
Technical Report No. 517

Controlling Access to Documents:
A Formal Access Control Model

Paul E. Sevinç and David Basin
Department of Computer Science

May 4, 2006

This work was partially supported by the Zurich Information Security Center.
It represents the views of the authors.

2 CONTENTS

Contents

1 Introduction 3
1.1 Contributions . 3
1.2 Organization . 4

2 Requirements 4

3 Document Content Model 5
3.1 Content Model . 5

3.1.1 Data Types and Auxiliary Functions 6
3.1.2 Containers (State) and Initialization Operations 7
3.1.3 Operations . 7

3.2 Example Refinements . 11
3.2.1 File System . 11
3.2.2 LDAP Directory . 12

4 Document Policy Model 12
4.1 Informal Description . 13

4.1.1 Policy Language . 13
4.1.2 Access-Control Architecture 14

4.2 Formal Specification . 15
4.2.1 Data Types . 15
4.2.2 Containers (State) and Initialization Operations 16
4.2.3 Operations on Nodes and Auxiliary Functions 17
4.2.4 Operations on Attributes 21
4.2.5 Policy-specific Operations 23

4.3 Policy Interpretation . 24
4.3.1 Provisions Service . 24
4.3.2 Policy Decision Point . 25
4.3.3 Policy Enforcement Point 29

4.4 Print Operation . 30

5 Related Work 33

6 Conclusion 34

7 Acknowledgments 34

A Proof of Concept: XML Documents 34
A.1 Data Types . 35
A.2 Containers (State) . 36
A.3 Discovery Operations . 36
A.4 Operations on Elements . 37
A.5 Operations on Attributes . 39
A.6 Operations on Texts . 41
A.7 Operations on Processing Instructions 43
A.8 Remark . 45

3

1 Introduction

Sensitive data is often protected by controlling access to its container. Two
examples of containers are databases and file systems. Typically, databases
are based on the relational model, whereas file systems are modeled as trees
whose inner nodes are directories and whose leaves are files. For both exam-
ples, there are access-control models and systems (e.g., [3, 6, 11, 25]) that take
the inner structure of the respective container into account and thus allow for
fine-grained access control. This means that access is not granted or denied to
a database or a file system as a whole, but rather to individual tables or rows
of the database and to individual directories or files of the file system.

A third example of a data container is a document. When documents are
protected by controlling access to the file system where they reside, users either
have full access to a document or no access at all. However, in some contexts
(cf. §2), fine-grained access control is also required for documents. There ex-
ist access-control models for a specific class of documents, namely Extensible
Markup Language (XML) [29, 12, 20] documents (cf. §5). However, most of
these models are limited to XML-encoded databases. Furthermore, the sys-
tems based on these models cannot protect data once it has been released to
users.

What has been missing until now is an access-control system that is based
on a fine-grained access-control model for documents, such as texts, spread-
sheets, and presentations, and whose mechanisms not only enforce policies on
a server but also on clients, both while data is within documents and in transit
between documents. In this technical report0, we present a formal model of
such a system.

1.1 Contributions

We have defined a fine-grained model of a system for processing documents.
As natural languages and semi-formal modeling languages like UML are not
sufficiently precise, we have used the specification language Z [17] to define
the states and operations of the system. Hence our first contribution is a formal
model of an unprotected document-processing system.

Our second contribution is a policy language that allows users to formal-
ize protection requirements that we have gathered for banking environments.
Again we have taken a formal approach here and defined the policy language’s
abstract syntax in Z and its semantics (how access requests are evaluated) in a
combination of (Object-)Z and the specification language Communicating Se-
quential Processes (CSP) [14] called CSP-OZ [8].

Our third contribution is to provide a foundation for controlling usage of
documents. Usage control [23] is a notion that subsumes both server-side and
client-side access control.1 It is important in the document context as owners
need assurance that the policies governing access to their documents are re-
spected, even when other users incorporate parts of these documents in their
own documents. To achieve this, we associate parts of each document with

0This TR is the full version of our ETRICS 2006 paper [24].
1Client-side access control is also called rights management. Note that enforcement requires

the combination of classical access-control mechanisms with hardware-based or software-based
rights-management mechanisms.

4 2 REQUIREMENTS

Document A Document BClipboard

co
nt

en
t

po
lic

y
copy

paste

Figure 1: Sticky Policies

the respective parts of its policy and maintain this association over the docu-
ment life-cycle. This amounts to a fine-grained variant of the sticky-policies
paradigm [18, 16]: when content is copied (or cut) from a document to the clip-
board and pasted into a document, then so is the respective part of the policy
(cf. Figure 1).

1.2 Organization

In Section 2, we explain the context of this work and we derive high-level re-
quirements from representative use cases. In Section 3, we introduce our doc-
ument model and we formalize document content. In Section 4, we formalize
document policies and their enforcement. In Section 5, we compare with re-
lated work, and we draw conclusions in Section 6.

2 Requirements

Documents take many forms and serve many purposes. In this technical re-
port, we will restrict our focus to a setting common in the context of compa-
nies and other organizations. Stakeholders in these companies (i.e., users) cre-
ate, exchange, read, and edit documents that contain security-sensitive data.
In general, users cannot be trusted by the company because they may not un-
derstand the company’s security requirements, they may be careless in their
use of data, they may have an untrustworthy platform (e.g., compromised by
a Trojan horse), or they may simply be untrustworthy themselves.

In what follows, we will assume that systems are trustworthy but users are
not. That is, we focus on the functional security requirements for document
processing necessary to handle careless or dishonest users. We will restrict our
attention to the following representative use cases:

Annual Report: To mitigate the risk of insider trading, public access to the
company’s annual report must not be granted until a given date.

Company Guidelines: Before employees are granted access to data, they must

5

first acknowledge the company guidelines governing the handling of that
data.

Presentation Slides: Presenters must be able to define different rules (policy)
for different parts (content) within one and the same presentation docu-
ment so that they need not create multiple differently censored versions.

From the first use case, we derive the requirement for conditional access con-
trol, i.e., for access-control decisions that depend on request parameters other
than the subject, the object, and the action. From the second use case, we derive
the requirement for provisional access control, i.e., for access-control decisions
that depend on whether provisions have been made. From the third use case,
we derive the requirement for fine-grained access control, i.e., for access-control
models and systems where the objects protected are not the data containers (in
our case documents) as a whole, but rather their constituent parts. We can de-
rive the same requirements in other document-processing contexts. Examples
include the review process of papers, the distribution of sample chapters of
books, and the acceptance (or not) of end-user license agreements.

A notion related to provisions is obligations. Roughly speaking, provisions
must hold when access is granted, while obligations must hold after access
has been granted [4, 5, 13]. For example, a subject may be obliged not to dis-
close any information learned as a result of being granted access to some data.
Since, by definition, this obligation cannot be enforced technically at the time
of access, it is mapped to a provision which can be, namely the subject must
have signed a non-disclosure agreement. Our model will not directly support
obligations, but will support both conditions and provisions.

3 Document Content Model

In our model, documents are pairs consisting of a content component and a pol-
icy component. The content is where the data is stored and the policy describes
what operations are allowed on both the content and the policy itself. Fur-
ther components—which we do not model in this technical report—are either
application-specific (e.g., a style sheet) or related to the security mechanisms
(e.g., encrypted component-decryption keys). We model the content compo-
nent in this section and the policy component in the next.

We have formalized our model in Z, which is a popular formal language
based on typed set theory and first-order logic with equality. We have cho-
sen Z as document processing is heavily data-oriented and Z is well-suited for
data modeling. In particular, Z provides constructs for structuring and com-
positionally building data-oriented specifications: schemas are used to model
the states of the system (state schemas) and operations on the state (operation
schemas), and a schema calculus is provided to compose these subspecifications.

3.1 Content Model

Many kinds of content are structured hierarchically. For example, a book con-
sists of chapters, sections, and paragraphs. To reflect this, we model content as
a rooted tree whose nodes have attributes (i.e., name-value pairs). This model

6 3 DOCUMENT CONTENT MODEL

is quite general and we can easily specialize it not only to different document
formats, like XML (cf. Appendix A), but also to directory information bases
and to file systems (cf. §3.2).

3.1.1 Data Types and Auxiliary Functions

We introduce four data types: Name and Value are basic types. Name represents
the set of attribute names and Value the set of attribute values. As we shall
see, security-sensitive data is stored as attribute values. Attributes is the set of
finite sets of name-value pairs in which a name maps to at most one value, i.e.,
members of this type are functions mapping finitely many names to values.
Finally, Tree is a recursive type where each node has attributes and a sequence
of subtrees. In Z, we express all this as follows:

[Name, Value]
Attributes == Name 7 7→ Value
Tree ::= Node〈〈Attributes× seq Tree〉〉

We have specified several auxiliary functions on these data types, which we
will use below:
Given a tree, the following function returns the set of all valid paths in the
tree.

TreeDomainF : Tree→ P seq N1

∀ a : Attributes; ts : seq Tree •
TreeDomainF(Node(a, ts)) = {〈〉} ∪ {i : N1; p : seq N1 |
i ≤ #ts ∧ p ∈ TreeDomainF(ts(i)) • 〈i〉a p}

Given a tree and a valid path, the following function returns the subtree at (the
end of) the path.

ReadNodeF : Tree× seq N1 7→ Tree
∀ t : Tree • ReadNodeF(t, 〈〉) = t
∀ p : seq1 N1; a : Attributes; ts : seq Tree |

first(p) ≤ #ts • ReadNodeF(Node(a, ts), p) = ReadNodeF(ts(first(p)), tail(p))

Given a tree and a valid path, the following function returns the attributes of
the root node of the subtree at the path.

ReadAttributesF : Tree× seq N1 7→ Attributes
∀ t : Tree; p : seq N1; a : Attributes; ts : seq Tree |

ReadNodeF(t, p) = Node(a, ts) • ReadAttributesF(t, p) = a

Given two trees and a path, the following function returns the tree that results
from adding the second tree to the first tree at the path.

3.1 Content Model 7

AddNodeF : Tree× seq1 N1 × Tree 7→ Tree

∀ p : seq1 N1; t : Tree; a : Attributes; ts : seq Tree |
front(p) ∈ TreeDomainF(Node(a, ts)) ∧ last(p) ≤ #ts + 1 •
AddNodeF(Node(a, ts), p, t) = if #p = 1 then
Node(a, (1 . . p(1)− 1) � ts a 〈t〉a (p(1) . . #ts) � ts) else
Node(a, (1 . . p(1)− 1) � ts a 〈AddNodeF(ts(first(p)), tail(p), t)〉a (p(1) . . #ts) � ts)

The following function returns the absolute value of its integer argument.

AbsValF : Z→ N
∀ z : Z | z < 0 • AbsValF(z) = −z
∀ z : Z | z ≥ 0 • AbsValF(z) = z

3.1.2 Containers (State) and Initialization Operations

The state of documents and the clipboard are represented as schemas. As men-
tioned in Section 1.1, making the clipboard and the clipboard-related opera-
tions part of the model is a prerequisite for fine-grained sticky policies. The first
schema below represents the content component of documents. The second
schema represents the content component of the clipboard. Both consist of a
single binding stating that the document content is a tree called root and the
clipboard content is a tree called cCache.

