
LTL is Closed Under Topological Closure

Grgur Petric Maretić, Mohammad Torabi Dashti, David Basin

Department of Computer Science, ETH
Universitätstrasse 6
Zürich, Switzerland

Abstract

We constructively prove that for every LTL formula ϕ, the smallest safety property con-
taining the property expressed by ϕ is also expressible in LTL. It immediately follows
that LTL admits the safety-liveness decomposition: any property expressed by an LTL
formula is equivalent to the intersection of a safety property and a liveness property,
both of them expressible in LTL. Our proof is based on constructing a minimal de-
terministic counter-free Büchi automaton that recognizes the smallest safety property
containing the property expressed by ϕ.

Keywords: Specification Languages, LTL, Safety, Liveness, Büchi Automata

1. Introduction

Executions of reactive systems can be seen as infinite sequences of states, events,
assertions, etc. A property, or language, is a set of executions. Lamport [1] introduced
two important classes of properties: safety and liveness. Intuitively, a safety property
states that something bad never happens, and a liveness property states that something
good eventually happens. Many system validation and verification methods are tailored
to these classes. For example, safety properties can be finitely falsified and are therefore
testable, while liveness properties are not; safety and liveness require different proof
techniques too [1, 2].

Alpern and Schneider [3] use a topological argument to show that every property is
the intersection of a safety property and a liveness property. It is natural to ask whether,
for a property expressed in Linear Temporal Logic (LTL) [4], the decomposition can
be done within LTL. In this article, we sharpen Alpern and Schneider’s result by con-
structively proving that any property expressed by an LTL formula is equivalent to the
intersection of a safety property and a liveness property, both of them expressible by
LTL formulas.

Email addresses: pgrgur@inf.ethz.ch (Grgur Petric Maretić), torabidm@inf.ethz.ch
(Mohammad Torabi Dashti), basin@inf.ethz.ch (David Basin)

Preprint submitted to Information Processing Letters February 28, 2014

1.1. Related Work

Alpern and Schneider [2] use Büchi automata to prove that any ω-regular property
is the intersection of a safety property and a liveness property, themselves being ω-
regular. Since any property expressible in LTL is ω-regular [5], it follows that any
property expressed by an LTL formula is the intersection of a safety property S and a
liveness property L, both being ω-regular. However, it does not follow from this that
the properties S and L are both expressible by LTL formulas, as LTL formulas are only
capable of expressing star-free ω-regular languages, which constitute a strict subset of
ω-regular languages [5].

Lichtenstein, Pnueli, and Zuck [6] prove a normal form theorem (LPZ normal form)
for LTL that intuitively states that each LTL formula is equivalent to a positive Boolean
combination of what they define as safety and liveness formulas. Their definition of
safety coincides with Alpern and Schneider’s, but their liveness formulas (LPZ live-
ness) can express properties that are not liveness by Alpern and Schneider’s definition.
Hence, their results are essentially incomparable to ours. Moreover, the LPZ normal
form is a disjunction of conjunctions, in contrast to the single conjunction of our LTL
decomposition. Furthermore, conjunctions in LPZ normal form do not always consist
of one safety formula and one LPZ liveness formula: they could both be safety or both
be LPZ liveness.

Although the notion of topological closure, safety, and liveness have been studied
in temporal logic, see e.g. [7, 8], we are not aware of any safety-liveness decomposition
results for LTL.

1.2. Organization

In Section 2 we review safety and liveness, the safety-liveness decomposition the-
orem of Alpern and Schneider, LTL, and Büchi automata. We then define reduced and
counter-free Büchi automata, and introduce safety automata. In Section 3 we present
our main contributions: LTL is closed under topological closure and the safety-liveness
decomposition theorem holds in LTL. For any Büchi automaton, we construct a mini-
mal safety automaton that recognizes its safety part. Whenever the original automaton
expresses an LTL formula, the resulting safety automaton is counter-free. Afterward,
we describe the construction of an LTL formula from the safety automaton.

2. Preliminaries

Most definitions in this section are standard.

