Automatic Generation of Security-Aware GUI
Models

Michael Schlipfer!, Marina Egea!, David Basin', and Manuel Clavel?3

! ETH Ziirich, Switzerland
{basin,marinae}@inf.ethz.ch,michschl@student.ethz.ch
2 IMDEA Software Institute, Madrid, Spain
manuel.clavel@imdea.org
3 Universidad Complutense de Madrid, Spain
clavel@sip.ucm.es

Abstract. In typical software applications, users access application data
using GUI widgets. There is an important, but little explored, link be-
tween visualization and security: when the application data is protected
by an access-control policy, the application GUI should be aware of and
respect this policy. For example, a widget should not give users options
to execute actions on the application data that they are not authorized
to execute. However, GUI designers are not (and usually should not be)
aware of the application data security policy. To solve this problem, we
define in this paper a many-models-to-model transformation that, given
a security-aware data model and a GUI model, makes the GUI model
also security-aware.

1 Introduction

In typical software applications, users access application data using GUI wid-
gets: data is created, deleted, read, and updated using text boxes, check boxes,
combo boxes, buttons, and the like. There is an important, but little explored,
link between visualization and security: When the application data is protected
by an access-control policy, the application GUI should be aware of and respect
this policy. Otherwise, users will often experience frustration. For example, af-
ter filling out a long electronic form, the user may be informed that the form
cannot be submitted because she lacks permissions to execute the actions that
are required on the application data. However, the GUI designers are not (and
usually should not be) aware of the application data security policy. Their job is
simply to design the GUT’s layout and to specify its behaviour, i.e., which events
will trigger which actions on which application data and/or application widgets.

To solve this problem, we define in this paper a many-models-to-model trans-
formation that, given a security-aware data model and a GUI model, makes the
GUI model also security-aware. This model transformation is the key component
of our proposal for designing security-aware application GUI models. Figure 1
illustrates this proposal. The process of designing a security-aware GUI has the
following parts. First, software engineers specify the application data model M.

Then, security engineers specify, in the security model S(M), the application-
data access-control policy, and GUI designers specify the application GUI model
G(M). Finally, the application security-aware GUI model S(G(M)) is automat-
ically generated from the security model S(M) and the GUI model G(M).

% SecureUML+ComponentUML %

Security Engineer GUI Designer

Security Transformation
(MQOF Operational QVT)

SecureUML+GUI

Fig. 1. Generating security-aware application GUIs.

In Section 2 we introduce the source and target models of the transformation by
describing their respective metamodels (namely, SecureUML~+ComponentUML,
GUI, and SecureUML+GUI). Then, in Section 3, we describe the transformation
as a QVT operational transformation and, in Section 4, we discuss its correct-
ness. Finally, in Section 5, we give an overview of the planned extensions of the
ideas presented in this paper. We illustrate our ideas on a running example,
namely, the design of a simple GUI for a phone-book application. As part of
our work, we have implemented the transformation using the Operational QVT
transformation engine that is provided within the M2M Project, a subproject
of the Eclipse Modeling Framework. Our tool is available at [15] along with
documentation and examples.

Our model-transformation based approach for designing security-aware GUI
models has three principle advantages over traditional software development
approaches.

1. Security engineers and GUI designers can independently model what they
know best (or know at all).

2. Security engineers and GUI designers can independently change their models
and these changes are automatically propagated to the final security-aware
GUI models.

3. GUI designers, even if they do not know the underlying security policy, can
still check its impact on their designs. They can use the final security-aware
GUI models to check that they are designing the right GUI to give the
(authorized) users access to the (intended) application data.

Our proposal for automatically generating security-aware GUI models is the
corner stone of a more ambitious project for making model-driven security an

effective and useful approach for generating multiple system layers as part of a
security-intensive industrial software development. A crucial property of these
systems that we directly pursue with our model-transformation based approach,
is conformance. For the case addressed in this paper, conformance means that
executing events on the GUI layer never leads to program exceptions from the
access-control security policy implemented at the persistent layer.

2 The Transformation Model Types

Model transformation is the process of converting some models My, ..., M, (the
transformation source models) into other models Mj, ..., M} (the transforma-
tion target models). In this section, we define the types of the source and target
models of our model transformation by introducing their respective metamodels:
namely, the SecureUML+ComponentUML metamodel and the GUI metamodel
(which define our source models’ types), and the SecureUML+GUI metamodel
(which defines our target model’s type). Since SecureUML+ComponentUML
and SecureUML+GUI are both dialects of SecureUML, we begin this section by
briefly introducing SecureUML.