DocumentContent
root : Tree

ClipboardContent
cCache : Tree

In general, each state schema comes with an initialization schema that spec-
ifies the initial state and establishes the state invariants. In the case of docu-
ment content and clipboard content, the empty node is assigned to the root
and the cache.

InitDocumentContent
DocumentContent
root = Node({}, 〈〉)

InitClipboardContent
Clipboard

cCache = Node({}, 〈〉)
The InitDocumentContent operation is the first operation to be performed when
a new document is created. Since the policies are sticky, performing the Init-
ClipboardContent operation is only necessary to set the clipboard into a correct
state (e.g., when the document processor is started up), not for security reasons.

3.1.3 Operations

We have defined more than a dozen operations, most of which change the
state of the document, the clipboard, or both. They are reading, adding, delet-
ing, copying, cutting, and pasting a node as well as reading, adding, deleting,
changing, copying, cutting, and pasting an attribute. Reading a node is special
in that it returns the names of its attributes and the number of its children, but
not any value. There is no change-node operation. Note that our convention
is that schemas whose names end in C or P specify a content-related operation
and a policy-related operation, respectively.

8 3 DOCUMENT CONTENT MODEL

Reading a node means discovering its structure (i.e., the names of its attributes—
but not their values—and its number of children).2 The precondition is that the
path given is valid. The number of children is determined by taking the last
element of the rightmost child’s path.

ReadNodeC
ΞDocumentContent
path? : seq N1

attributesDom! : P Name
childrenNr! : N
path? ∈ TreeDomainF(root)
attributesDom! = dom ReadAttributesF(root, path?)
childrenNr! = max({0} ∪ {n : N1 | path? a 〈n〉 ∈ TreeDomainF(root)})

Adding a node means not just adding an empty node, but a subtree. The
preconditions are that the parent exists and that the new child will either be
the first child or that all children left of it exist.

AddNodeC
∆DocumentContent
path? : seq1 N1

attributes? : Attributes
treeSequence? : seq Tree

front(path?) ∈ TreeDomainF(root)
last(path?) = 1 ∨ front(path?) a 〈last(path?)− 1〉 ∈ TreeDomainF(root)
root′ = AddNodeF(root, path?, Node(attributes?, treeSequence?))

Deleting a node means deleting the subtree rooted at that node. Note that
we take advantage of the DeleteNodeC operation basically being the inverse of
the AddNodeC operation. Nevertheless, we must explicitly specify the precon-
dition, namely that the path given is valid.

DeleteNodeC
∆DocumentContent
path? : seq1 N1

path? ∈ TreeDomainF(root)
∃ attributes? : Attributes; treeSequence? : seq Tree •

AddNodeC[root′, root/root, root′]

Copying a node results in the subtree rooted at that node being cached in
the clipboard. The precondition is that the path given is valid. The copy se-
mantics is by value (i.e., not by reference).

2Unlike Stoica and Farkas [26] and Gabillon [9], we shall not support hiding the existence of
attributes or children of nodes a subject is authorized to read.

3.1 Content Model 9

CopyNodeC
ΞDocumentContent
∆ClipboardContent
path? : seq N1

path? ∈ TreeDomainF(root)
cCache′ = ReadNodeF(root, path?)

Cutting a node means copying the node followed by deleting it. Note that
because of DeleteNodeC’s precondition, the sequence path? must not be empty.

CutNodeC =̂ CopyNodeC o
9 DeleteNodeC

Pasting a node means adding the tree cached in the clipboard. The precon-
ditions are implicit in the first conjunct and in the AddNodeC operation.

PasteNodeC
∆DocumentContent
ΞClipboardContent
path? : seq1 N1

∃ a : Attributes; ts : seq Tree • cCache = Node(a, ts) ∧
AddNodeC[a/attributes?, ts/treeSequence?]

Reading an attribute means reading its value. The preconditions are that
the path given is valid and that the name is in the domain of the respective
node’s attributes.

ReadAttributeC
ΞDocumentContent
path? : seq N1

name? : Name
value! : Value
path? ∈ TreeDomainF(root)
name? ∈ dom ReadAttributesF(root, path?)
∃ a : Attributes; ts : seq Tree |

ReadNodeF(root, path?) = Node(a, ts) • (name?, value!) ∈ a

Adding an attribute means adding a value under a new name. The pre-
conditions are that the path given is valid and that the name is not already in
the domain of the respective node’s attributes. Note that the operation neither
changes the tree structure nor the attributes of the other nodes.

10 3 DOCUMENT CONTENT MODEL

AddAttributeC
∆DocumentContent
path? : seq N1

name? : Name
value? : Value
path? ∈ TreeDomainF(root)
name? /∈ dom ReadAttributesF(root, path?)
TreeDomainF(root′) = TreeDomainF(root)
∀ p : seq N1 | p ∈ TreeDomainF(root) ∧ p 6= path? •

ReadAttributesF(root′, p) = ReadAtrributesF(root, p)
ReadAttributesF(root′, path?) = ReadAttributesF(root, path?) ∪ (name? 7→ value?)

Deleting an attribute means deleting the name-value pair. Note that we
take advantage of the DeleteAttributeC operation basically being the inverse
of the AddAttributeC operation. Note further that one of AddAttributeC’s pre-
conditions (name? /∈ dom ReadAttributesF(root, path?)) becomes one of DeleteAt-
tributeC’s postconditions (name? /∈ dom ReadAttributesF(root′, path?)) and one of
AddAttributeC’s postconditions (ReadAttributesF(root′, path?) = ReadAttributesF(root, path?)∪
(name? 7→ value?)) becomes one of DeleteAttributeC’s preconditions (ReadAttributesF(root, path?) =
ReadAttributesF(root′, path?) ∪ (name? 7→ value?)).

DeleteAttributeC
∆DocumentContent
path? : seq N1

name? : Name

∃ value? : Value • AddAttributeC[root′, root/root, root′]

Changing an attribute means deleting the attribute followed by adding an
attribute with the name of the deleted attribute.

ChangeAttributeC =̂ DeleteAttributeC o
9 AddAttributeC

Copying an attribute results in the attribute value being cached in the clip-
board under its current name, the latter being irrelevant though (cf. PasteAt-
tributeC).

CopyAttributeC
ΞDocumentContent
∆ClipboardContent
path? : seq N1

name? : Name

∃ value! : Value • ReadAttributeC ∧ cCache′ = Node({name? 7→ value!}, 〈〉)

Cutting an attribute means copying the attribute followed by deleting it.

CutAttributeC =̂ CopyAttributeC o
9 DeleteAttributeC

Pasting an attribute means adding the attribute value cached in the clip-

3.2 Example Refinements 11

board under a new name. The preconditions are implicit in the first conjunct
(exactly one attribute is cached in the clipboard) and in the AddAttributeC op-
eration.

PasteAttributeC
∆DocumentContent
ΞClipboardContent
path? : seq N1

name? : Name
∃n : Name; v : Value • cCache = Node({n 7→ v}, 〈〉) ∧

AddAttributeC[v/value?]

3.2 Example Refinements

In Section 1.1, we claimed that our content model encompasses containers
other than documents. In this subsection, we support this claim by refining the
above-defined data types and state schemas to a generic file system on the one
hand and to a Lightweight Directory Access Protocol (LDAP)-compliant direc-
tory information base on the other hand. Unlike the proof-of-concept refine-
ment to XML documents (cf. Appendix A), we provide these two refinements
for illustrative purposes only and therefore refrain from refining the operations
as well.

3.2.1 File System

Two kinds of attributes found in file systems are name attributes (whose value
is the name of the directory or file) and value attributes (whose value is the
content of the file).

nameName, valueName : Name
nameName 6= valueName

Directories have a name, no value, further attributes (e.g., the time of cre-
ation), and children. Files have a name, a value, further attributes (e.g., the
MIME type), and no children.

Directory == {t : Tree | (∃ a : Attributes; ts : seq Tree |
nameName ∈ dom a ∧ valueName /∈ dom a • t = Node(a, ts))}

File == {t : Tree | (∃ a : Attributes |
nameName ∈ dom a ∧ valueName ∈ dom a • t = Node(a, 〈〉))}

The above definition of directories still allows for them to have children
other than directories or files. In a file system, however, we only find directo-
ries or files.

12 4 DOCUMENT POLICY MODEL

FileSystem
DocumentContent
root ∈ Directory
∀ p : TreeDomainF(root) | p 6= 〈〉 •

ReadNodeF(root, p) ∈ Directory ∨ ReadNodeF(root, p) ∈ File

Of the operations we defined for documents, even copy, cut, and paste
make sense for file systems, either to duplicate a directory or file within the
same file system or to check it out into another. For obvious reasons, the doc-
ument model lacks an execute operation; however, if the file system represents
a revision control system such as Subversion3 or CVS4, none is needed.

3.2.2 LDAP Directory

One kind of attributes found in directory services are name attributes (whose
value is the name of the entry).

RDN : Name

Entries have a relative distinguished name (RDN), further attributes with
one or more values, and children.

[SValue]
Value == P1 SValue
Entry == {t : Tree | (∃ a : Attributes; ts : seq Tree |

RDN ∈ dom a • t = Node(a, ts))}

The above definition of entries still allows for them to have children other
than entries. In a directory information base, however, we only find entries.

DirectoryInformationBase
DocumentContent
∀ p : TreeDomainF(root) • ReadNodeF(root, p) ∈ Entry

4 Document Policy Model

In this section we present our policy language and access-control architecture.
We have designed the language to meet our domain-specific requirements for
controlling access to document content (as just modeled). Our architecture is
an adaptation of the XACML data-flow model [22]. We first present these ideas
informally and afterwards present the formal specification.

3http://subversion.tigris.org/
4http://www.nongnu.org/cvs/

4.1 Informal Description 13

4.1 Informal Description

4.1.1 Policy Language

Our access-control model is role-based, where policies express relations be-
tween roles and permissions and where subjects are users acting in a role. Ad-
ditionally, policies incorporate a concept of ownership adapted from discre-
tionary access control (DAC), where every object has an owner, namely the
user that created it. Users are allowed all forms of access to objects they own
and can arbitrarily add and delete role-permission assignments for these ob-
jects as well. However, unlike DAC models, our model does not leave to a
subject’s discretion any data the subject has (read) access to.

Permissions relate objects with actions (not to be confused with operations)
that are further constrained by conditions and provisions. That is, permissions
only apply when the condition evaluates to true in the current environment. As
their name implies, permissions always grant access. Nevertheless, grants are
tentative until the provisions have been made. By design, conflicts (i.e., differ-
ent sets of provisions) cannot arise from more than one permission applying
to a request and as a result there is no need for conflict-resolution strategies.
Subjects can be permitted to delegate their reading and editing permissions to
other subjects.

We limit ourselves to a single editing action, which we call change. This is in
contrast to other models (cf. §5), which typically have the actions add, delete,
and update (when integrity is a concern). In our model, to add or delete a child
node or an attribute, a subject must be allowed to change the parent.