2.1. Safety and Liveness

Fix an alphabet Σ. Let Σω be the set of all countably infinite sequences over Σ, Σ+ be
the set of all finite nonempty sequences over Σ, and Σ∗ = Σ+∪{ε}, where ε is the empty
sequence. An element of Σω is a path, and a property is any set of paths. A trace is an
element of Σ+. We write |t| for the length of trace t. For a path π = p0 p1 · · · , its prefix πi

is the trace p0 p1 · · · pi. The concatenation of trace t and (trace or) path π is denoted tπ.
The empty trace ε is the neutral element for concatenation. The concatenation of a set
of traces to a property is defined in the standard way. A family is a set of properties.

2

Examples of families include the set of properties expressible by LTL formulas (defined
below), the set of ω-regular languages, denoted Ω (defined below), and the set of all
properties, denoted Π. A family F is closed under the n-ary function f : Πn → Π,
with n ≥ 0, if ∀P1, · · · , Pn ∈ F . f (P1, · · · , Pn) ∈ F .

Lamport [1] defines a safety property as one that states that something (usually
bad) never happens. For example, the elevator door never opens while the elevator is
moving. In contrast, a liveness property states that something (usually good) eventu-
ally happens. For example, every process in a multitasking system will eventually be
granted CPU time. There are various formalizations of safety and liveness, such as [6],
but Alpern and Schneider’s formalization [3] has become widely accepted.

Definition 1 ([3]). A set S of paths is a safety property if for every π < S there is a
natural number i ∈ N0 such that πiσ < S for all paths σ ∈ Σω. Intuitively, every path
that is not in S has a finite irremediable (“bad”) prefix.

A set L of paths is a liveness property if for every t ∈ Σ∗ there is a path π such
that tπ ∈ L. Intuitively, every trace can be remedied (when the “good thing” occurs).

N

Safety and liveness can also be defined through the notion of “distance”. Given two
executions π1 and π2, one can measure their similarity in terms of the smallest index
at which they differ. This can be formalized by the metric d, defined by d(π, π) = 0
and d(π1, π2) = 2−i, where i = min{ j ∈ N0 | π

1
j , π

2
j }. The distance between a path π

and a property P is then defined as d(π, P) = inf{d(π, π′) | π′ ∈ P}. Intuitively, a set S
is a safety property if it includes all the paths that are arbitrarily close to it, and a set L
is a liveness property if every path is arbitrarily close to L. The proposition below
summarizes this observation.

Proposition 2. A set S ⊆ Σω is a safety property if {π ∈ Σω | d(π, S) = 0} ⊆ S . A
set L ⊆ Σω is a liveness property if ∀π ∈ Σω. d(π, L) = 0. �

These characterizations of safety and liveness correspond to the characterizations
of closed and dense sets in metric spaces, respectively. Therefore, in the topology
induced by d, safety properties correspond to closed sets, and liveness properties cor-
respond to dense sets. It then follows that safety properties are closed under (infinite)
set intersection, and liveness properties are closed under set union. Theorem 4 below
immediately follows from this topological characterization of safety and liveness.

For a family F , we write F s = {P ∈ F | P is a safety property} and F ` = {P ∈ F |
P is a liveness property}. Consequently, Πs and Π` are families consisting of all safety
properties and all liveness properties, respectively.

Definition 3. A family F admits the safety-liveness decomposition if

∀P ∈ F .∃S ∈ F s.∃L ∈ F `. P = S ∩ L. N

Theorem 4 (Π Admits the Safety-Liveness Decomposition [3]). For every property P ∈
Π, there exist a property S ∈ Πs and a property L ∈ Π` such that P = S ∩ L. �

We define the unary topological closure function d·e : Π → Π as dPe =
⋂
{S ∈

Πs | P ⊆ S }. That is, dPe is the smallest safety property that contains the property P.

3

We define the complement function · : Π → Π as P = Σω \ P. If a family F is closed
under ∩ and under ·, then F is closed under set union ∪. Examples of families that
are closed under ∩ and · are Π, Ω, and the set of properties expressible in LTL. The
following proposition restates Corollary 1.1 of [3], using our notation.