The SecureUML language. SecureUML is a language based on RBAC [6] for
modeling access-control policies on protected resources [2]. The policies that
can be specified in SecureUML are of two kinds: those that depend on static
information, namely the assignments of users and permissions to roles; and those
that depend on dynamic information, namely the satisfaction of authorization
constraints in the current system state. However, SecureUML leaves open what
the protected resources are and which actions they offer to clients. These are
specified in a so-called dialect and depend on the primitives for constructing
models in each dialect’s system-design modeling language. Figure 2 shows the
SecureUML metamodel: each SecureUML dialect will basically declare its own
protected resources as subclasses of Resources and the actions that they offer to
clients as subclasses of Atomic or Composite Actions.

;) superrole PermissionAssignment
suprole — " . - .
Role hasPermission Permission ActionAssignment| Action RpsourceAssignmen] Resource

default : boolean N default : boolean
giveAccess accesses resource

hasRole constrains isAssigned AN action

subordi dAction

UserAssignment GConstrair|tAssignment

includes isconstraintby
User AuthorizationConstraint

body : string

language : string

ActionHierarchy

compositeActio

ComgosileAclinn

AtomicAction

Fig. 2. The SecuretUML metamodel.

2.1 The source model types

The source models of our many-models-to-model transformation are Secure-
UML+ComponentUML models and GUI models. In a nutshell, the former spec-
ify the policies for accessing the application data, while the latter specify which
of the actions on the application data are triggered by which application GUI
events. Importantly, our source models have the same underlying application-
data model.

The Secure UML+ComponentUML language. This language combines Secure-
UML with ComponentUML, which is a simple language for modeling component-
based systems. ComponentUML provides a subset of UML class models: Entities
can be related by Associations and may have Attributes and Methods. The Se-
cureUML+ComponentUML metamodel, partially shown in Figure 3, provides
the connection between SecureUML and ComponentUML. It specifies the fol-
lowing.

— The protected resources, namely, Entities, as well as their Attributes, Meth-
ods, and AssociationEnds (but not Associations as such).

— The actions on these protected resources and their hierarchies. These are
shown in the following table.

Resource Actions

Entity create, read, update, delete, full access
Attribute read, update, full access

Method execute

Association end|read, update, full access

In this table, composite actions are underlined. They are used to group primitive
actions into a hierarchy of higher-level ones: e.g., full access on an attribute
includes both read and update access on this attribute, and full access on an
entity includes both full access on the entity attributes, entity methods, and
methods for entity creation and deletion.

In [2] a UML profile is defined for drawing SecureUML+ComponentUML
models, which we summarize here. A role is represented by a UML class with
the stereotype ((Role)) and an inheritance relationship between two roles is
defined using a UML generalization relationship. The role referenced by the
arrowhead of the generalization relationship is considered to be the superrole of
the role referenced by the tail. A permission, along with its relations to roles
and actions, is defined in a single UML model element, namely an association
class with the stereotype ((Permission)). The association class connects a role
with a UML class representing a protected resource, which is designated as the
root resource of the permission. The actions that such a permission refers to
may be actions on the root resource or on subresources of the root resource.
Each attribute of the association class represents the assignment of an action
to the permission, where the action is identified by the name and the type
of the attribute. ComponentUML entities are represented by UML classes with

:compnnamulﬂ_ AssociationEnd o -
:mslnmudal . Mathod _mmw:hdm
| associationEnd i .

| - Emi nEn

I Association Enti tribute
: EntityAttribute Attribute

\

I 1
EntityRead AtomicGreate AtomicUpdate AtomicRead
EntityFullAcccess | | [EntityUpdate |
AtomicDslete AtomicExecuts
AttributeFullAccess AssociationEndFullAccess

Fig. 3. The SecureUML+ComponentUML metamodel (partial).

the stereotype ((Entity)). Every method, attribute, or association end owned by
such a class is automatically considered to be a method, attribute, or association
end of the entity.

Ezample 1. Consider a basic phone-book application, called PhoneBook. Each
entry in the underlying phone directory consists of a name and a phone number.
The access to this data is controlled by the following policy:

— Users are only allowed to read people’s name and phone numbers.

