two-pass mutual authentication
9798-3-4 Three-pass mutual authentication
9798-3-5 Two-pass parallel mutual authentication
9798-3-6 Five-pass mutual authentication with TTP, initiated by A
9798-3-7 Five-pass mutual authentication with TTP, initiated by B

Part 4: Cryptographic Check Functions
9798-4-1 One-pass unilateral authentication
9798-4-2 Two-pass unilateral authentication
9798-4-3 Two-pass mutual authentication
9798-4-4 Three-pass mutual authentication

Table 1: Protocols specified by Parts 1-4 of the standard.

Most of the protocols are parametrized by the following elements:

• All text fields included in the protocol specification are optional and their
purpose is application-dependent.

• Many fields used to ensure uniqueness or freshness may be implemented
either by sequence numbers, random numbers, or timestamps.

• Some protocols specify alternative message contents.

• Some identifier fields may be dropped, depending on implementation
details.

2.2 Notation

We write X ∣∣Y to denote the concatenation of the bit strings X and Y . We write

{∣X ∣}enck to denote the encryption of X with the symmetric key k and {∣X ∣}signk

to denote the digital signature of X with the signature key k. The application of
a cryptographic check function f , keyed with key k, to a message m, is denoted
by fk(m).

In the standard, TVP denotes a Time-Variant Parameter, which may be a
sequence number, a random number, or a timestamp. TN denotes a time stamp
or sequence number. IX denotes the identity of agent X. Textn refers to a text
field. These fields are always optional and their use is not specified within the
standard. We write KAB to denote the long-term symmetric key shared by A
and B. If the key is directional, we assume that A uses KAB to communicate

4

1. A→ B ∶ TNA ∣∣ Text2 ∣∣ fKAB
(TNA ∣∣ IB ∣∣ Text1)

2. B → A ∶ TNB ∣∣ Text4 ∣∣ fKAB
(TNB ∣∣ IA ∣∣ Text3)

Figure 1: The 9798-4-3 two-pass mutual authentication protocol using a crypto-
graphic check function.

1. A→ P ∶ TVPA ∣∣ IB ∣∣ Text1

2. P → A ∶ TokenPA

3. A→ B ∶ TokenAB

4. B → A ∶ TokenBA

where
TokenPA = Text4 ∣∣ {∣TVPA ∣∣ kab ∣∣ IB ∣∣ Text3 ∣}encKAP

∣∣ {∣TNP ∣∣ kab ∣∣ IA ∣∣ Text2 ∣}encKBP

TokenAB = Text6 ∣∣ {∣TNP ∣∣ kab ∣∣ IA ∣∣ Text2 ∣}encKBP
∣∣ {∣TNA ∣∣ IB ∣∣ Text5 ∣}enckab

TokenBA = Text8 ∣∣ {∣TNB ∣∣ IA ∣∣ Text7 ∣}enckab

Figure 2: The 9798-2-5 four pass protocol with TTP using symmetric encryption.

with B and that B uses a second key KBA when sending messages to A. By
convention, we use lower case strings for fresh session keys, like kab.

2.3 Protocol Examples

2.3.1 Example 1: 9798-4-3

The 9798-4-3 protocol is a two-pass mutual authentication protocol based on
cryptographic check functions, e.g., message authentication codes. Its design,
depicted in Figure 1, is similar to two related protocols based on symmetric key
encryption (9798-2-3) and digital signatures (9798-3-3).

The initiator starts in role A and sends a message that consists of a time
stamp or sequence number TNA, concatenated with an optional text field and
a cryptographic check value. This check value is computed by applying a
cryptographic check function to the key shared between A and B and a string
consisting of TNA, B’s identity, and optionally a text field Text1. When B
receives this message, he computes the cryptographic check himself and compares
the result with the received check value. He then computes the response message
in a similar way and sends it to A, who checks it.

2.3.2 Example 2: 9798-2-5

Figure 2 depicts the 9798-2-5 protocol, which is based on symmetric-key encryp-
tion and uses a Trusted Third Party. A first generates a time-variant parameter
TVPA (which must be non-repeating), and sends it with B’s identity IB and
optionally a text field to the trusted party P . P then generates a fresh session
key kab and computes TokenPA, which essentially consists of two encrypted
copies of the key, using the long-term shared keys between P and A, and P and

5

B, respectively. Upon receiving TokenPA, A decrypts the first part to retrieve
the session key, and uses the second part to construct TokenAB . Finally, B
retrieves the session key from this message and sends its authentication message
TokenBA to A.

2.4 Optional Fields and Variants

There are variants for each protocol listed in Table 1. Each protocol contains text
fields, whose purpose is not specified, and which may be omitted, giving rise to
another protocol variant. As can be seen in the previous examples, some of these
text fields are plaintext, whereas others are within the scope of cryptographic
operations (i.e., signed, encrypted, or cryptographically checked). Note that the
standard does not provide a rationale for choosing among these options.

In setups where symmetric keys are used, it is common that if Alice wants to
communicate with Bob, she will use their shared key, which is the same key that
Bob would use to communicate with Alice. Such keys are called bidirectional.
Alternatively one can use unidirectional keys where each pair of agents shares
two symmetric keys, one for each direction. In this case KAlice,Bob and KBob,Alice

are different. For some protocols that employ symmetric keys, the standard
specifies that if unidirectional keys are used, some identity fields may be omitted
from the encrypted (or checked) payload. This yields another variant.

The two protocols 9798-3-6 and 9798-3-7 both provide two options for the
tokens included in their messages, giving rise to further variants. Note that in
Section 5 we verify corrected versions of all 17 protocols in Table 1, taking all
variants into account.

2.5 Threat Model and Security Properties

The ISO/IEC 9798 standard neither specifies a threat model nor defines the
security properties that the protocols should satisfy. Instead, the introduction
of ISO/IEC 9798-1 simply states that the protocols should satisfy mutual or
unilateral authentication. Furthermore, the following attacks are mentioned as
being relevant: man-in-the-middle attacks, replay attacks, reflection attacks, and
forced-delay attacks. We note that the standard does not explicitly claim that
any of the protocols are resilient against the above attacks.

3 Protocol Analysis

3.1 Background

We analyze the protocols in the standard with respect to three standard authen-
tication properties: aliveness, non-injective agreement, and injective agreement,
as defined in Lowe’s hierarchy of authentication properties [27]. We recall the
informal definitions from [27]. For the formal definitions we refer the reader
to [1].

6

The weakest property we consider is aliveness, which states that an apparent
communication partner has performed at least some protocol action.

Definition 1 (Aliveness [27]). A protocol guarantees to an initiator A aliveness
of another agent B if, whenever A (acting as initiator) completes a run of the
protocol, apparently with responder B, then B has previously been running the
protocol.

Note that this definition does not require the responder to be aware that
A is trying to authenticate him. Furthermore, most authentication protocols,
including all the protocols in the ISO/IEC 9798 standard, exchange data between
the agents, for example, time variant parameters and text fields. After a successful
run of the protocol, we would like to be sure that the view of the two agents
agrees on the exchanged data, i.e., it should not be the case that A assumes that
Text1 is yes whereas B assumes that Text1 is no.

The notion of non-injective agreement implies aliveness and captures these
additional requirements.

Definition 2 (Non-injective agreement [27]). A protocol guarantees to an ini-
tiator A non-injective agreement with a responder B on a set of data items ds
(where ds is a set of terms appearing in the protocol description) if, whenever A
(acting as initiator) completes a run of the protocol, apparently with responder
B, then B has previously been running the protocol, apparently with A, and B
was acting as responder in his run, and the two agents agreed on the data values
corresponding to all the terms in ds.

Non-injective agreement is a strong form of authentication. However, it
does not exclude replay attacks, where an attacker replays messages from a
previous session to successfully complete the protocol any number of times
with A. To prevent such attacks, we strengthen non-injective agreement to
injective agreement, which additionally requires that if A successfully completes
the protocol n times with B, then B has been running the protocol at least n
times.

Definition 3 (Injective agreement [27]). A protocol guarantees to an initiator A
agreement with a responder B on a set of data items ds if, whenever A (acting
as initiator) completes a run of the protocol, apparently with responder B, then B
has previously been running the protocol, apparently with A, and B was acting as
responder in his run, and the two agents agreed on the data values corresponding
to all the terms in ds, and each such run of A corresponds to a unique run of B.