Proposition 5. Let F be a family closed under ∩, ·, and d·e. Then F admits the safety-
liveness decomposition. Namely, for any P ∈ F ,

P = dPe ∩ (dPe ∪ P),

where dPe ∈ F s and dPe ∪ P ∈ F `. �

2.2. LTL and Büchi automata

Let AP be a finite set of atomic propositions. The syntax of LTL formulas [4] is
given by the grammar ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | #ϕ | ϕU ϕ, where a ∈ AP. We
write ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), ^ϕ for >U ϕ, and �ϕ for ¬^¬ϕ. LTL formulas
are interpreted over paths of Σω, where Σ = 2AP. The satisfaction relation is defined
inductively over the formula structure:

π, i |= >
π, i |= a if a ∈ pi

π, i |= ¬ϕ if π, i 6|= ϕ
π, i |= ϕ ∧ ψ if π, i |= ϕ and π, i |= ψ
π, i |= #ϕ if π, i + 1 |= ϕ
π, i |= ϕU ψ if there is a j ≥ i such that π, j |= ψ

and π, k |= ϕ for all i ≤ k < j

An LTL formula ϕ defines the property L(ϕ) = {π ∈ Σω | π, 0 |= ϕ}. An LTL for-
mula ϕ is a safety (liveness) formula if L(ϕ) is a safety (respectively liveness) property.
Two LTL formulas ϕ1 and ϕ2 are equivalent, denoted ϕ1 ≡ ϕ2, if L(ϕ1) = L(ϕ2).

We assume that the reader is familiar with deterministic, non-deterministic, and
counter-free finite state automata on finite words, and star-free regular expressions [9].
We take the definition of Büchi automata from [10].

Definition 6. A Büchi automaton over the alphabet Σ is a tupleA = (Q, q0,∆, F) with
a finite set Q of states, an initial state q0 ∈ Q, a transition relation ∆ ⊆ Q× Σ×Q, and
a set F ⊆ Q of accepting states. A Büchi automaton is deterministic if ∆ : Q × Σ→ Q
is a partial transition function.

For t ∈ Σ+ we define (s, t, s′) ∈ ∆+ if there is a sequence of states s0, s1, · · · , s|t|
such that s = s0, s′ = s|t| and (si, ti, si+1) ∈ ∆, for 0 ≤ i < |t|. A run ofA on a path π =

p0 p1 · · · ∈ Σω is a sequence of states s0s1 · · · such that s0 = q0 and (si, pi, si+1) ∈ ∆,
for i ∈ N0. The run is accepting if some element of F occurs infinitely often in the
run. Automaton A accepts π if there is an accepting run of A on π. The set L(A) =

{π ∈ Σω | A accepts π} is the property recognized byA. N

The family of properties recognized by Büchi automata is the set of ω-regular lan-
guages Ω. We next define counter-free and reduced Büchi automata.

4

Note that Büchi automata and non-deterministic finite state automata on finite
words (NFA) only differ in their acceptance condition. One may therefore view a
Büchi automaton A as an NFA AF , and vice versa. In order to avoid confusion, we
will use the explicit subscript F to denote finite state automata on finite words. LetA =

(Q, q0,∆, F) be a Büchi automaton defined using the alphabet Σ. For states p, q ∈ Q,
let Lp,q = {t ∈ Σ+ | (p, t, q) ∈ ∆+} be the set of all nonempty traces that can reach state q
from state p. The automatonA, or the NFAAF , is aperiodic if for all states s ∈ Q, all
traces u ∈ Σ+, and every m ≥ 1, um ∈ Ls,s entails u ∈ Ls,s. The Büchi automaton A is
counter-free ifA is aperiodic [11]. The NFAAF is counter-free if its corresponding
minimal deterministic automaton is aperiodic [9].

The following proposition is used in the proof of Theorem 13. Note that if AF is
an aperiodic minimal deterministic finite automaton on finite words (DFA), then both
the automataAF andA are counter-free.

