
Formal Methods in System Design manuscript No.
(preprint)

Scalable Offline Monitoring of Temporal Specifications

David Basin · Germano Caronni ·
Sarah Ereth · Matúš Harvan ·
Felix Klaedtke · Heiko Mantel

Received: date / Accepted: date

Abstract We propose an approach to monitoring IT systems offline where system
actions are logged in a distributed file system and subsequently checked for compli-
ance against policies formulated in an expressive temporal logic. The novelty of
our approach is that monitoring is parallelized so that it scales to large logs. Our
technical contributions comprise a formal framework for slicing logs, an algorithmic
realization based on MapReduce, and a high-performance implementation. We
evaluate our approach analytically and experimentally, proving the soundness and
completeness of our slicing techniques and demonstrating its practical feasibility
and efficiency on real-world logs with 400 GB of relevant data.

Keywords Verification · Monitoring · Temporal Logic · MapReduce

1 Introduction

Data owners, such as individuals and companies, are increasingly concerned that
their private data, collected and shared by IT systems, is used only for the purposes
for which it was collected. Conversely, the parties collecting and managing this data
must increasingly comply with regulations on how it is processed. For example,
US hospitals must follow the Health Insurance Portability and Accountability Act
(HIPAA) and financial services must conform to the Sarbanes-Oxley Act (SOX),
and these laws even stipulate the use of mechanisms in IT systems for monitoring
system behavior. Although various monitoring approaches have been developed

D. Basin
Department of Computer Science, ETH Zurich, Switzerland

G. Caronni
Google Inc., Switzerland

S. Ereth · H. Mantel
Department of Computer Science, TU Darmstadt, Germany

M. Harvan
ABB Corporate Research, Switzerland

F. Klaedtke
NEC Europe Ltd., Heidelberg, Germany

2 Basin et al.

for different expressive policy specification languages, such as [11, 12, 18, 20, 22],
they do not scale to checking compliance of large-scale IT systems like cloud-based
services and systems that process machine-generated data. These systems typically
log terabytes or even petabytes of system actions each day. Existing monitoring
approaches fail to cope with such enormous quantities of logged data.

In this article, we propose a scalable approach to offline monitoring where
system components log their actions and monitors inspect the logs to identify
policy violations. Given a policy, our approach works by decomposing the logs into
small parts, called slices, that can be independently analyzed. We can therefore
parallelize and distribute the monitoring process over many computers.

One of the main challenges is to generate the slices without weakening the
guarantees provided by monitoring. In particular, the slices must be sound and
complete for the given policy and logged data. That means that only actual violations
are reported and every violation is reported by at least one monitor. Furthermore,
slicing should be effective, i.e., generating the slices should be fast and the slices
should be small, e.g., their sizes should be at most a couple gigabytes so that
each of them can be stored locally and processed on a single computer. We
provide a framework for obtaining slices with these properties. In particular,
our framework lays the foundations for slicing logs, where logs are represented
as temporal structures and policies are given as formulas in metric first-order
temporal logic (MFOTL) [10, 11]. Intuitively, a temporal structure is a sequence of
relational databases. Although we use temporal structures for representing logs
and MFOTL as a policy specification language, the underlying principles of our
slicing framework are general and apply to other representations of logs and other
logic-based policy languages.

Within our theoretical slicing framework, we define orthogonal methods to
generate sound and complete slices. The first method constructs slices for checking
system compliance for specific entities, such as all users whose login name begins
with the letter “A.” Note that it is not sufficient to consider just the actions of these
users to check their compliance; other users’ actions might also be relevant and
must therefore also be included in a slice to be sound. The second method checks
system compliance during a specific time period, such as a particular week. Again,
soundness may require that data logged outside of this period is also included in
the slice. In addition to these two basic methods, which slice with respect to data
and time, we describe slicing by filtering, which discards parts of a slice to speed
up monitoring. Finally, we show that slicing is compositional. We can therefore
obtain new, more powerful slicing methods by composing existing methods.

We demonstrate how to use the MapReduce framework [16] to parallelize and
distribute slicing and monitoring. We propose algorithms for both slicing and filter-
ing and we also explain how to flexibly combine the two. As required by MapReduce,
we define map and reduce functions that constitute the backbone of the algorithmic
realization of our slicing framework. The map function realizes slicing and the
reduce function realizes monitoring. MapReduce runs in its map phase and in its
reduce phase multiple instances of the respective function in parallel, where each
instance handles a part of the logged data. Splitting and parallelizing the workload
this way enables monitoring to scale in our high-performance implementation.

We deploy and evaluate our monitoring solution in a real-world setting that
consists of more than 35,000 computers, producing approximately 1 TB of log
data each day. We check the compliance of these computers to policies concerning

Scalable Offline Monitoring of Temporal Specifications 3

updates to their system configurations and their access to sensitive resources. To do
this, we monitor the policy-relevant logged actions, which comprise several billion
log entries from a two year period. They require 0.4 TB of storage in total and
amount to approximately 600 MB of data per day on average. Monitoring these
log entries takes just a few hours using 1,000 machines in a MapReduce cluster.

Overall, we see our contributions as follows. First, we provide a framework for
splitting logs into slices for monitoring. Second, we give a scalable algorithmic
realization of our framework for monitoring large logs offline. Both our framework
and our algorithmic realization support compositional slicing. Finally, through our
case study, we show that our approach is effective and scales well. Our evaluation
demonstrates the feasibility of checking compliance in large-scale IT systems.

The remainder of this article is structured as follows. In Section 2, we give
background on MFOTL and monitoring. In Section 3, we describe our approach to
slicing and monitoring and we present its algorithmic realization using MapReduce
in Section 4. Afterwards, in Section 5, we experimentally evaluate our approach.
We discuss related work in Section 6 before drawing conclusions in Section 7.
Additional details, including proofs and pseudo code, are given in the appendices. A
preliminary version of this work was presented at the 14th International Conference
on Runtime Verification [8]. See Section 6 for a discussion of the additions in this
article and other differences.

2 Preliminaries

We use metric first-order temporal logic as a language (MFOTL) for formalizing
policies. In Section 2.1, we summarize MFOTL’s syntax and its semantics; a more
detailed account can be found in [2, 24]. In Section 2.2, we explain how we use
MFOTL to represent system requirements, how we view logs as temporal structures,
and how we monitor a single stream of logged actions.

2.1 Specification Language

MFOTL is similar to propositional real-time logics like MTL [2]. However, as it is
first-order, its syntax is defined with respect to a signature. Moreover, instead of
timed words, its models are temporal structures (D̄, τ̄), where D̄ = (D0,D1, . . .) is
a sequence of structures and τ̄ = (τ0, τ1, . . .) is a sequence of natural numbers. We
define these notions below.

Syntax. A signature S is a tuple (C,R, ι), where C is a finite set of constant symbols,
R is a finite set of predicate symbols disjoint from C, and the function ι : R→ N
associates each predicate symbol r ∈ R with an arity ι(r) ∈ N. In the following, let
S = (C,R, ι) be a signature and V a countably infinite set of variables, assuming
V ∩ (C ∪ R) = ∅. Moreover, let I be the set of nonempty intervals over N. We
write [b, b′) for the interval of natural numbers from b ∈ N to b′ ∈ N ∪ {∞}, that is,
[b, b′) = {a ∈ N | b ≤ a < b′}.

Formulas over the signature S are given by the grammar

ϕ ::= t1≈ t2
∣∣ t1≺ t2 ∣∣ r(t1, . . . , tι(r)) ∣∣ ¬ϕ ∣∣ ϕ ∨ ϕ ∣∣ ∃x. ϕ ∣∣ I ϕ ∣∣#I ϕ ∣∣ ϕ SI ϕ

∣∣ ϕ UI ϕ ,

4 Basin et al.

where t1, t2, . . . range over the elements in V ∪ C, and r, x, and I range over the
elements in R, V , and I, respectively. The temporal operators I (“previous”),
#I (“next”), SI (“since”), and UI (“until”) require the satisfaction of a formula
within a particular time interval in the past or in the future. The operators’ sub-
script I specifies this time interval. Their precise meaning, together with the other
connectives, is given below.

Semantics. A structure D over the signature S consists of a domain |D| 6= ∅ and
interpretations cD ∈ |D| and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal

structure over S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . .) is an infinite sequence of
structures over S and τ̄ = (τ0, τ1, . . .) is an infinite sequence of natural numbers,
where the following conditions hold.
1. The sequence τ̄ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and

makes progress (i.e., for every i ≥ 0, there is some j > i such that τj > τi).
2. D̄ has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. The elements of this

domain are strictly linearly ordered by the relation <.
3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for all

i ≥ 0.
We call the indices of the τis and Dis time points and the τis timestamps. In
particular, τi is the timestamp at time point i ∈ N. Note that there can be successive
time points with equal timestamps. Furthermore, the relations rD0 , rD1 , . . . in a
temporal structure (D̄, τ̄) corresponding to a predicate symbol r ∈ R may change
over time. In contrast, the interpretation of the constant symbols c ∈ C and the
domain of the Dis do not change. We denote them by cD̄ and |D̄|, respectively.

A valuation is a mapping v : V → |D̄|. We abuse notation by applying a valuation

v also to constant symbols c ∈ C, with v(c) = cD̄, and vectors over V ∪ C. Vectors
are written in the usual way. For example, we write r(t̄) instead of r(t1, . . . , tι(r)),
assuming that t̄ has the dimension ι(r). We write f [x 7→ y] to denote the update
of a function f : X → Y pointwise at x ∈ X. In particular, for a valuation v, a
variable x, and d ∈ |D̄|, v[x 7→ d] is the valuation mapping x to d and leaving other
variables’ valuation unchanged.

MFOTL’s satisfaction relation |= is inductively defined over the formula struc-
ture. For a temporal structure (D̄, τ̄), with D̄ = (D0,D1, . . .) and τ̄ = (τ0, τ1, . . .),
a valuation v, and i ∈ N, we define:

(D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′)

(D̄, τ̄ , v, i) |= t ≺ t′ iff v(t) < v(t′)

(D̄, τ̄ , v, i) |= r(t̄) iff v(t̄) ∈ rDi

(D̄, τ̄ , v, i) |= ¬ϕ iff (D̄, τ̄ , v, i) 6|= ϕ

(D̄, τ̄ , v, i) |= ϕ ∨ ψ iff (D̄, τ̄ , v, i) |= ϕ or (D̄, τ̄ , v, i) |= ψ

(D̄, τ̄ , v, i) |= ∃x. ϕ iff (D̄, τ̄ , v[x 7→ d], i) |= ϕ, for some d ∈ |D̄|
(D̄, τ̄ , v, i) |= I ϕ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= ϕ

(D̄, τ̄ , v, i) |= #I ϕ iff τi+1 − τi ∈ I and (D̄, τ̄ , v, i+ 1) |= ϕ

(D̄, τ̄ , v, i) |= ϕ SI ψ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= ϕ, for all k ∈ [j + 1, i+ 1)

(D̄, τ̄ , v, i) |= ϕ UI ψ iff for some j ≥ i, τj − τi ∈ I, (D̄, τ̄ , v, j) |= ψ,

Scalable Offline Monitoring of Temporal Specifications 5

and (D̄, τ̄ , v, k) |= ϕ, for all k ∈ [i, j)

For instance, the formula #I ϕ is satisfied in a temporal structure (D̄, τ̄) under the
valuation v at time point i if the elapsed time to the next timestamp in τ̄ is within
the time interval I (i.e., τi+1 − τi ∈ I) and ϕ is satisfied at time point i + 1 in
(D̄, τ̄) under v. Note that the time interval I is interpreted relative to the current
timestamp τi in the semantics of all four temporal operators.

Terminology and Notation. We use standard terminology and syntactic sugar, see
for example [19] and [3]. For instance, we use terms like free variable and atomic

formula, and abbreviations such as �I ϕ := true SI ϕ (“once”), �I ϕ := true UI ϕ

(“eventually”), �I ϕ := ¬ �I ¬ϕ (“historically”), and �I ϕ := ¬ �I ¬ϕ (“always”),
where true := ∃x. x ≈ x. Intuitively, the formula �I ϕ states that ϕ holds at some
time point in the past within the time window I and �I ϕ states that ϕ holds at
all time points in the past within the time window I. If the interval I includes zero,
then the current time point is also considered. The corresponding future operators
are �I and �I . We also use non-metric operators like �ϕ := �[0,∞) ϕ. To omit
parentheses, we use the standard conventions about the binding strength of logical
connectives, for example Boolean operators bind stronger than temporal ones and
unary operators bind stronger than binary ones.

Throughout this article, we make the following assumptions, unless stated
otherwise. First, formulas and temporal structures are over the signature (C,R, ι).
Second, the set of variables is V . Third, the structures’ domain is D and constant
symbols are interpreted identically in all temporal structures. The set T is the set
of all these temporal structures and D is the set of all their structures. Finally,
without loss of generality, variables are quantified at most once in a formula and
the quantified variables are disjoint from the formula’s free variables.

2.2 Monitoring

We use MFOTL to check the policy compliance of a stream of system actions as
follows [10]. Policies are given as MFOTL formulas of the form �ψ. For illustration,
consider the policy stating that SSH connections must last no longer than 24 hours.
This can be formalized in MFOTL as

�∀c.∀s. ssh login(c, s)→ �[0,25) ssh logout(c, s) , (P0)

where we assume that time units are in hours and the signature consists of the
two binary predicate symbols ssh login and ssh logout , where the first parameter
specifies the computer on which the action is performed and the second is the
session identifier of the SSH connection. We also assume that the system actions
are logged. In particular, the ith entry in the stream of logged actions consists of
the actions performed and a timestamp τi that records the time when the actions
occurred. For checking compliance with respect to the formula (P0), we assume
that the logged actions are the logins and logouts, with the parameters specifying
the computer’s name and the session identifier.

The corresponding temporal structure (D̄, τ̄) for such a stream of logged SSH
login and logout actions is as follows. The domain of D̄ contains all possible
computer names and session identifiers. The ith structure in D̄ contains the

6 Basin et al.

relations ssh loginDi and ssh logoutDi , where (1) (c, s) ∈ ssh loginDi iff there is a
logged login action in the ith entry of the stream with the parameter values c and
s, and (2) (c, s) ∈ ssh logoutDi iff there is a logged logout action in the ith entry of
the stream with the parameter values c and s. The ith timestamp in τ̄ is simply the
timestamp τi of the ith log entry. This generalizes straightforwardly to an arbitrary
stream of logged actions, where the kinds of actions correspond to the predicate
symbols specified by the temporal structure’s signature and the actions’ parameter
values are elements from the temporal structure’s domain.