— Supervisors are allowed to read people’s name and phone numbers, as well
as to change phone numbers.

— Administrators are allowed to create and delete entries in the phone direc-
tory, as well as to read and write them.

Figure 4 shows the SecuretUML+ComponentUML model that specifies the
above policy.

The GUI language. We now introduce a simple language for modeling GUIs,
which is however rich enough for our present purposes. Its metamodel is shown
in Figure 5. Application GUIs consist of Widgets that are displayed inside Con-
tainers, which are themselves Widgets. Each widget has a (possibly empty) set
of ActionFEvents associated to it, which specifies how the widget reacts to events.
For the purpose of this paper, we can assume that each event can only trigger one
action on the application data.* We also assume that, in each instance of Action-
Event, the value of the attribute modelAction is a SecureUML+ComponentUML
atomic action and that this action has as its root resource an entity declared in
the ComponentUML model that specifies the underlying application-data model.

4 In general, one event can trigger many actions, some of them acting on the applica-
tion data (create, delete, read, update, or execute) and some of them acting on the
GUI widgets (close, open, hide, and so on).

<<Permission>> DataRead
Personname:read
Personphone:read

<<Role>> SystemUser |

<<Permission>> PhoneUpdate
Personphone:update

X <<Entity>> Person

<<Role>> Supervisor _ name : string
<<Permission>> FullAccess phone : int

Person:fullAccess

<<Role>> SystemAdministrator

Fig. 4. A simple security policy for a PhoneBook application.

. - WidgetEvents -
Containment 0.+ Widget 1 actionEvents ActionEvent
contained label : string widget 0 modelfxctlon - Action
event : EventEnum
JA
0..1 fontainer
Container Entry Button
<<enumeration>>
EventEnum
onEnter
onlLeave
onClick
onDoubleClick
Window Action

Fig. 5. A simple metamodel for GUIs.

Ezxample 2. Suppose that our PhoneBook GUI designer decides that the appli-
cation should provide a basic interface for editing entries in the directory. She
therefore designs a GUI consisting of a window PhoneBook Editor, with two
entry boxes: Name and Phone Number. She also decides that, at the time of
creation, each instance of PhoneBook Editor is associated to an instance P of
the entity Person. Moreover, the GUI should offer the following functionality.

— On entering the entry box Name, the box should display the name of the
object P, i.e., she associates the event onEnter with a read action on the
attribute name of an instance of the entity Person. Similar actions should
occur when entering the entry box Phone Number.

— On leaving the entry box Name, the text currently displayed in this box
should be used to update the attribute Name of the person P, i.e., she
associates the event onLeave with an update action on the attribute name of

an instance of the entity Person. Similar actions should occur when leaving
the entry box Phone Number.

Figure 6 shows the instance of the GUI metamodel that corresponds to the
GUI model specifying the above GUI.

a1 - ActionEvent

modelAction = "PersonnameAtomicRead"
event = onEnter

el Entry

label = "Name™

a2 " AclionFvent

modelAction = "PersonnameAtomicUpdate”
event = onleave

w1l Window
label = "PhoneBookEditor" a3 - ActionEvent

modelAction = "PersonphoneAtomicRead"
event = onEnter

e2 - Entry

label = "PhoneMNumber"

a4 : ActionEvent

modelAction = "PersonphoneAtomicUpdate”
event = onLeave

Fig. 6. A simple GUI for editing PhoneBook entries.

2.2 The target model type

SecureUML~+GUI models are the target models of our many-models-to-model
transformation. SecureUML4GUI combines SecureUML with the GUI modeling
language introduced in the previous section. In a nutshell, SecuretUML+GUI
models specify who can execute which events on which widgets. The Secure-
UML+GUI metamodel, (partially) shown in Figure 7, provides the connection
between SecureUML and GUI. It specifies the following.

— The protected resources, namely, ActionFEvents.
— The actions on these protected resources, namely, AtomicExecute.

In the next section we will show the SecureUML+GUI model that results
from applying our transformation to the SecureUML+ComponentUML model
and the GUI model discussed, respectively, in Examples 1 and 2.