To perform our analysis, we use two different analysis tools. In this section,
we use the Scyther tool [9] to find attacks on the ISO/IEC 9798 protocols.
In Section 5, we will use the related scyther-proof tool [31] to generate
machine-checked proofs of the corrected versions.

Scyther performs an automatic analysis of security protocols in a Dolev-Yao
style model, for an unbounded number of instances. It is very efficient at both
verification and falsification, in particular for authentication protocols such as
those considered here.

7

Protocol Role Violated property With Data Assumptions

9798-2-3 A Non-injective agreement B TNB ,Text3

9798-2-3 B Non-injective agreement A TNA,Text1

9798-2-3 (UDK) A Non-injective agreement B TNB ,Text3

9798-2-3 (UDK) B Non-injective agreement A TNA,Text1

9798-2-5 A Aliveness B Alice-talks-to-Alice
9798-2-5 B Aliveness A
9798-2-6 A Aliveness B
9798-2-6 B Aliveness A

9798-3-3 A Non-injective agreement B TNB ,Text3

9798-3-3 B Non-injective agreement A TNA,Text1

9798-3-7-1 A Non-injective agreement B RA,RB ,Text8 Type-flaw

9798-4-3 A Non-injective agreement B TNB ,Text3

9798-4-3 B Non-injective agreement A TNA,Text1

9798-4-3 (UDK) A Non-injective agreement B TNB ,Text3

9798-4-3 (UDK) B Non-injective agreement A TNA,Text1

Table 2: Overview of attacks found. (UDK) indicates the protocol variants
where unidirectional keys are used.

3.2 Analysis results

Using Scyther, we performed protocol analysis with respect to aliveness and
agreement. Our analysis reveals that the majority of the protocols in the standard
ensure agreement on the exchanged data items. However, we also found attacks
on five protocols and two protocol variants. These attacks fall into the following
categories: role-mixup attacks, type flaw attacks, multiple-role TTP attacks, and
reflection attacks. In all cases, when an agent finishes his role of the protocol,
the protocol has not been executed as expected. This can lead the agent to
proceed with false assumptions about the state of the other involved agents.

In Table 2 we list the attacks we found using Scyther. The table lists the
protocols, the properties violated, and any additional assumptions required for
the attacks. We have omitted in the table all attacks that are entailed by the
attacks listed. For example, since 9798-2-5 does not satisfy aliveness from B’s
perspective, it also does not satisfy any stronger properties such as non-injective
agreement. We now describe the classes of attacks in more detail.

3.3 Role-Mixup Attacks

Some protocols are vulnerable to a role-mixup attack in which an agent’s as-
sumptions about another agent’s role are wrong. The two agreement properties
require that when Alice finishes her role apparently with Bob, then Alice and
Bob not only agree on the exchanged data, but additionally Alice can be sure
that Bob was performing in the intended role. Protocols vulnerable to role-mixup
attacks therefore violate agreement.

Figure 3 on the following page shows an example of a role-mixup attack on

8

thread 1

role A

executed by Alice
initiating with Bob

thread 2

role B

executed by Bob
responding to Alice

thread 3

role B

executed by Alice
responding to Bob

TNA || Text2 || fKAlice,Bob
(TNA || IBob)

TNB || Text4 || fKAlice,Bob
(TNB || IAlice)

TN
′

B || Text4 || fKAlice,Bob
(TN ′

B || IBob)

Agreement(Alice,Bob,TNB)

Figure 3: Role-mixup attack on 9798-4-3: when Alice finishes thread 3 she
wrongly assumes that Bob was performing the A role.

the 9798-4-3 protocol from Figure 1. Agents perform actions such as sending and
receiving messages, resulting in message transmissions represented by horizontal
arrows. Actions are executed within threads, represented by vertical lines. The
box at the top of each thread denotes the parameters involved in the thread’s
creation. Claims of security properties are denoted by hexagons and a crossed-out
hexagon denotes that the claimed property is violated.

In this attack, the adversary uses a message from Bob in role B (thread 2)
to trick Alice in role B (thread 3) into thinking that Bob is executing role A and
is trying to initiate a session with her. However, Bob (thread 2) is replying to a
message from Alice in role A (thread 1), and is executing role B. The adversary
thereby tricks Alice into thinking that Bob is in a different state than he actually
is.

Additionally, when the optional text fields Text1 and Text3 are used, the
role-mixup attack also violates the agreement property with respect to these
fields: Alice will end the protocol believing that the optional field data she
receives from Bob was intended as Text1, whereas Bob actually sent this data
in the Text3 field. Depending on the use of these fields, this can constitute a
serious security problem. Note that exploiting these attacks, as well as the other
attacks described below, does not require “breaking” cryptography. Rather, the
adversary exploits similarities among messages and the willingness of agents to
engage in the protocol.

Summarizing, we found role-mixup attacks on the following protocols: 9798-
2-3 with bidirectional or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3
with bidirectional or unidirectional keys.

3.4 Type Flaw Attacks

Some protocol implementations are vulnerable to type flaw attacks where data
of one type is parsed as data of another type. Consider, for example, an
implementation where agent names are encoded into bit-fields of length n, which

9

thread 1

role P

executed by Pete

assumes Alice in role A

assumes Bob in role B

thread 2

role A

executed by Pete

assumes Alice in role P

assumes Bob in role B

thread 3

role B

executed by Bob

assumes Alice in role A

assumes Pete in role P

TVPA || IBob || Text1

TokenPA = Text4 ||
{|TVPA || k || IBob || Text3 |}

enc

KAP
||

{|TNP || k || IAlice || Text2 |}
enc

KBP

TokenPA

TokenAB = Text6 ||
{|TNP || k || IAlice || Text2 |}

enc

KBP
||

{|TNA || IBob || Text5 |}
enc

k

TokenAB

TokenBA

Aliveness of Alice

Figure 4: Attack on the 9798-2-5 protocol where the trusted third party Pete
performs both the P role and the A role. The assumptions of thread 1 and 3
agree. Bob wrongly concludes that Alice is alive.

is also the length of the bit-fields representing nonces. It may then happen that
an agent who expects to receive a value that it has not seen before (such as
a nonce generated in another role) accepts a bit string that was intended to
represent an agent name.

Scyther finds such an attack on the 9798-3-7 protocol, also referred to as
“Five pass authentication (initiated by B)” [23, p. 4]. In the attack, both (agent)
Alice and (trusted party) Terence mistakenly accept the bit string corresponding
to the agent name “Alice” as a nonce.

3.5 Attacks Involving TTPs that Perform Multiple Roles

Another class of attacks occurs when parties can perform both the role of the
trusted third party and another role. This scenario is not excluded by the
standard.

In Figure 4 we show an attack on 9798-2-5, from Figure 2. The attack closely
follows a regular protocol execution. In particular, threads 1 and 3 perform
the protocol as expected. The problem is thread 2. Threads 1 and 3 assume
that the participating agents are Alice (in the A role), Bob (in the B role),
and Pete (in the P role). From their point of view, Alice should be executing
thread 2. Instead, thread 2 is executed by Pete, under the assumption that Alice

10

role A

executed by Alice

TNA || Text2 || fKAlice,Alice
(TNA || IAlice || Text1)

TNA || Text4 || fKAlice,Alice
(TNA || IAlice || Text1)

Agreement

Figure 5: Reflection attack on 9798-4-3.

is performing the P role. Thread 2 receives only a single message in the attack,
which is TokenPA. Because the long-term keys are bidirectional, thread 2 cannot
determine from the part of the message encrypted with KAP that thread 1 has
different assumptions. Thread 2 just forwards the other encrypted message part
blindly to thread 3, as Thread 2 does not expect to be able to decrypt this part.
Finally, thread 3 cannot detect the confusion between Alice and Pete, because
the information in TokenAB that was added by thread 2 only includes Bob’s
name.

This attack violates aliveness because Bob was apparently talking to Alice,
but Alice never performed any action. Hence, in this case, the protocol fails to
achieve even the weakest form of authentication.

Summarizing, we found attacks involving TTPs that perform multiple roles
on the 9798-2-5 and 9798-2-6 protocol.