In practice, we can only monitor finite prefixes of temporal structures to
detect policy violations. However, to ease our exposition, we assume that temporal
structures, and thus also logs, describe infinite streams of system actions. We
use the monitoring tool MONPOLY [9] to check whether a stream of system
actions complies with a policy formalized in MFOTL. MONPOLY implements the
monitoring algorithm in [11].

MONPOLY iteratively processes the temporal structure (D̄, τ̄) representing a
stream of logged actions, either offline or online, and outputs the policy violations.
Formally, for a formula �ψ, a policy violation is a pair (v, τ) of a valuation v and
a timestamp τ such that (D̄, τ̄ , v, i) |= ¬ψ, for some time point i with τi = τ . The
formula ψ may contain free variables and the valuation v interprets these variables.
MONPOLY searches for all combinations of time points and interpretations of the
free variables for which a given stream of logged actions violates the policy. Hence,
in practice, we usually drop the outer universal quantifiers in the policy’s MFOTL
formalization and thereby we obtain additional information about the violations.
For instance, if we remove the universal quantification over s in the formula (P0),
then the valuation v in each policy violation (v, τ) specifies a session identifier of
an SSH connection that lasted 25 hours or more.

In general, we assume that the subformula ψ of �ψ formalizing the given
policy is bounded, i.e., the interval I of every temporal operator UI occurring in
ψ is finite. Since ψ is bounded, the monitor only needs to process a finite prefix
of (D̄, τ̄) ∈ T when determining the valuations satisfying ¬ψ at any given time point.
To effectively determine all these valuations, we also assume here that predicate
symbols have finite interpretations in (D̄, τ̄), that is, the relation rDj is finite, for
every predicate symbol r and every j ∈ N. Furthermore, we require that ¬ψ can be
rewritten to a formula that is temporal safe-range [11], a notion that generalizes the
standard notion of safe-range database queries [1]. Intuitively, a formula is temporal
safe-range if the formula and all its temporal subformulas have only finitely many
satisfying valuations at every time point in a temporal structure, provided that
the temporal structure’s relations are finite. Temporal safe-range formulas are
monitorable in the sense that they can be effectively evaluated iteratively over the
formula structure at each time point. We refer to [11] for a detailed description of
the monitoring algorithm.

In our SSH example, the rewritten formula of the negation of (P0), without
the outermost temporal operator and quantifiers for monitoring, is ssh login(c, s) ∧
¬ �[0,25) ssh logout(c, s). Note that the logically equivalent formula ssh login(c, s)∧
�[0,25) ¬ssh logout(c, s) is not temporal safe-range and we can not use it for mon-
itoring. The reason is that there are infinitely many satisfying valuations of the
subformula �[0,25) ¬ssh logout(c, s) at a time point, whenever the relations for
ssh logout(c, s) of the given temporal structure are finite and the temporal struc-
ture’s domain is infinite.

Scalable Offline Monitoring of Temporal Specifications 7

3 Log Slicing

In Section 3.1, we present the logical foundation of our slicing framework. A slicer
splits the temporal structure to be monitored into slices. We introduce the notions
of soundness and completeness of slices relative to sets of possible violations, called
restrictions. We show that the soundness and completeness of each slice in a set are
sufficient to find all violations of a given policy, provided that the restrictions are
chosen appropriately. We also show that slicing is compositional. In Section 3.2,
we present concrete slicers.

3.1 Slicing Foundations

3.1.1 Slices

Slicing entails splitting a temporal structure, which represents a stream of logged
actions, into multiple temporal structures. Each of the resulting temporal structures
contains only a subset of the logged actions. Formally, a slice is defined as follows.

Definition 3.1 Let s : [0, `)→ N be a strictly increasing function, with ` ∈ N∪{∞}.
The temporal structure (D̄′, τ̄ ′) ∈ T is a slice of (D̄, τ̄) ∈ T (with respect to the

function s) if τ ′i = τs(i) and rD
′
i ⊆ rDs(i) , for all i ∈ [0, `) and all r ∈ R.

Recall that the logged system actions at a time point i ∈ N are represented as the
elements in Di’s relations rDi , with r ∈ R. The function s determines which time
points of the temporal structure (D̄, τ̄) are in the slice (D̄′, τ̄ ′). For the time points

present in the slice, some actions may be ignored since rD
′
i ⊆ rDs(i) , for i ∈ [0, `).

Note that the domain of the function s may be finite or infinite. If its domain is
infinite, i.e. when ` =∞, we require that each action in the slice is an action of the
original stream of actions, i.e. rD

′
i ⊆ rDs(i) , for each i ∈ N. If the domain of s is

finite, i.e. when ` ∈ N, we relax this requirement by not imposing any restrictions
on the structures D′i and the timestamps τ ′i with i ≥ `. In this case, the suffix of
the slice starting at time point ` is ignored when monitoring the slice.

To meaningfully monitor slices independently, we require that slices are sound

and complete. Intuitively, this means that at least one of the monitored slices
violates the given policy if and only if the original temporal structure violates
the policy. We define these requirements in Definition 3.2 below, relative to a set
R ⊆ ((V → D)×N), called a restriction. We use R to denote the set of all such
restrictions and say that a violation (v, t) is permitted by R ∈ R if (v, t) ∈ R.

Definition 3.2 Let ϕ be a formula and R ∈ R.
(i) (D̄′, τ̄ ′) ∈ T is R-sound for (D̄, τ̄) ∈ T and ϕ if for every pair (v, t) permitted

by R, the following condition is satisfied.

If (D̄, τ̄ , v, i) |= ϕ, for all i ∈ N with τi = t

then (D̄′, τ̄ ′, v, j) |= ϕ, for all j ∈ N with τ ′j = t.

(ii) (D̄′, τ̄ ′) ∈ T is R-complete for (D̄, τ̄) ∈ T and ϕ if for every pair (v, t) permitted
by R, the following condition is satisfied.

If (D̄, τ̄ , v, i) 6|= ϕ, for some i ∈ N with τi = t,
then (D̄′, τ̄ ′, v, j) 6|= ϕ, for some j ∈ N with τ ′j = t.

8 Basin et al.

We equip each slice with a restriction. The original temporal structure is
equipped with the non-restrictive restriction R0 := (V → D) × N, which permits
any pair (v, t).

Example 3.1 To illustrate soundness and completeness, we consider again the for-
mula (P0) from Section 2.2, without the outermost temporal operator and quanti-
fiers, i.e., the formula ϕ = ssh login(c, s)→ �[0,25) ssh logout(c, s). Furthermore, we
assume that the restriction R consists of the pairs (v, t), with v(c) ∈ {0, 1}, v(s) ∈ N,
and t ∈ N. That is, we restrict ourselves to policy violations of the computers 0
and 1. However, we restrict neither the session identifier of the SSH connections
nor when the policy is violated.

Let (D̄, τ̄) and (D̄′, τ̄ ′) be temporal structures with equal timestamps, i.e.,
τ̄ = τ̄ ′. For the formula ϕ, the following two conditions are sufficient for (D̄′, τ̄ ′) to

be R-sound for (D̄, τ̄): (i) ssh loginD′
i ∩ ({0, 1} × N) ⊆ ssh loginDi , for every i ∈ N,

and (ii) ssh logoutDi ∩ ({0, 1} × N) ⊆ ssh logoutD
′
i , for every i ∈ N. Intuitively, the

SSH connections of computers c with c 6∈ {0, 1} are irrelevant for R-soundness.
Furthermore, it is sound to remove pairs (0, s) and (1, s) from the ssh login relations
of (D̄, τ̄). It is also sound to add pairs (0, s) and (1, s) to the ssh logout relations of
(D̄, τ̄). According to Definition 3.2, analogous sufficient conditions for (D̄′, τ̄ ′) to be

R-complete for (D̄, τ̄) and ϕ are: (i) ssh loginD′
i ⊇ ssh loginDi∩({0, 1}×N), for every

i ∈ N, and (ii) ssh logoutDi ⊇ ssh logoutD
′
i ∩ ({0, 1} ×N), for every i ∈ N. It follows

that (D̄′, τ̄ ′) is bothR-sound andR-complete for (D̄, τ̄) and ϕ if for all i ∈ N, we have

ssh loginD′
i = ssh loginDi∩({0, 1}×N) and ssh logoutD

′
i = ssh logoutDi∩({0, 1}×N).

3.1.2 Slicers

We call a mechanism that splits a temporal structure into slices a slicer. Additionally,
a slicer equips the resulting slices with restrictions. In Definition 3.3, we state
requirements that the slices and their restrictions must fulfill. In Theorem 3.1,
we show that these requirements suffice to ensure that monitoring the slices is
equivalent to monitoring the original temporal structure.

Definition 3.3 A slicer sϕ for the formula ϕ is a function that maps (D̄, τ̄) ∈ T and
R ∈ R to a family of temporal structures (D̄k, τ̄k)k∈K and a family of restrictions
(Rk)k∈K that satisfy the following conditions.
(S1) (Rk)k∈K refines R, i.e.,

⋃
k∈K R

k = R.

(S2) (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and ϕ, for all k ∈ K.
(S3) (D̄k, τ̄k) is Rk-complete for (D̄, τ̄) and ϕ, for all k ∈ K.

Theorem 3.1 Let sϕ be a slicer for the formula ϕ. Assume that sϕ maps (D̄, τ̄) ∈
T and R ∈ R to the family of temporal structures (D̄k, τ̄k)k∈K and the family of

restrictions (Rk)k∈K . The following conditions are equivalent.

(1) (D̄, τ̄ , v, i) |= ϕ, for all valuations v and i ∈ N with (v, τi) ∈ R.

(2) (D̄k, τ̄k, v, i) |= ϕ, for all k ∈ K, valuations v, and i ∈ N with (v, τi) ∈ Rk.

Proof (1) implies (2) because (Rk)k∈K refines R and because (D̄k, τ̄k) is Rk-sound
for (D̄, τ̄) and ϕ, for each k ∈ K.

To show that (2) implies (1), we prove the contrapositive. Let v be a valuation
and i ∈ N such that (D̄, τ̄ , v, i) 6|= ϕ and (v, τi) is permitted by R. Because (Rk)k∈K

Scalable Offline Monitoring of Temporal Specifications 9

refines R, there is a k ∈ K such that (v, τi) is permitted by Rk. Because (D̄k, τ̄k)
is Rk-complete for (D̄, τ̄) and ϕ, we have that (D̄k, τ̄k, v, j) 6|= ϕ, for some j ∈ N
with τkj = τi. ut

Note that Theorem 3.1 does not require that if the original temporal structure
is violated then a slice is violated for the same valuation and timestamp as the
original temporal structure. The theorem’s proof establishes a stronger result: the
valuation and timestamp for a violation match between the original temporal
structure and the slice.

3.1.3 Composition

We define next an operation for composing slicers and prove that the composition
of slicers is again a slicer. Afterwards, in Section 3.2, we define several basic slicers
and give their algorithmic realization in Section 4. Given these basic slicers, we can
use composition to obtain more powerful slicers for producing slices of manageable
size from very large logs.

Definition 3.4 Let sϕ and s′ϕ be slicers for the formula ϕ. The combination s′ϕ ◦k̂ sϕ
for the index k̂ is the function that maps (D̄, τ̄) ∈ T and R ∈ R to the following
families of temporal structures and restrictions, assuming that sϕ maps (D̄, τ̄) and
R to (D̄k, τ̄k)k∈K and (Rk)k∈K
– If k̂ 6∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K and (Rk)k∈K .

– If k̂ ∈ K then s′ϕ ◦k̂ sϕ returns (D̄k, τ̄k)k∈K′′ and (Rk)k∈K′′ , where K′′ :=

(K \ {k̂}) ∪K′ and (D̄k, τ̄k)k∈K′ and (Rk)k∈K′ are the families returned by s′ϕ

for the input (D̄k̂, τ̄ k̂) and Rk̂, assuming K ∩K′ = ∅.

Intuitively, we first apply the slicer sϕ. The index k̂ specifies which of the obtained
slices should be sliced further. If there is no k̂th slice, the second slicer s′ϕ does

nothing. Otherwise, we use s′ϕ to make the k̂th slice smaller. Note that by combing
the slicer sϕ with different indices, we can slice all of sϕ’s outputs further. Note
too that an algorithmic realization of the function s′ϕ ◦k̂ sϕ need not necessarily
compute the output of sϕ before applying s′ϕ.

Theorem 3.2 The combination s′ϕ ◦k̂ sϕ of the slicers sϕ and s′ϕ for the formula ϕ is

a slicer for the formula ϕ.

Proof We show that s′ϕ ◦k̂ sϕ satisfies the conditions (S1) to (S3) in Definition 3.3.

Regarding (S1), sϕ is a slicer and therefore the family (Rk)k∈K refines R. If k̂ 6∈ K,
then nothing needs to be proved. If k̂ ∈ K, then, since s′ϕ is a slicer, the family

(Rk)k∈K′ refines Rk̂. From K ∩K′ = ∅, it follows that (Rk)
k∈(K\{k̂})∪K′ refines R.

Regarding (S2), sϕ is a slicer and therefore (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and
ϕ, for every k ∈ K. If k̂ 6∈ K, then nothing needs to be proved. If k̂ ∈ K, then, since

s′ϕ is a slicer, (D̄k, τ̄k) is Rk-sound for (D̄k̂, τ̄ k̂) and ϕ, for every k ∈ K′. Because

(Rk)k∈K′ refines Rk̂ and because (D̄k̂, τ̄ k̂) is Rk̂-sound for (D̄, τ̄) and ϕ, it follows
that (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and ϕ, for every k ∈ K′. From K ∩K′ = ∅, it
follows that (D̄k, τ̄k) is Rk-sound for (D̄, τ̄) and ϕ, for every k ∈ (K \ {k̂}) ∪K′.

