
Towards a Metalogic for Security Protocol Analysis∗

(Extended Abstract)

Carlos Caleiro1 Luca Viganò2 David Basin2

1 CLC, Department of Mathematics, IST, Lisbon, Portugal

cs.math.ist.utl.pt/ccal.html
2 Department of Computer Science, ETH Zurich, Switzerland

www.infsec.ethz.ch/~vigano www.infsec.ethz.ch/~basin

1 Introduction

Many security protocols have been proposed to help build secure distributed systems. Given how
difficult it is for humans to predict all possible ways for distributed computation to proceed, it is
not so surprising that attacks have been found on many protocols that were originally believed to
be secure. Due to the subtlety of the problem, the use of formal methods for analyzing security
protocols has been gaining popularity. These include approaches based on process algebras, e.g. [5,
14, 20, 25], which support elegant models but lack a suitable logical language to express protocol
properties; model-checking and related techniques, such as [2, 3, 11, 22, 26], which are suitable for
automation but rely on simplifying assumptions (to yield finite models) and hence are difficult to
use reliably on different applications; special-purpose epistemic logics like BAN, e.g. [10], which
provide for high-level knowledge-based formalizations of protocols and their properties, but whose
semantics is complex, restricted, or simply lacking; and inductive theorem proving, like [24], which
are general, but require time consuming interactive theorem proving by experienced researchers.

In this paper, we report on our work-in-progress on the formalization of a suitable version of
temporal logic for communicating agents which provides both an object level tool, where we can
specify and reason about specific protocols, and a metalevel tool for the compared analysis of
security protocol models and properties. Our starting point is the work of [15, 17], which focus
on the expressibility of properties from the local point of view of each agent, and that we extend
in order to express also global properties. Besides its very clean interpretation structures, which
provide a nice and intuitive model of distributed systems, our reasons for using this logic are
primarily threefold. First, its temporal dimension can be effectively used to formalize and reason
about interleaved protocol executions; this is in contrast to other approaches based on epistemic or
doxastic logics, which are not well-suited for reasoning about such interleavings but consider only
single protocol executions. Second, its distributed dimension, with explicit agent identification,
supports formalizing the different security properties that the protocols have been designed to
achieve, such as secrecy of information and different notions of authentication between agents.
Finally, it is well-suited for specifying communicating agents in distributed systems.

Using the logic we are able to specify a protocol-independent distributed communication model,
on top of which protocols can be formally defined and analyzed. For instance, we have used
the logic to analyze a number of protocols and properties the protocols are supposed to estab-
lish. In particular, we have analyzed the well-known Needham-Schroeder Public-Key Protocol
(NSPK) [18]. We have thereby been able both to find the usual man-in-the-middle attack to the

∗This work was partially supported by FCT and EU FEDER via the Project FibLog POCTI/MAT/37239/2001
of CLC, and by the FET Open Project IST-2001-39252 and the BBW Project 02.0431, “AVISPA: Automated
Validation of Internet Security Protocols and Applications”.

1



NSPK and to show that authentication properties hold for the corrected version NSL (given by
Lowe to prevent the man-in-the-middle attack).

The principal aim of our work, however, is not merely the concrete analysis of specific protocols.
Rather, our long-term objective is to use our logic as a metalevel tool for the compared analysis
of security protocol models and properties. Our logic provides a basis to rigorously investigate
general metalevel properties of different protocol models, by establishing modeling and analysis
simplification techniques that may contribute to the sound design of effective protocol validation
tools. In this regard, we believe that our logic can contribute to clarifying the concepts involved
through a natural representation of the underlying computational models. We anticipate several
applications. The most direct consists of a rigorous account of widely used simplification tech-
niques, namely by reasoning about (formally proving) the correctness of widely used simplification
principles, like bounds on the number of principals involved, the adequacy of the intruder trace
as an abstraction of the hostile communication channel, step-compression and other reduction,
abstraction and approximation techniques (see, for example, [1, 3, 4, 6, 9, 12, 16, 23]). A number
of promising preliminary results are described in [7, 8].