Table 1: Operations permitted by Actions
Object

Action attribute node

change not applicable add attribute to node
add child node to node
delete an attribute from node
delete subtree rooted at a child node
change an attribute’s value

add not applicable add attribute to node
add child node to node

delete delete attribute delete subtree rooted at node
update change attribute value not applicable

Let us discuss the change action in more detail. Table 1 lists the operations
permitted by our change action and by the usual add, delete, and update ac-
tions. We claim that giving add, delete, and update permissions individually is
unsatisfactory, in particular in the context of document editing which requires
the ability to undo operations. Suppose, for example, that a subject has the
permission to add an object to a node. Undoing adding an attribute or a node
could be supported by giving the subject the permission to delete the attribute
or the node. However, the permissions required to undo pasting an attribute
or a node (i.e., a subtree) are less clear. Similarly, does deleting a node require
the permission to delete all descendants of the node? And does deleting an

14 4 DOCUMENT POLICY MODEL

Authentication Service

PDP

PDP = Policy Decision Point
PEP = Policy Enforcement Point
UI = User Interface

APIs

Policy

evaluate request→←
m

ak
e

p.
!

←made p
.?

Provisions Service

request access→User
human

UI

Subject

lo
g

in
→

create→

Content

read→

PEP read / write→
read / write→

Figure 2: Access-Control Actors

object require the permission to read the object? Now suppose that a subject
has the permission to delete an object but not the permission to add an object
to the object’s parent node. Can deleting the object be undone without giving
the subject “new” (add) permissions on “old” nodes? We avoid these ques-
tions with our approach and instead provide users with a simple semantics of
an editing action whose consequences are easy to understand: a subtree can
either be changed in arbitrary ways or not at all. Note that this simplification
has no negative effects when confidentiality is the main security goal, as it is in
the use cases in Section 2.

4.1.2 Access-Control Architecture

The architecture of our system is an adaptation of the XACML data-flow model [22]
and is shown in Figure 2. The system runs on a User’s client. Content and
Policy are components of a document that the user has opened with the sys-
tem. When several documents are open, only one is currently active. After
successful login, the user is represented by a Subject and accesses documents
through the user interface (UI). If security were not a concern, there would be
no policy and the UI would directly access the document application program-
ming interfaces (APIs)5 when reading and writing content. However, since
security is indeed a concern, the UI accesses the document APIs via the policy
enforcement point (PEP). The PEP grants or denies access (i.e., blocks opera-
tions) based on access decisions made by the Policy Decision Point (PDP) and
based on whether certain provisions have been made, for which the PEP con-
sults the Provisions Service. That is, the PEP mediates access while the PDP
makes (tentative) access decisions.

5In the context of XML documents, the Document Object Model (DOM) [28] is a well-known
example for such an API.

4.2 Formal Specification 15

4.2 Formal Specification

4.2.1 Data Types

The most elementary concepts of any access-control model are subjects, objects,
and actions. In our model, subjects are pairs consisting of a role ID and a user
ID. The set of all role IDs and the set of all user IDs are basic types of the spec-
ification. Objects are nodes or attributes at a given path. The ability to speak
about nodes and attributes at arbitrary positions in the document content is
straightforward, given our content model, and allows for fine-grained access
control. We have defined four actions: read, change, print, and delegate.

[RoleID, UserID]
Subject == RoleID×UserID
Object ::= Node〈〈seq N1〉〉 | Attribute〈〈seq N1 ×Name〉〉
Action ::= read | change | print | delegate

Permissions with read actions grant read operations. Permissions with print
actions grant the print operation (cf. §4.4). Permissions with delegate actions
grant subjects the operation which delegates their read- and change-based per-
missions to other subjects (i.e., the permission to print or delegate cannot be
delegated). The permissions with change actions grant add and delete (and
thus change, cut, and paste) operations. The prerequisite for granting any op-
eration is that a read operation would be granted, too.

The applicability of permissions can be limited by conditions on the envi-
ronment and user. For now, time is the only environmental property modeled.
To satisfy a condition, the request environment must be in the condition’s set of
environments and the requesting user must be in the condition’s set of users.
Time-dependent permissions are motivated by the use cases given in Section 2.
User-dependent permissions are necessary for delegation. For example, if a
manager wants to delegate some of her permissions to her secretary (but not to
all employees whose role is secretary) she can make the delegated permissions
depend on the secretary’s user ID.

Environment ::= Timestamp〈〈Z〉〉
Condition == P Environment× P UserID
AnyTime == {t : Z • Timestamp(t)}
AnyUser == UserID

We support two kinds of provisions: log and sign.6 When a permission
depends on a log provision, the system providing access must log the mes-
sage specified in the provision before access can be granted. When a permis-
sion depends on a sign provision, the user requesting access must have signed
the agreement specified in the provision before access can be granted. Exam-
ples for agreements are end-user license agreements and non-disclosure agree-
ments as well as company guidelines. The set of all messages and the set of all
agreement IDs are basic types of the specification.

6These two provisions are essential given our requirements, but others could be added simply
by extending the Provision data type.

16 4 DOCUMENT POLICY MODEL

[Message, AgreementID]
Provision ::= Log〈〈Message〉〉 | Sign〈〈AgreementID〉〉

Now we have specified all components of permission tuples. Given the
request parameters, the PDP checks whether a permission matches the request.
If so, the PDP responds with Grant and the permission’s set of provisions and
if not, the PDP responds with Deny.

Permission == Object× Action× Condition× P Provision
Request == Subject×Object× Action× Environment
Response ::= Grant〈〈P Provision〉〉 | Deny

Figure 3 depicts the relations between some of the types just specified.

UserID

RoleID

Environment

Permission

RolePermission

Policy

* *

Object Action Condition Provision
*

**

ObjectOwner

*

Figure 3: Policy Meta-Model

4.2.2 Containers (State) and Initialization Operations

The first schema shown below specifies what constitutes the policy compo-
nent for documents. Its predicate states that permissions with the action change
must have a node as object and that at most one permission can match a given
request. The second schema specifies what constitutes the policy component
for the clipboard. Both schemas declare variables of the same type: a partial, fi-
nite function that maps objects to their owner and the role-permission relation
for role-based access control.

DocumentPolicy
ObjectOwner : Object 7 7→UserID
RolePermission : RoleID↔ Permission
∀ r : RoleID; p : Permission | r 7→ p ∈ RolePermission •

p.2 6= change ∨ (∃ path : seq N1 • p.1 = Node(path))
∀ r1, r2 : RoleID; p1, p2 : Permission | r1 7→ p1 ∈ RolePermission ∧

r2 7→ p2 ∈ RolePermission • r1 6= r2 ∨ p1 = p2 ∨
p1.1 6= p2.1 ∨ p1.2 6= p2.2 ∨
first(p1.3) ∩ first(p2.3) = ∅ ∨ second(p1.3) ∩ second(p2.3) = ∅

4.2 Formal Specification 17

ClipboardPolicy
ooCache : Object 7 7→UserID
rpCache : RoleID↔ Permission

Using Z’s schema calculus, here schema conjunction, we can now formally
express that both documents and the clipboard are pairs consisting of a content
component and a policy component (cf. the pairs depicted in Figure 1).

Document =̂ DocumentContent ∧ DocumentPolicy
Clipboard =̂ ClipboardContent ∧ ClipboardPolicy

The InitDocumentPolicy is the first operation to be performed when a new
document is created. Since the policies are sticky, performing the InitClipboard-
Policy operation is only necessary to bring the clipboard into a correct state
(e.g., when the document processor is started up), not for security reasons.

InitDocumentPolicy
DocumentPolicy
subject? : Subject

ObjectOwner = {Node(〈〉) 7→ second(subject?)}
RolePermission = {}

InitClipboardPolicy
ClipboardPolicy

ooCache = {}
rpCache = {}

Initializing a document and the clipboard are transactions operating simul-
taneously on both the content and policy components.

InitDocument =̂ InitDocumentContent ∧ InitDocumentPolicy
InitClipboard =̂ InitClipboardContent ∧ InitClipboardPolicy

4.2.3 Operations on Nodes and Auxiliary Functions

Reading a node has no effect on the document’s policy.

ReadNodeP
ΞDocumentPolicy

Adding a node results in the user adding the node becoming the owner of
the node as well as of all its descendants and in potentially shifting existing
object addresses. To reduce the complexity of the AddNodeP schema, we have
specified three auxiliary functions:
Given a tree and a valid path within that tree, the following function returns
the children of the root node of the subtree at that path.

18 4 DOCUMENT POLICY MODEL

ReadChildrenF : Tree× seq N1 7→ seq Tree
∀ t : Tree; p : seq N1; a : Attributes; ts : seq Tree |

ReadNodeF(t, p) = Node(a, ts) • ReadChildrenF(t, p) = ts

Given the ID of the user who adds the node, the address of where the node
is being added, the node’s attributes, and the node’s children, the following
function returns ownership information to be added to the policy. That is, the
set of all pairs whose first element refers to the node or one of its descendants
and whose second element is the user ID is returned.

MakeOOsF : UserID× seq1 N1 × Attributes× seq Tree→ P(Object×UserID)

∀u : UserID; p1 : seq1 N1; a : Attributes; ts : seq Tree •
MakeOOsF(u, p1, a, ts) = {Node(p1) 7→ u} ∪ {n : dom a •
Attribute(p1, n) 7→ u} ∪ (

⋃
{i : N1 | i ≤ #ts • MakeOOsF(u, p1

a 〈i〉,
ReadAttributesF(ts(i), 〈〉), ReadChildrenF(ts(i), 〈〉))})

Given an object (i.e., a reference in the policy to a node or an attribute in the
content) and the address of where the node is being added, the following func-
tion returns the object that references the same node or attribute in the tree with
the added node.

ShiftAddObjectF : Object× seq1 N1 →Object

∀ p : seq N1; p1 : seq1 N1 • ShiftAddObjectF(Node(p), p1) =
if front(p1) prefix p ∧ #p1 ≤ #p ∧ last(p1) ≤ p(#p1) then
Node(front(p1) a 〈p(#p1) + 1〉a (#p1 + 1 . . #p) � p) else
Node(p)

∀ p : seq N1; n : Name; p1 : seq1 N1 • ShiftAddObjectF(Attribute(p, n), p1) =
if front(p1) prefix p ∧ #p1 ≤ #p ∧ last(p1) ≤ p(#p1) then
Attribute(front(p1) a 〈p(#p1) + 1〉a (#p1 + 1 . . #p) � p, n) else
Attribute(p, n)

AddNodeP
∆DocumentPolicy
subject? : Subject
path? : seq1 N1

attributes? : Attributes
treeSequence? : seq Tree

ObjectOwner′ = {o : Object; u : UserID | o 7→ u ∈ ObjectOwner •
ShiftAddObjectF(o, path?) 7→ u} ∪MakeOOsF(second(subject?), path?,
attributes?, treeSequence?)

RolePermission′ = {r : RoleID; o : Object; a : Action; c : Condition;
ps : P Provision | r 7→ (o, a, c, ps) ∈ RolePermission •
r 7→ (ShiftAddObjectF(o, path?), a, c, ps)}

Deleting a node results in all ownership information and all permissions
related to the node as well as to all its descendants being removed and in exist-
ing object addresses potentially being shifted. To reduce the complexity of the

4.2 Formal Specification 19

DeleteNodeP schema, we have specified one auxiliary function:

Given an object (i.e., a reference in the policy to a node or an attribute in the
content) and the address of where the node is being deleted from, the following
function returns the object that references the same node or attribute in the tree
with the deleted node.