3 The Transformation Description

We are ready to describe a many-models-to-model transformation that auto-
matically generates SecureUML+GUI models from SecureUML-+Component-
UML models and GUI models. We assume here, as explained above, that the

Action HAesaurce

i
Butlon
ActionEwent
maodelAction : Action
CompositeAction AtomicAction avent . EventEnum
aclionEvents | 0.° Entry
widgat 1
Widget Container Window
AtomicExscuts -
labal - string
0.
canlainad container | 0.1

Fig. 7. The SecuretUML+GUI metamodel (partial).

source models have the same ComponentUML application-data model. As we
will discuss in the next section, our transformation satisfies the expected prop-
erty, namely, that the (target) SecuretUML+GUI model preserves the security
policy specified in the (source) SecureUML+ComponentUML model.

We now introduce our many-models-to-model transformation as a QVT op-
erational transformation [10, Section 8.4.6] using Operational QVT syntax. In
Figure 8 we show the heading of this operational transformation. The meta-
models GUI, SECUMLANDCOMPUML, and SECUMLADGUI are the GUI metamodel,
the SecureUML~+ComponentUML metamodel, and the SecuretUML+GUI meta-
model that were introduced in Section 2; their definitions are available at [15].
The operational transformation is defined by mapping functions, which are exe-
cuted sequentially. Due to space limitations, we can only describe these functions
here; their full definitions are also available at [15]. The final target models are
obtained in two steps.

Step 1: The model elements of the target model are created as follows.

— The Roles in the (source) SecureUML+ComponentUML model are copied,
along with their hierarchies, in the (target) SecureUML+GUI model, using
the following mapping functions.

secPolicy.objects() [SECUMLANDCOMPUML: :Role]->map Role_to_Role();
secPolicy.objects() [SECUMLANDCOMPUML: :Role] ->map
preserve_Role_hierarchy();

— The Widgets in the (source) GUI model are copied, along with their con-
tainment relationships and their associated ActionEvents, in the (target)
SecureUML+GUI model, using the following mapping functions.

guiModel.objects() [GUI: :ActionEvent]->map
ActionEvent_to_ActionEvent () ;
guiModel.objects () [GUI: :Window] ->map Widget_to_Widget();
guiModel.objects() [GUI: :Entry]->map Widget_to_Widget();
guiModel.objects () [GUI: :Button] ->map Widget_to_Widget();

guiModel.objects () [GUI: :Widget]->map
preserve_containment_hierarchy() ;

— For each ActionEvent in the (source) GUI model, an AtomicEzecute action is
created and linked to the ActionFvent as to its root resource in the (target)
SecureUML+GUI model using the following mapping function.

guiSecPolicy.objects () [SECUMLANDGUI: : ActionEvent]->map
addAtomicExecuteAction();

Step 2: The permission assignment in the target model are created as follows.

— For each ActionEvent’s action in the (source) GUI model, and for each Role
that is allowed to perform this action in the (source) SecureUML+Com-
ponentUML model, a Permission is created in the (target) SecureUML+GUI
model that grants access to Role to execute the ActionFvent’s event. This
is accomplished using the following mapping function.

guiSecPolicy.objects () [SECUMLANDGUI: : ActionEvent]->1liftPermissions() ;

modeltype GUI uses "http://gui/1.0";
modeltype SECUMLANDCOMPUML uses "http://secumlandcompuml/1.0";
modeltype SECUMLANDGUI uses "http://secumlandgui/1.0";

transformation SecurityTransformation(in guiModel : GUI,
in secPolicy : SECUMLANDCOMPUML,
out guiSecPolicy : SECUMLANDGUI);

main() {
/* Step 1: Creating the model elements of the target model */
secPolicy.objects() [SECUMLANDCOMPUML: :Role] ->map Role_to_Role();
secPolicy.objects() [SECUMLANDCOMPUML: :Role] ->map
preserve_Role_hierarchy();
guiModel.objects () [GUI: :ActionEvent]->map
ActionEvent_to_ActionEvent();
guiModel.objects () [GUI: :Window] ->map Widget_to_Widget();
guiModel.objects () [GUI: :Entry] ->map Widget_to_Widget();
guiModel.objects () [GUI: :Button] ->map Widget_to_Widget();
guiModel.objects () [GUI: :Widget]->map
preserve_containment_hierarchy();
guiSecPolicy.objects() [SECUMLANDGUI: : ActionEvent]->map
addAtomicExecuteAction();

/* Step 2: Creating permission assignments in the target model */
guiSecPolicy.objects() [SECUMLANDGUI: : ActionEvent]->1iftPermissions();

Fig. 8. The many-models-to-model transformation’s heading in QVTO syntax.