2 Distributed temporal logic

DTL [15] is a logic for reasoning about temporal properties of distributed systems from the local
point of view of its agents, which are assumed to execute sequentially and to interact by means of
synchronous event sharing. Distribution is implicit, making it easier to state the properties of an
entire system through the local properties of its component agents and their interaction. Herein,
we introduce a version of DTL tailored to allow also for the smooth spelling and proof of global
properties.

The logic is defined in the context of a given signature of a distributed system, 〈Id , {Acti}i∈Id ,
x{Propi}i∈Id 〉 where Id is a finite set (of agent identifiers) and, for each i ∈ Id , Acti is a set (of
local action symbols) and Propi is a set (of local state propositions). The global language L is
defined by the grammar

L ::= @i[Li] | ⊥ | L⇒L ,

where the local languages Li for each i ∈ Id are defined by

Li ::= Acti | Propi | ⊥ | Li ⇒Li | Li U Li | Li S Li | @j [Lj ] ,

with j ∈ Id . Locally for an agent, U and S are respectively the until and since temporal operators.
Furthermore, actions correspond to true statements of an agent when they have just occurred,
whereas state propositions characterize the current local states of the agents. Note that @j [ϕ]
means different things depending on the context. If it is a global formula, it means that ϕ holds
at the current local state of agent j. If it is a local formula appearing inside an @i-formula, it
means that agent i has just communicated with agent j for whom ϕ held.

We can then define a number of other operators as abbreviations as usual, e.g. ¬, >, ∨, ∧, ⇔,
as well as:

Xϕ ≡ ⊥ U ϕ next
Yϕ ≡ ⊥ S ϕ previous
Fϕ ≡ > U ϕ sometime in the future
Pϕ ≡ > S ϕ sometime in the past
Gϕ ≡ ¬F¬ϕ always in the future
Hϕ ≡ ¬P¬ϕ always in the past

† ≡ ¬X> in the end
∗ ≡ ¬Y> in the beginning

F◦ ϕ ≡ ϕ ∨ Fϕ now or sometime in the future
P◦ ϕ ≡ ϕ ∨ Pϕ now or sometime in the past
G◦ ϕ ≡ ϕ ∧ Gϕ now and always in the future
H◦ ϕ ≡ ϕ ∧ Hϕ now and always in the past

The interpretation structures of L are built upon adequate forms of Winskel’s event struc-

tures [27]. A local life-cycle (of agent i ∈ Id) is a pair λi = (Evi,→i) where Evi is a set (of local
events) and →i⊆ Evi×Evi is a (local successor) relation such that →∗

i defines a well-founded total
order of causality on Evi. Of course, Evi can be finite or infinite, but it is always denumerable.

2



A local configuration of λi is any finite set ξi ⊆ Evi such that if e′ ∈ ξi and e →i e
′ then e ∈ ξi.

We denote the set of all local configurations of λi by Ξi. Clearly, every local configuration ξi 6= ∅
has a maximum event that we denote by last(ξi). Moreover, for every local configuration ξi 6= Evi

there exists a unique next event next(ξi), corresponding to the minimum event in Evi \ ξi, such
that ξi ∪ {next(ξi)} is a local configuration.

A distributed life-cycle is a family λ = {λi}i∈Id , where λi = (Evi,→i) is the local life-cycle
of each agent i, such that →∗= (

⋃
i∈Id

→i)
∗ defines a partial order of causality on the set Ev =⋃

i∈Id
Evi of all events. Note that each event may be shared by several agents at communication

points. Therefore, the condition that →∗ defines a global ordering of the set of events amounts
to requiring that communication does not introduce cycles among the different local causality
orderings. A global configuration of λ is any set ξ ⊆ Ev such that if e′ ∈ ξ and e → e′ then
e ∈ ξ. We denote the set of all global configurations of λ by Ξ. Clearly, every global configuration
ξ contains a local configuration ξ|i = ξ ∩ Evi for each i ∈ Id . Moreover, given E ⊆ Ev finite,
(E ↓) = {e′ ∈ Ev | e′ →∗ e for some e ∈ E} is a global configuration. Given a global configuration
ξ and E * ξ, (ξ+E) stands for ξ∪ (E ↓). If E = {e} we just write (e ↓) and (ξ+e). The following
lemma shows that the configurations of any distributed life-cycle λ can be built by consecutively
adding events.