The condition (S3) is proved analogously to (S2). ut

10 Basin et al.

3.2 Basic Slicers

We now introduce three basic slicers. We present one of them in detail in Sec-
tion 3.2.1. We sketch the other two in Sections 3.2.2 and 3.2.3 and provide further
details in Appendices A and B.

3.2.1 Slicing Data

Data slicers split the relations of a temporal structure. We call the resulting slices
data slices. Formally, (D̄′, τ̄ ′) ∈ T is a data slice of (D̄, τ̄) ∈ T if (D̄′, τ̄ ′) is a slice of
(D̄, τ̄), where the function s : [0, `) → N in Definition 3.1 is the identity function
and ` = ∞. Note that the sequences of timestamps τ̄ and τ̄ ′ are equal. In the
following, we introduce data slicers that return sound and complete slices relative
to a restriction.

In a nutshell, a data slicer takes as input a formula ϕ, a slicing variable x,
which is a free variable in ϕ, and slicing sets, which are sets of possible values for
x. The data slicer constructs one slice for each slicing set. The slicing sets can be
chosen freely, and can overlap, as long as their union covers all possible values
for x. Intuitively, each slice excludes those elements of the relations interpreting
the predicate symbols that are irrelevant to determining ϕ’s truth value when x

takes values from the slicing set. For values outside of the slicing set, the formula
may evaluate to a different truth value on the slice than on the original temporal
structure.

We begin by defining the slices produced by our data slicers.

Definition 3.5 Let ϕ be a formula, x ∈ V , (D̄, τ̄) ∈ T, and S ⊆ D a slicing set. The
(ϕ, x, S)-slice of (D̄, τ̄) is the data slice (D̄′, τ̄ ′), where the relations are as follows.

For all r ∈ R, i ∈ N, and ā ∈ Dι(r), it holds that ā ∈ rD
′
i iff ā ∈ rDi and there is an

atomic subformula of ϕ of the form r(t̄) such that for every j with 1 ≤ j ≤ ι(r),
one of the following conditions is satisfied.

(D1) tj is the variable x and aj ∈ S.
(D2) tj is a variable y different from x.

(D3) tj is a constant symbol c with cD̄ = aj .

Intuitively, the conditions (D1) to (D3) ensure that a slice contains the tuples from
the relations interpreting the predicate symbols that are sufficient to evaluate ϕ
when x takes values from the slicing set. For this, it suffices to consider only atomic
subformulas of ϕ with a predicate symbol. Every item of a tuple from the symbol’s
interpretation must satisfy one of the conditions. If the subformula includes the
slicing variable, then only values from the slicing set are relevant (D1). If it includes
another variable, then all possible values are relevant (D2). Finally, if it includes a
constant symbol, then the constant symbol’s interpretation is relevant (D3).

The following example illustrates Definition 3.5. It also demonstrates that the
choice of the slicing variable can influence how lean the slices are and how much
overhead the slicing causes in terms of duplicated log data. Ideally, each logged
action appears in at most one slice. However, this is not generally the case and a
logged action can appear in multiple slices. In the worst case, each slice ends up
being the original temporal structure.

Scalable Offline Monitoring of Temporal Specifications 11

Example 3.2 Let ϕ be the formula ssh login(c, s)→ �[0,6) notify(reg server, s), where
c and s are variables and reg server is a constant symbol, which is interpreted by
the domain element 0 ∈ D, with D = N. The formula ϕ expresses that a notification
of the session identifier of an SSH login must be sent to the registration server
within 5 time units. Assume that at time point 0 the relations of D0 of the
original temporal structure (D̄, τ̄) for the predicate symbols ssh login and notify are
ssh loginD0 = {(1, 1), (1, 2), (3, 3), (4, 4)} and notifyD0 = {(0, 1), (0, 2), (0, 3), (0, 4)}.

We slice on the variable c. For the slicing set S = {1, 2}, the (ϕ, c, S)-slice

contains the structure D′0 with ssh loginD′
0 = {(1, 1), (1, 2)} and notifyD′

0 =
{(0, 1), (0, 2), (0, 3), (0, 4)}. For the predicate symbol ssh login, only those pairs
are included where the first parameter takes values from the slicing set. This is
because the first parameter occurs as the slicing variable c in the formula. For the
predicate symbol notify, those pairs are included where the first parameter is 0
because the constant symbol 0 occurs in the formula.

For the slicing set S′ = {3, 4}, the (ϕ, c, S′)-slice contains the structure D′′0 with

ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 1), (0, 2), (0, 3), (0, 4)}. The pairs
in the relation for notify are duplicated in all slices because the first element of
the pairs, 0, occurs as a constant symbol in the formula. The condition (D3) in
Definition 3.5 is therefore always satisfied and the pair is included.

Next, we slice on the variable s instead of c. For the slicing set S, the (ϕ, s, S)-

slice contains the structure D′0 with ssh loginD′
0 = {(1, 1), (1, 2)} and notifyD′

0 =
{(0, 1), (0, 2)}. For both of the predicate symbols ssh login and notify, only those
pairs are included where the second parameter takes values from the slicing set
S. This is because the second parameter occurs as the slicing variable s in the
formula. For the slicing set S, the (ϕ, s, S′)-slice contains the structure D′′0 with

ssh loginD′′
0 = {(3, 3), (4, 4)} and notifyD′′

0 = {(0, 3), (0, 4)}.

According to Definition 3.6 and Theorem 3.3 below, a data slicer is a slicer that
splits a temporal structure into a family of (ϕ, x, S)-slices. Furthermore, it refines
the given restriction with respect to the given slicing sets.

Definition 3.6 Let ϕ be a formula, x ∈ V a variable, and (Sk)k∈K a family of slicing
sets. The data slicer dϕ,x,(Sk)k∈K

is the function that maps a temporal structure

(D̄, τ̄) ∈ T and a restriction R ∈ R to the family of temporal structures (D̄k, τ̄k)k∈K
and the family of restrictions (Rk)k∈K , where (D̄k, τ̄k) is the (ϕ, x, S′k)-slice of
(D̄, τ̄), with S′k := Sk ∩ {v(x) | (v, t) ∈ R, for some t ∈ N}, and Rk = {(v, t) ∈
R | v(x) ∈ Sk}, for each k ∈ K.

The following lemma states that a (ϕ, x, S)-slice is truth preserving for all
valuations of the slicing variable x within the slicing set S. We use the lemma to
establish soundness and completeness in Theorem 3.3, showing that a data slicer
as defined in Definition 3.6 is a slicer, and therefore Theorem 3.1 applies.

Lemma 3.1 Let ϕ be a formula, x ∈ V a variable not bound in ϕ, S ⊆ D a slicing

set, and (D̄′, τ̄) ∈ T the (ϕ, x, S)-slice of (D̄, τ̄) ∈ T. For all i ∈ N and valuations v

with v(x) ∈ S, (D̄′, τ̄ , v, i) |= ϕ iff (D̄, τ̄ , v, i) |= ϕ.

Proof We proceed by induction over the structure of the formula ϕ. The base case
consists of the atomic formulas t ≺ t′, t ≈ t′, and r(t̄). Satisfaction of t ≺ t′ and t ≈ t
depends only on the valuation, therefore (D̄′, τ̄ , v, i) |= t ≺ t′ iff (D̄, τ̄ , v, i) |= t ≺ t′

12 Basin et al.

and (D̄′, τ̄ , v, i) |= t ≈ t′ iff (D̄, τ̄ , v, i) |= t ≈ t′. We show the two directions of the
equivalence separately for an atomic subformula r(t̄) of ϕ.

(⇒) From (D̄′, τ̄ , v, i) |= r(t̄) it follows that v(t̄) ∈ rD
′
i . Since (D̄′, τ̄) is a data slice

of (D̄, τ̄), it follows that v(t̄) ∈ rDi and hence (D̄, τ̄ , v, i) |= r(t̄).
(⇐) From (D̄, τ̄ , v, i) |= r(t̄) it follows that v(t̄) ∈ rDi . Now consider any j, where

1 ≤ j ≤ ι(r). We make a case split based on whether the term tj in r(t̄) is the
slicing variable x, another variable y 6= x, or a constant symbol c.
1. If tj is the slicing variable x then from v(x) ∈ S we know that v(tj) ∈ S.

Therefore, (D1) is satisfied.
2. If tj is a variable y 6= x then (D2) is satisfied.

3. If tj is the constant symbol c then v(tj) = cD̄ and hence (D3) is satisfied.

It follows that v(t̄) ∈ rD
′
i and hence (D̄′, τ̄ , v, i) |= r(t̄).

The step case follows straightforwardly from the base case and since the slice
and the original temporal structure have the same sequence of timestamps τ̄ . In
particular, any difference when evaluating a formula stems only from a difference
in the evaluation of its atomic subformulas. ut

Theorem 3.3 A data slicer dϕ,x,(Sk)k∈K
is a slicer for the formula ϕ if the slicing

variable x is not bound in ϕ and
⋃
k∈K Sk = D.

Proof We show that dϕ,x,(Sk)k∈K
satisfies the conditions (S1) to (S3) in Defini-

tion 3.3. For (S1), note that the family (Rk)k∈K refines the given restriction, which
follows directly from Rk = {(v, t) ∈ R | v(x) ∈ Sk} and

⋃
k∈K Sk = D. (S2) and (S3)

follow directly from Lemma 3.1. ut

Slicing on multiple variables. There are alternative ways of defining data slices than
in Definition 3.5. For example, one may slice on multiple variables simultaneously.
The following example motivates such a slicer, which we describe afterwards.

Example 3.3 Consider the formula �∀x. ∀y. ϕ with ϕ := ¬x ≈ y → connect(x, y) ∨
∃z. connect(x, z) ∧ connect(z, y), stating that x and y are always either directly
connected or connected via a third element z. Data slicing on either x or y does
not result in any reduction. For instance, when slicing on x, any tuple in a relation
of connect in a temporal structure satisfies the condition (D2) of Definition 3.5 for
the atomic formula connect(z, y). Composing multiple data slicers does not help
here as the individual data slicers are themselves ineffective.

A data slicer that overcomes the limitations illustrated in the previous example
is as follows. For the ease of exposition, we restrict ourselves to a pair of distinct
variables and assume that there are no constant symbols. Furthermore, we assume,
without loss of generality, that all predicate symbols have an arity of at least two.
We start by generalizing Definition 3.5. Let ϕ be a formula, x, y ∈ V with x 6= y,
(D̄, τ̄) ∈ T, and S ⊆ D×D. The (ϕ, (x, y), S)-slice of (D̄, τ̄) is the data slice (D̄′, τ̄ ′),
where the relations are as follows. For all r ∈ R, i ∈ N, and ā ∈ Dι(r), it holds that
ā ∈ rD

′
i iff ā ∈ rDi and there is an atomic subformula r(t̄) of ϕ such that for every

j, j′ with 1 ≤ j, j′ ≤ ι(r) and j 6= j′, one of the following conditions, depending on
the set {tj , tj′} of variables, is satisfied.

(D1′) {tj , tj′} = {x, y}, and if tj = x then (aj , aj′) ∈ S, and (aj′ , aj) ∈ S otherwise.

Scalable Offline Monitoring of Temporal Specifications 13

(D2′) {tj , tj′} = {x, z}, for some z ∈ V \ {x, y}, and there is some c ∈ D such that:
if tj = x then (aj , c) ∈ S and (aj′ , c) ∈ S otherwise.

(D3′) {tj , tj′} = {y, z}, for some z ∈ V \ {x, y}, and there is some c ∈ D such that:
if tj = y then (c, aj) ∈ S, and (c, aj′) ∈ S otherwise.

(D4′) {tj , tj′} = {x}, aj = aj′ , and (aj , c) ∈ S, for some c ∈ D.
(D5′) {tj , tj′} = {y}, aj = aj′ , and (c, aj) ∈ S, for some c ∈ D.
(D6′) {tj , tj′} ∩ {x, y} = ∅.

Lemma 3.1 carries over to (ϕ, (x, y), S)-data slices. So does Theorem 3.3 when
adopting the definition of a data slicer (Definition 3.6) to use (ϕ, (x, y), S)-data
slices instead of (ϕ, x, S)-data slices. Returning to Example 3.3, a relation of connect

in the (ϕ, (x, y), S)-data slice of a given temporal structure only contains a pair (a, b)
of the original relation if either (a, c) ∈ S or (c, b) ∈ S, for some c ∈ D.

3.2.2 Slicing Time

Another possibility is to slice a temporal structure along its temporal dimension.
Formally, a temporal structure (D̄′, τ̄ ′) ∈ T is a time slice of (D̄, τ̄) ∈ T if (D̄′, τ̄ ′)
is a slice of (D̄, τ̄), where ` ∈ N ∪ {∞} and the function s : [0, `)→ N are according

to Definition 3.1 such that rD
′
i = rDs(i) , for all r ∈ R and i ∈ [0, `). Intuitively

speaking, when ` ∈ N, the logged actions from the period τs(0) to τs(`−1) appear in
the structures D′0,D

′
1, . . . ,D

′
`−1. Since temporal structures are infinite sequences, we

extend the finite sequence (D′0, τ
′
0), (D′1, τ

′
1), . . . , (D′`−1, τ

′
`−1) by adding an infinite

suffix (D′`, τ
′
`), (D`+1, τ

′
`+1), . . . of dummy elements to it. When ` = ∞, the time

period is unbounded, i.e., the logged actions from τs(0) onward appear in the
structures D′0,D

′
1,

For monitoring to be sound, we must ensure that for a given formula, a time
slice contains all the logged actions over a large enough time interval to determine
the policy violations over a given time period. We obtain this time interval from
the formula’s temporal operators and their intervals. Appendix A provides details
on this and the soundness and completeness guarantees obtained when monitoring
these slices independently. Here, we illustrate time slicing with an example.

Example 3.4 Recall the formula (P0) from Section 2.2. We can split a log into
time slices that are equivalent to the original log over 1-day periods. However, to
evaluate the formula over a 1-day period, each time slice must also include the log
entries of the next 24 hours, since the formula’s temporal operator �[0,25) refers
to SSH logout events up to 24 hours into the future from a time point. Hence each
time point would be monitored twice: once when checking compliance for a specific
day and also in the slice for checking compliance of the previous day. If we split
the log into time slices that are equivalent to the original log over 1-week periods
then 6/7 of the time points are monitored once and 1/7 are monitored twice. This
longer period produces less monitoring overhead. However, less parallelization is
possible.