Ezample 3. We show in Figure 9 the (relevant aspects of the) Secure UML+GUI
model that results from applying our many-models-to-model transformation to
the SecureUML+ComponentUML model and the GUI model discussed, respec-
tively, in Examples 1 and 2. Here, to draw our resulting SecureUML+GUI model,
we use a UML profile similar to the one available for SecureUML~+Component-
UML models, except that the stereotype ((Entity)) is now reserved for Widgets,
which contains as methods their associated ActionFEvents’events.

<<Permission>> <<Permission>x
PersonNameRead PersonPhoneRead
Name.onEnter:execute PhoneNumber_onEnterexecute
<<Hole>> : / <<Enlity>>
SystemUser] Name
' onEnter()
onLeave()
ay <<Permission>> i
PersonPhoneUpdate Z<Entity==>
=<Role>> PhoneNumber onleave execute PersonBookEditor
Supervisor |
T
! I
T PhoneNumber
S) onEnter()
| SystemAdministrator | : ! onLeave()
1 <<Permission>>
! PersonnameExecution

<<Permissi Name_onEnter:execute
PhoneNumber.onEnter:execute Name.onLeave:execute
PhoneNumber.onleave execute

Fig. 9. A security-aware simple GUI for editing PhoneBook entries.

Interestingly, a simple analysis of the resulting SecuretUML+GUI model in
Example 3 reveals that only Administrators should be allowed to open a Phone-
Book Editor window, since only they can execute all the events associated to
the widgets contained in a PhoneBook Editor window (in [1] it is explained
how SecureUML models can be automatically analysed using OCL queries). Of
course, this information is crucial for the GUI designer in order to validate their
GUlIs, i.e., to check that she is designing the right graphical interface to give the
(authorized) users access to the (intended) application data. She may realize,
for example, that, in order to give Supervisors access to editing peoples’ phone
number, another GUI is needed with no action associated this time to the event
of leaving the Name entry box,

4 The correctness of the transformation

In this section, we discuss the correctness of our transformation. Our claim is
that the (target) SecureUML4GUI model S(G(M)) preserves the security pol-
icy specified in the (source) SecureUML4ComponentUML model S(M). More
specifically, we claim that a role is allowed to execute an event in the S(G(M))

model only if it is allowed to execute the action that is associated to this event
in the S(M) model.

In [1] we proposed a metamodel-based approach for automatically analyz-
ing security-design models in a semantically precise and meaningful way. More
concretely, we showed that security properties of security-design models can be
expressed as formulas in OCL [11], the Object Constraint Language of UML. We
can formalize queries about the relationships between users, roles, permissions,
and actions, and we can answer such queries by evaluating them on the in-
stances of the SecureUML metamodel that represent the security-design model
under consideration. We also defined in [1] a number of OCL operators that
formalize different aspects of the access-control information contained in the
security-design models. In particular, we defined in [1] an operator allAtomics()
that, given a role, returns all the atomic actions that a user in this role can
perform:

context Role::allAtomics():Set(AtomicAction) body:
self.allPermissions().allActions() —>asSet()

The operator allPermissions returns the collection of permissions (directly or
indirectly) assigned to a role. The operator allActions returns the collection of
atomic actions whose access is (directly or indirectly) granted by a permission.
We can now use the operator allAtomics() to formally state the correctness prop-
erty of transformation as follows.

Remark 1. Given a SecuretUML+ComponentUML model S(M) and a GUI model
G(M), the SecuretUML+GUI model S(G(M)) resulting from our transforma-
tion satisfies the following property: Let rl be a Role in S(M) and let acev
be an ActionEvent in G(M). Let ac be the Action-value of acev’s attribute
modelAction in G(M). Suppose now that there exists an AtomicEzecute action
acex in S(G(M)) that is linked to the ActionFvent acev as its root resource.
Then, rl.allAtomicActions()—>includes(acez) evaluates to true in S(G(M)) only if
rl.allAtomicActions()—>includes(ac) evaluates to true in S(M).

The above remark follows from the fact that: i) by Step 1 of our transforma-
tion, the role hierarchy in S(G(M)) is ezxactly the one specified in S(M), and
ii) by Step 2 of our transformation, a role is granted permission to execute an
action-event in S(G(M)) only if this role is granted permission to execute in
S(M) the action associated to this action-event (as the value of its attribute
modelAction).