Lemma 2.1 If ξ, ξ′ ∈ Ξ and ξ  ξ′ then there exists e ∈ ξ′ \ ξ such that ξ ∪ {e} ∈ Ξ.

An interpretation structure for L is a suitably labeled distributed life-cycle, that is, a triple µ =
〈λ, σ, α〉 where λ is a distributed life-cycle, σ = {σi | Ξi → 2Propi}i∈Id is an agent-indexed family
of maps that associate a local state to each local configuration, and α = {αi | Evi → 2Acti}i∈Id ,
with αi(e) 6= ∅ and finite for every e ∈ Evi, is an agent-indexed family of maps that associate
a non-empty finite set of local actions to each local event. We can now define the satisfaction
relation at a given global configuration ξ of µ

µ, ξ 
 @i[ϕ] if µ, ξ|i 
i ϕ; µ, ξ 6
 ⊥; and µ, ξ 
 γ⇒ δ if µ, ξ 6
 γ or µ, ξ 
 δ,

where local satisfaction is defined by

• µ, ξi 
i act if ξi 6= ∅ and αi(last(ξi)) = act;

• µ, ξi 
i p if p ∈ σi(ξi);

• µ, ξi 6
i ⊥;

• µ, ξi 
i ϕ⇒ ψ if µ, ξi 6
i ϕ or µ, ξi 
i ψ;

• µ, ξi 
i ϕ U ψ if there exists ξ′′i ∈ Ξi with ξi  ξ′′i such that µ, ξ′′i 
i ψ, and µ, ξ′i 
i ϕ for
every ξ′i ∈ Ξi with ξi  ξ′i  ξ′′i ;

• µ, ξi 
i ϕ S ψ if there exists ξ′′i ∈ Ξi with ξ′′i  ξi such that µ, ξ′′i 
i ψ, and µ, ξ′i 
i ϕ for
every ξ′i ∈ Ξi with ξ′′i  ξ′i  ξi; and

• µ, ξi 
i @j [ϕ] if ξi 6= ∅, last(ξi) ∈ Evj and µ, (last(ξi) ↓)|j 
j ϕ.

As usual, we say that µ is a model of Γ ⊆ L if µ, ξ 
 γ for every global configuration ξ of µ and
every γ ∈ Γ.

We now present some useful lemmas about the logic.

Lemma 2.2 (Local properties) Let ϕ ∈ Li be a local formula and µ an interpretation structure.

If ξ, ξ′ ∈ Ξ are such that ξ|i = ξ′|i then µ, ξ 
 @i[ϕ] if and only if µ, ξ′ 
 @i[ϕ].

In the sequel, if ϕ ∈ Li does not include @ subformulas then it is called a private formula.
Furthermore, if ϕ is also free of the temporal operators U and S then it is called a state formula.
The following is a useful lemma concerning private formulas.

3



Lemma 2.3 (Private properties) Let ϕ ∈ Li be a private formula and µ, µ′ interpretation

structures with µi = µ′
i. If ξ ∈ Ξ and ξ′ ∈ Ξ′ are such that ξ|i = ξ′|i then µ, ξi 
 @i[ϕ] if and only

if µ′, ξ′i 
 @i[ϕ].

The logic allows us to state the following invariance rule for global properties.

Proposition 2.4 (Global invariance rule) Let γ ∈ L be a global formula, µ an interpretation

structure and ξ ∈ Ξ a global configuration. If both µ, ξ 
 γ, and µ, ξ ′ 
 γ implies µ, ξ′ ∪ {e} 
 γ
for every ξ′ ∈ Ξ and e ∈ Ev \ ξ′ such that ξ ⊆ ξ′ and ξ′ ∪ {e} ∈ Ξ, then µ, ξ′ 
 γ for every ξ′ ∈ Ξ
such that ξ ⊆ ξ′.