Proposition 7. LetAF be an aperiodic NFA. Determinizing and minimizingAF results
in an aperiodic DFA.

Proof. Assume the NFA AF = (QA, q0A,∆A, FA) is, using subset construction, de-
terminized to DF = (P(QA), {q0A},∆D, FD). Take any u ∈ Σ+, P0 ∈ P(QA), and
m > 1 such that (P0, um, P0) ∈ ∆+

D. We claim (P0, u, P0) ∈ ∆+
D. Take any se-

quence P0, P1, · · · , Pm, where (Pi, u, Pi+1) ∈ ∆+
D, where 1 ≤ i ≤ m − 1, and P0 = Pm.

Note that the sequence in fact defines a cycle. In particular, (Pi, um, Pi) ∈ ∆+
D, for

every Pi in the sequence. Furthermore, we will show that Pi ⊆ Pi+1 for every i ∈
{0, · · · ,m − 1}, which implies, since the sequence defines a cycle, that P0 = P1, thus
proving the claim.

Take any i ∈ {0, · · · ,m − 1}. For any state s1 ∈ Pi, we construct the sequence ζ =

s1, s2, · · · , s|Pi |+1 by choosing s j such that (s j, um, s j−1) ∈ ∆+
A, for 1 < j ≤ |Pi| + 1.

Since (Pi, um, Pi) ∈ ∆+
D, the states s1, s2, · · · , s|Pi |+1 are all elements of Pi. By the pi-

geonhole principle, there is an index l such that sl is repeated in ζ. That is, (sl, ukm, sl) ∈
∆+

A, for some natural number k ≤ |Pi|. This implies that (sl, u, sl) ∈ ∆+
A, as AF is ape-

riodic. Since (Pi, u, Pi+1) ∈ ∆+
D, it follows that sl ∈ Pi+1. Now, s1, · · · , sl of the se-

quence ζ all belong to Pi+1 because (Pi+1, um, Pi+1) ∈ ∆+
D. In particular s1 ∈ Pi+1. That

is, Pi ⊆ Pi+1. Since the sequence P0, P1, · · · , Pm defines a cycle, it follows from the
transitivity of ⊆ that Pi+1 ⊆ Pi.

Now, suppose that minimizing DF results in MF = (QM , q0M ,∆M , FM). Note
that QM can be seen as a partitioning of the set of states of DF . Using an argument
similar to the above one, it follows thatMF is aperiodic. �

Diekert and Gastin [11] show that counter-free Büchi automata correspond to LTL
formulas. Their proof is however non-constructive: it does not describe how to con-
struct a counter-free automaton from an LTL formula or vice versa.

Theorem 8 ([11]). Let L ⊆ Σω be a property. There is an LTL formula ϕ such
that L(ϕ) = L iff there is a counter-free Büchi automatonA such that L(A) = L. �

In a Büchi automatonA = (Q, q0,∆, F), the set of states reachable from state s ∈ Q
is defined as reach(s) = {s′ ∈ Q | ∃t ∈ Σ+. (s, t, s′) ∈ ∆+}. Note that reachability is not
reflexive in this context. We say A is reduced if an accepting state is reachable from

5

any state s ∈ Q. One can reduce any Büchi automaton without changing the language it
recognizes: Iteratively remove from Q all s ∈ F where reach(s) ∩ F = ∅ and restrict ∆

correspondingly. Then, remove from Q all s ∈ Q \ F such that reach(s) ∩ F = ∅ and
then restrict ∆ correspondingly. The time complexity of this algorithm is cubic in the
number of states of the automaton. Note thatA is reduced iffAF is reduced.

For a Büchi automatonA, an automaton recognizing dL(A)e can be constructed by
reducingA and then making all of its states accepting.

Theorem 9 ([2]). Let L be a language recognized by a Büchi automaton AL, and
let AR = (Q, q0,∆, F) be its reduced automaton. The topological closure of L is
recognized by the automaton (Q, q0,∆,Q). �

The following corollary is a direct consequence of Proposition 5, Theorem 9, and
the fact that Ω is closed under ∩ and ·.