3.2.3 Filtering

Removing irrelevant parts of a log can significantly speed-up monitoring as this
reduces the monitor’s workload. We call this removal process filtering. Filtering can
be seen as a special case of slicing where a slicer maps the given temporal structure

14 Basin et al.

Algorithm 4.1: map(key, value)

C ← slicingStrategy.getConfigs()
R ← slicingStrategy.getRestriction()
foreach (D, τ) in value do

foreach (fs, fr) ∈ {(fs′, fr′) ∈ C | fs′(D, τ,R) 6= ⊥} do
emitIntermediate(((fs, fr),τ), (fs(D, τ,R), τ))

Algorithm 4.2: reduce(key, values)

ϕ ← slicingStrategy.getFormula()
R ← slicingStrategy.getRestriction()
((fs, fr), τ) ← key
emit(mon(ϕ, collapse(values)) ∩

fr(R))

to a single temporal structure and where the given restriction is unaltered. In the
following, we focus on filtering time points in a temporal structure in which no
action occurs. Such time points can, for example, originate from the application of
a data slicer.

A time point i ∈ N is empty in the temporal structure (D̄, τ̄) if rDi = ∅ for
every predicate symbol r, and it is nonempty otherwise. We say that the temporal
structure (D̄′, τ̄ ′) ∈ T is the empty-time-point-filtered slice of (D̄, τ̄) ∈ T if (D̄′, τ̄ ′)
is a time slice of (D̄, τ̄), where ` = ∞ and s : [0, `) → N satisfies the following
conditions.

– If (D̄, τ̄) contains infinitely many nonempty time points then s is the strictly
increasing function such that for every i ∈ N, i is not in the image of s iff i is an
empty time point in (D̄, τ̄).

– Otherwise s is the identity function.

Note that the function s is uniquely determined in both cases. We make a case
distinction in the definition because if there are only finitely many nonempty time
points, then removing all the empty time points would result in a finite “temporal
structure,” but temporal structures are by definition infinite sequences. In practice,
we always monitor only a finite prefix of a temporal structure from which we remove
the empty time points. We assume here that there are infinitely many nonempty
time points in the temporal structure’s suffix.

Defining a slicer that maps a temporal structure to its empty-time-point-filtered
slice is straightforward. However, in general, this slicer is not sound and complete.
For instance, for the formula �∀c. (∃s. ssh login(c, s)) → �[1,5) ¬∃t. ssh login(c, t),
filtering the empty time points prior to monitoring is not sound as it might remove
a time point that discharges an SSH login from the computer c with a session
identifier s. In this case, monitoring the empty-time-point-filtered slice would falsely
report a violation. In contrast, for the formula (P0) from Section 2, monitoring the
empty-time-point-filtered slice is sound and complete. In Appendix B we identify a
fragment for which it is safe to filter out empty time points.

4 Algorithmic Realization

Our slicing framework establishes the theoretical foundations for splitting logs into
parts that can be monitored independently in a sound and complete way. In this
section, we show how to exploit these foundations in a concrete technical framework
for parallelizing computations, namely MapReduce [16].

Scalable Offline Monitoring of Temporal Specifications 15

4.1 MapReduce Phases

Using MapReduce, we monitor a log corresponding to a temporal structure in
three phases: map, shuffle, and reduce. In the map phase, the log is fragmented by
MapReduce. For each log fragment, we create a stream of log entries in a pointwise
fashion. We associate a key with each log entry. The shuffle phase reorganizes log
entries into chunks, which are streams of key-value pairs with matching keys. Each
value is a single log entry from the map phase. Chunks can be viewed as slices in
the sense of Definition 3.1, as we choose the keys in the map phase in such a way
that shuffle puts all log entries of one slice into the same chunk and log entries of
different slices into different chunks. In the reduce phase, we individually monitor
each chunk produced during the shuffle phase against the given policy. Afterwards
we combine the monitoring results thereby yielding the set of all violations. Due to
the one-to-one correspondence between chunks and slices, Theorem 3.1 is applicable;
hence no violations are lost by monitoring the constructed chunks in this phase.

The computations are parallelized in all three phases. In the map phase, in-
stances of our map function are executed in parallel by so-called mappers, and
in the reduce phase, instances of our reduce function are executed in parallel by
so-called reducers. In the following, we provide further details on these functions.
We refer the reader to [16] for details on MapReduce in general.

Map. MapReduce requires an implementation of a map function taking two argu-
ments, a key and a value. Algorithm 4.1 realizes our map function, where key is
an identifier for the log fragment and value is the log fragment itself. The slicing

strategy object slicingStrategy used in Algorithm 4.1 is generated for each call of the
map function by copying the slicing strategy that we provide to MapReduce. A
slicing strategy object stores the formula to be monitored (accessible by the selector
getFormula), the initial restriction (accessible by the selector getRestriction), and
a set of configurations (accessible by the selector getConfigs). A configuration is a
pair (fs, fr), where fs : D × N ×R → D ∪ {⊥} is a slicing function and fr : R → R

is a restriction modifier. The symbol ⊥ is used to indicate that no sliced log entry
needs to be generated for the given input. We present concrete algorithms for
configurations in Section 4.2.

The map function iterates over all log entries in the given log fragment. For each
log entry (D, τ) and each slicing function fs, a sliced log entry (D′, τ) is computed.
Note that the inner loop only iterates over slicing functions that are applicable in
the sense that fs(D, τ,R) 6= ⊥ holds. Our algorithm leaves it underspecified how the
applicable slicing functions fs are determined, thus, leaving open different possible
implementations of map. Possible solutions range from simply iterating over all
slicing functions in the slicing strategy, which can be inefficient, to using data
structures that support the efficient look up of applicable slicing functions.

Our map function emits key-value pairs, where each value is a log entry (D′, τ)
and each key consists of a primary key and a secondary key. Our map function
attaches to each sliced log entry (D′, τ) the configuration (fs, fr) used for computing
D′ as the primary key and the timestamp τ as the secondary key. When imple-
menting the map function, one can take as primary key an identifier that allows
one to retrieve the configuration using efficient data structures.

16 Basin et al.

Algorithm 4.3: DataSlicing

method fsdata
ϕ,x,S(D, τ , R) is

D′ ← D∅
Ψ ← atomicSubformulas(ϕ)
foreach r(t1, . . . , tι(r)) ∈ Ψ do

foreach (a1, . . . , aι(r)) ∈ rD do
i ← 1
b ← false
while (i ≤ ι(r)) ∧ ¬b do

b ← (ti = x ∧ ai /∈ S)∨(ti ∈ C ∧ ai 6= tDi)
i ← i+ 1

if ¬b then

rD
′
← rD

′
∪ {(a1, . . . , aι(r))}

return D′

method frdata
ϕ,x,S(R) is

return {(v, t) ∈ R | v(x) ∈ S}

Algorithm 4.4: ComposedSlicing

method fscomp

(fs,fr),(fs′,fr′)(D, τ , R) is

D′ ← fs(D, τ , R)
if D′ 6= ⊥ then

return fs′(D′, τ , fr(R))
else

return ⊥

method frcomp

(fs,fr),(fs′,fr′)(R) is

return fr′(fr(R))

Shuffle. The shuffle phase is built into MapReduce. In this phase, MapReduce
transforms the key-value pairs resulting from the map phase into pairs consisting
of a key and a chunk of log entries. Such a pair is constructed for each primary
key k generated in the map phase. All log entries from key-value pairs with the
primary key k are combined to one chunk of log entries. The log entries within
a chunk are sorted based on their secondary keys. Hence, in our setting, all log
entries in one chunk stem from the application of the same slicing function and are
sorted based on their timestamps.

Reduce. MapReduce requires an implementation of a reduce function taking two
arguments, a key and a list of values. Algorithm 4.2 realizes our reduce function,
with key ∈ C×N and values ∈ (D×N)∗, where C denotes the set of all configurations.
The argument key identifies the chunk to be monitored and values identifies the
chunk itself. The formula specifying the policy and the restriction are retrieved
from a slicing strategy object that is generated for each call of reduce.

Our reduce function collapses all log entries with identical timestamps. The
method collapse realizes this functionality by iterating over the list values while
merging two adjacent log entries (D1, τ) and (D2, τ) with identical timestamp τ

to the log entry (D, τ), where rD = rD1 ∪ rD2 holds for each r ∈ R. By sorting
log entries in the shuffle phase, collapse only needs to inspect adjacent elements
in the list values. After collapsing, each timestamp occurs at most once in the
resulting list of log entries. The reduce function forwards the collapsed list to the
monitoring algorithm mon together with the formula ϕ to be monitored. In the set
of violations returned by the monitor, the reduce function removes all violations
that are not permitted by fr(R) and emits the resulting set of violations. The set
of all violations of ϕ is the union of the sets emitted by the individual reducers. In
our implementation described in Section 5, we use the monitoring tool MONPOLY
as the monitoring algorithm mon.

Scalable Offline Monitoring of Temporal Specifications 17

4.2 Algorithms for Slicing Functions and Restriction Modifiers

Algorithm 4.3 describes the pointwise slicing function fsdata
ϕ,x,S and the restriction

modifier frdata
ϕ,x,S for data slicing. The body of fsdata

ϕ,x,S iterates over all atomic sub-

formulas r(t̄) of ϕ, and each tuple ā ∈ rD, where D is the structure supplied to
fsdata
ϕ,x,S . The while loop and the subsequent conditional update iteratively construct

the structure D′ starting from the initial structure D∅ with empty relations (i.e.,
rD∅ = ∅ for each r ∈ R). Note that the condition on a1, . . . , aι(r) checked by the
while loop corresponds to the condition in our definition of (ϕ, x, S)-slices (see
Definition 3.5). The restriction modifier frdata

ϕ,x,S removes all violations that do not
fit S from a given restriction R.

Algorithm 4.4 describes the pointwise slicing function and the restriction
modifier resulting from the composition of two configurations (fs, fr) and (fs′, fr′).
The composition of the configurations is similar to the composition of slicers
in Section 3.1.3. In the body of fscomp

(fs,fr),(fs′,fr′)
, the slicing function of the first

configuration is applied before the slicing function of the second configuration. If fs

returns ⊥ then fs′ is not applied and ⊥ is returned directly. If fs returns a structure
D′ then fs′(D′, τ , fr(R)) is returned, which is either a structure or ⊥. The restriction
modifier frcomp

(fs,fr),(fs′,fr′)
first applies fr and then fr′ to the given restriction.

Algorithms for time slicing and filtering empty time points are provided in
Appendix C. To ease the presentation, we have taken the liberty to describe slicing
by configurations that are pairs of functions of the form (fs, fr). In an object-oriented
programming language, instead of pairs of functions, one would define an interface
Config that declares two methods slice and restrict and a class implementing Config
for each slicing technique. For instance, the methods slice and restrict in the class
for data slicing would realize the functions fsdata

ϕ,x,S and frdata
ϕ,x,S , respectively. The

formula ϕ, the slicing variable x, and the slicing set S would not be passed to slice

and restrict, but given as arguments to the constructor when creating objects.

5 The Google Case Study

In this section, we present our case study in using slicing to monitor compliance to
security policies at Google. We first describe the monitoring scenario and afterwards
we evaluate the performance of our monitoring solution.

5.1 Setting

We consider a setting with over 35,000 computers accessing sensitive resources.
These computers are used both within Google, connected directly to the corporate
network, and externally, accessing Google’s network over insecure networks.

Google uses access-control mechanisms to minimize the risk of unauthorized
access to sensitive resources. In particular, computers must obtain time-limited
authentication tokens using a tool, which we call AUTH. Furthermore, the Secure
Shell protocol (SSH) is used to remotely login to servers. Additionally, to minimize
the risk of security exploits, computers must regularly update their configuration
and apply security patches according to a centrally managed configuration. To do

18 Basin et al.

Table 5.1: Policy formalization.

policy MFOTL formula

(P1) � ∀c. ∀t. auth(c, t)→ 1000 ≺ t

(P2) � ∀c. ∀t. auth(c, t)→ �[0,3d] �[0,0] upd success(c)

(P3)

� ∀c. ∀s. ssh login(c, s)∧(
�[1min,20min] net(c) ∧�[0,1d] �[0,0] net(c)→ �[1min,20min] net(c)

)
→

�[0,1d) �[0,0] ssh logout(c, s)

(P4)
� ∀c.net(c) ∧

(
�[10min,20min] net(c)

)
∧

(
�[1d,2d] alive(c)

)
∧

¬
(

�[0,3d] �[0,0] upd success(c)
)
→ �[0,20min) �[0,0] upd connect(c)

(P5)
� ∀c. upd connect(c) ∧

(
�[5min,20min] alive(c)

)
→

�[0,30min) �[0,0] upd success(c) ∨ upd skip(c)

(P6) � ∀c. upd skip(c)→ �[0,1d] �[0,0] upd success(c)

this, every computer regularly starts an update tool, which we call UPD, connects
to a central server to download the latest centrally managed configuration, and
attempts to reconfigure and update itself. To prevent over-loading the configuration
server, if the computer has recently updated its configuration then the update tool
does not attempt to connect to the server.

Policies. The policies we consider specify restrictions on the authorization process,
SSH sessions, and the update process. All computers are intended to comply with
these policies. However, due to misconfiguration, server outages, hardware failures,
and the like, this is not always the case. The policies are as follows.
(P1) Entering credentials with the tool AUTH must take at least 1 second. The

motivation is that authentication with the tool AUTH should not be automated.
That is, the authentication credentials must be entered manually and not by a
script when executing the tool.

(P2) The tool AUTH may only be used if the computer has been updated to the
latest centrally-managed configuration within the last 3 days.

(P3) Long-running SSH sessions present a security risk. Therefore, they must not
last longer than 24 hours.

(P4) Each computer must be updated at least once every 3 days unless it is turned
off or not connected to the corporate network.

(P5) If a computer connects to the central configuration server and downloads
the new configuration, then the computer should successfully reconfigure itself
within the next 30 minutes.

(P6) If the tool UPD aborts the update process, claiming that the computer was
recently successfully updated, then this update must have occurred within the
last 24 hours.