For local state properties, the invariance rule can be stated in the following more familiar way.

Proposition 2.5 (Local invariance rule) Let ϕ ∈ Li be a local state formula, µ an interpre-

tation structure and ξi ∈ Ξi a local configuration. If both µ, ξi 
i ϕ, and µ, ξ′i 
i ϕ implies

µ, ξ′i ∪ {next(ξ′i)} 
 ϕ for every ξ′i ∈ Ξi such that ξi ⊆ ξ′i ( Evi, then µ, ξ′i 
i ϕ for every ξ′i ∈ Ξi

such that ξi ⊆ ξ′i, or equivalently, µ, ξi 
i G◦ ϕ.

Hence, µ is a model of @i[ϕ] if and only if µ is a model of both @i[∗⇒ϕ] and @i[(ϕ∧X>)⇒Xϕ],
or equivalently, @i[(ϕ ∧ X act) ⇒ Xϕ] for every act ∈ Acti.

3 The network model

We provide the specification of a generic open network where agents interact by exchanging mes-
sages through an insecure public channel. A network signature is a pair 〈Pr,Nam〉, where Pr
is a finite set of principal identifiers A,B,C, . . . , and Nam is a family {NamA}A∈Pr of pairwise
disjoint finite sets of names, corresponding to the possible aliases used by each principal (the
importance of aliases will become clearer below. We write A′ to denote a name used by principal
A. By abuse of notation, we also use Nam =

⋃
A∈Pr NamA. Furthermore, we assume fixed two

sets Non and Key of “numbers” that can be used as nonces and keys, respectively, and whose
members we denote by N and K, possibly with annotations. In general, we assume that several
kinds of keys can coexist and that each key K has its own inverse key K−1. Messages, which we
denote by M possibly with annotations, are built inductively from atomic messages (names and
“numbers”), by concatenation ( ; ), which we assume to be associative, and encryption under a
key K ({ }K). The set Msg of messages is thus defined by

Msg ::= Nam | Non | Key | Msg;Msg | {Msg}Key .

Given a network signature 〈Pr,Nam〉, we obtain a distributed signature by taking Id = Pr ]
{Ch}, where Ch is the communication channel (used to model asynchronous communication), and
letting the local alphabet of each agent (the principals and the channel) be defined as follows.
The signature of a principal A requires actions ActA and state propositions PropA, where ActA
includes

• send(M,B′) — sending of the message M to B′;

• rec(M) — reception of the message M ;

• spy(M) — eavesdropping of the message M ; and

• nonce(N) — generation of the fresh nonce N ,

and PropA includes

• knows(M) — knowledge of the message M .

For the channel Ch we do not require any state propositions, i.e. PropCh = ∅, whereas the actions
ActCh include

• in(M,A′) — arrival at the channel of the message M addressed to A′;

4



• out(M,A′) — delivery of M from the channel to principal A; and

• leak — leaking of messages.

In the network model, principals can send and receive messages, at will, always through the
channel. If the principal A sends a message to B′, then the message synchronously arrives at
the channel, where it is stored for future delivery to B. If delivery ever happens, it must be
synchronized with the corresponding receive action of B. However, principal A can only send M
to B′ if A knows both B′ and M . As usual, the knowledge of principals is not static. In addition to
their initial knowledge, principals gain knowledge from the messages they receive and the nonces
they generate. Principals may also spy on messages being leaked by the channel and learn their
content. We do not allow principals to explicitly divert messages, but we also do not guarantee
that messages delivered to the channel are ever received.