ShiftDeleteObjectF : Object× seq1 N1 →Object

∀ p : seq N1; p1 : seq1 N1 • ShiftDeleteObjectF(Node(p), p1) =
if front(p1) prefix p ∧ #p1 ≤ #p ∧ last(p1) ≤ p(#p1) then
Node(front(p1) a 〈p(#p1)− 1〉a (#p1 + 1 . . #p) � p) else
Node(p)

∀ p : seq N1; n : Name; p1 : seq1 N1 • ShiftDeleteObjectF(Attribute(p, n), p1) =
if front(p1) prefix p ∧ #p1 ≤ #p ∧ last(p1) ≤ p(#p1) then
Attribute(front(p1) a 〈p(#p1)− 1〉a (#p1 + 1 . . #p) � p, n) else
Attribute(p, n)

DeleteNodeP
∆DocumentPolicy
path? : seq1 N1

ObjectOwner′ = {p : seq N1; u : UserID |
Node(p) 7→ u ∈ ObjectOwner ∧ ¬ (path? prefix p) •
ShiftDeleteObjectF(Node(p), path?) 7→ u} ∪ {p : seq N1; n : Name;
u : UserID | Attribute(p, n) 7→ u ∈ ObjectOwner ∧ ¬ (path? prefix p) •
ShiftDeleteObjectF(Attribute(p, n), path?) 7→ u}

RolePermission′ = {r : RoleID; p : seq N1; a : Action; c : Condition;
ps : P Provision | r 7→ (Node(p), a, c, ps) ∈ RolePermission ∧
¬ (path? prefix p) • r 7→ (ShiftDeleteObjectF(Node(p), path?), a, c, ps)}∪
{r : RoleID; p : seq N1; n : Name; a : Action; c : Condition; ps : P Provision |
r 7→ (Attribute(p, n), a, c, ps) ∈ RolePermission ∧ ¬ (path? prefix p) •
r 7→ (ShiftDeleteObjectF(Attribute(p, n), path?), a, c, ps)}

Copying a node changes the clipboard policy but not the document policy.
As specified in CopyNodeC on page 8, the subtree being copied becomes the
tree in the clipboard content. Therefore, the common path prefix (path?) is re-
moved in the course of copying those parts of the document policy related to
the subtree being copied.

20 4 DOCUMENT POLICY MODEL

CopyNodeP
ΞDocumentPolicy
∆ClipboardPolicy
path? : seq N1

ooCache′ = {p : seq N1; u : UserID |
path? prefix p ∧ Node(p) 7→ u ∈ ObjectOwner •
Node((#path? + 1 . . #p) � p) 7→ u} ∪ {p : seq N1; n : Name; u : UserID |
path? prefix p ∧ Attribute(p, n) 7→ u ∈ ObjectOwner •
Attribute((#path? + 1 . . #p) � p, n) 7→ u}

rpCache′ = {r : RoleID; p : seq N1; a : Action; c : Condition; ps : P Provision |
path? prefix p ∧ r 7→ (Node(p), a, c, ps) ∈ RolePermission •
r 7→ (Node((#path? + 1 . . #p) � p), a, c, ps)}∪
{r : RoleID; p : seq N1; n : Name; a : Action; c : Condition; ps : P Provision |
path? prefix p ∧ r 7→ (Attribute(p, n), a, c, ps) ∈ RolePermission •
r 7→ (Attribute((#path? + 1 . . #p) � p, n), a, c, ps)}

Cutting a node means copying the node followed by deleting it, both when
the content-related operation is considered (cf. CutNodeC in §3.1.3) and the
policy-related one.

CutNodeP =̂ CopyNodeP o
9 DeleteNodeP

With respect to the content, pasting a node basically means adding the node
cached in the clipboard (via the AddNodeC operation). With respect to the pol-
icy, it is not; ownership information and permissions are not generated but
pasted as well. To reduce the complexity of the PasteNodeP schema, we have
specified two auxiliary functions:

Given an object to user mapping and the address of where the node is to be
added, the following function returns the object to user mapping that provides
the same ownership information in the tree with the added node.

ShiftAddOOsF : P(Object×UserID)× seq1 N1 → P(Object×UserID)

∀ oo : P(Object×UserID); p1 : seq1 N1 •
ShiftAddOOsF(oo, p1) = {p : seq N1; u : UserID |
Node(p) 7→ u ∈ oo ∧ ¬ (p1 prefix p) •
ShiftAddObjectF(Node(p), p1) 7→ u} ∪ {p : seq N1; n : Name; u : UserID |
Attribute(p, n) 7→ u ∈ oo ∧ ¬ (p1 prefix p) •
ShiftAddObjectF(Attribute(p, n), p1) 7→ u}

Given a role-permission relation and the address of where the node is to be
added, the following function returns the role-permission relation in the tree
with the added node.

4.2 Formal Specification 21

ShiftAddRPsF : P(RoleID× Permission)× seq1 N1 → P(RoleID× Permission)

∀ rp : P(RoleID× Permission); p1 : seq1 N1 •
ShiftAddRPsF(rp, p1) = {r : RoleID; p : seq N1; a : Action;
c : Condition; ps : P Provision |
r 7→ (Node(p), a, c, ps) ∈ rp ∧ ¬ (p1 prefix p) •
r 7→ (ShiftAddObjectF(Node(p), p1), a, c, ps)} ∪ {r : RoleID; p : seq N1;
n : Name; a : Action; c : Condition; ps : P Provision |
r 7→ (Attribute(p, n), a, c, ps) ∈ rp ∧ ¬ (p1 prefix p) •
r 7→ (ShiftAddObjectF(Attribute(p, n), p1), a, c, ps)}

PasteNodeP
∆DocumentPolicy
ΞClipboardPolicy
path? : seq N1

ObjectOwner′ = ShiftAddOOsF(ObjectOwner, path?)∪
{p : seq N1; u : UserID | Node(p) 7→ u ∈ ooCache •
Node(path? a p) 7→ u} ∪ {p : seq N1; n : Name; u : UserID |
Attribute(p, n) 7→ u ∈ ooCache • Attribute(path? a p, n) 7→ u}

RolePermission′ = ShiftAddRPsF(RolePermission, path?)∪
{r : RoleID; p : seq N1; a : Action; c : Condition; ps : P Provision |
r 7→ (Node(p), a, c, ps) ∈ rpCache • r 7→ (Node(path? a p), a, c, ps)}∪
{r : RoleID; p : seq N1; n : Name; a : Action; c : Condition; ps : P Provision |
r 7→ (Attribute(p, n), a, c, ps) ∈ rpCache •
r 7→ (Attribute(path? a p, n), a, c, ps)}

Now we can formally express that reading, adding, deleting, copying, cut-
ting, and pasting a node are transactions operating simultaneously on both the
content and policy components.

ReadNode =̂ ReadNodeC ∧ ReadNodeP
AddNode =̂ AddNodeC ∧ AddNodeP
DeleteNode =̂ DeleteNodeC ∧ DeleteNodeP
CopyNode =̂ CopyNodeC ∧ CopyNodeP
CutNode =̂ CutNodeC ∧ CutNodeP
PasteNode =̂ PasteNodeC ∧ PasteNodeP

4.2.4 Operations on Attributes

Reading an attribute has no effect on the document’s policy.

ReadAttributeP
ΞDocumentPolicy

Adding an attribute results in the user adding the attribute becoming the
owner of the attribute.

22 4 DOCUMENT POLICY MODEL

AddAttributeP
∆DocumentPolicy
subject? : Subject
path? : seq N1

name? : Name

ObjectOwner′ = ObjectOwner ∪ {Attribute(path?, name?) 7→ second(subject?)}
RolePermission′ = RolePermission

Deleting an attribute removes all ownership information and all permis-
sions related to the attribute.

DeleteAttributeP
∆DocumentPolicy
path? : seq N1

name? : Name

ObjectOwner′ = ObjectOwner \ {u : UserID • Attribute(path?, name?) 7→ u}
RolePermission′ = RolePermission \ {rp : RolePermission |

(∃ r : RoleID; a : Action; c : Condition; ps : P Provision •
rp = r 7→ (Attribute(path?, name?), a, c, ps))}

Changing an attribute (i.e., its value) has no effect on the document’s policy.
The owner is still the user who added the attribute, and the user who made the
change does not gain any additional permissions.

ChangeAttributeP
ΞDocumentPolicy

Note that ChangeAttributeP cannot be defined analogously to ChangeAttributeC
(i.e., not as DeleteAttributeP o

9 AddAttributeP).
Copying an attribute changes the clipboard policy but not the document

policy. As specified in CopyAttributeC on page 10, the attribute being copied
becomes the only attribute in the clipboard content’s root node. Therefore, the
path (path?) is removed in the course of copying those parts of the document
policy related to the attribute being copied.

CopyAttributeP
ΞDocumentPolicy
∆ClipboardPolicy
path? : seq N1

name? : Name

ooCache′ = {Attribute(〈〉, name?) 7→ ObjectOwner(Attribute(path?, name?))}
rpCache′ = {r : RoleID; a : Action; c : Condition; ps : P Provision |

r 7→ (Attribute(path?, name?), a, c, ps) ∈ RolePermission •
r 7→ (Attribute(〈〉, name?), a, c, ps)}

Cutting an attribute means copying the attribute followed by deleting it,
whether the content-related operation is considered (cf. CutAttributeC in §3.1.3)

4.2 Formal Specification 23

or the policy-related one.

CutAttributeP =̂ CopyAttributeP o
9 DeleteAttributeP

With respect to the content, pasting an attribute basically means adding
the attribute cached in the clipboard (via the AddAttributeC operation). With
respect to the policy, it is not; ownership information and permissions are not
generated but pasted as well.

PasteAttributeP
∆DocumentPolicy
ΞClipboardPolicy
path? : seq N1

name? : Name

ObjectOwner′ = ObjectOwner∪
{Attribute(path?, name?) 7→ ooCache(Attribute(〈〉, name?))}

RolePermission′ = RolePermission∪
{r : RoleID; a : Action; c : Condition; ps : P Provision |
r 7→ (Attribute(〈〉, name?), a, c, ps) ∈ rpCache •
r 7→ (Attribute(path?, name?), a, c, ps)}

Now we can formally express that reading, adding, deleting, changing,
copying, cutting, and pasting an attribute are transactions operating simulta-
neously on both the content and policy components.

ReadAttribute =̂ ReadAttributeC ∧ ReadAttributeP
AddAttribute =̂ AddAttributeC ∧ AddAttributeP
DeleteAttribute =̂ DeleteAttributeC ∧ DeleteAttributeP
ChangeAttribute =̂ ChangAttributeC ∧ ChangeAttributeP
CopyAttribute =̂ CopyAttributeC ∧ CopyAttributeP
CutAttribute =̂ CutAttributeC ∧ CutAttributeP
PasteAttribute =̂ PasteAttributeC ∧ PasteAttributeP

4.2.5 Policy-specific Operations

So far, the policy-related operations specify side effects that operations primar-
ily related to the content have on the policy. When users perform these oper-
ations, they do so with the content in mind. In contrast, the next three opera-
tions are policy-specific and have no effect on the content whatsoever. They are
adding a role-permission mapping, deleting a role-permission mapping, and
delegating a read- or change-based permission.