Table 5.1 presents our formalization of these policies, where we use the predicate
symbols given in Table 5.2. We explain here the less obvious aspects of our
formalization. The variable c represents a computer, s represents an SSH session,
and t represents the time taken by a user to enter authentication credentials. In
(P3), we assume that if a computer is disconnected from the corporate network, then
the SSH session is closed. In (P4), because of the subformula �[1d,2d] alive(c), we
only consider computers that have recently been used. In particular, the subformula
suppresses false positives stemming from newly installed computers, which do not
generate alive events prior to their installation. Similarly, we only require an update
of a computer if it is connected to the network for a given amount of time. In (P5),
since a computer can be turned off after downloading the latest configuration but

Scalable Offline Monitoring of Temporal Specifications 19

Table 5.2: Predicate symbols and their interpretation.

predicate symbol description

alive(c)
The computer c is running. This event is generated at least once every 20
minutes when c is running but at most twice every 5 minutes.

net(c)
The computer c is connected to the corporate network. This event is gen-
erated at least once every 20 minutes when c is connected to the corporate
network but at most once every 5 minutes.

auth(c, t)
The tool AUTH is invoked to obtain an authentication token on the com-
puter c. The second argument t indicates the time in milliseconds it took
the user to enter the authentication credentials.

upd start(c) The tool UPD started on the computer c.

upd connect(c)
The tool UPD on the computer c connected to the central server and down-
loaded the latest configuration.

upd success(c)
The tool UPD updated the configuration and applied patches on the com-
puter c.

upd skip(c)
The tool UPD on the computer c terminated because it believes that the
computer was recently updated.

ssh login(c, s)
An SSH session with identifier s to the computer c was opened. We use the
session identifier s to match the login event with the corresponding logout
event.

ssh logout(c, s) An SSH session with identifier s to the computer c was closed.

Table 5.3: Log statistics.

event count
alive 16 billion (15,912,852,267)
net 8 billion (7,807,707,082)
auth 8 million (7,926,789)
upd start 65 million (65,458,956)
upd connect 46 million (45,869,101)
upd success 32 million (31,618,594)
upd skip 6 million (5,960,195)
ssh login 1 billion (1,114,022,780)
ssh logout 1 billion (1,047,892,209)

before modifying its local configuration, we only require a successful update if the
computer is still running 5 to 20 minutes after downloading the new configuration.

Logs. The computers log entries describing their local system actions and upload
their logs to a log cluster. Approximately 1 TB of log data is uploaded each day.
We restricted ourselves to log data that spans approximately two years. We then
processed the uploaded data to obtain a temporal structure consisting of the
events relevant for the policies considered. Since events occur concurrently, we
collapsed the temporal structure [10], that is, the structures at time points with
equal timestamps are merged into a single structure. By doing this, we make the
assumption that equally timestamped events happen simultaneously. The size of
the collapsed temporal structure is approximately 600 MB per day on average and
0.4 TB for the two years, in a protocol buffers [33] format. This temporal structure
contains approximately 77.2 million time points and 26 billion events, i.e., tuples
in the relations interpreting the predicate symbols. Table 5.3 presents a breakdown
of the numbers of the events in the temporal structure by predicate symbols.

Slicing and Monitoring. For each policy, we used 1,000 computers for slicing and
monitoring. Here we used Google’s MapReduce framework [16] and the MONPOLY
tool [9]. We split the collapsed temporal structure into 10,000 slices so that each

20 Basin et al.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

 o
f

s
lic

e
s

Size of slice up to [MB]

Fig. 5.1: Distribution of the size of the log
slices.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

 0 10 20 30 40 50

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

 o
f

s
lic

e
s

MONPOLY took up to [minutes] to check the slice for policy compliance

MONPOLY used up to [MB] of RAM to check the slice for policy compliance

P3 - memory
P3 - time

Fig. 5.2: Distribution of memory (upper hor-
izontal axis) and time (lower horizontal axis)
used to monitor individual slices for (P3).

computer processed 10 slices on average. The decision to use 10 times more slices
than computers makes the individual map and reduce computations small. This
has the advantage that if the monitoring of a slice fails and must be restarted,
then less computation is wasted. For slicing and monitoring, we used the formulas
in Table 5.1, without universally quantifying over the variables c, t, and s. The
resulting formulas fall into the fragment that the MONPOLY tool handles and our
slicing techniques from Section 3 are applicable, i.e., they are sound and complete.

We employed data slicing with respect to the variable c, which occurs in all
the atomic subformulas with a predicate symbol, and filtering of empty time
points. Our implementation generates the primary keys of the key-value pairs
emitted by a mapper from c’s interpretation in an event. Concretely, we apply the
MurmurHash [29] function to this value and take the remainder after dividing it
by 10,000 (the number of slices). The values of the key-value pairs emitted by the
implemented mappers are log entries consisting of a single event and a timestamp.
Slices are generated with respect to the conjunction of all policies. Figure 5.1
depicts the distribution of the slices’ sizes. Note that generating the slices for each
policy individually would result in smaller slices and thus simplify monitoring. Note
too that although we use the same set of slices for all policies, each policy was
checked separately and the slices were generated during this check.

5.2 Evaluation

We now evaluate our monitoring solution, providing details about the slices and
monitoring performance. Our performance figures provide evidence that our ap-
proach scales to large logs and that it is suitable for checking policy compliance of
large, realistic IT systems.

Figure 5.1 shows the distribution of the sizes of the slices in the format used as
input for MONPOLY. On the vertical axis is the percentage of slices whose size is
less than or equal to the value on the horizontal axis. The median size of a slice
is 61 MB and 99% of the slices have a size of at most 135 MB. There are three
slices with sizes over 1 GB and the largest slice is 1.8 GB. Recall that we used the
same slicing method for all policies. The sum of the sizes of all slices (0.6 TB) is
larger than the size of the collapsed temporal structure (0.4 TB). Since we slice
by the computer (variable c), the slices do not overlap. However, some overhead

Scalable Offline Monitoring of Temporal Specifications 21

Table 5.4: Monitor performance.

policy runtime runtime memory
(overall) (per slice) (per slice)

median max cumulative median max
[hh:mm] [sec] [hh:mm] [days] [MB] [MB]

(P1) 2:04 169 0:46 21.4 6.1 6.1
(P2) 2:10 170 0:51 21.4 6.1 10.3
(P3) 11:56 170 10:40 22.7 7.1 510.2
(P4) 2:32 169 1:06 21.3 9.2 13.1
(P5) 2:28 168 1:01 21.3 6.1 6.1
(P6) 2:13 168 0:48 21.1 6.1 7.1

results from timestamps and predicate symbol names being replicated in multiple
slices. Moreover, we consider the sizes of the slices in the more verbose text-based
MONPOLY format rather than the protocol buffers format.

Table 5.4 shows the performance of our monitoring solution. The second column
shows for each policy the time required for the entire MapReduce job, including
both slicing and monitoring, that is, the time from starting the MapReduce job
until the monitor finished on the last slice and its output was collected by the
corresponding reducer. Except for (P3), the slicing and monitoring took up to
21

2 hours. Slicing and monitoring (P3) took almost 12 hours. Table 5.4 also gives
details about the monitoring of the individual slices, namely, the median of the
runtime of monitoring the slices (third column), the maximal time of monitoring
one slice (fourth column), and the cumulative running times of monitoring all
slices (fifth column). Finally, the sixth and seventh columns give details on the
memory usage (median and maximum) of monitoring the slices. The overhead of
the MapReduce framework and time necessary for slicing is small; most resources
are spent on monitoring the slices. The cumulative running times roughly amount
to the time necessary to monitor all slices sequentially on a single computer.

We first discuss the time taken to monitor the individual slices and then the
memory used. For (P3), Figure 5.2 shows on the vertical axis the percentage of
slices for which the monitoring time is within the limit on the lower horizontal axis.
We do not give the curves for the other policies as they are similar to (P3). The
similarities indicate that for most slices the monitoring time does not vary much
across the considered policies. 99% of the slices are monitored within 8.2 minutes
each and do not need more than 35 MB of memory.

(P3) required substantially more time to monitor than the other formulas
due to the nesting of temporal operators. This additional overhead is particularly
pronounced on large slices and results in waiting for a few large slices that take
substantially longer to monitor than the rest. There are several options to deal
with such slices. We can stop the monitor after a timeout and ignore the slices and
any policy violations involving them. Note that the monitoring of the other slices
and the validity of violations found on them would be unaffected. Alternatively, we
can split large slices into smaller ones, either prior to monitoring or after a timeout
when monitoring a large slice. For (P3), we can slice further by the variable c and
also by s. We can also slice by time.

Due to the sensitive nature of the logged data, we do not report here on the policy
violations. However, we remark that monitoring a large population of computers and
aggregating the violations found can be used to identify systematic policy violations
and policy violations due to system misconfiguration. An example of the former is

22 Basin et al.

not letting a computer update after the weekend before using it to access sensitive
resources on a Monday; cf. (P2). An example of the latter is that the monitoring
helped determine when the update process was not operating as expected for
certain types of computers during a specific time period. This information can be
useful for identifying seemingly unrelated changes in the configuration of other
components in the IT infrastructure.

Given the amount of logged data and the modest computational power (1,000
computers in a MapReduce cluster), the monitoring times are in general low, and
reasonable even for (P3). The presented monitoring solution allows us to cope with
even larger logs and to speed-up the monitoring process by deploying additional
slicing mechanisms provided by our general framework and by using additional
computers in a MapReduce cluster.

6 Related Work

This work builds upon and extends the work by Basin et al. [9–11], where a single
monitor is used to check system compliance with respect to policies expressed in
metric first-order temporal logic. By parallelizing and distributing the monitoring
process, we overcome a central limitation of this prior work and enable it to scale to
logging scenarios that are substantially larger than those previously considered [10],
namely, approximately 100 times larger in terms of the number of events and 50
times larger in the data volume.

A preliminary version of this work was presented at the Conference on Runtime
Verification [8]. Our extensions in this article are as follows. First, we generalize data
slicing. Second, we provide details about time slicing and filtering, which are only
briefly sketched in the conference version. Third, we prove the completeness and
soundness of the different slicers. Fourth, we provide details about an algorithmic
realization of our slicing framework. Finally, additional details are given throughout
the text, and the discussion of related work has been broadened and updated.

Various other logics, in particular temporal logics, have been used to express and
analyze regulations and security policies. For example, Zhang et al. [39] formalize
the UCONABC model [31] for usage control in the Temporal Logic of Actions [25].
Hilty et al. [23] propose the Obligation Specification Language, based on the
linear-time temporal logic LTL [32], to reason about usage-control policies. Barth
et al. [7] present a policy-specification framework based on first-order temporal
logic, and DeYoung et al. [17] show, for example, how parts of HIPAA can be
formalized in this framework. The focus of these works is primarily on formalizing
policies whereas we focus on monitoring and compliance checking, in particular
with large amounts of log data. These other formalisms should also benefit from
our slicing framework and its algorithmic realization with MapReduce to develop
scalable monitoring solutions.

For different logic-based specification languages, various monitoring algorithms
exist, e.g., [5,6,12,14,15,18,20–22,26,35,36]. These algorithms have been developed
with different applications in mind, such as intrusion detection [35], program
verification [5], and checking temporal integrity constraints for databases [14]. In
principle, these algorithms can also be used to check compliance of IT systems,
where a single centralized monitor observes the system online or checks the system

Scalable Offline Monitoring of Temporal Specifications 23

logs offline. However, none of these algorithms, including the one of Basin et al. [11],
would scale to IT system of realistic size due to the lack of parallelization.

Similar to our work, both Barre et al. [4] and Bianculli et al. [13] monitor parts
of a log in parallel using MapReduce. While we split the log into multiple slices
and evaluate the entire formula on these slices in parallel, they evaluate the given
formula in multiple MapReduce iterations. More concretely, in their approaches all
subformulas of the same depth are evaluated in the same MapReduce job and the
results are used to evaluate subformulas of a lower depth in a separate MapReduce
job. The evaluation of a subformula is performed in both the map phase and the
reduce phase. While the evaluation in the map phase is parallelized for different
time points of the log, the results of the map phase for a subformula for the whole
log are collected and processed by a single reducer. The reducer therefore becomes
a bottleneck, limiting the degree of parallelization and hence scalability. Barre et
al.’s experiments [4] are on a log with fewer than five million entries and monitoring
was performed on a single computer with respect to formulas of a propositional
temporal logic, which is limited in its ability to express realistic policies. The
experiments by Bianculli et al. [13] are larger than Barre et al.’s, but are also only
for a propositional setting and are still orders of magnitude smaller than ours.

Roşu and Chen [34] present a generic monitoring algorithm for parametric
specifications. They group logged events into slices by their parameter instances,
one slice for each parameter value in case of a single parameter and one slice for
each combination of values when the specification has multiple parameters. The
slices are then processed by a monitoring algorithm unaware of parameters. In
contrast to our work, they do not provide a solution for parallelizing the monitoring
process; they provide an algorithmic solution to generate the slices online. We note
that the extension of the temporal logic LTL with parameterized propositions, as
considered by Roşu and Chen, is less expressive than a first-order extension like
MFOTL, used in our work. Roşu and Chen also report on experiments with logs
containing up to 155 million entries, all monitored on a single computer. This is
orders of magnitude smaller than the log in our case study.

Medhat et al. [27] parallelize monitoring by using the CPU’s core or GPUs.
They split traces similar to Roşu and Chen’s slicing method [34] for parametric
specifications and perform monitoring in a MapReduce-like fashion by spawning and
merging submonitors. However, from their description it remains unclear whether
their monitoring algorithm can be deployed in an actual MapReduce cluster.

Our work on slicing logs and parallelizing monitoring shares similarities with
approaches taken in other domains. For example, slicing is also used for both
programs [38] and computations [28]. A program slice is a subprogram of a program
whereas a computation slice is a subcomputation of a distributed computation.
These slices are used, e.g., for testing and debugging as they are typically smaller
and thus easier to analyze. The slices are produced with respect to slicing criteria,
which specify projection functions for programs or computations. For instance,
in program slicing a basic criterion consists of a program location and a set of
program variables, and in a slice only the values of the given variables prior to the
program’s execution at the given program location are preserved. This is different
from our work, where logs are split into sound and complete slices with respect to
a temporal property and each slice is analyzed.