3.6 Reflection Attacks

Reflection attacks occur when agents may start sessions communicating with
themselves, a so-called Alice-talks-to-Alice scenario. The feasibility and relevance
of this scenario depends on the application and its internal checks. For example,
it may be that Alice uses the same private key on different physical machines, and
uses an Alice-talks-to-Alice scenario to communicate from one of her machines
to another.

If an Alice-talks-to-Alice scenario is possible, some protocols are vulnerable
to reflection attacks. The Message Sequence Chart in Figure 5 shows an example
for the 9798-4-3 protocol from Figure 1. In this attack, the adversary (not
depicted) reflects the time stamp (or nonce) and cryptographic check value from
the message sent by Alice back to the same thread, while prepending the message
Text4.

The attack violates both agreement properties, because even though the
apparent partner (Alice) has performed an action, she did not perform the
expected role. Furthermore, this attack violates one of the main requirements

11

explicitly stated in the ISO/IEC 9798-1 introduction, namely absence of reflection
attacks.

Summarizing, we found reflection attacks on the following protocols: 9798-2-3
with bidirectional or unidirectional keys, 9798-2-5, 9798-3-3, and 9798-4-3 with
bidirectional or unidirectional keys.

4 Repairing the Protocols

4.1 Root Causes of the Problems

We identify two shortcomings in the design of the protocols, which together
account for all of the weaknesses detected.

1) Cryptographic Message Elements May Be Accepted at Wrong Po-
sitions. In both the reflection and role-mixup attacks, the messages that are
received in a particular step of a role were not intended to be received at that
position. By design, the protocol messages are all similar in structure, making
it impossible to determine at which point in the protocols the messages were
intended to be received.

As a concrete example, consider the reflection attack in Figure 5. Here, the
message sent in the protocol’s first step can be accepted in the second step, even
though this is not part of the intended message flow.

2) Underspecification of the Involved Identities and their Roles. As
noted, the symmetric-key based protocols with a TTP, 9798-2-5 and 9798-2-6,
do not explicitly state that entities performing the TTP role cannot perform
other roles. Hence it is consistent with the standard for Alice to perform both
the role of the TTP as well as role A or B. In these cases, the aliveness of the
partner cannot be guaranteed, as explained in Section 3.5. The source of this
problem is that one cannot infer from each message which identity is associated
with which role.

For example, consider the first encrypted component from the third message
in the 9798-2-5 protocol with bidirectional keys, in Figure 2.

{∣TNP ∣∣ kab ∣∣ IA ∣∣ Text2 ∣}encKBP

This message implicitly includes the identities of the three involved agents: the
identity of the agent performing the A role is explicitly included in the encryption,
and the shared long-term key KBP implicitly associates the message to the key
shared between the agent performing the B and P roles. However, because the
key is bidirectional, the recipient cannot determine which of the two agents (say,
Bob and Pete) sharing the key performed which role: either Bob performed the
B role and Pete the P role, or vice versa. Our attack exploits this ambiguity.

12

4.2 Associated Design Principles

To remedy these problems, we propose two principles for designing security
protocols. These principles are in the spirit of Abadi and Needham’s eleven
principles for prudent engineering practice for cryptographic protocols [2].

Our first principle concerns tagging.

Principle: positional tagging. Cryptographic message compo-
nents should contain information that uniquely identifies their origin.
In particular, the information should identify the protocol, the proto-
col variant, the message number, and the particular position within
the message, from which the component was sent.

This is similar in spirit to Abadi and Needham’s Principle 1, which states that
“Every message should say what it means: the interpretation of the message should
depend only on its content. It should be possible to write down a straightforward
English sentence describing the content — though if there is a suitable formalism
available that is good too.” Our principle does not depend on the meaning of
the message as intended by the protocol’s designer. Instead, it is based solely on
the structure of the protocol messages and their acceptance conditions.

Note that we consider protocols with optional fields to consist of multiple
protocol variants. Thus, a message component where fields are omitted should
contain information to uniquely determine which fields were omitted.

Our second principle is a stricter version of Abadi and Needham’s Principle 3.

Principle: inclusion of identities and their roles. Each cryp-
tographic message component should include information about the
identities of all the agents involved in the protocol run and their
roles, unless there is a compelling reason to do otherwise.

A compelling reason to leave out identity information might be that identity
hiding is a requirement, i.e., Alice wants to hide that she is communicating with
Bob. However, such requirements can usually be met by suitably encrypting
identity information.

Contrast this principle with the Abadi and Needham’s Principle 3: “If the
identity of a principal is essential to the meaning of a message, it is prudent to
mention the principal’s name explicitly in the message.” The original principle
is only invoked when the identity is essential. Instead, we propose to always
include information on all the identities as well as their roles. This principle
would have prevented attacks on many protocols, including the attacks on the
9798-2-5 and 9798-2-6 protocols, as well as the Needham-Schroeder protocol [26].

For protocols with a fixed number of roles, this principle can be implemented
by including an ordered sequence of the identities involved in each cryptographic
message component, such that the role of an agent can be inferred from its
position in the sequence.

13

Amendment 1:

The cryptographic data (encryptions, signatures, cryptographic check values)
used at different places in the protocols must not be interchangeable. This may
be enforced by including in each encryption/signature/CCF value the following
two elements:

1. The object identifier as specified in Annex B [23, p. 6], in particular
identifying the ISO standard, the part number, and the authentication
mechanism.

2. For protocols that contain more than one cryptographic data element, each
such element must contain a constant that uniquely identifies the position
of the element within the protocol.

The recipient of a message must verify that the object identifier and the position
identifiers are as expected. The cryptographic keys used by implementations
of the ISO/IEC 9798 protocols must be distinct from the keys used by other
protocols.

Amendment 2:

When optional fields, such as optional identities or optional text fields, are not
used then they must be set to empty. In particular, the message encoding must
ensure that the concatenation of a field and an empty optional field is uniquely
parsed as a concatenation. This can be achieved by implementing optional fields
as variable-length fields. If the optional field is not used, the length of the field
is set to zero.

Amendment 3:

Entities that perform the role of the TTP in the 9798-2-5 and 9798-2-6 protocols
must not perform the A or B role.

Figure 6: Proposed amendments to the ISO/IEC 9798 standard.

4.3 Proposed Modifications to the Standard

All the previously mentioned attacks on the ISO/IEC 9798 can be prevented by
applying the previous two principles. Specifically, we propose three modifications
to the ISO standard, shown in Figure 6. The first two directly follow from the
principles and the third modification restricts the use of two protocols in the
standard. Afterwards we give an example of a repaired protocol.

Note that in this section we only give informal arguments why our modifica-
tions prevent the attacks. In Section 5, we provide machine-checked proofs that
this is the case.

14

4.3.1 Ensuring that Cryptographic Data Cannot Be Accepted at the
Wrong Point

We factor the first principle (positional tagging) into two parts and propose two
corresponding amendments to the standard. First, we explicitly include in each
cryptographic message component constants that uniquely identify the protocol,
the message number, and the position within the message. Second, we ensure
that protocol variants can be uniquely determined from the messages.

In our first amendment, shown in Figure 6, we implement unique protocol
identifiers by using an existing part of the standard: the object identifier from
Annex B of the standard, which specifies an encoding of a unique protocol iden-
tifier. We also introduce a unique identifier for the position of the cryptographic
component within the protocol.

Amendment 1 prevents all reflection attacks because messages sent in one
step will no longer be accepted in another step. Furthermore, it prevents all role-
mixup attacks, because the unique constants in the messages uniquely determine
the sending role. The final part of Amendment 1, stating that cryptographic keys
should not be used by other protocols, provides distinctness of cryptographic
messages with respect to any other protocols.

Our second amendment, also shown in Figure 6, ensures that the protocol
variant (determined by the omission of optional fields) can be uniquely determined
from the messages. We implement this by requiring that the recipient of a message
can uniquely determine which optional fields, if any, were omitted.

To see why protocols with omitted optional fields must be considered as
protocol variants, consider the following example: Consider a protocol in which
a message contains the sequence X ∣∣ IA ∣∣ Text , where IA is an identity field that
may be dropped (e.g., with unidirectional keys) and Text is an optional text
field. Then, it may be the case that in one protocol variant, an agent expects a
message of the form X ∣∣ IA, whereas the other implementation expects a message
of the form X ∣∣ Text . The interaction between the two interpretations can result
in attacks. For example, the text field is used to insert a fake agent identity, or
an agent identity is wrongly assumed to be the content of the text field.