To ensure that principals do not learn messages in an ad hoc fashion, we specify that the knows

propositions only hold where strictly necessary. We follow the idea underlying Paulson’s inductive
model [24], in accordance with the usual assumption of perfect cryptography. We restrict attention
to those interpretation structures µ such that, for every principal A, the following condition holds
for all messages M and global configurations ξ ∈ Ξ such that ξ|A 6= ∅:

(K) µ, ξ 
A knows(M) iff

M ∈ synth(analyz ({M ′ | µ, ξ 
A (Y knows(M ′)) ∨ rec(M ′) ∨ spy(M ′) ∨ nonce(M ′)})) ,

where analyz and synth are the functions representing how principals analyze or synthesize mes-
sages from a given set of messages (see, e.g., [24]).

To guarantee the freshness and uniqueness of the nonces generated by each principal, we further
require the axioms

(N1) @A[nonce(N) ⇒ Y¬ knows(MN)],

(N2) @A[nonce(N)] ⇒
∧

B∈Pr\{A} @B [¬ knows(MN )],

where MN ranges over all the messages containing the nonce N . Together with (K), (N1) and
(N2) guarantee that every nonce is generated at most once, if at all, in each model, and always
freshly (taking also into account the initial knowledge of all agents). The specification of the
network model also comprises a number of axioms that characterize the behavior of the channel
and of each principal A ∈ Pr:

(C1) @Ch [in(M,A′) ⇒
∨

B∈Pr @B[send(M,A′)]];

(C2) @Ch [out(M,A′) ⇒ P in(M,A′)]]; and

(C3) @Ch [out(M,A′) ⇒ @A[rec(M)]],

(P1) @A[send(M,B′) ⇒ Y(knows(M) ∧ knows(B′))];

(P2) @A[send(M,B′) ⇒ @Ch [in(M,B′)]];

(P3) @A[rec(M) ⇒ @Ch [
∨

A′∈NamA
out(M,A′)]];

(P4) @A[spy(M) ⇒ @Ch [leak ∧ P
∨

B′∈Nam in(M,B′)]];

(P5) @A[
∧

B∈Pr\{A} ¬@B [>]]; and

(P6) @A[nonce(N) ⇒¬@Ch [>]].

The channel axioms (C1–C3) are straightforward. They state that a message addressed to A′

only arrives at the channel if it is sent to A′ by some principal B; that the channel only delivers
a message to A′ if such a message for A′ has previously arrived; and that if the channel delivers
a message to A′ then A receives it. The principal axioms are also simple. (P1) is a precondition
for sending a message, stating that the sender must know both the message and the recipient’s
name beforehand. The next three formulas are interaction axioms. (P2) and (P3) state that
the sending and receiving of messages, respectively, must be shared with the corresponding arrival
and delivery actions of the channel. (P4) guarantees that a spied message must have arrived
at the channel, addressed to some recipient. The two final axioms limit the possible amount
of interaction: (P5) guarantees that principals never communicate directly (only through the
channel), and (P6) states that nonce generating actions are not communication actions.

5



4 Protocol modeling and analysis

Protocols are usually informally described by short sequences of messages that are exchanged by
principals in order to achieve particular security goals in open, hostile environments. We illustrate
protocol modeling on top of our network by using a standard example: the (flawed) simplified
Needham-Schroeder Public-Key Protocol NSPK [18], which we present as the following sequence
of message exchange steps.

a→ b : (n1). {n1; a}Kb

b→ a : (n2). {n1;n2}Ka

a→ b : {n2}Kb

In this notation a and b are variables of sort name that denote each of the roles played in one
execution of the protocol, and n1 and n2 are variables of sort nonce. The arrows represent
communication, from sender to receiver. The parenthesized nonces prefixing the first and second
messages exchanges signify that these nonces must be freshly generated before the subsequent
message is sent. Moreover, it is assumed that an underlying “infrastructure” of public and private

keys exists: Ka represents the public key of a, whose inverse key should be private, i.e. known
by no one but the principal using that name. Although other possibilities could be easily added
to the model, we refrain from doing so here, for simplicity, and assume that these are the only
existing keys.