Corollary 10 (Ω Admits the Safety-Liveness Decomposition [2]). For every P ∈ Ω

there exist S ∈ Ωs and L ∈ Ω` such that P = S ∩ L. �

To summarize, Alpern and Schneider have proven that both Π and Ω admit the
safety-liveness decomposition. We are not aware of any other safety-liveness decom-
position results in the literature (cf. Section 1.1).

A safety automaton is a reduced Büchi automaton that accepts a safety property.
By Theorem 9, marking all the states of a safety automaton as accepting does not
affect the language it recognizes. We therefore assume that safety automata have all
states accepting. The following theorem intuitively states that we may determinize and
minimize a safety automaton as is done for NFA. This obviously does not hold for
arbitrary Büchi automata. We will build upon this result in the next section.

Theorem 11. LetA and B be safety automata. Then L(A) = L(B) iff L(AF) = L(BF).

Proof. Assume L(A) = L(B), and let t be a trace accepted byAF . SinceA is reduced,
an accepting state is reachable from each of its states. It immediately follows that an
accepting run of AF on t can be extended to an accepting run of A on some path tπ.
Therefore, B accepts tπ. Let s0s1 · · · s|t| · · · be an accepting run of B on tπ. The se-
quence of states s0s1 · · · s|t| is an accepting run of BF on t, since all of its states are
accepting. This argument symmetrically holds for the case where t is accepted by BF .

Now assume that L(AF) = L(BF), and let π be a path accepted by A. By way
of contradiction, let us assume π < L(B). Since L(B) is a safety property, there is an
index i such that, for every path σ, πiσ < L(B). Since B is reduced, this can only hold
if the trace πi is not be accepted by the automaton BF . However, πi ∈ AF because π ∈
L(A) and all states of AF are accepting. This contradicts the assumption L(AF) =

L(BF). This argument symmetrically holds for the case where π is accepted by B. �

3. Topological Closure of LTL Properties

We prove that LTL is closed under topological closure: for every LTL formula ϕ,
there is an LTL formula, denoted by dϕe, such that dL(ϕ)e = L(dϕe). Consequently, LTL
admits the safety-liveness decomposition. Note that the symbol d·e is overloaded here.

6

The following lemma, which is used in the proof of Theorem 13, shows that reduc-
ing a counter-free automaton always results in a counter-free automaton. We remark
that eliminating an arbitrary state from a counter-free automaton does not in general
result in a counter-free automaton.

Lemma 12. Let A be a counter-free Büchi automaton. The automaton A′, obtained
by reducingA, is counter-free.

Proof. If q0 is not a state of A′, then L(A) = ∅. Therefore, the set of states of A′

is empty and it is counter-free. Otherwise, by way of contradiction, let us assume
that A′ = (Q′, q0,∆

′, F′) is not counter-free. Then, there is a trace u ∈ Σ+, an m > 1,
and a state p ∈ Q′ such that um ∈ L′p,p and u < L′p,p in A′. Because A is counter-
free, u ∈ Lp,p in A. Therefore, there is a sequence of states p = s0, s1, · · · , s|u| = p
such that (si, ui, si+1) ∈ ∆, for 0 ≤ i < |u|. Since u < L′p,p, there must be some state si

in that sequence that is not a state of the automaton A′. This means that in A there
is no accepting state reachable from si. Since p is reachable from si there is also no
accepting state reachable from p. If no accepting state is reachable from p in A, it
follows that no accepting state is reachable from p in A′ as well. This contradicts the
assumption thatA′ is reduced. �

The next theorem constitutes the core of our argument. It states that applying
Alpern and Schneider’s construction, given in Theorem 9, to any Büchi automaton that
recognizes the language of an LTL formula and then minimizing the resulting safety
automaton (which is justified by Theorem 11) gives us a counter-free safety automa-
ton. Note that the requirement that the initial automaton is counter-free is relaxed here
in comparison to Lemma 12. This has implications regarding the constructiveness of
our proof: Although it is known (see Theorem 8) that for any LTL formula there ex-
ists a counter-free Büchi automaton that recognizes the language of the formula, we
are not aware of any algorithm that constructs such an automaton for a given formula.
However, constructing some Büchi automaton that recognizes the language of an LTL
formula, dropping the counter-freeness condition, is well-understood; see, e.g., [12].