If we follow the second amendment in the above example, the expected mes-
sages correspond to X ∣∣ IA∣∣ ⊥ and X ∣∣ ⊥ ∣∣Text , respectively, where ⊥ denotes the
zero-length field. Because the ISO/IEC 9798 standard requires that concatenated
fields can be uniquely decomposed into their constituent parts, misinterpretation
of the fields is no longer possible.

Together, Amendments 1 and 2 implement our first principle.

4.3.2 Addressing Underspecification of the Role Played by Agents

Almost all the protocols in the ISO/IEC 9798 standard already adhere to our
second principle: unique identification of the involved parties and their roles.
However, all protocols in the standard conform to Abadi and Needham’s third
principle because the messages uniquely determine the identities of all involved
parties.

15

1. A→ B ∶ TNA ∣∣ Text2 ∣∣ fKAB
(“9798-4-3 ccf1” ∣∣∣∣∣∣ TNA ∣∣ IB ∣∣∣∣∣∣ ⊥⊥⊥)

2. B → A ∶ TNB ∣∣ Text4 ∣∣ fKAB
(“9798-4-3 ccf2” ∣∣∣∣∣∣ TNB ∣∣ IA ∣∣ Text3)

Figure 7: Repaired version of the 9798-4-3 protocol with omitted Text1 field.

There are two protocols in the standard that conform to Abadi and Needham’s
principle but not to our second principle: 9798-2-5 and 9798-2-6. For example, the
messages of the 9798-2-5 protocol identify all parties involved by their association
to the long-term keys. However they do not conform to our second principle
because the roles of the involved identities cannot be uniquely determined from
the messages. This is the underlying reason why, as currently specified, the
9798-2-5 and 9798-2-6 protocols do not guarantee the aliveness of the partner,
as shown in Section 3.5.

This problem can be solved by applying our principle, i.e., including the
identities of all three participants in each message, so that their roles can be
uniquely determined. This is an acceptable solution and we have formally verified
it using the method of Section 5. However, from our analysis with Scyther, we
observe that the attacks require that the Trusted Third Party also performs other
roles (A or B). Under the assumption that in actual applications a TTP will,
by definition, not perform the A or B role, the protocols already provide strong
authentication. Thus, an alternative solution is to leave the protocols unchanged
and make this restriction explicit. This results in more streamlined protocols
and also requires minimal changes to the standard. This is the proposal made
in Amendment 3 in Figure 6. We have also verified this solution as described in
Section 5.

4.3.3 Repaired Protocols

Applying our principles and proposed amendments to the standard, we obtain
repaired versions of the protocols. As an example, we show the repaired version
of the 9798-4-3 protocol with bidirectional keys in Figure 7. In this example, the
Text1 field is not used, and is therefore replaced by ⊥. Each use of a cryptographic
primitive (in this case the cryptographic check function) includes a constant that
uniquely identifies the protocol (9798-4-3) as well as the position within the
protocol specification (ccf1 and ccf2).

5 Proving the Correctness of the Repaired Pro-
tocols

The principles and amendments proposed in the previous section are motivated
by our analysis of the attacks and the protocol features that enable them.
Consequently, the principles and amendments are designed to eliminate these
undesired behaviors. Such principles are useful guides for protocol designers

16

but their application does not strictly provide any security guarantees. In
order to ensure that the repaired protocols actually have the intended strong
authentication properties, we provide machine-checked correctness proofs.

5.1 Generating machine-checked correctness proofs

We use a version [1] of the scyther-proof tool [31] to generate proofs of the
authentication properties. Given a description of a protocol and its security
properties, the tool generates a proof script that is afterwards automatically
checked by the Isabelle/HOL theorem prover [34]. If the prover succeeds, then
the protocol is verified with respect to a symbolic, Dolev-Yao model. Two
extensions to the tool were required to verify our repaired protocols. We added
support for bidirectional symmetric long-term keys and support for injective
authentication properties. We describe these two extensions in Appendix A.

The proofs generated by scyther-proof are based on a security protocol
verification theory, which is formally derived in Isabelle/HOL from the formal-
ization of a symbolic, Dolev-Yao model. This theory provides a sound way to
perform finite case distinctions on the possible sources of messages that are
known to the intruder in the context of a given protocol. We will illustrate how
these case distinctions are used to prove security properties in Example 1 on
page 18.

The tool searches for the proofs with the fewest number of these case distinc-
tions. For example, in the proofs of our repaired protocols, two case distinctions
are required on average to prove a security property. Therefore, the generated
proof scripts are amenable to human inspection and understanding. To simplify
the task of understanding how the proofs work and, hence, why the protocol is
correct, the tool also generates proof outlines. These consist of a representation
of the security property proven and a tree of case distinctions constituting the
proof.

5.2 Parallel composition

We verify the properties of each protocol when composed in parallel with all other
protocols that use the same cryptographic primitives and the same keys. Note
that in the corresponding proofs, the case distinctions on the source of messages
known to the intruder range over the roles of each protocol in the protocol
group. Despite the substantial increase in the scope of these case distinctions,
the proof structure of the composed protocols is the same as for the individual
protocols, as all additional cases are always trivially discharged due to tagging:
cryptographic components received by a thread of one protocol contain tags that
do not match with the tags in messages produced by roles from other protocols.

The verification of the parallel composition of all protocols that use the
same cryptographic primitives and the same keys implies that all protocols
composed in parallel satisfy their security properties. This follows from the
disjoint encryption theorem [14], which implies that protocols that do not share
keying material can be safely composed.

17

Repaired version of 9798-4-3

protocol isoiec_9798_4_3_bdkey_repaired
{

leak_A. A -> : TNa
leak_B. B -> : TNb

text_1. -> A: Text1, Text2
1. A -> B: A, B, TNa, Text2, Text1, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_1’,

TNa, B, Text1))
text_2. -> B: Text3, Text4

2. B -> A: B, A, TNb, Text4, Text3, h((’CCF’, k[A,B]), (’isoiec_9798_4_3_ccf_2’,
TNb, A, Text3))

}
properties (of isoiec_9798_4_3_bdkey_repaired)

A_non_injective_agreement: niagree(A_2[A,B,TNb,Text3] -> B_2[A,B,TNb,Text3], {A, B})
B_non_injective_agreement: niagree(B_1[A,B,TNa,Text1] -> A_1[A,B,TNa,Text1], {A, B})

Figure 8: Example of input provided to the scyther-proof tool.

5.3 Details of the proven properties

In Tables 3, 4, and 5 we provide details of the authentication properties proven
using scyther-proof for each repaired protocol and its variants. For example,
for the 9798-2-1 protocol with bidirectional keys, we have that if Bob successfully
completes a thread of role B, apparently with Alice, then there must be a thread
of Alice performing role A that agrees on the agent names, TNA, and Text1.

5.3.1 Non-injective agreement

For each repaired protocol, we use scyther-proof to prove that it satisfies at
least non-injective agreement on all data items within the scope of cryptographic
operators in the presence of a Dolev-Yao intruder. Moreover, we prove that this
holds even when all the protocols from the standard are executed in parallel
using the same key infrastructure, provided that the set of bidirectional keys
is disjoint from the set of unidirectional keys. As the content of text fields is
underspecified in the standard, we assume that the intruder chooses their content
immediately before they are sent. We model timestamps and sequence numbers
by random numbers that are public and chosen at the beginning of the execution
of a role.

Example 1. Figure 8 specifies our model of the repaired 9798-4-3 protocol with
bidirectional keys in the input language of the scyther-proof tool. The leak A

and the leak B steps model that the timestamps (represented here as randomly
generated numbers) are publicly known by leaking them to the intruder. We
model that the contents of the Text 1 through Text 4 fields are chosen by the
intruder by defining them as variables that receive their content from the network,
and therefore from the intruder. We model the cryptographic check function by
the hash function h.