24 Basin et al.

7 Conclusion

We presented a scalable solution for checking compliance of IT systems, where
behavior is monitored offline and checked against policies. To achieve scalability, we
parallelize monitoring, supported by a framework for slicing logs and an algorithmic
realization within the MapReduce framework.

MapReduce is particularly well suited for implementing parallel monitoring.
It allows us to efficiently reorganize huge logs into slices. It also allocates and
distributes the computations for monitoring the slices, accounting for the available
computational resources, the location of the logged data, failures, etc. Finally,
additional computers can easily be added to speedup the monitoring process when
splitting the log into more slices, thereby increasing the degree of parallelization.

Our slicing framework allows logs to be sliced in multiple dimensions by compos-
ing different slicing methods. As future work, we will evaluate different possibilities
for obtaining a larger number of smaller slices that are equally expensive to monitor.
We also plan to adapt our approach to check system compliance online. In this
regard, there are extensions and alternatives to the MapReduce framework for
online data processing, such as S4 [30] and STORM [37], which can potentially be
used to obtain a scalable online monitoring solution.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley, 1994.

2. R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In Proceedings of
the 1991 REX Workshop on Real Time: Theory in Practice, volume 600 of Lect. Notes
Comput. Sci., pages 74–106, 1992.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
4. B. Barre, M. Klein, M. Soucy-Boivin, P.-A. Ollivier, and S. Hallé. MapReduce for parallel

trace validation of LTL properties. In Proceedings of the 3rd International Conference on
Runtime Verification, volume 7687 of Lect. Notes Comput. Sci., pages 184–198, 2013.

5. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.
In Proceedings of the 5th International Conference on Verification, Model Checking and
Abstract Interpretation, volume 2937 of Lect. Notes Comput. Sci., pages 44–57, 2004.

6. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files. J. Aero.
Comput. Inform. Comm., 7:365–390, 2010.

7. A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, pages 184–198, 2006.

8. D. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, and H. Mantel. Scalable offline
monitoring. In Proceedings of the 14th International Conference on Runtime Verification,
volume 8734 of Lect. Notes Comput. Sci., pages 31–47, 2014.

9. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. MONPOLY: Monitoring usage-control
policies. In Proceedings of the 2nd International Conference on Runtime Verification,
volume 7186 of Lect. Notes Comput. Sci., pages 360–364, 2012.

10. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring data usage in distributed
systems. IEEE Trans. Software Eng., 39(10):1403–1426, 2013.

11. D. Basin, F. Klaedtke, S. Müller, and E. Zălinescu. Monitoring metric first-order temporal
properties. J. ACM, 62(2), 2015.

12. A. Bauer, R. Goré, and A. Tiu. A first-order policy language for history-based transaction
monitoring. In Proceedings of the 6th International Colloquium on Theoretical Aspects of
Computing, volume 5684 of Lect. Notes Comput. Sci., pages 96–111, 2009.

13. D. Bianculli, C. Ghezzi, and S. Krstić. Trace checking of metric temporal logic with aggre-
gating modalities using MapReduce. In Proceedings of the 12th International Conference
on Software Engineering and Formal Methods, volume 8702 of Lect. Notes Comput. Sci.,
pages 144–158, 2014.

Scalable Offline Monitoring of Temporal Specifications 25

14. J. Chomicki. Efficient checking of temporal integrity constraints using bounded history
encoding. ACM Trans. Database Syst., 20(2):149–186, 1995.

15. O. Chowdhury, L. Jia, D. Garg, and A. Datta. Temporal mode-checking for runtime
monitoring of privacy policies. In Proceedings of the 26th International Conference on
Computer Aided Verification, volume 8559 of Lect. Notes Comput. Sci., pages 131–149,
2014.

16. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008.

17. H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta. Experiences in the logical
specification of the HIPAA and GLBA privacy laws. In Proceedings of the 9th Annual
ACM Workshop on Privacy in the Electronic Society, pages 73–82, 2010.

18. N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky. Checking traces for regulatory conformance.
In Proceedings of the 8th International Workshop on Runtime Verification, volume 5289
of Lect. Notes Comput. Sci., pages 86–103, 2008.

19. H. Enderton. A Mathematical Introduction to Logic. Academic Press, 2nd edition, 2001.
20. D. Garg, L. Jia, and A. Datta. Policy auditing over incomplete logs: theory, implemen-

tation and applications. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, pages 151–162, 2011.

21. A. Groce, K. Havelund, and M. Smith. From scripts to specification: The evaluation of a
flight testing effort. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, volume 2, pages 129–138, 2010.

22. S. Hallé and R. Villemaire. Runtime enforcement of web service message contracts with
data. IEEE Trans. Serv. Comput., 5(2):192–206, 2012.

23. M. Hilty, A. Pretschner, D. A. Basin, C. Schaefer, and T. Walter. A policy language for
distributed usage control. In Proceedings of the 12th European Symposium on Research in
Computer Security, volume 4734 of Lect. Notes Comput. Sci., pages 531–546, 2007.

24. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Syst.,
2(4):255–299, 1990.

25. L. Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–
923, 1994.

26. F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst. Monitoring
business constraints with linear temporal logic: An approach based on colored automata. In
Proceedings of the 9th International Conference on Business Process Management, volume
6896 of Lect. Notes Comput. Sci., pages 132–147, 2011.

27. R. Medhat, Y. Joshi, B. Bonakdarpour, and S. Fischmeister. Accelerated runtime ver-
ification of LTL specifications with counting semantics. CoRR - Computing Research
Repository - arXiv, 2014. http://arxiv.org/abs/1411.2239.

28. N. Mittal and V. K. Garg. Techniques and applications of computation slicing. Distrib.
Comput., 17(3):251–277, 2005.

29. MurmurHash. Wikipedia, the free encyclopedia, accessed on March 2nd, 2015. https:
//en.wikipedia.org/wiki/MurmurHash.

30. L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream computing.
In Proceedings of the 11th International Conference on Data Mining Workshops, pages
170–177, 2010.

31. J. Park and R. Sandhu. The UCONABC usage control model. ACM Trans. Inform. Syst.
Secur., 7(1):128–174, 2004.

32. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 46–57, 1977.

33. Protocol Buffers: Google’s data interchange format, accessed on March 2nd, 2015. https:
//code.google.com/p/protobuf/.

34. G. Roşu and F. Chen. Semantics and algorithms for parametric monitoring. Log. Method.
Comput. Sci., 8(1):1–47, 2012.

35. M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In Proceedings
of the 14th IEEE Computer Security Foundations Workshop, pages 220–234, 2001.

36. A. P. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Trans. Knowl.
Data Eng., 7(3):471–486, 1995.

37. STORM: Distributed and fault-tolerant realtime computation. Apache Storm, accessed on
March 2nd, 2015. https://storm.apache.org.

38. M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–452, 1982.
39. X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy specification

of usage control. ACM Trans. Inform. Syst. Secur., 8(4):351–387, 2005.

26 Basin et al.

A Additional Details: Slicing Time

In the following, we define a slicer that splits a log in its temporal dimension. We also provide
soundness and completeness guarantees for it.

To define the slicer, we first determine a time range for a given formula that suffices to
evaluate the formula on a single time point of a temporal structure. The time range depends on
the formula’s temporal operators and their intervals. To define this time range, we extend our
notation for intervals over N to intervals over Z. For example, for b, b′ ∈ Z, [b, b′] denotes the set
{a ∈ Z |b ≤ a ≤ b′}. Moreover, for intervals I and J over Z, let I⊕J := {i+ j | i ∈ I and j ∈ J},
and let I d J be the smallest interval containing I and J .

Definition A.1 The relative interval of the formula ϕ, RI(ϕ) ⊆ Z, is defined recursively over
the formula structure:

RI(ϕ) :=



{0} if ϕ is an atomic formula,

RI(ψ) if ϕ is of the form ¬ψ or ∃x. ψ,

RI(ψ) d RI(χ) if ϕ is of the form ψ ∨ χ,

(−b, 0] d
(
(−b,−a]⊕ RI(ψ)

)
if ϕ is of the form [a,b) ψ,

[0, b) d
(
[a, b)⊕ RI(ψ)

)
if ϕ is of the form #[a,b) ψ,

(−b, 0] d
(
(−b, 0]⊕ RI(ψ)

)
d
(
(−b,−a]⊕ RI(χ)

)
if ϕ is of the form ψ S[a,b) χ, and

[0, b) d
(
[0, b)⊕ RI(ψ)

)
d
(
[a, b)⊕ RI(χ)

)
if ϕ is of the form ψ U[a,b) χ.

We give intuition for Definition A.1. The relative interval of ϕ specifies a time range, which
contains relative timestamps. These relative timestamps describe time points that are sufficient
to evaluate ϕ on the current time point. Relative timestamps that refer to the future are
positive integers and relative timestamps that refer to the past are negative integers. In the
following, we give some intuition about the different cases of RI’s definition.

The evaluation of an atomic formula ϕ only depends on the current time point. Therefore,
it suffices to consider time points with equal timestamps, and hence RI(ϕ) = {0}. To evaluate
a formula of the form ¬ψ, ∃x. ψ, or ψ ∨ χ, it suffices to consider the time points needed to
evaluate its subformulas. Hence, we choose the smallest interval subsuming the relative intervals
of the subformulas.

The evaluation of #I ψ depends only on the time points whose timestamps fall in the
interval needed for ψ’s evaluation, shifted by the interval I. Moreover, the timestamp of the
next time point must be the same in the time slice as in the original log. This is ensured by
considering the interval from 0 to the furthest value from 0 in I. Considering only an interval I
with 0 6∈ I would allow for additional time points to be inserted in the time slice between the
current time point and the original next time point. The evaluation of ψ UI χ, with I = [a, b),
depends on having the same timestamps for the time points in the time slice as in the original
log between the current time point and the one furthest away, but with its timestamp still
falling within I. This is ensured by [0, b). The subformula ψ is evaluated on time points between
the current time point and the furthest time point with a timestamp that falls into I, so we
must consider the relative interval of this subformula shifted by [0, b). The subformula χ is
evaluated only on time points whose relative timestamps fall within I, so we must consider the
relative interval of this subformula shifted by [a, b). Formulas of the form I ψ and ψ SI χ are
treated similarly to formulas with the corresponding future operators. However, their relative
intervals are mirrored over 0, since these temporal operators refer to the past.

The next lemma establishes that 0 is included in the relative interval of every formula. Its
proof, which we omit, is a straightforward induction over the formula structure.

Lemma A.1 For every formula ϕ, 0 ∈ RI(ϕ).

We have now the definitions at hand to formalize slicing a log by time (Definition A.2) and
the time slicer (Definition A.3).

Definition A.2 Let T ⊆ Z be an interval and (D̄, τ̄) ∈ T. The T -slice of (D̄, τ̄) is the time
slice (D̄′, τ̄ ′) of (D̄, τ̄), where s : [0, `)→ N is the function s(i′) = i′ + c, ` = |{i ∈ N | τi ∈ T}|,
and c = min{i ∈ N | τi ∈ T}. We also require that τ ′` 6∈ T and D′

i′ = Ds(i′), for all i′ ∈ [0, `).

Figure A.1 illustrates Definition A.2, where the original log refers to the temporal structure
(D̄, τ̄) and a T -slice of the original log to (D̄′, τ̄ ′). Intuitively, the first time point in a T -slice is

Scalable Offline Monitoring of Temporal Specifications 27

log -
time

0 c s(i′) = i′ + c

T -slice -
time

0 i′ `

︸ ︷︷ ︸
T

Fig. A.1: Illustration of a T -slice.

the first time point in (D̄, τ̄) with the timestamp in T . There are ` time points in (D̄, τ̄) whose
timestamps fall into T . Those time points are identical in the T -slice. To ensure the soundness
and completeness of time slices, the `th time point in the T -slice must have a timestamp that
lies outside of T , just like the corresponding time point in (D̄, τ̄).

Definition A.3 The time slicer tϕ,(Ik)k∈K
for the formula ϕ and the family of intervals

(Ik)k∈K is the function mapping (D̄, τ̄) ∈ T and R ∈ R to the family of temporal structures
(D̄k, τ̄k)k∈K and the family of restrictions (Rk)k∈K , where (D̄k, τ̄k) is the Tk-slice of (D̄, τ̄),
with Tk the smallest interval containing

(
Ik∩{t ∈ N|(v, t) ∈ R, for some valuation v}

)
⊕RI(ϕ),

and Rk = {(v, t) | (v, t) ∈ R with t ∈ Ik}, for each k ∈ K.

The following theorem establishes that a time slicer is a slicer.

Theorem A.1 The time slicer tϕ,(Ik)k∈K
is a slicer for the formula ϕ, if

⋃
k∈K Ik = N.

To prove Theorem A.1, we first introduce additional machinery.

Definition A.4 Let I ⊆ Z be an interval and c, i ∈ N. The temporal structures (D̄, τ̄) ∈ T
and (D̄′, τ̄ ′) ∈ T are (I, c, i)-overlapping if the following conditions hold.
1. j ≥ c, Dj = D′j−c, and τj = τ ′j−c, for all j ∈ N with τj − τi ∈ I.
2. Dj′+c = D′

j′ and τj′+c = τ ′
j′ , for all j′ ∈ N with τ ′

j′ − τi ∈ I.

Intuitively, two temporal structures are (I, c, i)-overlapping if their time points (timestamps
and structures) are “the same” on an interval of timestamps. This is the case for time slices.
The value c here corresponds to the c in Definition A.2. It specifies how many time points
the two temporal structures are “shifted” relative to each other. The interval I specifies the
timestamps for which time points must be “the same”, i.e. those timestamps whose difference
to the timestamp τi are within I.

The next three lemmas establish that (1) time slices overlap, (2) if temporal structures
overlap for an interval I, then they also overlap for other time points in I and for subintervals
of I, and (3) a formula’s truth value match at the overlapping time points i and i− c.

Lemma A.2 Let T ⊆ N and I ⊆ Z be intervals, (D̄, τ̄) ∈ T, and (D̄′, τ̄ ′) ∈ T be a (T⊕I)-slice
of (D̄, τ̄). The temporal structures (D̄′, τ̄ ′) and (D̄, τ̄) are (I, c, i)-overlapping, for all i ∈ N
with τi ∈ T , where c ∈ N is the value in Definition A.2 used by the function s with respect to
(D̄, τ̄) and its time slice (D̄′, τ̄ ′).