Theorem 13. Let ϕ be an LTL formula, and A be an arbitrary Büchi automaton that
recognizes L(ϕ). Suppose that S is the automaton obtained by reducing A, and then
labeling all its states accepting. Determinizing and then minimizing S results in a
counter-free automatonM.

Proof. From Theorem 9, it follows that dL(ϕ)e = L(S). LetMF be the minimal deter-
ministic automaton of the NFA SF . It immediately follows thatMF is reduced and all
of its states are accepting. From L(MF) = L(SF), it follows that dL(ϕ)e = L(M). Now,
it remains to show thatM is counter-free.

From Theorem 8 and Lemma 12, it follows that there is a reduced counter-free
Büchi automatonC, with all its states accepting, that recognizes dL(ϕ)e. Let us writeM′F
for the DFA obtained by determinizing and minimizing CF . By Proposition 7,M′F is
aperiodic and thereforeM′ is counter-free.

Since L(M) = L(M′) and both are safety automata, by Theorem 11, it follows
that L(MF) = L(M′F). Automata MF and M′F must therefore be identical because

7

each finite state automaton has, up to an isomorphism, a unique minimal automaton.
Consequently,M andM′ are identical too. HenceM is counter-free. �

The following corollary follows from Theorem 8 and Theorem 13.

Corollary 14. LTL is closed under topological closure. �

Since LTL has connectives for conjunction and negation, the family of languages
expressible in LTL is closed under intersection and complement. The following corol-
lary follows from Proposition 5 and Corollary 14. It states that for any LTL formula ϕ,
there exist a safety LTL formula σ and a liveness LTL formula λ such that ϕ ≡ σ ∧ λ.

Corollary 15. LTL admits the safety-liveness decomposition. �

To complete the constructive proof of Corollary 14, we need to construct the for-
mula dϕe from the minimal safety automaton M recognizing L(dϕe) of Theorem 13.
We use a result by Pnueli and Zuck [13] for translating star-free regular expressions to
LTL formulas evaluated on finite traces. For safety automata, it is simple to extend the
result to infinite words.

We give only a brief account of the results we use; for the technical details and
precise definitions see [13]. Let us first extend the semantics of LTL to finite traces.
For a trace t of length |t|, if i < |t| then t, i |= ϕ is defined the same as for infinite paths.
However, for i ≥ |t| we define t, i 6|= ϕ, for any formula ϕ. Theorem 4.1 from [13] shows
how one can, for a star-free regular expression α, construct a protected LTL formula ϕ
such that L(α) = L(ϕ). The definition of protected formulas is beyond the scope of
this paper. It is for us however instrumental that protected formulas are evaluated over
finite traces, and they may contain an explicit end marker last that is only true at the
end of a trace. From Theorem 4.4 of [13], it follows that replacing every occurrence
of last in a protected formula ϕ1 by a formula #ϕ2 on infinite, respectively finite,
words results in an LTL formula that is satisfied by exactly the infinite, respectively
finite, words L(ϕ1)L(ϕ2).

We now explain how these results are used. Consider an LTL formula ϕ on infinite
paths and the corresponding safety automatonM. We first extendM’s partial transition
function by adding a non-accepting dead state d to the set of states. It is immediate that
this does not change the language of the automaton. Any path that does not satisfy dϕe
has a finite prefix that reaches state d, and once d is reached no other states of the
automaton will be visited. Therefore, if L is the set of all finite words reaching d, the
set of all infinite paths that do not satisfy dϕe is the set LΣω. SinceMF is a counter-free
automaton (by Theorem 13), there is a star-free regular expression that captures the
set of all finite traces reaching d. We use the construction of [13] to find a protected
formula ψ on finite words such that L(ψ) is the set of all finite traces that reach state d.
It is immediate that L(¬dϕe) = L(ψ)Σω = L(ψ)L(>). Therefore dϕe = ¬ψ>, where ψ>

is obtained from ψ by replacing every occurrence of last by >.