Adding a role-permission mapping does not change any ownership infor-
mation or existing role-permission mappings. The preconditions are that the
policy invariants will be maintained (cf. DocumentPolicy on page 16).

24 4 DOCUMENT POLICY MODEL

AddRolePermission
∆DocumentPolicy
role? : RoleID
permission? : Permission

permission?.2 6= change ∨ (∃ path : seq N1 • permission?.1 = Node(path))
∀ r : RoleID; p : Permission | r 7→ p ∈ RolePermission • r 6= role? ∨

p.1 6= permission?.1 ∨ p.2 6= permission?.2 ∨
first(p.3) ∩ first(permission?.3) = ∅ ∨
second(p.3) ∩ second(permission?.3) = ∅

ObjectOwner′ = ObjectOwner
RolePermission′ = RolePermission ∪ {role? 7→ permission?}

Deleting a role-permission mapping does not change any ownership infor-
mation either. The precondition is simply that the role-permission mapping to
be deleted exists in the first place.

DeleteRolePermission
∆DocumentPolicy
role? : RoleID
permission? : Permission
role? 7→ permission? ∈ RolePermission
ObjectOwner′ = ObjectOwner
RolePermission′ = RolePermission \ {role? 7→ permission?}

As far as updating the policy goes, delegating a permission to a role is
equivalent to adding a new role-permission mapping. As we shall see below,
these two operations differ in when they are granted.

DelegateEditPermission =̂ AddRolePermission

4.3 Policy Interpretation

In classical access-control architectures, the PDP interprets the policy to decide
whether access is granted and the PEP enforces this decision. As explained in
Section 4.1.2, in architectures with support for provisions, the control flow is
more complex and additionally involves interaction with a provisions service.
We have specified the PDP and provisions service in Z: the PDP takes a request
and a policy and responds with grant or deny, and the provisions service takes
a set of provisions and responds with an empty set (denoting that all provisions
have been satisfied) or with the set of provisions not yet satisfied.

4.3.1 Provisions Service

The provision service’s state consists of a relation that states which user has
signed which agreement (and which agreement has been signed by which user)
and a sequence of log entries that states which user’s access has caused which
message to be logged.

4.3 Policy Interpretation 25

ProvisionsService
UserAgreement : UserID↔ AgreementID
Logs : seq(UserID×Message)

Checking which provisions have already been made results in log provi-
sions being made at the time of check. To reduce the complexity of the Made-
Provisions schema, we have specified the following auxiliary function that
turns sets into sequences with the same elements:

[X]
set2seq : P X → seq X

set2seq({}) = 〈〉
∀ x : X; xs : P X • set2seq({x} ∪ xs) = 〈x〉a set2seq(xs)

MadeProvisions
∆ProvisionsService
user? : UserID
ps? : P Provision
ps! : P Provision

ps! = {a : AgreementID | Sign(a) ∈ ps? ∧ user? 7→ a /∈ UserAgreement •
Sign(a)}

Logs′ = Logs a set2seq({m : Message | Log(m) ∈ ps? • (user?, Log(m))})

4.3.2 Policy Decision Point

The following characteristic set defines the predicate that expresses whether a
given policy permits a given request:

permits : (RoleID↔ Permission)↔ Request

∀ rps : RoleID↔ Permission; req : Request •
rps permits req ⇔ (∃1 p : Permission • first(req.1) 7→ p ∈ rps ∧
req.2 = p.1 ∧ req.3 = p.2 ∧ req.4 ∈ first(p.3) ∧
second(req.1) ∈ second(p.3))

That is, a policy permits a request if and only if the role of the request sub-
ject maps to exactly one permission in the policy such that the request object
and the permission object are equal, that the request action and the permission
action are equal, that the request environment is in the set of permission envi-
ronments, and that the request user is in the set of permission users. Note that
to support hierarchical role-based access control, we not only have to change
this predicate, but also the AddRolePermission schema and DocumentPolicy’s in-
variant as well as the auxiliary function GetProvisionSet below.

Given a request and a policy, GetProvisionSet returns the set of provisions
that must have been made for the request to be granted. The specification of
GetProvisionSet relies on an auxiliary function, arb, that given a set with exactly
one element returns that element:

26 4 DOCUMENT POLICY MODEL

[X]
arb : P1 X 7→ X

∀ x : X • arb({x}) = x

GetProvisionSet : Request× (RoleID↔ Permission) 7→ P Provision

∀ req : Request; rps : RoleID↔ Permission • GetProvisionSet(req, rps) =
arb({p : Permission | first(req.1) 7→ p ∈ rps ∧ req.2 = p.1 ∧
req.3 = p.2 ∧ req.4 ∈ first(p.3) ∧ second(req.1) ∈ second(p.3) • p.4})

The PDP evaluates requests while ignoring the hierarchical nature of the
content. It is up to the PEP whether access to a node depends on access to all its
ancestors or not. Except for the ChangeNodeRequest operation, which is internal
to the PDP, the following request operations define the interface between PEP
and PDP.

A read node request is (tentatively) granted if the subject requesting read
access is the owner of the node or if the policy permits read access to the node.

ReadNodeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

environment? : Environment
response! : Response

response! = if ObjectOwner(Node(path?)) = second(subject?) then
Grant({}) else if RolePermission permits (subject?, Node(path?), read,
environment?) then Grant(GetProvisionSet((subject?, Node(path?), read,
environment?), RolePermission)) else Deny

A change node request is (tentatively) granted if the subject requesting
change access is the owner of the node or if the policy permits both read and
change access to the node. The provisions that must have been made is the
union of those that must have been made for a read access and of those that
must have been made for a change access.

ChangeNodeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

environment? : Envrionment
response! : Response

response! = if ObjectOwner(Node(path?)) = second(subject?) then
Grant({}) else if RolePermission permits (subject?, Node(path?), read,
environment?) ∧ RolePermission permits (subject?, Node(path?), change,
environment?) then Grant(GetProvisionSet((subject?, Node(path?), read,
environment?), RolePermission) ∪ GetProvisionSet((subject?,
Node(path?), change, environment?), RolePermission)) else Deny

4.3 Policy Interpretation 27

As explained in Section 4, add access to a node (here, adding a node to
it) and delete access to a node (here, deleting a node from it) requires change
access to it.

AddNodeRequest =̂ ChangeNodeRequest[front(path?)/path?]

DeleteNodeRequest =̂ ChangeNodeRequest[front(path?)/path?]

Copy access to a node requires read access to it.

CopyNodeRequest =̂ ReadNodeRequest

Cut access to a node requires both copy and delete access to it.

CutNodeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq1 N1

environment? : Environment
response! : Response

(∃ ps1, ps2 : P Provision • CopyNodeRequest[Grant(ps1)/response!] ∧
DeleteNodeRequest[Grant(ps2)/response!] ∧
response! = Grant(ps1 ∪ ps2)) ∨
((CopyNodeRequest[Deny/response!] ∨
DeleteNodeRequest[Deny/response!]) ∧ response! = Deny)

A node can be pasted where it can be added.

PasteNodeRequest =̂ AddNodeRequest

A read attribute request is (tentatively) granted if the subject requesting
read access is the owner of the attribute or if the policy permits read access to
the attribute.

ReadAttributeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

name? : Name
environment? : Environment
response! : Response

response! = if ObjectOwner(Attribute(path?, name?)) = second(subject?) then
Grant({}) else if RolePermission permits (subject?, Attribute(path?, name?),
read, environment?) then Grant(GetProvisionSet((subject?,
Attribute(path?, name?), read, environment?), RolePermission)) else Deny

As explained in Section 4, add access to a node (here, adding an attribute

28 4 DOCUMENT POLICY MODEL

to it) and delete access to a node (here, deleting an attribute from it) requires
change access to it.

AddAttributeRequest =̂ ChangeNodeRequest

DeleteAttributeRequest =̂ ChangeNodeRequest

Change access to an attribute requires both read access to it and change
access to its node.

ChangeAttributeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

name? : Name
environment? : Environment
response! : Response

(∃ ps1, ps2 : P Provision • ReadAttributeRequest[Grant(ps1)/response!] ∧
ChangeNodeRequest[Grant(ps2)/response!] ∧
response! = Grant(ps1 ∪ ps2)) ∨
((ReadAttributeRequest[Deny/response!] ∨
ChangeNodeRequest[Deny/response!]) ∧ response! = Deny)

Copy access to an attribute requires read access to it.

CopyAttributeRequest =̂ ReadAttributeRequest

Cut access to an attribute requires both copy and delete access to it.

CutAttributeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

name? : Name
environment? : Environment
response! : Response

(∃ ps1, ps2 : P Provision • CopyAttributeRequest[Grant(ps1)/response!] ∧
DeleteAttributeRequest[Grant(ps2)/response!] ∧
response! = Grant(ps1 ∪ ps2)) ∨
((CopyAttributeRequest[Deny/response!] ∨
DeleteAttributeRequest[Deny/response!]) ∧ response! = Deny)

An attribute can be pasted where it can be added.

PasteAttributeRequest =̂ AddAttributeRequest

Adding role-permission mappings can only be added and deleted by the

4.3 Policy Interpretation 29

respective owner.

AddRolePermissionRequest
ΞDocumentPolicy
subject? : Subject
permission? : Permission
response! : Response

response! = if ObjectOwner(permission?.1) = second(subject?) then
Grant({}) else Deny

DeleteRolePermissionRequest
ΞDocumentPolicy
subject? : Subject
permission? : Permission
response! : Response

response! = if ObjectOwner(permission?.1) = second(subject?) then
Grant({}) else Deny

Delegating a permission requires delegate access on the respective object,
that the action is read or change, that the condition of the new permission is
never true when the condition of the original permission would not be, and
that the original provisions must also be made in the new permission.

DelegateEditPermissionRequest
ΞDocumentPolicy
subject? : Subject
permission? : Permission
environment? : Environment
response! : Response

response! = if RolePermission permits (subject?, permission?.1, delegate,
environment?) ∧ permission?.2 ∈ {read, change} ∧ (∀ e : Environment |
e ∈ first(permission?.3) • RolePermission permits (subject?,
permission?.1, permission?.2, e)) ∧ GetProvisionSet((subject?,
permission?.1, permission?.2, e), RolePermission) ⊆ permission?.4 then
Grant(GetProvisionSet((subject?, permission?.1, delegate,
environment?), RolePermission)) else Deny

4.3.3 Policy Enforcement Point

The modeling requirements for the PEP are different than for the other subsys-
tems. The UI is event-driven and the PEP must synchronize (interact) with the
UI as well as the other architectural components and its control flow is data-
dependent. While Z is well-suited for data modeling, it cannot easily describe
such process interaction. Therefore we employed CSP-OZ, which combines Z
with the process calculus CSP as mentioned in the introduction.