5 The Transformation Extensions

We are currently extending the work presented here in various, related direc-
tions. A first direction is to consider application-data security policies that also
depend on dynamic information, namely the satisfaction of authorization con-
straints in the current system state. In this context, our transformation function

must include functions that correctly map authorization constraints in the se-
curity models to authorization constraints in the security-aware GUI models. A
second direction is to apply our approach to more realistic GUI designs. Here,
we will work with GUI models that associate multiple actions, both on the ap-
plication data and on the GUI widgets, to single events. In this context, Step 2
in our transformation function is less direct. In particular, there could be events
whose execution can not be granted to anybody. This would happen if no one
is allowed to execute all the actions associated to this event. A third direction
is to generate GUI models that are not only security-aware, but also smart.
Smartness is relevant since events can also trigger actions on GUI widgets. For
example, in a smart security-aware GUI, widgets should not give users the option
to open other widgets when these widgets in turn give them options to execute
actions on the application data that they are not authorized to execute. Making
security-aware GUIs also smart requires “lifting” permissions in two directions:
i) from the widgets whose events triggered actions on application data to the
widgets whose events triggered actions on those widgets and ii) from the widgets
that are contained in other widgets to the widgets that contain those widgets.

Overall, we aim to provide GUI designers with better models and tools for
building and analyzing GUIs for security-critical applications, including tools for
automatically checking that, using a given GUI, (authorized) users can indeed
access the (intended) application data, or tools for automatically building GUTs
intended for specific users, in which all (and only) the (authorized) actions on
the application data are indeed accessible by the (intended) users.

6 Related Work

Creating user interfaces is a common task in application development. It can
also be very time consuming and therefore expensive. Many proposals have been
made, and tools have been built, that aim to reduce the efforts required to build
effective and user-friendly graphical interfaces. Surprisingly, despite all these
initiatives, until now there has been no research into the systematic design of
GUIs whose functionality should adhere to the security policy designed for the
underlying application-data model.

In the modeling community, other researchers have investigated how to ex-
tend existing modeling environments for GUI modeling. For instance, [5,3,4]
propose various UML extensions for this purpose. There are also approaches
[8] suggesting the use of off-the-shelf web widget libraries to develop web-based
user interfaces for semantic web applications, where developers can use RDF con-
structs to map the data contained in the underlying data model to the model
implemented by the widget. More directly related to MDA, [13] reviews the
tools that currently support general modeling, model transformations, model
weaving, and model constraints in relation to the special needs of the human-
computer interaction (HCI) community. Another survey is given in [14], which
focuses on transformation tools for model-based user interface development. In
relation to security, [16,17] uses QVT to handle security requirements in an

MDA setting; in particular, to obtain the secure logical scheme from conceptual
models. Also, [7] uses the Sectet-framework to integrate security requirements
with models at the abstract level and proposes a QVT-based chain of tools
that transform these models into artefact’s configuring security components of
a Web services-based architecture. To the best of our knowledge, none of these
approaches is appropriate for modeling application-data access-control security
policies at the GUI level. Also, we are not aware of other approaches based on
model-transformations for automatically generating security-aware GUI models
from security-design models, that is, from models that integrate system designs
with their access-control policy.

In the programming community, independent of model-driven initiatives, nu-
merous projects have addressed implementing graphical user interfaces for ap-
plication data. For example, [9] proposes enriching the application code source
with annotations that control the generation of the graphical user interfaces.
Other researchers have designed and implemented specialized tools that support
the automatic generation of graphical user interfaces meeting their own specific
requirements. These tools simplify configuring personal services, enabling the
combination of different kinds of events [12]. Also, there are many GUI builders,
either integrated in IDEs or available as plug-ins, that simplify the task of cre-
ating application GUIs in different programming languages.

7 Conclusions

In this paper we have presented an approach based on model-transformation
for automatically generating security-aware GUI models. Given a security-aware
data model and a GUI model, our transformation makes the GUI model also
security-aware. We have introduced the source and target models of this trans-
formation (by describing their respective metamodels) and we have described the
main mapping functions that define the transformation as a QVT operational
transformation. We have also discussed the correctness of our transformation. As
part of our work, we have implemented this approach using the Operational QVT
transformation engine that is provided within the M2M Project, a subproject of
the Eclipse Modeling Framework.