Formalizing a protocol like the above involves defining the sequences of actions (send, rec,
and nonce) taken by honest agents executing the protocol. Namely, for each role, we formalize
the actions taken and the order in which they must be taken. In the case of NSPK there are
two roles: an initiator role Init, represented by a, and a responder role Resp, represented by b.
Given distinct names A′ and B′, of principals A and B respectively, and nonces N1 and N2, the
role instantiations should correspond to the execution, by principal A, of the sequence of actions
runInit

A (A′, B′, N1, N2):

〈nonce(N1).send({N1;A
′}KB′

, B′).rec({N1;N2}KA′
).send({N2}KB′

, B′)〉 ,

and to the execution, by principal B, of the sequence runResp
B (A′, B′, N1, N2):

〈rec({N1;A
′}KB′

).nonce(N2).send({N1;N2}KA′
, A′).rec({N2}KB′

)〉 .

If runi
A(M) = 〈act1 . . . actn〉 then we can consider the local formula rolei

A(M):

actn ∧ P(actn−1 ∧ P(. . . ∧ P act1) . . . ) .

For example, it should be clear that µ, ξ 
 @A[roleInit
A (A′, B′, N1, N2)] if and only if A has just

completed at ξ the required sequence of actions.

4.1 Honesty

We take an external view of the system, supported by the one-intruder reduction reported in [7, 8],
and consider a protocol signature to be a triple 〈Hn, {Z},Nam〉 where Hn is the set of honest of
principals and Z /∈ Hn is the intruder, and 〈Hn∪{Z},Nam〉 is a network signature such that every
honest principal has exactly one name and never plays two distinct roles in the same protocol run.
Without loss of generality, we assume that NamA = {A} for every A ∈ Hn. We assume also that
the private key of each honest principal is initially only known by that principal. This can be
achieved by the axioms (Key1) and (Key2) below, where A ∈ Hn:

(Key1) @A[∗⇒ knows(K−1

A )]; and

(Key2) @B [∗⇒ ¬ knows(M)], for every B ∈ Pr \ {A} and M containing K−1

A .

Models of a protocol will be those network models where, furthermore, all honest principals follow
the rules of the protocol. That is, for every A ∈ Hn, if the local life-cycle of A is e1 →A e2 →A

6



e3 →A . . . , then the corresponding (possibly infinite) sequence of actions 〈αA(e1).αA(e2).αA(e3) . . . 〉
must be an interleaving of prefixes of possible protocol runs, but using distinct fresh nonces in
each of them. In the case of NSPK, this means that the life-cycle of an honest agent must be built
by interleaving prefixes of sequences of the form runInit

A (A,B′, N1, N2) or runResp
A (B′, A,N1, N2),

such that no two initiator runs can have the same N1, no two responder runs can have the same
N2, and the N1 of any initiator run must be different from the N2 of any responder run.

4.2 Security goals

The aim of protocol analysis is to prove (or disprove) the correctness of a protocol with respect
to the security goals that it is supposed to achieve. For instance, secrecy of the critical data
exchanged during an execution of the protocol among its participants is certainly a goal to be
achieved. In addition, an honest principal running the protocol should be able to authenticate the
identities of its protocol partners through the examination of the messages he receives. Below, we
show how to formulate the required secrecy and authentication goals of protocols in the general
case, illustrating them by means of the NSPK protocol.

As usual, we call an attack to the protocol, and specifically to a given security goal, any
protocol model µ and configuration ξ for which the formula expressing the goal does not hold. Let
us start with secrecy.

Secrecy We can formalize that the messages in a finite set S will remain a shared secret between
the participants after a complete execution of the protocol with participants A1, . . . , Aj by the
formula secrS :

j∧

i=1

@Ai
[P◦ rolei

Ai
(M)] ⇒

∧

B∈Pr\{A1,...,Aj}

∧

M∈S

@B[¬ knows(M)].