Figure 9 shows the proof outline for non-injective agreement for the A-role
of this protocol, which is automatically generated by our tool. We have taken
minor liberties in its presentation to improve readability. In the figure, #i is a

18

1 property (of isoiec_9798_4_3_bdkey_repaired)
2 A_non_injective_agreement:
3 "All #i.
4 role(#i) = isoiec_9798_4_3_bdkey_repaired_A &
5 step(#i, isoiec_9798_4_3_bdkey_repaired_A_2) &
6 uncompromised(A#i, B#i)
7 ==> (Ex #j. role(#j) = isoiec_9798_4_3_bdkey_repaired_B &
8 step(#j, isoiec_9798_4_3_bdkey_repaired_B_2) &
9 (A#j, B#j, TNb#j, Text3#j) = (A#i, B#i, TNb#i, Text3#i)) "

10 sources(h((’CCF’, k[A#i,B#i]), (’isoiec_9798_4_3_ccf_2’, TNb#i, A#i, Text3#i)))
11 case fake
12 contradicts secrecy of k[A#i,B#i]
13 next
14 case (isoiec_9798_4_3_bdkey_B_2_repaired_hash #k)
15 tautology
16 qed

Figure 9: Example proof outline automatically produced by the scyther-proof
tool.

symbolic variable denoting some thread i and A#i is the value of the variable A

in the thread i. Lines 3–9 state the security property: for each thread #i that
executes the A-role and has executed its Step 2 with uncompromised (honest)
agents A#i and B#i, there exists some thread #j that executed Step 2 of the
B-role and thread #j agrees with thread #i on the values of A, B, TNb, and Text3.

The proof proceeds by observing that thread #i executed Step 2 of the A-role.
Therefore, thread #i received the hash in line 10 from the network, and therefore
the intruder knows this hash. A case distinction on the sources of this hash
results in two cases: (1) the intruder could have constructed (faked) this hash
by himself or (2) the intruder could have learned this hash from some thread #k

that sent it in Step 2 of the B-role. There are no other cases because all other
hashes have different tags. Case 1 is contradictory because the intruder does not
know the long-term key shared between the two uncompromised agents A#i and
B#i. In Case 2, the security property holds because we can instantiate thread
#j in the conclusion with thread #k. Thread #k executed Step 2 of the B-role
and agrees with thread #i on all desired values because they are included in the
hash.

5.3.2 Injective agreement

The protocols in the ISO/IEC 9798 standard are also designed to provide injective
agreement. In this case, if an agent completes the A or B role n times, he can be
sure that the agent performing the other roles has participated at least n times.
In the terminology of the ISO/IEC standard, this concept is called uniqueness
and it is used to rule out replay attacks. The standard uses three techniques to
achieve uniqueness: random numbers, time stamps, and sequence numbers.

Random numbers About half of the protocols achieve uniqueness by
using random numbers for challenge-response. The party that wants to ensure

19

Repaired protocol Role Property With Data

9798-2-1 B Non-injective agreement A A,B,TNA,Text1

9798-2-1 (UDK) B Non-injective agreement A A,B,TNA,Text1

9798-2-2 B Injective agreement A A,B,RB ,Text2

9798-2-2 (UDK) B Injective agreement A A,B,RB ,Text2

9798-2-3 A Non-injective agreement B A,B,TNB ,Text3

B Non-injective agreement A A,B,TNA,Text1

9798-2-3 (UDK) A Non-injective agreement B A,B,TNB ,Text3

B Non-injective agreement A A,B,TNA,Text1

9798-2-4 A Injective agreement B A,B,RA,RB ,Text2,Text4

B Injective agreement A A,B,RA,RB ,Text2

9798-2-4 (UDK) A Injective agreement B A,B,RA,RB ,Text2,Text4

B Injective agreement A A,B,RA,RB ,Text2

9798-2-5 (DR) A Injective agreement B A,B,P,KAB ,TNA,Text5,TNB ,Text7

B Non-injective agreement A A,B,P,KAB ,TNA,Text5

A Injective agreement P A,B,P,KAB ,TVPA,Text3

B Non-injective agreement P A,B,P,KAB ,TNP ,Text2

9798-2-5 (UDK) A Injective agreement B A,B,P,KAB ,TNA,Text5,TNB ,Text7

B Non-injective agreement A A,B,P,KAB ,TNA,Text5

A Injective agreement P A,B,P,KAB ,TVPA,Text3

B Non-injective agreement P A,B,P,KAB ,TNP ,Text2

9798-2-6 (DR) A Injective agreement B A,B,P,KAB ,R
′

A,RB ,Text6,Text8

B Injective agreement A A,B,P,KAB ,R
′

A,RB ,Text6

A Injective agreement P A,B,P,RA,KAB ,Text4

B Injective agreement P A,B,P,RB ,KAB ,Text3

9798-2-6 (UDK) A Injective agreement B A,B,P,KAB ,R
′

A,RB ,Text6,Text8

B Injective agreement A A,B,P,KAB ,R
′

A,RB ,Text6

A Injective agreement P A,B,P,RA,KAB ,Text4

B Injective agreement P A,B,P,RB ,KAB ,Text3

Table 3: Properties proven of the repaired protocols in Part 2 of the standard.
(UDK) indicates the protocol variants where unidirectional keys are used. (DR)
indicates the variants where participants that perform the A or B role cannot
also perform the P role, in accordance with Amendment 3 in Figure 6.

uniqueness generates a fresh random number and sends this to the other party.
The other party must include the random number in his response, thereby
uniquely binding the response to the request.

For each protocol in the standard that uses random numbers, we use our
extension of scyther-proof described in Appendix A.2 to prove injective
agreement for our repaired versions.

Time stamps and sequence numbers The other protocols use time
stamps or sequence numbers to achieve uniqueness. This includes all one-pass
protocols because including a challenge and a response requires at least two
messages exchanges.

Each time a party runs a new instance of a role, it uses a new sequence
number which differs from all numbers it previously used. Recipients of messages
that include a sequence number are required to verify that the received number is
different from all previously received sequence numbers. Similarly, time stamps
are used to achieve uniqueness by only accepting them within a fixed time

20

Repaired protocol Role Property With Data

9798-3-1 B Non-injective agreement A A,B,TNA,Text1

9798-3-2 B Injective agreement A A,B,RA,RB ,Text2

9798-3-3 A Non-injective agreement B A,B,TNB ,Text3

B Non-injective agreement A A,B,TNA,Text1

9798-3-4 A Injective agreement B A,B,RA,RB ,Text2,Text4

B Injective agreement A A,B,RA,RB ,Text2

9798-3-5 A Injective agreement B A,B,RA,RB ,Text5

B Injective agreement A A,B,RA,RB ,Text3,Text5

9798-3-6 (Opt. 1) A Injective agreement B A,B,RA,RB ,Text2

B Injective agreement A A,B,RA,RB ,Text8

A Injective agreement T B,T,R′

A, PKB ,Text6

B Injective agreement T A,T,RB , PKA,Text5

9798-3-6 (Opt. 2) A Injective agreement B A,B,RA,RB ,Text2

B Injective agreement A A,B,RA,RB ,Text8

A Injective agreement T A,B,T,R′

A,RB , PKA, PKB ,Text5

B Injective agreement T A,B,T,R′

A,RB , PKA, PKB ,Text5

9798-3-7 (Opt. 1) A Injective agreement B A,B,RA,RB ,Text8

B Injective agreement A A,B,RA,RB ,Text6

A Injective agreement T B,T,R′

A, PKB ,Text4

B Injective agreement T A,T,RB , PKA,Text3

9798-3-7 (Opt. 2) A Injective agreement B A,B,RA,RB ,Text8

B Injective agreement A A,B,RA,RB ,Text6

A Injective agreement T A,B,T,R′

A,RB , PKA, PKB ,Text3

B Injective agreement T A,B,T,R′

A,RB , PKA, PKB ,Text3

Table 4: Properties proven of the repaired protocols in Part 3 of the standard.

Repaired protocol Role Property With Data

9798-4-1 B Non-injective agreement A A,B,TNA,Text1

9798-4-1 (UDK) B Non-injective agreement A A,B,TNA,Text1

9798-4-2 B Injective agreement A A,B,RB ,Text2

9798-4-2 (UDK) B Injective agreement A A,B,RB ,Text2

9798-4-3 A Non-injective agreement B A,B,TNB ,Text3

B Non-injective agreement A A,B,TNA,Text1

9798-4-3 (UDK) A Non-injective agreement B A,B,TNB ,Text3

B Non-injective agreement A A,B,TNA,Text1

9798-4-4 A Injective agreement B A,B,RA,RB ,Text2,Text4

B Injective agreement A A,B,RA,RB ,Text2

9798-4-4 (UDK) A Injective agreement B A,B,RA,RB ,Text2,Text4

B Injective agreement A A,B,RA,RB ,Text2

Table 5: Properties proven of the repaired protocols in Part 4 of the standard.
(UDK) indicates the protocol variants where unidirectional keys are used.

window, and verifying that the time stamp has not already been received in the
time window. For both mechanisms, the required checks can only be performed
by a thread if it can access data of other threads of the same agent. In other
words, checking uniqueness of sequence numbers or time stamps requires shared
memory among the different threads of an agent.