Proof We first show that Condition 1 in Definition A.4 is satisfied. For all i ∈ N with τi ∈ T
and all j ∈ N with τj − τi ∈ I, it holds that τj ∈ T ⊕ I. From c = min{k ∈ N | τk ∈ T ⊕ I}
in Definition A.2, it follows that j ≥ c. Let j′ := j − c. It also follows from τj ∈ T ⊕ I that
j′ ∈ [0, `). Therefore, Dj = Ds(j′) = D′

j′ = D′j−c and τj = τs(j′) = τ ′
j′ = τ ′j−c.

Next, we show that Condition 2 is satisfied. For all i ∈ N with τi ∈ T and all j′ ∈ N with
τ ′
j′ − τi ∈ I, it holds that τ ′

j′ ∈ T ⊕ I. Since τ ′` 6∈ T ⊕ I, it follows that j′ ∈ [0, `). Therefore,

Dj′+c = Ds(j′) = D′
j′ and τj′+c = τs(j′) = τ ′

j′ . ut

Lemma A.3 Let (D̄, τ̄) ∈ T and (D̄′, τ̄ ′) ∈ T be temporal structures that are (I, c, i)-
overlapping, for some I ⊆ Z, c ∈ N, and i ∈ Z. Then (D̄, τ̄) and (D̄′, τ̄ ′) are (K, c, k)-
overlapping, for each k ∈ N with τk − τi ∈ I and K ⊆ {τi − τk} ⊕ I.

28 Basin et al.

Proof For all j ∈ N with τj − τk ∈ K, it follows from τj − τk ∈ K that τj − τk + τk − τi ∈
{τk − τi} ⊕K and hence τj − τi ∈ {τk − τi} ⊕K. From the assumption K ⊆ {τi − τk} ⊕ I,
it follows that {τk − τi} ⊕K ⊆ {τk − τi} ⊕ {τi − τk} ⊕ I = I and hence τj − τi ∈ I. Since
(D̄, τ̄) and (D̄′, τ̄ ′) are (I, c, i)-overlapping, Condition 1 in Definition A.4 holds for them to be
(K, c, k)-overlapping. Similarly, for all j′ ∈ N with τ ′

j′ − τk ∈ K, it follows that τ ′
j′ − τi ∈ I and

hence Condition 2 in Definition A.4 holds. ut

Lemma A.4 Let ϕ be a formula and (D̄, τ̄), (D̄′, τ̄ ′) ∈ T. If (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ϕ), c, i)-
overlapping, for some c and i, then for all valuations v, it holds that (D̄, τ̄ , v, i) |= ϕ iff
(D̄′, τ̄ ′, v, i− c) |= ϕ.

Proof Note that the lemma’s statement is well-defined. Namely, (D̄′, τ̄ ′, v, i− c) |= ϕ is defined.
It follows from Lemma A.1 that 0 ∈ RI(ϕ) and from Condition 1 in Definition A.4 that i ≥ c
and hence i− c ∈ N.

We prove the lemma by structural induction on the formula ϕ. We have the following cases.

– t ≈ t′, where t, t′ ∈ V ∪ C. Since the satisfaction of the formula t ≈ t′ depends only on the
valuation v, it follows that (D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′) iff (D̄′, τ̄ ′, v, i− c) |= t ≈ t′, for
all valuations v.

– t ≺ t′, where t, t′ ∈ V ∪ C. This case is similar to the previous one.
– r(t̄), where t1, . . . , tι(r) ∈ V ∪C. Since (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(r(t̄)), c, i)-overlapping and

0 ∈ RI(r(t̄)), it also follows from Condition 1 in Definition A.4 that Di = D′i−c and hence

(D̄, τ̄ , v, i) |= r(t̄) iff (D̄′, τ̄ ′, v, i− c) |= r(t̄), for all valuations v.
– ¬ψ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(¬ψ), c, i)-overlapping and RI(¬ψ) = RI(ψ). By the inductive

hypothesis, (D̄, τ̄ , v, i) |= ψ iff (D̄′, τ̄ ′, v, i−c) |= ψ, for all valuations v. Therefore (D̄, τ̄ , v, i) |=
¬ψ iff (D̄′, τ̄ ′, v, i− c) |= ¬ψ.

– ψ ∨ χ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ) dRI(χ), c, i)-overlapping. From RI(ψ) ⊆ RI(ψ) dRI(χ),
RI(χ) ⊆ RI(ψ) d RI(χ), and Lemma A.3 it follows that (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ), c, i)-
overlapping and (RI(ψ), c, i)-overlapping. By the inductive hypothesis, (D̄, τ̄ , v, i) |= ψ iff
(D̄′, τ̄ ′, v, i− c) |= ψ and (D̄, τ̄ , v, i) |= χ iff (D̄′, τ̄ ′, v, i− c) |= χ, for all valuations v. Hence
(D̄, τ̄ , v, i) |= ψ ∨ χ iff (D̄′, τ̄ ′, v, i− c) |= ψ ∨ χ.

– ∃x. ψ. From RI(∃x. ψ) = RI(ψ) it follows that (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ), c, i)-overlapping.
By the inductive hypothesis, (D̄, τ̄ , v, i) |= ψ iff (D̄′, τ̄ ′, v, i − c) |= ψ, for all valuations v.
Hence, for all d ∈ D we have that (D̄, τ̄ , v[x 7→ d], i) |= ψ iff (D̄′, τ̄ ′, v[x 7→ d], i− c) |= ψ. It
follows that (D̄, τ̄ , v, i) |= ∃x. ψ iff (D̄′, τ̄ ′, v, i− c) |= ∃x. ψ, for all valuations v.

– [a,b) ψ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI([a,b) ψ), c, i)-overlapping, where RI([a,b) ψ) = (−b, 0]d(
(−b,−a]⊕RI(ψ)

)
. From 0 ∈ RI([a,b) ψ) and Condition 1 in Definition A.4, it follows that

τi = τ ′i−c.

We make a case split on the value of i. If i = 0, then (D̄, τ̄ , v, i) 6|= [a,b) ψ, for all valuations v.

From c ∈ N, i−c ∈ N, and i = 0, it follows that i−c = 0. Trivially, (D̄′, τ̄ ′, v, i−c) 6|= [a,b) ψ,
for all valuations v. Next, we consider the case that i > 0 and make a case split on whether
τi − τi−1 is included in the interval [a, b).
• If τi−τi−1 ∈ [a, b), then τi−1−τi ∈ RI([a,b) ψ) and from Condition 1 in Definition A.4 it

follows that i− 1 ≥ c, τi−1 = τ ′i−c−1, and hence τ ′i−c − τ ′i−c−1 ∈ [a, b). From τi − τi−1 ∈
[a, b) it also follows that RI(ψ) ⊆ {τi − τi−1} ⊕ {τi−1 − τi} ⊕ RI(ψ) ⊆ {τi − τi−1} ⊕
(−b,−a]⊕RI(ψ) ⊆ {τi−τi−1}⊕RI([a,b) ψ) and hence by Lemma A.3 (D̄, τ̄) and (D̄′, τ̄ ′)

are (RI(ψ), c, i − 1)-overlapping. By the inductive hypothesis, (D̄, τ̄ , v, i − 1) |= ψ iff
(D̄′, τ̄ ′, v, i − c − 1) |= ψ, for all valuations v. Because τi = τ ′i−c and τi−1 = τ ′i−c−1, it

follows that (D̄, τ̄ , v, i) |= [a,b) ψ iff (D̄′, τ̄ ′, v, i− c) |= [a,b) ψ, for all valuations v.

• If τi − τi−1 6∈ [a, b) then (D̄, τ̄ , v, i) 6|= [a,b) ψ, for all valuations v. Recall that, from
Definition A.4, i ≥ c. We make a case split on whether i = c or i > c. If i = c then
i − c = 0 and hence (D̄′, τ̄ ′, v, i − c) 6|= [a,b) ψ, for all valuations v. Consider the case

i > c. To achieve a contradiction, suppose that τ ′i−c− τ ′i−c−1 ∈ [a, b). From Condition 2 in

Definition A.4 it follows that τi−1 = τ ′i−c−1 and hence τi − τi−1 = τ ′i−c − τ ′i−c−1 ∈ [a, b).

This contradicts τi − τi−1 6∈ [a, b), so it must be the case that τ ′i−c − τ ′i−c−1 6∈ [a, b). It

follows that (D̄′, τ̄ ′, v, i− c) 6|= [a,b) ψ, for all valuations v.
– #[a,b) ψ. This case is similar to the previous one, but it is simpler because we need not

consider i = 0 and i− c = 0 as a special case. We omit its details.

Scalable Offline Monitoring of Temporal Specifications 29

– ψ S[a,b) χ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ S[a,b) χ), c, i)-overlapping, where RI(ψ S[a,b) χ) =

(−b, 0]d
(
(−b, 0]⊕RI(ψ)

)
d
(
(−b,−a]⊕RI(χ)

)
. From 0 ∈ RI(ψ S[a,b) χ) and with Condition 1

in Definition A.4 it follows that τi = τ ′i−c.
We show the following two claims, which we use later in the proof.

I. For all j ∈ N with j ≤ i and τi − τj ∈ [a, b), it holds that RI(χ) ⊆ {τi − τj} ⊕ {τj −
τi} ⊕ RI(χ) ⊆ {τi − τj} ⊕ (−b,−a] ⊕ RI(χ) ⊆ {τi − τj} ⊕ RI(ψ S[a,b) χ) and j ≥ c.

By Lemma A.3, (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(χ), c, j)-overlapping. It follows from the
inductive hypothesis that (D̄, τ̄ , v, j) |= χ iff (D̄′, τ̄ ′, v, j − c) |= χ, for all valuations v.

II. For all k ∈ N with k ≤ i and τi − τk ∈ [0, b), it holds that RI(ψ) ⊆ {τi − τk} ⊕ {τk −
τi} ⊕ RI(ψ) ⊆ {τi − τk} ⊕ (−b, 0] ⊕ RI(ψ) ⊆ {τi − τk} ⊕ RI(ψ S[a,b) χ) and k ≥ c.

By Lemma A.3 (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ), c, k)-overlapping. It follows from the
inductive hypothesis that (D̄, τ̄ , v, k) |= ψ iff (D̄′, τ̄ ′, v, k − c) |= ψ, for all valuations v.

We first show the direction from left to right of the claimed equivalence (D̄, τ̄ , v, i) |= ψS[a,b)χ

iff (D̄′, τ̄ ′, v, i − c) |= ψ S[a,b) χ, for all valuations v. If (D̄, τ̄ , v, i) |= ψ S[a,b) χ then there

is some j ≤ i with τi − τj ∈ [a, b) such that (D̄, τ̄ , v, j) |= χ and (D̄, τ̄ , v, k) |= ψ, for all
k ∈ [j + 1, i+ 1).
From τi − τj ∈ [a, b) it follows that τj − τi ∈ RI(ψ S[a,b) χ) and from Condition 1 in

Definition A.4 we see that j ≥ c and τj = τ ′j−c. From Claim I above and from (D̄, τ̄ , v, j) |= χ

it follows that (D̄′, τ̄ ′, v, j − c) |= χ.
For all k′ ∈ [j + 1 − c, i + 1 − c), it holds that τ ′

k′ − τ
′
i−c = τ ′

k′ − τi ∈ (−b, 0] and hence

τ ′
k′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in Definition A.4 we see that τk′+c = τ ′

k′ . From

Claim II above and from (D̄, τ̄ , v, k′ + c) |= ψ it follows that (D̄′, τ̄ ′, v, k′) |= ψ. Therefore,
(D̄′, τ̄ ′, v, i− c) |= ψ S[a,b) χ.
It remains to show the right-to-left direction of the claimed equivalence. We do this by
contraposition. If (D̄, τ̄ , v, i) 6|= ψ S[a,b) χ then there are two possibilities:

1. For all j ≤ i with τi−τj ∈ [a, b) it holds that (D̄, τ̄ , v, j) 6|= χ. Then for all j′ ≤ i− c with
τ ′i−c − τ ′j′ = τi − τ ′j′ ∈ [a, b), it holds that τ ′

j′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in

Definition A.4, it follows that τ ′
j′ = τj′+c. That is, there are no additional time points

with a timestamp within the interval [a, b) in (D̄′, τ̄ ′) that would not be present in (D̄, τ̄).
Since τi − τj′+c ∈ [a, b), it follows from Claim I above and from (D̄, τ̄ , v, j′ + c) 6|= χ that

(D̄′, τ̄ ′, v, j′) 6|= χ. Therefore, (D̄′, τ̄ ′, v, i− c) 6|= ψ S[a,b) χ.

2. For all j ≤ i with τi − τj ∈ [a, b) and (D̄, τ̄ , v, j) |= χ, there is some k ∈ N with k ∈
[j+1, i+1) and (D̄, τ̄ , v, k) 6|= ψ. Then for every j′ ∈ N with j′ ≤ i− c, τ ′i−c−τ ′j′ ∈ [a, b),

and (D̄′, τ̄ ′, v, j′) |= χ, there is a j ∈ N with j = j′ + c. We show that τ ′
j′ = τj and j ≤ i.

From τ ′i−c − τ ′j′ ∈ [a, b) and τ ′i−c = τi, it follows that τ ′
j′ − τi ∈ (−b,−a] and hence

τ ′
j′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in Definition A.4, τ ′

j′ = τj′+c = τj . From

j = j′ + c and j′ ≤ i− c, it follows that j ≤ i.
Since τ ′

j′ = τj and j ≤ i, we can use Claim I above for j. From Claim I and (D̄′, τ̄ ′, v, j−
c) |= χ it follows that (D̄, τ̄ , v, j) |= χ. As a consequence, there is a k ∈ N with
k ∈ [j + 1, i + 1) and (D̄, τ̄ , v, k) 6|= ψ. If follows from k ∈ [j + 1, i + 1) that k ≤ i.
Furthermore, from τ ′i−c−τ ′j′ ∈ [a, b) it follows that τi−τj ∈ [a, b) and hence τi−τk ∈ [0, b).