Example 16. In this example, we illustrate how an LTL formula is constructed from
a safety automaton. Consider the safety automaton M in Figure 1, where we have
already introduced the dead state d. All finite traces that reach the state d can be
expressed by the regular expression (ε + (a ∨ b)∗b)cΣ∗. This expression is star-free

8

q0d

b ∧ ¬c

a ∧ ¬b ∧ ¬c

c

¬a ∧ ¬b ∧ ¬c

b

¬a ∧ ¬b

a ∧ ¬b ΣΣ

Figure 1: Safety AutomatonM

since Σ∗ can be replaced by the complement of the empty set, and (a ∨ b)∗ can be
replaced by the complement of Σ∗(a ∨ b)Σ∗. Here we use propositional formulas as
syntactic sugar, where a formula E stands for the union of all literals l ∈ Σ = 2AP

that represent a truth assignment satisfying E. For example, the formula E = c stands
for the regular expression ({c} + {a, c} + {b, c} + {a, b, c}). This regular expression can
be written, following the algorithm given in [13], as the protected formula ψ = (c ∧
(>U last))∨((a∨b) U (b∧# (c∧(>U last)))), where (ϕ1 Uϕ2) stands for ϕ1U (ϕ1∧

#ϕ2). The safety automaton recognizes the language of the formula ¬ψ>; that is,
the automaton M recognizes the language of the LTL formula ¬(c ∨ ((a ∨ b)U (b ∧
c))). 4

[1] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans.
Software Eng., vol. 3, no. 2, pp. 125–143, 1977.

[2] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distributed
Computing, vol. 2, no. 3, pp. 117–126, 1987.

[3] B. Alpern and F. B. Schneider, “Defining liveness,” Inf. Process. Lett., vol. 21,
no. 4, pp. 181–185, 1985.

[4] A. Pnueli, “The temporal logic of programs,” in FOCS, pp. 46–57, IEEE Com-
puter Society, 1977.

[5] P. Wolper, “Temporal logic can be more expressive,” Information and Control,
vol. 56, no. 1/2, pp. 72–99, 1983.

[6] O. Lichtenstein, A. Pnueli, and L. D. Zuck, “The glory of the past,” in Logic
of Programs (R. Parikh, ed.), vol. 193 of Lecture Notes in Computer Science,
pp. 196–218, Springer, 1985.

[7] B. Jonsson and Y.-K. Tsay, “Assumption/guarantee specifications in linear-time
temporal logic,” Theor. Comput. Sci., vol. 167, no. 1&2, pp. 47–72, 1996.

[8] P. Maier, “Intuitionistic LTL and a new characterization of safety and liveness,”
in CSL (J. Marcinkowski and A. Tarlecki, eds.), vol. 3210 of Lecture Notes in
Computer Science, pp. 295–309, Springer, 2004.

[9] R. McNaughton and S. A. Papert, Counter-Free Automata (M.I.T. research mono-
graph no. 65). The MIT Press, 1971.

9

[10] W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B) (J. van Leeuwen, ed.),
pp. 133–192, Elsevier and MIT Press, 1990.

[11] V. Diekert and P. Gastin, “First-order definable languages,” in Logic and Au-
tomata (J. Flum, E. Grädel, and T. Wilke, eds.), vol. 2 of Texts in Logic and
Games, pp. 261–306, Amsterdam University Press, 2008.

[12] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-fly automatic
verification of linear temporal logic,” in Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
(London, UK, UK), pp. 3–18, Chapman & Hall, Ltd., 1996.

[13] A. Pnueli and L. D. Zuck, “In and out of temporal logic,” in LICS, pp. 124–135,
IEEE Computer Society, 1993.

10

