
Policy Monitoring in First-order Temporal Logic?

David Basin, Felix Klaedtke, and Samuel Müller

Department of Computer Science, ETH Zurich, Switzerland

Abstract. We present an approach to monitoring system policies. As
a specification language, we use an expressive fragment of a temporal
logic, which can be effectively monitored. We report on case studies in
security and compliance monitoring and use these to show the adequacy
of our specification language for naturally expressing complex, realistic
policies and the practical feasibility of monitoring these policies using
our monitoring algorithm.

1 Introduction

Runtime monitoring is an approach to verifying system properties at execution
time by using an online algorithm to check whether a system trace satisfies
a temporal property. Whereas novel application areas such as compliance or
business activity monitoring [8, 19, 24] require expressive property specification
languages, current monitoring techniques are restricted in the properties they
can handle. They either support properties expressed in propositional temporal
logics and thus cannot cope with variables ranging over infinite domains [11,27,
34, 39, 49], do not provide both universal and existential quantification [6, 30,
40, 43] or only in restricted ways [6, 25, 47, 48], do not allow arbitrary quantifier
alternation [6,38], cannot handle unrestricted negation [13,38,46], do not provide
quantitative temporal operators [38, 43], or cannot simultaneously handle both
past and future operators [13,25,38–40,44,46,48].

In this paper, we present our recent work [9,10] on runtime monitoring using
an expressive safety fragment of metric first-order temporal logic (MFOTL),
which overcomes most of the above limitations. The fragment consists of formulae
of the form �φ, where φ is bounded, i.e., its temporal operators refer only finitely
into the future. As both (metric) past and bounded future operators may be
arbitrarily nested, MFOTL supports natural specifications of complex policies.
Moreover, the monitors work with infinite structures where relations are either
representable by automata, so-called automatic structures [12,32], or are finite.

We review MFOTL and our monitoring algorithm, present applications, and
give performance results. For reasons of space, we only consider here monitoring
structures with finite relations. In [10], we also show how to handle automatic
structures and provide all definitions, algorithms, and proofs. Further details on
our case studies and performance results are given in [9].

? This work was partially supported by the Nokia Research Center, Switzerland.
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The applications we present come from the domain of security and com-
pliance monitoring. An example, from financial reporting, is the requirement:
Every transaction of a customer who has within the last 30 days been involved
in a previous suspicious transaction, must be reported as suspicious within two
days. Our examples illustrate MFOTL’s suitability for specifying complex, real-
istic security policies. The class of policies covered constitute safety properties,
where compliance can be checked by monitoring system traces. In the domain
of security, this encompasses most traditional access-control policies as well as
usage-control policies and policies arising in regulatory compliance. As we will
see, such policies often combine event and state predicates, relations on data, and
complex temporal relationships; all of these aspects can be naturally represented
by MFOTL formulae interpreted over a metric, point-based semantics.

To evaluate our monitoring algorithm, we monitored different policies on
synthetic data streams. Our experiments indicate that our approach is practically
feasible with modest computing and storage requirements. Indeed, given that
events can be processed in the order of milliseconds, the efficiency is such that
our monitors can also be used online to detect policy violations.

2 Monitoring Metric First-order Temporal Properties

We first introduce metric first-order temporal logic (MFOTL), an extension of
propositional metric temporal logic [33]. Afterwards, we describe our monitoring
algorithm from [10] for a safety fragment of MFOTL.

2.1 Metric Temporal First-order Logic

Syntax and Semantics. Let I be the set of nonempty intervals over N. We often
write an interval in I as [b, b′) := {a ∈ N |b ≤ a < b′}, where b ∈ N, b′ ∈ N∪{∞},
and b < b′. A signature S is a tuple (C,R, ι), where C is a finite set of constant
symbols, R is a finite set of predicates disjoint from C, and the function ι : R→ N
associates each predicate r ∈ R with an arity ι(r) ∈ N. In the following, let
S = (C,R, ι) be a signature and V a countably infinite set of variables, assuming
V ∩ (C ∪R) = ∅.

The (MFOTL) formulae over the signature S are given by the grammar

φ ::= t1≈ t2 | t1≺ t2 | r(t1, . . . , tι(r)) | ¬φ | φ∧φ | ∃x.φ | Iφ |#Iφ | φ SI φ | φ UI φ ,

where t1, t2, . . . range over the elements in V ∪C, and r, x, and I range over the
elements in R, V , and I, respectively.

To define MFOTL’s semantics, we need the following notions. A (first-order)
structure D over S consists of a domain |D| 6= ∅ and interpretations cD ∈ |D|
and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal (first-order) structure
over S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a sequence of structures over S
and τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers (i.e., time stamps), where:
1. The sequence τ̄ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and

makes progress (i.e., for every i ≥ 0, there is some j > i such that τj > τi).
2. D̄ has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. We denote the

domain by |D̄| and require that |D̄| is strict linearly ordered by a relation <.
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(D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄ , v, i) |= t ≺ t′ iff v(t) < v(t′)

(D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff
(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄ , v, i) |= ¬φ iff (D̄, τ̄ , v, i) 6|= φ
(D̄, τ̄ , v, i) |= φ ∧ ψ iff (D̄, τ̄ , v, i) |= φ and (D̄, τ̄ , v, i) |= ψ
(D̄, τ̄ , v, i) |= ∃x. φ iff (D̄, τ̄ , v[x/d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄ , v, i) |=  I φ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= φ
(D̄, τ̄ , v, i) |= #I φ iff τi+1 − τi ∈ I and (D̄, τ̄ , v, i+ 1) |= φ
(D̄, τ̄ , v, i) |= φ SI ψ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [j + 1, i+ 1)
(D̄, τ̄ , v, i) |= φ UI ψ iff for some j ≥ i, τj − τi ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [i, j)

Fig. 1. Semantics of MFOTL.