A CSP-OZ class describes both operations (in Z) and their synchronization

30 4 DOCUMENT POLICY MODEL

(in CSP). The excerpt in Figure 5 formalizes the generic description given in
Section 4.1.2 for the operation of reading a node. It leaves open the application-
specific mechanisms of receiving events (e.g., ReadNode event) and of updating
the UI (e.g., ReadNode ret). The other operations (copying a node, reading an
attribute, etc.) are declared analogously. The formalization of the UI (cf. Fig-
ure 4) is similar but simpler than that of the PEP. CSP processes synchronize
along so-called channels. Explicitly declared (chan) are the channels login, lo-
gout, and abort. Operations specified in Z are also channels. The UI and the PEP
execute in parallel. At first, both processes are in the main loop (main) until a
user successfully logs in, at which point they enter their event-processing loops
(PEPL in the case of the PEP). When a user logs out via the UI, the PEP follows
suit and returns to its main loop. Unlike the UI, the PEP must take additional
steps between receiving an event and handling it or aborting, in order to make
an access decision. First, it determines the current environment (GetEnv) and
then it communicates with the PDP (via ReadNodeRequest) and, provided the
PDP has not denied the request, with the provisions service (via MadeProvi-
sions). The PEP signals access denied on the abort channel, which forces the UI
to abort without having handled the event.

GetEnv : Environment

UI
chan login : [u? : UserID ; ok ! : B]
chan logout
chan abort
main = login?u?ok →

(ok & getSubject?subject → UIL
2 ¬ok & main)

UIL = logout → main
2 ReadNode event?path →

ReadNode!path?attributesDom?childrenNr →
ReadNode ret !attributesDom!childrenNr → UIL

2 abort → UIL
2 . . .

Figure 4: User Interface

Hence the PEP class brings together the various Z specifications from before
and formalizes how policies are interpreted and enforced. Overall, our model
provides a precise description, with a formal mathematical semantics, of secure
document processing, i.e., documents, operations on them, and access control.

4.4 Print Operation

We have postponed the discussion of the print operation until now because
the content-related part cannot really be specified independent of the policy-
related part.

4.4 Print Operation 31

PEP
chan login : [u? : UserID ; ok ! : B]
chan logout
chan abort
main = login?u?ok →

(ok & getSubject?subject → PEPL(subject)
2 ¬ok & main)

PEPL(subject) =
logout → main
2 ReadNode event?path → GetEnv?environment →

ReadNodeRequest !subject !path!environment?response →
(response = Deny & abort → PEPL(subject)
2 response = Grant(ps) &

MadeProvisions!subject !ps?rem ps →
(rem ps = ∅ &

ReadNode!path?attributesDom?childrenNr →
ReadNode ret !attributesDom!childrenNr → PEPL(subject)

2 rem ps 6= ∅ & abort → PEPL(subject)))
2 . . .

Figure 5: Policy Enforcement Point

Given a printer as specified in the first schema below, a print operation
could be simply defined as in the second schema if security were not a concern:

Printer
output : Tree

Print
ΞDocument
∆Printer

output′ = root

Since security is a concern, one idea is to prune the document and print the
pruned document along the following lines:

PruneAndPrint
ΞDocument
∆Printer
subject? : Subject
environment? : Environment
PrunedTreeDomain = {p : TreeDomainF(root) | (∃ ps : P Provision •

PrintNodeRequest[p, Grant(ps)/path?, response!]
∧ MadeProvision[ps, {}/ps?, ps!])}

PrintableAttributes = {p : PrunedTreeDomain; n : Name | (∃ ps : P Provision •
PrintAttributeRequest[p, n, Grant(ps)/path?, name?, response!]
∧ MadeProvision[ps, {}/ps?, ps!]) • (p, n)}

. . .

However, the handling of provisions is a problem. Should all permissions
whose provisions have not been made at the time of printing be ignored? Or

32 4 DOCUMENT POLICY MODEL

should the user be told which provisions she could make to print more of a
document? The answer is obviously application-specific. Therefore, we limit
ourselves to specifying how print requests must be evaluated, but leave it to
applications to make a trade-off between pruning and interacting with the user.

A print node request is (tentatively) granted if the subject requesting print
access is the owner of the node or if the policy permits both read and print
access to the node. The provisions that must have been made is the union of
those that must have been made for a read access and of those that must have
been made for a print access.

PrintNodeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

environment? : Envrionment
response! : Response

response! = if ObjectOwner(Node(path?)) = second(subject?) then
Grant({}) else if RolePermission permits (subject?, Node(path?), read,
environment?) ∧ RolePermission permits (subject?, Node(path?), print,
environment?) then Grant(GetProvisionSet((subject?, Node(path?), read,
environment?), RolePermission) ∪ GetProvisionSet((subject?,
Node(path?), print, environment?), RolePermission)) else Deny

Similarly, a print attribute request is (tentatively) granted if the subject re-
questing print access is the owner of the attribute or if the policy permits both
read and print access to the attribute. The provisions that must have been made
is the union of those that must have been made for a read access and of those
that must have been made for a print access.

PrintAttributeRequest
ΞDocumentPolicy
subject? : Subject
path? : seq N1

name? : Name
environment? : Envrionment
response! : Response

response! = if ObjectOwner(Attribute(path?, name?)) = second(subject?) then
Grant({}) else if RolePermission permits (subject?, Attribute(path?, name?),
read, environment?) ∧ RolePermission permits (subject?, Attribute(path?,
name?), print, environment?) then Grant(GetProvisionSet((subject?,
Attribute(path?, name?), read, environment?), RolePermission)∪
GetProvisionSet((subject?, Attribute(path?, name?), print, environment?),
RolePermission)) else Deny

33

5 Related Work

A number of commercial document-processing systems offer security function-
ality, for example those of Adobe7 and Microsoft8. In contrast to our work,
these systems offer only coarse-grained protection. Moreover, once data is
copied, it is at the user’s discretion.

The work closest to ours is in XML access control, which is an active research
area concerned with controlling access to constituent parts of XML documents
(e.g., [7, 15, 19, 2, 1, 10, 9]). We shall first discuss the primary characteristics of
this work, and then examine several prominent proposals.

XML access control models are fine-grained, although the different propos-
als differ in their granularity and the types of their constituent parts. Moreover,
they differ in the operations offered and their semantics. Some XML access con-
trol systems only provide a read operation with no arguments and thus expect
their users to request entire XML documents (typically, there is only one in-
stance, namely the XML-encoded database), in which case they respond with a
censored copy called the view (Gabillon [9] compares several view-generation
strategies). The current proposals differ considerably in the policy languages
they offer, e.g., their features and syntactic sugar. Although these additions are
intended to ease a policy writer’s life, they are also a double-edged sword: they
not only make the policy language more complex, they also necessitate conflict-
resolution strategies [7, 15, 19]. In contrast, we have focused on a simple, yet
expressive, core language with a clean, formal semantics. All current proposals
for XML access control are limited in that they leave data at the user’s discre-
tion once it is copied. In contrast, we have solved this problem by adapting the
idea of sticky policies to our model.

The XML Access Control Language (XACL) [15, 19] has up to now been
the only proposal for XML access control with concrete support for provisions.
Our model differs from that of the XACL, in this respect, in that provisions
never have to be made (not even by the system) when access is denied. More
importantly, XACL policies may be ambiguous in terms of which provisions
must hold for a given request. In our model, at most one permission matches
a request, so there is no such ambiguity.

Bertino et al. [2, 1] have proposed an approach to XML access control con-
sisting of two parts: an access-control system Author-χ, and a credentials and
policy language χ-Sec. Their proposal goes beyond XML access control in that
they actually consider semi-structured data encoded in XML documents. They
allow arcs (i.e., references or hyperlinks) to be secured with what they call the
navigate privilege (privileges are what we call actions). Our model does not
encompass semi-structured data. However, arcs can be encoded as attributes
(as is done in the XML), whereby read access can be interpreted as navigate
access. This proposal has a rich language for expressing temporal conditions,
based on periodic time expressions [21]; from our requirements analysis, these
are not necessary in our context.

Gabillon et al. [10, 9] go beyond XML access control and consider tree-
structured data. However, nodes in their trees have no properties other than
child nodes. This has the unfortunate consequence that the policy language

7http://www.adobe.com/security/
8http://www.microsoft.com/windowsserver2003/technologies/rightsmgmt/

34 A PROOF OF CONCEPT: XML DOCUMENTS

must be adapted to every specialization. In contrast, we can refine our document-
content model without changing our policy language. The work by Gabil-
lon et al. [10, 9] is the only closely related work in which object ownership
and policy editing are not foreign concepts, and permission delegation is sup-
ported as well. All other approaches assume that policies are schema-based,
static, and provided by (not further specified) administrators.

6 Conclusion

We have presented a formal model of an access-control system for document
security. This model reflects real-world requirements and provides a precise
design for solving this problem in a general way. Hence it represents a large
step towards a general-purpose document-security system.

As future work, we will take the remaining steps in building a prototype
implementation. First, we shall define a concrete syntax for our policy lan-
guage and implement a PDP that interprets this syntax and can evaluate re-
quests. A likely candidate for the concrete syntax is an eXtensible Access Con-
trol Markup Language (XACML) [22] profile in which case our PDP could be
based on an existing XACML PDP, such as the one from Sun Microsystems
Laboratories9. Because the XACML lacks a formal semantics, an alternative is
to directly implement the PDP as a refinement of our formal model. Second,
we will employ cryptographic mechanisms to secure documents during stor-
age and while in transit so that only trusted systems can access them. Third, as
a proof of concept, we will implement an XML editor along the lines of the ar-
chitecture in Section 4.1.2 on page 14. Finally, we plan to embed the XML editor
in a trustworthy client environment, where master keys are secured in Trusted
Platform Modules (TPMs) [27]. All of these steps are realistic and should con-
tribute to a practical solution that represents a large advance in the way that
documents, and more generally hierarchically structured content, are secured.

7 Acknowledgments

We would like to thank Achim Brucker, Prof. Dr. Ernst-Rüdiger Olderog, and
Dr. Burkhart Wolff for their help with Z and Prof. Olderog also for his help with
CSP; Dr. Günter Karjoth for his help with policy languages; and Beat Perjés and
Dr. Gritta Wolf for their help with gathering requirements.

For their valuable feedback on earlier versions of this text, we would also
like to thank Dr. Karjoth and Dr. Wolf as well as Manuel Hilty, Michael Näf,
and Dr. Alexander Pretschner.

A Proof of Concept: XML Documents

In this section, we refine the model for abstract documents to a model for XML
documents. As we shall see, it suffices to refine the content model; the policy
model need not be refined in any manner!