In our protocol model, we can not precisely model the required uniqueness

21

checks of sequence numbers and timestamps. The reason for this is that our
protocol model assumes that an agent’s threads do not share any state other
than the agent’s long-term keys. Hence we can not prove injective agreement for
protocols that use time stamps or sequence numbers within our model. However,
it is straightforward to see that if an agent verifies that the messages received
in each thread are different from those received in previous threads (which is
possible because the messages include either a time stamp or a sequence number),
then injective authentication follows from non-injective authentication.

From our analysis we conclude that all repaired protocols in the standard
that provably satisfy non-injective agreement, also satisfy injective agreement.

5.4 Performance

Our extensions of the scyther-proof tool as well as the protocol models
(including the property specifications) can be downloaded at [1]. Using a Core 2
Duo 2.20GHz laptop with 2GB RAM, the full proof script generation requires
less than 20 seconds, and Isabelle’s proof checking requires less than three hours.

6 Related Work

Previous Analyses of the ISO/IEC 9798 Protocols. Chen and Mitchell [8]
reported attacks based on parsing ambiguities on protocols from several standards.
They identify two types of ambiguities in parsing strings involving concatenation:
(1) recipients wrongly parse an encrypted string after decryption and (2) recipi-
ents wrongly assume that a different combination of data fields was input to the
digital signature or MAC that they are verifying. They show that such errors
lead to attacks, and they propose modifications to the standards. Their analysis
resulted in a technical corrigendum to the ISO/IEC 9798 standard [19,20,22].

Some of the protocols have been used as case studies for security protocol
analysis tools. In [12], the Casper/FDR tool is used to discover weaknesses in six
protocols from the ISO/IEC 9798 standard. The attacks discovered are similar
to our reflection and role-mixup attacks. They additionally report so-called
multiplicity attacks, but these are prevented by following the specification of
the time-variant parameters in Part 1 of the standard. Contrary to our findings,
their analysis reports “no attack” on the 9798-2-5 and 9798-2-6 protocols as they
do not consider type-flaw attacks. A role-mixup attack on the 9798-3-3 protocol
was also discovered by the SATMC tool [3]. Neither of these works suggested
how to eliminate the detected weaknesses.

In [11], the authors verify the three-pass mutual authentication protocols
that use symmetric encryption and digital signatures, i.e., 9798-2-4 and 9798-3-4.
Their findings are consistent with our results.

Related Protocols. The SASL authentication mechanism from RFC 3163 [35]
claims to be based on Part 3 of the ISO/IEC 9798 standard. However, the SASL
protocol is designed differently than the ISO/IEC protocols and is vulnerable to

22

a man-in-the-middle attack similar to Lowe’s well-known attack on the Needham-
Schroeder public-key protocol. Currently, the SASL protocol is not recommended
for use (as noted in the RFC). The SASL protocol only provides authentication
in the presence of a passive eavesdropping adversary, which can also be achieved
using only plaintext messages.

In the academic literature on key exchange protocols, one finds references
to a Diffie-Hellman-based key exchange protocol known as “ISO 9798-3”. This
protocol seems to be due to [7, p. 464-465], where a protocol is given that
is similar in structure to the three-pass mutual authentication ISO/IEC 9798
protocol based on digital signatures, where each random number n is replaced
by ephemeral public keys of the form gx. However, in the actual ISO/IEC
9798 standard, no key exchange protocols are defined, and no protocols use
Diffie-Hellman exponentiation.

7 Conclusions

Our findings show that great care must be taken when using current imple-
mentations of the ISO/IEC 9798 standard. Under the assumption that trusted
third parties do not play other roles, the protocols guarantee a weak form of
authentication, namely, aliveness. However, many of the protocols do not sat-
isfy any stronger authentication properties, such as injective or non-injective
agreement, which are needed in realistic applications. For example, when using
these protocols one cannot assume that when a text field is encrypted with a
key and was apparently sent by Bob, that Bob actually sent it, or that he was
performing the intended role. In contrast, our repaired versions satisfy strong
authentication properties and hence ensure not only aliveness but also injective
agreement on the participating agents, their roles, the values of time-variant
parameters, and the message fields that are cryptographically protected.

Based on our analysis of the standard’s weaknesses, we have proposed amend-
ments and provided machine-checked proofs of their correctness. Our proofs
guarantee the absence of these weaknesses even in the case that all protocols from
the standard are run in parallel using the same key infrastructure. The working
group responsible for the ISO/IEC 9798 standard has released an updated version
of the standard based on our analysis and proposed fixes.

Formal methods are slowly starting to have an impact in standardization
bodies, e.g., [4–6,15,25,29,30]. We expect this trend to continue as governments
and other organizations increasingly push for the use of formal methods for the
development and evaluation of critical standards. For example, ISO/IEC JTC
1/SC 27 started the project “Verification of cryptographic protocols (ISO/IEC
29128)” in 2007 which is developing standards for certifying cryptographic
protocols, where the highest evaluation levels require the use of formal, machine
checked correctness proofs [28].

We believe that the approach we have taken here to analyze and provably
repair the ISO/IEC 9798 standard can play an important role in future standard-
ization efforts. Our approach supports standardization committees with both

23

falsification, for analysis in the early phases of standardization, and verification,
providing objective and verifiable security guarantees in the end phases.

References

[1] Source code of Scyther-Proof including the models of the repaired
ISO/IEC 9798 protocols, March 2013. http://hackage.haskell.org/

package/scyther-proof-0.6.0.0.

[2] M. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. Software Engineering, IEEE Transactions on, 22(1):6 –15, 1996.

[3] A. Armando and L. Compagna. SAT-based model-checking for security
protocols analysis. Int. J. Inf. Sec., 7(1):3–32, 2008.

[4] D. Basin, C. Cremers, and C. Meadows. Model checking security protocols.
In E. Clarke, T. Henzinger, and H. Veith, editors, Handbook of Model
Checking, chapter 24. Springer, 2013. To appear.

[5] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu. Cryptographically
verified implementations for TLS. In ACM Conference on Computer and
Communications Security, pages 459–468. ACM, 2008.

[6] K. Bhargavan, C. Fournet, A. D. Gordon, and N. Swamy. Verified imple-
mentations of the information card federated identity-management protocol.
In ASIACCS, pages 123–135. ACM, 2008.

[7] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. In EUROCRYPT, volume 2045 of LNCS,
pages 453–474. Springer, 2001.

[8] L. Chen and C. J. Mitchell. Parsing ambiguities in authentication and key
establishment protocols. Int. J. Electron. Secur. Digit. Forensic, 3:82–94,
2010.

[9] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of
security protocols. In Proc. CAV, volume 5123 of LNCS, pages 414–418.
Springer, 2008. Available for download at http://people.inf.ethz.ch/

cremersc/scyther/.

[10] C. Cremers, S. Mauw, and E. de Vink. Injective synchronisation: an
extension of the authentication hierarchy. Theoretical Computer Science,
pages 139–161, 2006.

[11] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. Abstraction and refinement
in protocol derivation. In Proc. 17th IEEE Computer Security Foundations
Workshop (CSFW), pages 30–45. IEEE Comp. Soc., June 2004.

24

http://hackage.haskell.org/package/scyther-proof-0.6.0.0
http://hackage.haskell.org/package/scyther-proof-0.6.0.0
http://people.inf.ethz.ch/cremersc/scyther/
http://people.inf.ethz.ch/cremersc/scyther/

[12] B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols
using Casper and FDR. In Proc. of the Workshop on Formal Methods and
Security Protocols, 1999.

[13] European Payments Council. Guidelines on algorithms usage and key
management. Technical report, 2009. EPC342-08 Version 1.1.

[14] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint
encryption. In CSFW, pages 24–34, 2000.