Of course, this property can only be expected to hold in particular situations. Assume that all
the participants in a complete run of the protocol are honest. One should then expect that the
“critical” nonces generated during that run will remain a secret shared only by the participating
principals. Indeed, being honest, they will not reuse those nonces in further protocol runs. Using
the logic, we can check the property secrF (M) for the relevant set F of fresh nonces. In the case
of NSPK, this would amount to requiring secr{N1,N2}(A,B,N1, N2), with A and B both honest.

Authentication There are many possible shades of authentication (see, e.g., [19]). However,
most authors agree that authentication should be expressed as some kind of correspondence prop-
erty between the messages an agent receives in a protocol run and the messages that other par-
ticipants of the same run are supposed to send. The typical authentication goal states that if an
honest principal A completes his part of a run of a protocol in role i, with certain partners and
data, then it must be the case that these partners have also been actively involved by sending to
A the messages that he received. The property that A authenticates a partner B in role j at step
q of the protocol can be defined in our logic by the formula authi,j,q

A,B(M), which is

@A[rolei
A(M)] ⇒ @B [P◦ send(M,A)],

assuming that the protocol step q requires that B, in role j, sends message M to A, in role
i. We should therefore require authi,j,q

A,B(M) to hold whenever step q is considered essential. In
the case of NSPK, we could require for honest A acting as initiator, the authentication of the
responder at step 2 using authInit,Resp,2

A,B (A,B′, N1, N2), and for honest B acting as responder, the

authentication of the initiator at step 3 using authResp,Init,3
B,A (A′, B,N1, N2). The latter fails in the

man-in-the-middle attack to NSPK [18], as we explain below.

7



4.3 Analysis

To evaluate the cogency of our approach, we have analyzed the well-known Needham-Schroeder
Public-Key Protocol (NSPK) and the protocol NSL, the corrected version given by Lowe to prevent
the man-in-the-middle attack on NSPK [18]. We have applied our logic to these and other similar
examples, and have thereby been able both to:

• find the usual man-in-the-middle attack to NSPK (which results from the failure of the proof
of the mentioned authentication formula), and

• show that the authentication properties hold for NSL.

A detailed account of our analysis of these and other protocols and properties can be found in [7, 8].

5 Conclusion

We have been applying our logic also to investigate general metatheoretic properties of the un-
derlying protocol models and model simplification techniques that may contribute to the sound
design of effective protocol analysis tools. Such results also help simplify the underlying protocol
model and thereby simplify the analysis of properties such as the ones considered in the previous
section. Namely, in [7, 8], we prove a general lemma about secret data that is similar to the
secrecy theorems of [13, 21]. We also obtain soundness and completeness results, with respect
to typical security goals, for two model-simplification techniques: one intruder is enough, in the
lines of [12], and the predatory-intruder, a bound on the behavior of the intruder that goes in the
direction of the trace models used in practice, e.g. [24]. While these results, mutatis mutandis,
have already been shown for other particular formalisms, our logic provides a means for proving
them in a general and uniform way, within the same formalism, which opens the way for further
general investigations. Our formalization has also allowed us to clarify aspects of these simplifi-
cation properties that are often neglected or cannot be specified in the first place (e.g. concerning
principals’ identities and the way security properties are established). We have also begun ap-
plying our logic to other metatheoretical investigations, such as the development of appropriate
partial-order techniques that may reduce the (potentially infinite) state-space exploration involved
in model-checking protocol properties (cf. [3]). This is work in progress and the first results are
promising.

References

1. A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis of Security Protocols. In
Proc. SAT 2003, LNCS 2919. Springer-Verlag, 2003. Available at http://www.avispa-project.org.

2. A. Armando, L. Compagna, and P. Ganty. SAT-based Model-Checking of Security Protocols using
Planning Graph Analysis. In Proc. FME’2003, LNCS 2805. Springer-Verlag, 2003.

3. D. Basin, S. Mödersheim, and L. Viganò. An On-The-Fly Model-Checker for Security Protocol Anal-
ysis. In E. Snekkenes and D. Gollmann, editors, Proc. ESORICS’03, LNCS 2808, pages 253–270.
Springer-Verlag, 2003. Available at http://www.avispa-project.org.