9http://sunxacml.sourceforge.net/

A.1 Data Types 35

A.1 Data Types

First we reserve two attribute names. One for the attribute whose value—or
non-existence—determines the type of XML node. And one for the attribute
whose value determines the actual value of a comment node, processing-instruction
node, or text node.

nameName, valueName : Name
nameName 6= valueName

Then we reserve two attribute values. One for the name of comment nodes,
which is “!--” in a standard XML encoding, and one for the name of processing-
instruction nodes, which is “?”. All other nameName attribute values denote
tags in element nodes.

commentNameValue, piNameValue : Value
commentNameValue 6= piNameValue

Comments are nodes that have two attributes and no children. The two at-
tributes are a nameName attribute with value commentNameValue and a value-
Name attribute whose value is the actual comment. Processing instructions are
also nodes that have two attributes and no children. The two attributes are a
nameName attribute with value piNameValue and a valueName attribute whose
value is the actual processing instruction. Elements are nodes that have one or
more attributes and zero or more child nodes. One attribute is the nameName
attribute whose value is the element’s tag and the other attributes are the ac-
tual XML attributes, but none of the attributes is a valueName attribute. Texts are
nodes that have one attribute and no child node. The attribute is a valueName
attribute whose value is the actual text.

Comment == {t : Tree | (∃ v : Value •
t = Node({nameName 7→ commentNameValue, valueName 7→ v}, 〈〉))}

PI == {t : Tree | (∃ v : Value •
t = Node({nameName 7→ piNameValue, valueName 7→ v}, 〈〉))}

Element == {t : Tree | (∃ a : Attributes; ts : seq Tree |
nameName ∈ dom a ∧ valueName /∈ dom a ∧
(nameName 7→ commentNameValue) /∈ a ∧ (nameName 7→ piNameValue) /∈ a •
t = Node(a, ts))}

Text == {t : Tree | (∃ v : Value •
t = Node({valueName 7→ v}, 〈〉))}

XmlNode == PI ∪ Element ∪ Text

While we defined the set of comments for the sake of completeness, we do
not include it in the set of XML nodes hereafter. XML comments are first and
foremost a means for users to comment XML documents that they edit directly
and can be ignored by XML parsers. In our context, users are never allowed to
directly access an XML document’s encoding.

36 A PROOF OF CONCEPT: XML DOCUMENTS

A.2 Containers (State)

Except for the document root, an XML document consists of processing-instruction
nodes, element nodes, and text nodes only. At most one element node, namely
the root element, is a child of the document root. No text node is the child
of the document root. And text nodes are never adjacent (cf. AddTextNodeC
operation schema below).

XmlDocument
DocumentContent
∃ ts : seq Tree • root = Node({}, ts)
∀ p : TreeDomainF(root) | p 6= 〈〉 • ReadNodeF(root, p) ∈ XmlNode
∀ p1, p2 : TreeDomainF(root) |

ReadNodeF(root, p1) ∈ Element ∧ ReadNodeF(root, p2) ∈ Element •
p1 = p2 ∨ #p1 > 1 ∨ #p2 > 1

∀ p : TreeDomainF(root) | ReadNodeF(root, p) ∈ Text • #p > 1
∀ p1, p2 : TreeDomainF(root) |

ReadNodeF(root, p1) ∈ Text ∧ ReadNodeF(root, p2) ∈ Text •
front(p1) 6= front(p2) ∨ AbsValF(last(p1)− last(p2)) 6= 1

A policed XML document is a pair consisting of a plain XML document and
a document policy.

PolicedXmlDocument =̂ XmlDocument ∧ DocumentPolicy

A.3 Discovery Operations

The (abstract) ReadNodeC operation is wrapped by three discovery operations,
one that returns a node’s type, one that returns a document root’s or element’s
number of children, and one that returns the domain of an element’s attributes.
Note that the policy-related component of the operations is the ReadNodeP op-
eration and that the requests are equivalent to a read node request.

GetTypeC
ΞXmlDocument
path? : seq1 N1

type! : P XmlNode

(∃ ad : P Name | nameName ∈ ad ∧ valueName ∈ ad •
ReadNodeC[ad/attributesDom!]) ∧ type! = PI
∨ (∃ ad : P Name | nameName ∈ ad ∧ valueName /∈ ad •
ReadNodeC[ad/attributesDom!]) ∧ type! = Element
∨ (∃ ad : P Name | nameName /∈ ad ∧ valueName ∈ ad •
ReadNodeC[ad/attributesDom!]) ∧ type! = Text

GetType =̂ GetTypeC ∧ ReadNodeP
GetTypeRequest =̂ ReadNodeRequest

A.4 Operations on Elements 37

GetNrOfChildrenC
ΞXmlDocument
path? : seq N1

childrenNr! : N
path? = 〈〉 ∨ ReadNodeF(root, path?) ∈ Element
ReadNodeC

GetNrOfChildren =̂ GetNrOfChildrenC ∧ ReadNodeP
GetNrOfChildrenRequest =̂ ReadNodeRequest

GetAttributesDomC
ΞXmlDocument
path? : seq1 N1

aDom! : P Name
ReadNodeF(root, path?) ∈ Element
nameName /∈ aDom!
ReadNodeC[aDom! ∪ nameName/attributesDom!]

GetAttributesDom =̂ GetAttributesDomC ∧ GetAttributesDomP
GetAttributesDomRequest =̂ ReadNodeRequest

A.4 Operations on Elements

ReadElementNameC
ΞXmlDocument
path? : seq1 N1

value! : Value
ReadNodeF(root, path?) ∈ Element
ReadAttributeC[nameName/name?]

ReadElementName =̂ ReadElementNameC ∧ ReadAttributeP[nameName/name?]
ReadElementNameRequest =̂ ReadAttributeRequest[nameName/name?]

AddElementNodeC
∆XmlDocument
path? : seq1 N1

value? : Value
attributes? : Attributes
treeSequence? : seq XmlNode

#path? > 1 ∨ (∀ p : TreeDomainF(tree) • ReadNodeF(tree, p) /∈ Element)
nameName /∈ attributes? ∧ valueName /∈ attributes?
AddNodeC[attributes? ∪ {nameName 7→ value?}/attributes?]

38 A PROOF OF CONCEPT: XML DOCUMENTS

AddElementNode =̂ AddElementNodeC ∧
AddNodeP[attributes? ∪ {nameName 7→ value?}/attributes?]

AddElementNodeRequest =̂ AddNodeRequest

DeleteElementNodeC
∆XmlDocument
path? : seq1 N1

ReadNodeF(root, path?) ∈ Element
DeleteNodeC

DeleteElementNode =̂ DeleteElementNodeC ∧ DeleteNodeP
DeleteElementNodeRequest =̂ DeleteNodeRequest

ChangeElementNameC
∆XmlDocument
path? : seq1 N1

value? : Value
ReadNodeF(root, path?) ∈ Element
ChangeAttributeC[nameName/name?]

ChangeElementName =̂ ChangeElementNameC ∧ ChangeAttributeP[nameName/name?]
ChangeElementNameRequest =̂ ChangeAttributeRequest[nameName/name?]

CopyElementNameC
ΞXmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(root, path?) ∈ Element
CopyAttributeC[nameName/name?]

CopyElementName =̂ CopyElementNameC ∧ CopyAttributeP[nameName/name?]
CopyElementNameRequest =̂ CopyAttributeRequest[nameName/name?]

CopyElementNodeC
ΞXmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(root, path?) ∈ Element
CopyNodeC

A.5 Operations on Attributes 39

CopyElementNode =̂ CopyElementNodeC ∧ CopyNodeP
CopyElementNodeRequest =̂ CopyNodeRequest

CutElementNodeC
∆XmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(root, path?) ∈ Element
CutNodeC

CutElementNode =̂ CutElementNodeC ∧ CutNodeP
CutElementNodeRequest =̂ CutNodeRequest

PasteElementNodeC
∆XmlDocument
ΞClipboardContent
path? : seq1 N1

cCache ∈ Element
PasteNodeC

PasteElementNode =̂ PasteElementNodeC ∧ PasteNodeP
PasteElementNodeRequest =̂ PasteNodeRequest

A.5 Operations on Attributes

ReadXmlAttributeC
ΞXmlDocument
path? : seq1 N1

name? : Name \ {nameName, valueName}
value! : Value
ReadNodeF(root, path?) ∈ Element
ReadAttributeC

ReadXmlAttribute =̂ ReadXmlAttributeC ∧ ReadAttributeP
ReadXmlAttributeRequest =̂ ReadAttributeRequest

40 A PROOF OF CONCEPT: XML DOCUMENTS

AddXmlAttributeC
∆XmlDocument
path? : seq1 N1

name? : Name \ {nameName, valueName}
value? : Value
ReadNodeF(root, path?) ∈ Element
AddAttributeC

AddXmlAttribute =̂ AddXmlAttributeC ∧ AddAttributeP
AddXmlAttributeRequest =̂ AddAttributeRequest

DeleteXmlAttributeC
∆XmlDocument
path? : seq1 N1

name? : Name \ {nameName, valueName}
ReadNodeF(root, path?) ∈ Element
DeleteAttributeC

DeleteXmlAttribute =̂ DeleteXmlAttributeC ∧ DeleteAttributeP
DeleteXmlAttributeRequest =̂ DeleteAttributeRequest

ChangeXmlAttributeC
∆XmlDocument
path? : seq1 N1

name? : Name \ {nameName, valueName}
value? : Value
ReadNodeF(root, path?) ∈ Element
ChangeAttributeC

ChangeXmlAttribute =̂ ChangeXmlAttributeC ∧ ChangeAttributeP
ChangeXmlAttributeRequest =̂ ChangeAttributeRequest

CopyXmlAttributeC
ΞXmlDocument
∆ClipboardContent
path? : seq1 N1

name? : Name \ {nameName, valueName}
ReadNodeF(root, path?) ∈ Element
CopyAttributeC

A.6 Operations on Texts 41

CopyXmlAttribute =̂ CopyXmlAttributeC ∧ CopyAttributeP
CopyXmlAttributeRequest =̂ CopyAttributeRequest

CutXmlAttributeC
∆XmlDocument
∆ClipboardContent
path? : seq1 N1

name? : Name \ {nameName, valueName}
ReadNodeF(root, path?) ∈ Element
CutAttributeC

CutXmlAttribute =̂ CutXmlAttributeC ∧ CutAttributeP
CutXmlAttributeRequest =̂ CutAttributeRequest

PasteXmlAttributeC
∆XmlDocument
ΞClipboardContent
path? : seq1 N1

name? : Name \ {nameName, valueName}
ReadNodeF(root, path?) ∈ Element
PasteAttributeC

PasteXmlAttribute =̂ PasteXmlAttributeC ∧ PasteAttributeP
PasteXmlAttributeRequest =̂ PasteAttributeRequest

A.6 Operations on Texts

ReadTextValueC
ΞXmlDocument
path? : seq1 N1

value! : Value
ReadNodeF(root, path?) ∈ Text
ReadAttributeC[valueName/name?]

ReadTextValue =̂ ReadTextValueC ∧ ReadAttributeP[valueName/name?]
ReadTextValueRequest =̂ ReadAttributeRequest[valueName/name?]