[15] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell. A modular
correctness proof of IEEE 802.11i and TLS. In Proc. of the 12th ACM
conference on Computer and communications security, CCS ’05, pages 2–15,
New York, NY, USA, 2005. ACM.

[16] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-3:1998, Information technology – Security techniques – Entity
Authentication – Part 3: Mechanisms using digital signature techniques,
1998. Second edition.

[17] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-4:1999, Information technology – Security techniques – Entity
Authentication – Part 3: Mechanisms using a cryptographic check function,
1999. Second edition.

[18] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-2:2008, Information technology – Security techniques – En-
tity Authentication – Part 2: Mechanisms using symmetric encipherment
algorithms, 2008. Third edition.

[19] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-3:1998/Cor.1:2009, Information technology – Security tech-
niques – Entity Authentication – Part 3: Mechanisms using digital signature
techniques. Technical Corrigendum 1, 2009.

[20] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-4:1999/Cor.1:2009, Information technology – Security tech-
niques – Entity Authentication – Part 3: Mechanisms using a cryptographic
check function. Technical Corrigendum 1, 2009.

[21] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-1:2010, Information technology – Security techniques – Entity
Authentication – Part 1: General, 2010. Third edition.

[22] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-2:2008/Cor.1:2010, Information technology – Security tech-
niques – Entity Authentication – Part 2: Mechanisms using symmetric
encipherment algorithms. Technical Corrigendum 1, 2010.

25

[23] International Organization for Standardization, Genève, Switzerland.
ISO/IEC 9798-3:1998/Amd.1:2010, Information technology – Security tech-
niques – Entity Authentication – Part 3: Mechanisms using digital signature
techniques. Amendment 1, 2010.

[24] ITU-T. Recommendation H.235 - Security and encryption for H-series
(H.323 and other H.245-based) multimedia terminals, 2003.

[25] D. Kuhlman, R. Moriarty, T. Braskich, S. Emeott, and M. Tripunitara. A
correctness proof of a mesh security architecture. In Proc. of the 2008 21st
IEEE Computer Security Foundations Symposium, pages 315–330. IEEE
Computer Society, 2008.

[26] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In TACAS’96, volume 1055 of LNCS, pages 147–166. Springer,
1996.

[27] G. Lowe. A hierarchy of authentication specifications. In Proc. 10th IEEE
Computer Security Foundations Workshop (CSFW), pages 31–44. IEEE,
1997.

[28] S. Matsuo, K. Miyazaki, A. Otsuka, and D. A. Basin. How to evaluate the
security of real-life cryptographic protocols? - the cases of ISO/IEC 29128
and CRYPTREC. In Financial Cryptography and Data Security, FC 2010
Workshops, RLCPS, WECSR, and WLC 2010, Spain, January 25-28, 2010,
Revised Selected Papers, volume 6054 of LNCS, pages 182–194. Springer,
2010.

[29] C. Meadows. Analysis of the Internet Key Exchange protocol using the
NRL Protocol Analyzer. In IEEE Symposium on Security and Privacy,
pages 216–231, 1999.

[30] C. Meadows, P. F. Syverson, and I. Cervesato. Formal specification and
analysis of the Group Domain Of Interpretation Protocol using NPATRL and
the NRL Protocol Analyzer. Journal of Computer Security, 12(6):893–931,
2004.

[31] S. Meier, C. Cremers, and D. Basin. Efficient construction of machine-
checked symbolic protocol security proofs. Journal of Computer Security,
21(1):41–87, 2013.

[32] S. Meier, C. J. F. Cremers, and D. A. Basin. Strong invariants for the
efficient construction of machine-checked protocol security proofs. In CSF,
pages 231–245. IEEE Computer Society, 2010.

[33] A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Inc., 5th edition, 2001.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

26

[35] R. Zuccherato and M. Nystrom. RFC 3163: ISO/IEC 9798-3 Authentication
SASL Mechanism, 2001. http://www.rfc-editor.org/info/rfc3163.

27

http://www.rfc-editor.org/info/rfc3163

A Extensions of Scyther-Proof

In the following, we describe two extensions of scyther-proof needed to verify
our repaired versions of the ISO/IEC 9798 protocols. The first extension supports
modeling protocols that use bidirectional keys. The second extension supports
proving injective authentication properties between two parties.

A.1 Bidirectional Keys

The security protocol semantics underlying the scyther-proof tool uses a
message algebra that only supports unidirectional symmetric long-term keys.
Therefore every pair of agents a and b shares two different unidirectional sym-
metric long-term keys Kab and Kba, one for each direction of communication.

To verify the protocol variants of the ISO/IEC 9798 standard that use bidi-
rectional keys, we extended the message algebra with an additional constructor
K{a1,...,an} that models a symmetric key shared between the set of the agents
{a1, . . . , an}. We can therefore model the special case of a bidirectional key
shared between two agents a and b as K{a,b}. Analogously, we extended the
message pattern algebra, which is used to specify the messages sent and received
in a security protocol, with a constructor K{v1,...,vn} for variables v1, . . . , vn. A
thread i executing a protocol’s role interprets the message pattern K{v1,...,vn}
by instantiating the variables v1, . . . , vn and looking up the corresponding key in
a table of (pre-)shared symmetric long-term keys. If this lookup fails, then the
thread stops.

We now describe in more detail how the above behavior is modeled in the
transition system formalizing our security-protocol semantics. A thread’s variable
assignments are stored in the system state as a function σ ∶ Var ×TID → Msg.
The interpretation mapping a message pattern to its corresponding message in
the context of a thread i and the variable store σ is modeled by the family of
partial functions instσ,i ∶ Pat↛Msg. In the semantics presented in [31,32], these
functions were total. However, we now use partial functions because the lookup
of a shared symmetric long-term key always fails if one of the variables is not
instantiated to an agent name. Formally, we extend the definition of the instσ,i
function family from [31] with the following case.

instσ,i(K{v1,...,vn}) = {
K{σ(v1,i),...,σ(vn,i)} if {σ(v1, i), . . . , σ(vn, i)} ⊆ Agent

� otherwise

We also change the Send and Recv transition rules such that the thread stops
if the interpretation of a message pattern fails.

scyther-proof’s proof generation algorithm is based on a symbolic back-
wards search. We added support to this algorithm for bidirectional symmetric
long-term keys modeled using K{a,b} as described above. We extended its
unification algorithm to solve equalities over symbolic bidirectional symmetric
long-term keys of the form K{σ(a,i),σ(b,i)} for agent variables a and b and some
thread i. The extended unification algorithm assumes a fixed term order ≺ and

28

keeps all terms normalized with respect to the conditional rewriting rule

K{a,b} ↝K{b,a} if a ≺ b .

If an equality of the form c(t1, . . . , tn) = K{a,b} for a constructor c other than
K{⋅} is encountered, then no unifier exists. Unifications of equalities of the form
K{a,b} = K{x,y} are delayed. If these are the only remaining equalities, then
the unification algorithm tries to exploit one of the following equivalences and
continues unification.

K{a,b} =K{x,b}⇔ a = x K{a,b} =K{b,y}⇔ a = y
K{a,b} =K{x,a}⇔ b = x K{a,b} =K{a,y}⇔ b = y
K{a,a} =K{x,y}⇔ a = y ∧ x = y
K{a,b} =K{x,x}⇔ a = x ∧ b = x

If there are remaining equalities for which none of the above equivalences applies,
then a case split is performed using the equivalence

(K{a,b} =K{x,y}) ⇔ (a = x ∧ b = y) ∨ (a = y ∧ b = x).

Note that verifying the repaired protocol variants with unidirectional keys and
the ones with bidirectional keys makes little difference in scyther-proof’s
performance since such (potentially expensive) case splits are rarely required.
Most encryptions include the identity of at least one of the agents sharing the
key in their encrypted message. Hence, the equality of the encrypted message
fully determines the equality of the agents sharing the key.

A.2 Proving Injective Authentication Properties

In this section, we explain how we extend scyther-proof with support for
proving injective two-party authentication properties. We first define both
injective and non-injective two-party authentication properties. Then, we state
a theorem that allows us to reduce proving an injective two-party authentication
property to proving the corresponding non-injective property and an injectivity
condition. Finally, we explain how we integrate this theorem into scyther-
proof’s proof generation algorithm.