Therefore, we can use Claim II above for k. From Claim II and (D̄, τ̄ , v, k) 6|= ψ it follows
that (D̄′, τ̄ ′, v, k− c) 6|= ψ. From k ∈ [j + 1, i+ 1) it follows that k− c ∈ [j′ + 1, i− c+ 1)
and hence (D̄′, τ̄ ′, v, i− c) 6|= ψ S[a,b) χ.

– ψ U[a,b) χ. This case is analogous to the previous one. ut

We prove Theorem A.1 by showing that tϕ,(Ik)k∈K
satisfies the conditions (S1) to (S3)

from Definition 3.3 if
⋃
k∈K Ik = N. (S1), i.e. R =

⋃
k∈K Rk, follows from the definition of Rk

and the assumption that
⋃
k∈K Ik = N. (S2) and (S3) follow from the Lemmas A.2 and A.4.

B Additional Details: Filtering Empty Time Points

We first introduce a filter that removes empty time points.

30 Basin et al.

r(t̄) : FF true : FT

ϕ : FF

¬ϕ : FT

ϕ : FT

¬ϕ : FF

ϕ : FT

ϕ ∨ ψ : FT

ψ : FT

ϕ ∨ ψ : FT

ϕ : FF ψ : FF

ϕ ∨ ψ : FF

ϕ : FT

∃y. ϕ : FT

ϕ : FF

∃y. ϕ : FF

r(t̄) : FE t≈ t′ : FE t≺ t′ : FE

ϕ : FE

¬ϕ : FE

ϕ : FE

∃x. ϕ : FE

ϕ : FE ψ : FE

ϕ ∨ ψ : FE

ϕ : FE ϕ : FT ψ : FE ψ : FF

ϕ SI ψ : FE

ϕ : FE ϕ : FT ψ : FE ψ : FF

ϕ UI ψ : FE

ϕ : FE ϕ : FF

�I �J ϕ : FE
0 ∈ I ∩ J

ϕ : FE ϕ : FF

�I �J ϕ : FE
0 ∈ I ∩ J

ϕ : FE ϕ : FT

�I �J ϕ : FE
0 ∈ I ∩ J

ϕ : FE ϕ : FT

�I �J ϕ : FE
0 ∈ I ∩ J

Fig. B.1: Labeling rules (empty-time-point filter).

Definition B.1 The function fϕ for the formula ϕ maps (D̄, τ̄) ∈ T andR ∈ R to a family that
contains only the temporal structure (D̄′, τ̄ ′) and a family that contains only the restriction R,
where (D̄′, τ̄ ′) is the empty-time-point-filtered slice of (D̄, τ̄).

Next, we present a fragment of formulas for which the empty-time-point-filtered slice is
sound and complete with respect to the original temporal structure. To define the fragment,
we use the sets FT, FF, and FE, defined in Definition B.2. Membership of a formula in these
sets reflects whether the formula is satisfied at an empty time point. In a nutshell, at an empty
time point, a formula in the set FF is not satisfied, a formula in the set FT is satisfied, and the
satisfaction of a formula in the set FE is not affected by adding or removing empty time points
in the temporal structure.

Definition B.2 The sets FT, FF, and FE of formulas are defined as follows.
– ϕ ∈ FT iff (D̄, τ̄ , v, i) |= ϕ, for all (D̄, τ̄) ∈ T, all valuations v, and all empty time points i of

(D̄, τ̄).
– ϕ ∈ FF iff (D̄, τ̄ , v, i) 6|= ϕ, for all (D̄, τ̄) ∈ T, all valuations v, and all empty time points i of

(D̄, τ̄).
– ϕ ∈ FE iff the equivalence

(D̄′, τ̄ ′, v, i′) |= ϕ iff (D̄, τ̄ , v, s(i′)) |= ϕ

holds, for all (D̄, τ̄), (D̄′, τ̄ ′) ∈ T, all valuations v, and all nonempty time points i′ of (D̄′, τ̄ ′),
where (D̄′, τ̄ ′) is the empty-time-point-filtered slice of (D̄, τ̄) and s is the function used in
the filtering of (D̄, τ̄).

We approximate membership in the sets FT, FF, and FE with syntactic fragments. Such an
approximation is necessary since these sets are undecidable, which follows from the undecidability
of the satisfiability problem of MFOTL. The fragments are defined in terms of a labeling
algorithm that assigns the labels FT, FF, and FE to formulas. The fragments are sound in
the sense that if a formula is assigned to a label (FT, FF, FE) then the formula is in the
corresponding set (FT, FF, FE, respectively). However, the fragments are incomplete: not
every formula in one of the sets is assigned by the algorithm to the corresponding label. The
algorithm labels the atomic subformulas of a formula and propagates the labels bottom-up
to the formula’s root. The labeling rules are shown in Figure B.1, where the expression ϕ : `
denotes that the formula ϕ is labeled with `. Note that a formula can have multiple labels. We
prove next the soundness of the labeling rules.

Theorem B.1 For all formulas ϕ, if the derivation rules shown in Figure B.1 assign the
label FT, FF, or FE to ϕ then ϕ is in the set FT, FF, or FE, respectively.

Scalable Offline Monitoring of Temporal Specifications 31

Proof We begin with the labels FT and FF. We proceed by induction on the size of the
derivation tree assigning label ` to the formula ϕ. We make a case distinction based on the
rules applied to label the formula, that is, the rule at the tree’s root. However, for clarity, we
group cases by the formula’s form. For readability, and without loss of generality, we fix the
temporal structure (D̄, τ̄), a time point i ∈ N, and a valuation v.

A formula r(t̄) is labeled FF. If i is an empty time point in (D̄, τ̄) then clearly (D̄, τ̄ , v, i) 6|=
r(t̄), for any predicate symbol r ∈ R and any terms t̄. The formula true is labeled FT. Trivially,
(D̄, τ̄ , v, i) |= true. The other rules propagate the assigned label of the subformulas through the
non-temporal connectives according to their semantics. The rules’ correctness is straightforward.

We consider next the label FE. Again, we proceed by induction on the size of the derivation
tree assigning label FE to formula ϕ. We make a case distinction based on the rules applied to
label the formula, that is, the rule at the tree’s root. However, for clarity, we again group cases
by the formula’s form.

For every valuation v and i′ ∈ N, the evaluation of the formulas r(t̄), t ≈ t′, and t ≺ t′ only
depends on the current time point and hence they are in FE. The other rules not involving
temporal operators depend only on the value of their subformulas at the current time point. If
the subformulas are labeled with FE, then by the inductive hypothesis the subformulas are in
FE, so the formula is also in FE.

For readability, and without loss of generality, we already fix the temporal structure (D̄, τ̄)
and its empty-time-point-filtered slice (D̄′, τ̄ ′). The proof is trivial for the case where s is the
identity function. In the rest of the proof, we assume that (D̄, τ̄) has infinitely many nonempty
time points and hence s is not the identity function.
– ϕ SI ψ: We show separately that, for every valuation v and i′ ∈ N, (1) (D̄′, τ̄ ′, v, i′) |= ϕ

implies (D̄, τ̄ , v, s(i′)) |= ϕ, and (2) (D̄, τ̄ , v, s(i′)) |= ϕ implies (D̄′, τ̄ ′, v, i′) |= ϕ.
(1) From (D̄′, τ̄ ′, v, i′) |= ϕ SI ψ we know that there is a j′ ≤ i′ such that τ ′

i′ − τ
′
j′ ∈ I and

(D̄′, τ̄ ′, v, j′) |= ψ and, for every k′ with j′ < k′ ≤ i′, we have that (D̄′, τ̄ ′, v, k′) |= ϕ.
Since ψ is labeled FE, it follows from the inductive hypothesis that ψ is in FE and hence
(D̄, τ̄ , v, s(j′)) |= ψ. For each k with s(j′) < k ≤ s(i′) either k is an empty or a nonempty
time point in (D̄, τ̄). If it is an empty time point then from ϕ being labeled FT and
hence in FT we know that (D̄, τ̄ , v, k) |= ϕ. If it is a nonempty time point then we know
that there is a time point k′ in (D̄′, τ̄ ′) with j′ < k′ ≤ i′ and k = s(k′). From ϕ being
labeled FE and hence in FE we know that (D̄, τ̄ , v, k) |= ϕ. In both cases (D̄, τ̄ , v, k) |= ϕ
and therefore (D̄, τ̄ , v, s(i′)) |= ϕ SI ψ.

(2) From (D̄, τ̄ , v, s(i′)) |= ϕ SI ψ it follows that there is a j ≤ s(i′) with τs(i′) − τj ∈ I and

(D̄, τ̄ , v, j) |= ψ, and that, for every k with j < k ≤ s(i′), we have that (D̄, τ̄ , v, k) |= ϕ.
Since (D̄, τ̄ , v, j) |= ψ and ψ is labeled FF, so that ψ is in FF, we know that j cannot be
an empty time point in (D̄, τ̄). Therefore, there is a j′ such that j = s(j′). We have that
j′ ≤ i′ because s is monotonically increasing. From ψ being labeled FE it follows that ψ
is in FE and hence (D̄, τ̄ , v, j) |= ψ implies (D̄′, τ̄ ′, v, j′) |= ψ.
Furthermore, for every k′ with j′ < k′ ≤ i′ there is a corresponding time point k in
(D̄, τ̄) such that k = s(k′). As s is a monotonously increasing function we have that
s(j′) < k ≤ s(i′). From (D̄, τ̄ , v, s(i′)) |= ϕ SI ψ it follows that (D̄, τ̄ , v, k) |= ϕ. From
ϕ being labeled FE it follows that ϕ is in FE and hence (D̄′, τ̄ ′, v, k′) |= ϕ. Therefore,
(D̄, τ̄ , v, s(i′)) |= ϕ SI ψ.

– ϕ UI ψ: This case is similar to ϕ SI ψ.
– �I �J ϕ and �I �J ϕ with 0 ∈ I ∩ J : These formulas can both be rewritten to (�I ϕ) ∨

(�J ϕ), which can be labeled with the rules proven above.
– �I �J ϕ and �J �I ϕ with 0 ∈ I∩J : These formulas can both be rewritten to (�J ϕ)∧(�I ϕ),

which can be labeled with the rules proven above. ut

From Theorem B.1 and the following Theorem B.2, it follows that the empty-time-point
filter is a slicer for all formulas that can be labeled with FE and FT.

Theorem B.2 The empty-time-point filter fϕ is a slicer for the formula ϕ, if the formula ϕ
is in both FE and FT.

Proof We show that fϕ satisfies the conditions (S1) to (S3) from Definition 3.3. (S1) follows
trivially because fϕ does not modify the given restriction. For showing (S2) and (S3), let (D̄′, τ̄ ′)
be the empty-time-point filtered slice of (D̄, τ̄).

For (S2), we show that for all valuations v and timestamps t ∈ N, it holds that (D̄, τ̄ , v, i) |=
ϕ, for all i ∈ N with τi = t, implies (D̄′, τ̄ ′, v, i′) |= ϕ, for all i′ ∈ N with τ ′

i′ = t using

32 Basin et al.

Algorithm C.1: TimeSlicing

method fstime
ϕ,I (D, τ , R) is

if τ ∈ I ⊕ RI(ϕ) then
return D

else
return ⊥

method frtime
ϕ,I (R) is

return {(v, t) ∈ R | t ∈ I}

Algorithm C.2: EmptyTimePointFiltering

method fsempty(D, τ , R) is

if {r ∈ R | rD 6= ∅} 6= ∅ then
return D

else
return ⊥

method frempty(R) is
return R

contraposition. Assume that (D̄′, τ̄ ′, v, i′) 6|= ϕ, for some i′ ∈ N with τ ′
i′ = t. As (D̄′, τ̄ ′) is the

empty-time-point filtered slice of (D̄, τ̄), there is some i ∈ N such that i = s(i′) and τi = τ ′
i′ = t.

From ϕ ∈ FE it follows that (D̄, τ̄ , v, i) 6|= ϕ.
For (S3), we show that for all valuations v and timestamps t ∈ N, it holds that (D̄, τ̄ , v, i) 6|=

ϕ, for some i ∈ N with τi = t, implies (D̄′, τ̄ ′, v, i′) 6|= ϕ, for some i′ ∈ N with τ ′
i′ = t. Let i ∈ N.

There is nothing to prove if i is empty in (D̄, τ̄), since ϕ is in FT and hence (D̄, τ̄ , v, i) |= ϕ.
If i is nonempty in (D̄, τ̄) then there exists a time point i′ in (D̄′, τ̄ ′) such that i = s(i′) and
τi = τ ′

i′ . Since ϕ is in FE and if (D̄, τ̄ , v, i) 6|= ϕ then it follows that (D̄′, τ̄ ′, v, i′) 6|= ϕ. ut

C Additional Details: Algorithmic Realization

We present slicing functions and restriction modifiers for time slicing (Section 3.2.2 and
Appendix A) and filtering empty time points (Section 3.2.3 and Appendix B).

Algorithm C.1 describes the pointwise slicing function fstime
ϕ,I and the restriction modifier

frtime
ϕ,I for time slicing. The body of fstime

ϕ,I first determines whether the timestamp τ is within

the time interval I ⊕RI(ϕ) = {i+ j | i ∈ I and j ∈ RI(ϕ)}, where RI(ϕ) is the relative interval
of ϕ (see Definition A.1). Note that this check corresponds to the condition on timestamps in
our definition of a T -slice, with T = I ⊕RI(ϕ) (see Definition A.2). If τ is within the computed
interval, then fstime

ϕ,I returns D unmodified and, otherwise, ⊥ to indicate that the log entry shall

be deleted. The restriction modifier frtime
ϕ,I removes all violations with timestamps outside I

from a given restriction R.
Algorithm C.2 describes the pointwise slicing function fsempty and the restriction modifier

frempty for filtering empty time points. The function fsempty returns D if there is at least one
r ∈ R for which rD is nonempty, and otherwise ⊥ to indicate that the time point shall be
deleted. The check {r ∈ R | rD 6= ∅} 6= ∅ in its body corresponds to the condition for nonempty
time points. For efficiency, one should not explicitly construct the set {r ∈ R | rD 6= ∅} when
implementing it. The restriction modifier frempty returns R without modification.