According to the Document Object Model (DOM) specification [28] (which
we abstract from), “[w]hen a document is first made available via the DOM,
there is only one Text node for each block of text. Users may create adja-
cent Text nodes that represent the contents of a given element without any
intervening markup, but should be aware that there is no way to represent the

42 A PROOF OF CONCEPT: XML DOCUMENTS

separations between these nodes in XML [...], so they will not (in general) per-
sist between DOM editing sessions. The Node.normalize() method merges
any such adjacent Text objects into a single node for each block of text.” As
we anticipate a security policy and do not want to worry about what it would
mean to normalize rules referring to adjacent text nodes, we go further than
the DOM in that in our model subjects cannot create them in the first place.
Adding text is adding a new text leaf:

AddTextNodeC
∆XmlDocument
path? : seq1 N1

value? : Value
ReadNodeF(root, front(path?)) ∈ Element
∀ p : TreeDomainF(root) | ReadNodeF(root, p) ∈ Text •

front(p) 6= front(path?) ∨ AbsValF(last(p)− last(path?)) > 1
AddNodeC[{valueName 7→ value?}, 〈〉/attributes?, treeSequence?]

AddTextNode =̂ AddTextNodeC ∧
AddNodeP[{valueName 7→ value?}, 〈〉/attributes?, treeSequence?]

AddTextNodeRequest =̂ AddNodeRequest

DeleteTextNodeC
∆XmlDocument
path? : seq1 N1

ReadNodeF(root, path?) ∈ Text
DeleteNodeC

DeleteTextNode =̂ DeleteTextNodeC ∧ DeleteNodeP
DeleteTextNodeRequest =̂ DeleteNodeRequest

ChangeTextValueC
∆XmlDocument
path? : seq1 N1

value? : Value
ReadNodeF(root, path?) ∈ Text
ChangeAttributeC[valueName/name?]

ChangeTextValue =̂ ChangeTextValue ∧ ChangeAttributeP[valueName/name?]
ChangeTextValueRequest =̂ ChangeAttributeRequest

A.7 Operations on Processing Instructions 43

CopyTextValueC
ΞXmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(root, path?) ∈ Text
CopyAttributeC[valueName/name?]

CopyTextValue =̂ CopyTextValueC ∧ CopyAttributeP[valueName/name?]
CopyTextValueRequest =̂ CopyAttributeRequest[valueName/name?]

CutTextNodeC
∆XmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(content, path?) ∈ Text
CutNodeC

CutTextNode =̂ CutTextNodeC ∧ CutNodeP
CutTextNodeRequest =̂ CutNodeRequest

PasteTextNodeC
∆XmlDocument
ΞClipboardContent
path? : seq1 N1

cCache ∈ Text
PasteNodeC

PasteTextNode =̂ PasteTextNodeC ∧ PasteNodeP
PasteTextNodeRequest =̂ PasteNodeRequest

A.7 Operations on Processing Instructions

ReadPIValueC
ΞXmlDocument
path? : seq1 N1

value! : Value
ReadNodeF(root, path?) ∈ PI
ReadAttributeC[valueName/name?]

ReadPIValue =̂ ReadPIValueC ∧ ReadAttributeP[valueName/name?]
ReadPIValueRequest =̂ ReadAttributeRequest[valueName/name?]

44 A PROOF OF CONCEPT: XML DOCUMENTS

AddPINodeC
∆XmlDocument
path? : seq1 N1

value? : Value
ReadNodeF(root, front(path?)) ∈ Element
AddNodeC[{nameName 7→ piNameValue, valueName 7→ value?}, 〈〉/

attributes?, treeSequence?]

AddPINode =̂ AddPINodeC ∧
AddNodeP[{nameName 7→ piNameValue, valueName 7→ value?}, 〈〉/
attributes?, treeSequence?]

AddPINodeRequest =̂ AddNodeRequest

DeletePINodeC
∆XmlDocument
path? : seq1 N1

ReadNodeF(root, path?) ∈ PI
DeleteNodeC

DeletePINode =̂ DeletePINodeC ∧ DeleteNodeP
DeletePINodeRequest =̂ DeleteNodeRequest

ChangePIValueC
∆XmlDocument
path? : seq1 N1

value? : Value
ReadNodeF(root, path?) ∈ PI
ChangeAttributeC[valueName/name?]

ChangePIValue =̂ ChangePIValue ∧ ChangeAttributeP[valueName/name?]
ChangePIValueRequest =̂ ChangeAttributeRequest[valueName/name?]

CopyPIValueC
ΞXmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(root, path?) ∈ PI
CopyAttributeC[valueName/name?]

CopyPIValue =̂ CopyPIValueC ∧ CopyAttributeP[valueName/name?]
CopyPIValueRequest =̂ CopyAttributeRequest[valueName/name?]

A.8 Remark 45

CutPINodeC
∆XmlDocument
∆ClipboardContent
path? : seq1 N1

ReadNodeF(content, path?) ∈ PI
CutNodeC

CutPINode =̂ CutPINodeC ∧ CutNodeP
CutPINodeRequest =̂ CutNodeRequest

PastePINodeC
∆XmlDocument
ΞClipboardContent
path? : seq1 N1

cCache ∈ PI
PasteNodeC

PastePINode =̂ PastePINodeC ∧ PasteNodeP
PastePINodeRequest =̂ PasteNodeRequest

A.8 Remark

Several document formats are based on the XML. Thus, such documents can be
secured by securing their XML-based encodings. Users could define application-
level policies whose objects are, for example, chapters, lists, etc., and the system
would map them to XML-level policies as suggested in Figure 6. (“XML-level
policy” is a bit of a misnomer, though, as there is no need to refine our policy
model to govern access to XML documents.)

App-level Objects
e.g., headers, paragraphs, footnotes

XML-level Objects
i.e., elements, attributes, PIs, texts

XML-level Policy

App-level Policy

Figure 6: Mapping Application-level to XML-level Objects and Policies

Furthermore, if the application-level document model is a refinement of

46 REFERENCES

our content model, the detour via the XML is not even necessary! Indeed,
the application-specific document could be directly modeled along the lines of
AppSpecificDoc =̂ AppDocContent ∧ DocumentPolicy.

References

[1] E. Bertino, B. Carminati, and E. Ferrari. “Access Control for XML docu-
ments and data.” In Information Security Technical Report, vol. 9, no. 3, pp.
19–34, July-September 2004.

[2] E. Bertino, S. Castano, and E. Ferrari. “Securing XML Documents with
Author-X.” In IEEE Internet Computing, vol. 5, no. 3, pp. 21–31, May/June
2001.

[3] E. Bertino and R. Sandhu. “Database Security—Concepts, Approaches,
and Challenges.” In IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 1, pp. 2–19, January-March 2005.

[4] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. “Provisions and Obli-
gations in Policy Rule Management.” In Journal of Network and Systems
Management, vol. 11, no. 3, pp. 351–372, September 2003.

[5] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. “Reasoning with ad-
vanced policy rules and its application to access control.” In International
Journal on Digital Libraries, vol. 4, no. 3, pp. 156–170, November 2004.

[6] S. Castano, M. Fugini, G. Martella, and P. Samarati. Database Security.
ACM Press, 1995. ISBN 0-201-59375-0.

[7] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.
“A Fine-Grained Access Control System for XML Documents.” In ACM
Transactions on Information and System Security, vol. 5, no. 2, pp. 169–202,
May 2002.

[8] C. Fischer. “CSP-OZ: a combination of Object-Z and CSP.” In Proc. 2nd
IFIP Workshop on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), pp. 423–438. 1997.

[9] A. Gabillon. “An Authorization Model for XML DataBases.” In Proceed-
ings of the 11th ACM conference on Computer and communications security.
2004.

[10] A. Gabillon, M. Munier, J.-J. Bascou, L. Gallon, and E. Bruno. “An Access
Control Model for Tree Data Structures.” In Proceedings of the 5th Interna-
tional Conference on Information Security, pp. 117–135. 2002.

[11] S. Garfinkel, G. Spafford, and A. Schwartz. Practical UNIX and Internet
Security. O’Reilly, 3rd ed., 2003. ISBN 0-596-00323-4.

[12] E. R. Harold and W. S. Means. XML in a Nutshell. O’Reilly, 3rd ed., 2004.
ISBN 0-596-00764-7.

REFERENCES 47

[13] M. Hilty, D. Basin, and A. Pretschner. “On Obligations.” In S. de Capi-
tani di Vimercati, P. Syverson, and D. Gollmann (eds.), Proceedings of the
10th European Symposium on Research in Computer Security (ESORICS 2005),
vol. 3679 of Lecture Notes in Computer Science, pp. 98–117. Springer-Verlag,
September 2005.

[14] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[15] IBM Tokyo Research Laboratory. “XML Access Control Language
(XACL).” WWW.
URL http://www.trl.ibm.com/projects/xml/xacl/

[16] IBM Zurich Research Laboratory. “Enterprise Privacy Technologies.”
WWW.
URL http://www.zurich.ibm.com/security/
enterprise-privacy/

[17] International Organization for Standardization. Information technology – Z
formal specification notation – Syntax, type system and semantics, 1st ed., July
2002.
URL http://www.iso.ch/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=21573

[18] G. Karjoth, M. Schunter, and M. Waidner. “Platform for Enterprise Privacy
Practices: Privacy-Enabled Management of Customer Data.” In R. Din-
gledine and P. Syverson (eds.), Privacy Enhancing Technologies, vol. 2482 of
Lecture Notes in Computer Science, pp. 69–84. Springer-Verlag, 2003.

[19] M. Kudo and S. Hada. “XML Document Security based on Provisional
Authorization.” In Proceedings of the 7th ACM conference on Computer and
communications security, pp. 87–96. Athens, November 2000.

[20] A. Møller and M. Schwartzback. An Introduction to XML and Web Technolo-
gies. Addison Wesley Professional, 2006. ISBN 0-321-26966-7.

[21] M. Niézette and J.-M. Stévenne. “An Efficient Symbolic Representation
of Periodic Time.” In Proceedings of the ISMM International Conference on
Information and Knowledge Management (CIKM-92), pp. 161–168. 1992.

[22] OASIS. “eXtensible Access Control Markup Language (XACML).” Speci-
fication.
URL http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=xacml

[23] J. Park and R. Sandhu. “The UCONABC Usage Control Model.” In ACM
Transactions on Information and System Security, vol. 7, no. 1, pp. 128–174,
February 2004.

[24] P. E. Sevinç, D. Basin, and E.-R. Olderog. “Controlling Access to Docu-
ments: A Formal Access Control Model.” In G. Müller (ed.), Proceedings of
the 1st International Conference on Emerging Trends in Information and Com-
munication Security (ETRICS 2006), vol. 3995 of Lecture Notes in Computer
Science, pp. 352–367. Springer-Verlag, June 2006.

48 REFERENCES

[25] B. Smith and B. Komar. Microsoft Windows Security Resource Kit. Microsoft
Press, 2nd ed., 2005. ISBN 0-735-62174-8.

[26] A. G. Stoica and C. Farkas. “Secure XML Views.” In Proceedings of the 16th
IFIP WG11.3 Working Conference on Database and Application Security. 2002.

[27] Trusted Computing Group. “TCG TPM Specification Version 1.2.” TCG
Specification.
URL https://www.trustedcomputinggroup.org/specs/TPM

[28] W3C (World Wide Web Consortium). “Document Object Model (DOM)
Level 3 Core Specification.” W3C Recommendation.
URL http://www.w3.org/TR/DOM-Level-3-Core/

[29] W3C (World Wide Web Consortium). “Extensible Markup Language
(XML).” W3C Recommendation.
URL http://www.w3c.org/XML/