4. D. Basin, S. Mödersheim, and L. Viganò. Constraint Differentiation: A New Reduction Technique
for Constraint-Based Analysis of Security Protocols. In V. Atluri and P. Liu, editors, Proc. CCS’03,
pages 335–344. ACM Press, 2003. Available at http://www.avispa-project.org.

5. C. Bodei, P. Degano, R. Focardi, and C. Priami. Primitives for authentication in process algebras.
Theoretical Computer Science, 283(2), 2002.

6. L. Bozga, Y. Lakhnech, and M. Perin. Pattern-based abstraction for verifying secrecy in protocols.
In Proc. TACAS 2003, LNCS 2619. Springer-Verlag, 2003.

7. C. Caleiro, L. Viganò, and D. Basin. Distributed Temporal Logic for Security Protocol Analysis. In
preparation, 2004.

8



8. C. Caleiro, L. Viganò, and D. Basin. Metareasoning about Security Protocols using Distributed
Temporal Logic. To appear, 2004.

9. I. Cervesato, C. Meadows, and P. F. Syverson. Dolev-Yao is no better than Machiavelli. In P. Degano,
editor, Proc. of WITS’00, 8–9 July 2000.

10. I. Cervesato and P. F. Syverson. The logic of authentication protocols. In Foundations of Security
Analysis and Design, LNCS 2171, pages 63–136. Springer-Verlag, 2001.

11. Y. Chevalier and L. Vigneron. Automated Unbounded Verification of Security Protocols. In
E. Brinksma and K. G. Larsen, editors, Proc. CAV’02, LNCS 2404, pages 324–337. Springer-Verlag,
2002.

12. H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. In Proc. ESOP’2003,
LNCS 2618, pages 99–113. Springer-Verlag, 2003.

13. V. Cortier, J. Millen, and H. Rueß. Proving secrecy is easy enough. In Proc. of CSFW’01. IEEE
Computer Society, 2001.

14. B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols using Casper and FDR.
In Proc. FLOC’99 Workshop on Formal Methods and Security Protocols (FMSP’99), 1999.

15. H.-D. Ehrich and C. Caleiro. Specifying communication in distributed information systems. Acta
Informatica, 36:591–616, 2000.

16. T. Genet and F. Klay. Rewriting for cryptographic protocol verification. In Proc. CADE’00, LNCS
1831, pages 271–290. Springer-Verlag, 2000.

17. K. Lodaya, R. Parikh, R. Ramanujam, and P. Thiagarajan. A logical study of distributed transition
systems. Information and Computation, 119(1):91–118, 1995.

18. G. Lowe. Breaking and Fixing the Needham-Shroeder Public-Key Protocol Using FDR. In T. Margaria
and B. Steffen, editors, Proc. TACAS’96, LNCS 1055, pages 147–166. Springer-Verlag, 1996.

19. G. Lowe. A hierarchy of authentication specifications. In Proc. CSFW’97. IEEE Computer Society
Press, 1997.

20. G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of Computer Security,
6(1):53–84, 1998.

21. J. Millen and H. Rueß. Protocol-independent secrecy. In 2000 IEEE Symposium on Security and
Privacy. IEEE Computer Society, May 2000.

22. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis.
In Proc. of CCS’01, pages 166–175. ACM Press, 2001.

23. F. Oehl, G. Cécé, O. Kouchnarenko, and D. Sinclair. Automatic approximation for the verification of
cryptographic protocols. In Proc. Conference on Formal Aspects of Security, LNCS 2629. Springer-
Verlag, 2003.

24. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6:85–128, 1998.

25. P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of Security
Protocols. Addison Wesley, 2000.

26. D. Song, S. Berezin, and A. Perrig. Athena: a novel approach to efficient automatic security protocol
analysis. Journal of Computer Security, 9:47–74, 2001.

27. G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets:
Applications and Relationships to Other Models of Concurrency, LNCS 255, pages 325–392. Springer-
Verlag, 1987.

9