We build on the security protocol model from [31]. In this model, the set TID
denotes the set of all thread identifiers. The set of reachable states of a protocol
P is given by reachable(P). Slightly generalizing the notion of authentication
properties, we define a non-injective two-party authentication property of a
protocol P to be a closed formula of the form

∀q ∈ reachable(P). ∀i ∈ TID. claimq(i) ⇒ ∃j ∈ TID. partnerq(i, j) .

Here, claimq(i) is a predicate formalizing for state q which threads claim that
there exists a partner thread and partnerq(i, j) formalizes for a state q when a
thread j is a partner of a thread i. It is easy to see that classical authentication

29

properties like non-injective agreement [27] or non-injective synchronization [10]
can be represented as closed formulas of this form. The following example
illustrates the use of the claim and partner predicates for defining a non-injective
agreement property.

Example 2. The ISO/IEC 9798-2-2 protocol with unidirectional keys, denoted
by 9798 2 2 udk, satisfies non-injective agreement for the B role on the identi-
ties A and B, the exchanged nonce RB, and the Text2 field, as shown in Table 3.
In the security protocol model underlying scyther-proof [31], we formalize
this property by the formula

∀q ∈ reachable(9798 2 2 udk). ∀i ∈ TID. claimq(i) ⇒ ∃j ∈ TID. partnerq(i, j)

where

claim(tr,th,σ)(i)
def= roleth(i) = B ∧ (i,B2) ∈ steps(tr) ∧ σ(A, i) ∉ Compr

partner
(tr,th,σ)(i, j)

def= roleth(j) = A ∧ (i,A2) ∈ steps(tr) ∧
σ(A, i) = σ(A, j) ∧ σ(B, i) = σ(B, j) ∧
σ(Text2, i) = σ(Text2, j) ∧ RB ♯ i = σ(RB, j) .

Intuitively, the claimq(i) predicate formalizes that, in the state (tr, th, σ),
some thread i completed an execution of the B role talking to an uncompromised
agent σ(A, i). That thread i completed the execution of the B role is formalized
by the condition (i,B2) ∈ steps(tr), which denotes that thread i executed the
second (i.e., the last) step of the B role. The partnerq(i, j) predicate formalizes
that, in the state (tr, th, σ), the thread j completed an execution of the A role
and agrees with the thread i on the values of A, B, Text2, and RB. Note that the
interpretation of RB differs between thread i and thread j. The expression RB ♯ i
denotes the nonce freshly generated by thread i. The expression σ(RB, j) denotes
the value of the variable RB in thread j, which stores the nonce that thread j
extracted from the message that it received in its first step. The remaining
values A, B, and Text2 are interpreted as variables in both threads.

We can generate a machine-checked proof certifying that the 9798 2 2 udk

protocol satisfies this non-injective agreement property using the existing proof-
generation algorithm of scyther-proof. In the following, we show how to
generate a machine-checked proof certifying that this protocol also satisfies the
corresponding injective agreement property.

Given a function f and a set A ⊆ dom(f), we say that f is injective on A,
written injA(f), iff ∀x, y ∈ A. f(x) = f(y) ⇒ x = y. We define an injective
two-party authentication property to be a closed formula of the form

∀q ∈ reachable(P). ∃f. inj
{i∈TID ∣ claimq(i)}(f) ∧

∀i ∈ TID. claimq(i) ⇒ partnerq(i, f(i)) .

Note that we only require f to be injective on all thread identifiers i for which
claimq(i) holds because f is only evaluated on these thread identifiers.

30

In practice, many protocols rely on a challenge-response mechanism to
achieve injectivity: a thread i generates a nonce (the challenge) and sends it to
its intended partner, which returns the nonce in a later message (the response).
This response will only be accepted by thread i, since all other threads are
waiting for responses containing a different challenge. The challenge-response
mechanism thus binds every responding thread to a unique challenging thread.

In our formalization of authentication properties, the set of challenging
threads of a state q is characterized by the claim predicate, while the associated
responding threads are characterized by the partner predicate. The partner
predicate uniquely binds responding threads to challenging threads if

∀i1, i2, j ∈ TID. partnerq(i1, j) ∧ partnerq(i2, j) ⇒ i1 = i2 .

We call this the injectivity property. For a partner predicate satisfying this
property, non-injective authentication implies injective authentication. We
formalize this by the following theorem, which we have proven in Isabelle/HOL.

Theorem 1 (Non-Injective to Injective Authentication). Assume that a proto-
col P satisfies the non-injective two-party authentication property

∀q ∈ reachable(P). ∀i ∈ TID. claimq(i) ⇒ ∃j ∈ TID. partnerq(i, j)

for some definition of the predicates claim and partner. Then the corresponding
injective two-party authentication property

∀q ∈ reachable(P). ∃f. inj
{i∈TID. claimq(i)}(f) ∧

∀i ∈ TID. claimq(i) ⇒ partnerq(i, f(i))

also holds, provided that the partner predicate satisfies the injectivity property.

Before explaining the integration of Theorem 1 in the proof generation algorithm
of scyther-proof, we illustrate its use in a pen-and-paper proof.

Example 3. We continue Example 2, where we proved non-injective agreement
for the B role of the 9798 2 2 udk protocol. In this example, we additionally
prove injective agreement for the B-role. We formalize injective agreement using
the definitions of the claim and partner predicates from Example 2. The proof
is as follows.

Non-injective agreement was previously established. Moreover, the partner
predicate satisfies the injectivity property, as partner

(tr,th,σ)(i, j) implies the
equality RB ♯ i = σ(RB, j), i.e., the threads i and j agree on the nonce RB ♯ i freshly
generated by the thread i. This equality implies the injectivity property, as
RB ♯ i1 = σ(RB, j) and RB ♯ i2 = σ(RB, j) imply RB ♯ i1 = σ(RB, j) = RB ♯ i2, which in
turn implies i1 = i2. By Theorem 1, we thus conclude that in the 9798 2 2 udk

protocol the B role injectively agrees with the A role on the values of A, B, Text2,
and RB.

In scyther-proof’s proof generation algorithm, we prove injective two-
party authentication properties by checking whether both the injectivity property

31

and the non-injective authentication property hold. If this is the case, we then
generate a proof script that instantiates Theorem 1 appropriately. In this proof
script, we use Isabelle/HOL’s “auto” tactic to prove the injectivity property.
To generate the proof for the non-injective authentication property, we use
scyther-proof’s existing proof generation algorithm described in [31].

In the implementation of scyther-proof, we check the injectivity property
by exploiting that all two-party authentication properties handled by scyther-
proof are of the form

∀q ∈ reachable(P). ∀i ∈ TID. (⋀A∈Γ A) ⇒ ∃j ∈ TID. (⋀B∈∆ B),

where Γ, ∆ are sets of atoms of the following form.

tid = tid′ m =m′ roleth(tid) = R σ(a, tid) ∈ Compr false

e ≺tr e′ (tid, s) ∈ steps(tr) m ∈ knows(tr) σ(a, tid) ∉ Compr

See [31, Section IV-B] for the formal definitions of these constructs. To check
the injectivity property, we can therefore check whether

(⋀B∈∆ B)[i← i1] ∧ (⋀B∈∆ B)[i← i2] implies i1 = i2 .

32

	Introduction
	The ISO/IEC 9798 Standard
	Overview
	Notation
	Protocol Examples
	Example 1: 9798-4-3
	Example 2: 9798-2-5

	Optional Fields and Variants
	Threat Model and Security Properties

	Protocol Analysis
	Background
	Analysis results
	Role-Mixup Attacks
	Type Flaw Attacks
	Attacks Involving TTPs that Perform Multiple Roles
	Reflection Attacks

	Repairing the Protocols
	Root Causes of the Problems
	Associated Design Principles
	Proposed Modifications to the Standard
	Ensuring that Cryptographic Data Cannot Be Accepted at the Wrong Point
	Addressing Underspecification of the Role Played by Agents
	Repaired Protocols

	Proving the Correctness of the Repaired Protocols
	Generating machine-checked correctness proofs
	Parallel composition
	Details of the proven properties
	Non-injective agreement
	Injective agreement

	Performance

	Related Work
	Conclusions
	Extensions of Scyther-Proof
	Bidirectional Keys
	Proving Injective Authentication Properties