Our model-transformation based approach for designing security-aware GUI
models has three main advantages over traditional software development ap-
proaches. First, security engineers and GUI designers can independently model
what they know best. Second, security engineers and GUI designers can indepen-
dently change their models, and these changes are automatically propagated to
the security-aware GUI models. Third, GUI designers can use the security-aware
GUI models to check that they are designing the right GUI to give the authorized
users access to the intended application data. The transformation presented here
is the corner stone of a more ambitious project for making model-driven security
an effective and useful approach for generating multiple system layers as part of
a security-intensive industrial software development.

References

1.

10.

11.

12.

13.

14.

15.

D. Basin, M. Clavel, J. Doser, and M. Egea. Automated analysis of security-
design models. Information and Software Technology, Special issue on Model Based
Development for Secure Information Systems, 2008.

. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML models

to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1):39-91, 2006.

K. Blankenhorn and W. Walter. Extending UML to GUI modeling. http://wuw.
bitfolge.de/pubs/MC2004_Poster_Blankenhorn.pdf, 2004.

P. Pinheiro da Silva and N. W. Paton. UMLi: The unified modeling language for
interactive applications. In UML 2000 - The Unified Modeling Language. Advanc-
ing the standard. Third International Conference, pages 117-132. Springer, 2000.
http://trust.utep.edu/umli/.

TATA Research Development and Design Center. Heavyweight ex-
tension of UML for GUI modeling : A template based approach.
http://www.omg.org/news/meetings/workshops/presentations/uml2001_
presentations/10-2_Venkatesh_typesasStereotypes.pdf, 2001.

D. F. Ferraiolo, R. S. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli.
Proposed NIST standard for Role-Based Access Control. ACM Transactions on
Information and System Security, 4(3):224-274, 2001.

M. Hafner, M. Alam, and R. Breu. Towards a MOF/QVT-Based domain archi-
tecture for Model Driven Security. In Model Driven Engineering Languages and
Systems, volume 4199 of LNCS, pages 275-290. Springer Berlin / Heidelberg, 2006.
M. Hildebrand and J. van Ossenbruggen. Configuring semantic web interfaces by
data mapping. In Siegfried Handschuh, Tom Heath, and Vinhtuan Thai, editors,
Visual Interfaces to the Social and the Semantic Web (VISSW 2009), volume 443,
February 2009.

J. Jelinek and P. Slavik. GUI generation from annotated source code. In TAMODIA
’04: Proceedings of the 8rd Annual Conference on Task models and Diagrams, pages
129-136, New York, NY, USA, 2004. ACM.

Object Management Group. MOF-Queries, Views and Transformations (QVT)-
Final adopted specification. Technical report, OMG, 2005. www.omg.org/docs/
ptc/05-11-01.pdf.

Object Management Group. Object Constraint Language specification. Technical
report, OMG, May 2006. OMG document available at http://www.omg.org.

M. Ogura, H. Mineno, N. Ishikaw, T. Osano, and T. Mizuno. Automatic gui
generation for meta-data based pucc sensor gateway. In Knowledge-Based Intelli-
gent Information and Engineering Systems, volume 5179 of LNCS, pages 159-166.
Springer Berlin—Heidelberg, 2008.

J.L. Pérez-Medina, S.Dupuy-Chessa, and A.Front. A survey of model driven en-
gineering tools for user interface design. In Task Models and Diagrams for User
Interface Design, volume 4849 of LNCS, pages 84-97. Springer Berlin / Heidelberg,
2007.

R.Schaefer. A survey on transformation tools for model based user interface de-
velopment. In Human-Computer Interaction. Interaction Design and Usability.,
volume 4550 of LNCS, pages 1178-1187. Springer Berlin / Heidelberg, 2007.

M. Schlédpfer. A tool for generating security-aware GUI models. http://n.ethz.
ch/student/michschl, 2009.

16.

17.

E. Soler, J. Trujillo, E. Fernandez-Medina, and M. Piattini. Application of QVT
for the development of secure data warehouses: A case study. In The Second Inter-
national Conference on Awvailability, Reliability and Security, 2007. ARES 2007.,
2007.

E. Soler, J. Trujillo, E. Fernandez-Medina, and M. Piattini. A set of QVT relations
to transform PIM to PSM in the design of secure data warehouses. In ARES ’07:
Proceedings of the Second International Conference on Availability, Reliability and
Security, pages 644-654, Washington, DC, USA, 2007. IEEE Computer Society.