3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for
all i ≥ 0. We denote c’s interpretation by cD̄.
A valuation is a mapping v : V → |D̄|. We abuse notation by applying a

valuation v also to constant symbols c ∈ C, with v(c) = cD̄. For a valuation v,
the variable vector x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ |D̄|n, v[x̄/d̄] is the
valuation mapping xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is
unaltered.

The semantics of MFOTL, (D̄, τ̄ , v, i) |= φ, is given in Figure 1, where
(D̄, τ̄) is a temporal structure over the signature S, with D̄ = (D0,D1, . . . ),
τ̄ = (τ0, τ1, . . . ), v a valuation, i ∈ N, and φ a formula over S. Note that the
temporal operators are augmented with intervals and a formula of the form  I φ,
#I φ, φSIψ, or φUIψ is only satisfied in (D̄, τ̄) at the time point i if it is satisfied
within the bounds given by the interval I of the respective temporal operator,
which are relative to the current time stamp τi.

Terminology and Notation. We use standard syntactic sugar such as �I φ :=
¬(true SI ¬φ) and �I φ := ¬(true UI ¬φ), where true := ∃x. x ≈ x. We also use
non-metric operators like �φ := �[0,∞) φ. We omit parentheses where possible,
e.g., unary operators (temporal and Boolean) bind stronger than binary ones.

We call formulae with no temporal operators first-order. A formula α is
bounded if the interval I of every temporal operator UI occurring in α is finite.
The outermost connective (i.e., Boolean connective, quantifier, or temporal op-
erator) occurring in a formula α is called the main connective of α. A formula
that has a temporal operator as its main connective is a temporal formula. The
set tsub(α) of immediate temporal subformulae of α is: (i) tsub(β), if α = ¬β
or α = ∃x. β, (ii) tsub(β) ∪ tsub(γ), if α = β ∧ γ, (iii) {α}, if α is a temporal
formula, and (iv) ∅ otherwise. For instance, for α := ((#β) S γ) ∧ β′, we have
tsub(α) = tsub((#β) S γ) ∪ tsub( β′) = {(#β) S γ, β′}.

For a formula α with the free variables x̄ = (x1, . . . , xn), we define the set of
satisfying elements at time point i ∈ N in the temporal structure (D̄, τ̄) as

α(D̄,τ̄ ,i) :=
{
d̄ ∈ |D̄|n

∣∣ (D̄, τ̄ , v[x̄/d̄], i) |= α, for some valuation v
}
.

If α is first-order, α(D̄,τ̄ ,i) only depends on the structure Di and we just write
αDi in this case.
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2.2 Monitoring

In the following, let Ψ be an MFOTL formula over the signature S = (C,R, ι). To
effectively monitor Ψ , we restrict both the formula Ψ and the temporal structure
(D̄, τ̄) over S, where D̄ = (D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ). To begin with, we
require Ψ to be of the form �Ψ ′, where Ψ ′ is bounded.1 To detect violations,
prior to monitoring, we try to rewrite ¬Ψ ′ to a logically equivalent formula Φ,
belonging to a syntactically-defined fragment. The monitoring algorithm then
iteratively processes the temporal structure (D̄, τ̄), evaluating Φ at each time
point. Note that to identify violations, Ψ usually contains free variables and the
violations are the satisfying assignments of Φ, which the monitor outputs.

The reason for rewriting ¬Ψ ′ to Φ, rather than using ¬Ψ ′ directly, is that
the monitoring algorithm stores intermediate results when processing (D̄, τ̄) and
therefore these results must be finite relations.2 In particular, every relation rDi

must be finite, for i ∈ N and r ∈ R. With the restriction to finite relations, we
inherit a standard problem from database theory [3]. Namely, when |D̄| is infinite,
a query with negation can have an infinite answer set that itself cannot be
represented by a finite relation. The restriction to so-called domain-independent
queries, i.e., queries for which the answer set only depends on elements that occur
in the database, only partially solves the problem: This guarantees finiteness but
checking domain independence is undecidable [22]. A standard approach taken
in database theory is therefore to try to rewrite a query into a form that falls into
a syntactically-defined fragment that guarantees both the domain independence
and the finiteness of the intermediate results. We take this approach and further
details on rewrite rules and such a syntactically-defined fragment for MFOTL
can be found in [10]. In the remainder of this section, we assume that Φ is from
this monitorable fragment.

Overview. Our monitoring algorithm incrementally builds a sequence of struc-
tures D̂0, D̂1, . . . over an extended signature Ŝ. The extension depends on the
temporal subformulae of Φ. For each time point i, we determine the elements
that satisfy Φ by evaluating a first-order formula Φ̂ over D̂i. Observe that for a
temporal subformula with a future operator as its main connective, we usually
cannot yet carry out this evaluation at time point i. The monitoring algorithm
therefore maintains a queue of unevaluated formulae and evaluates them when
enough time has elapsed.

We describe first how we extend S and transform Φ. Afterwards, we explain
how we incrementally build D̂i. Finally, we present our monitoring algorithm. For

1 It follows that Ψ describes a safety property. Note, however, there are safety prop-
erties expressible in MFOTL that do not have such a syntactic form [15]. This is in
contrast to propositional linear temporal logic, where every ω-regular safety property
can be expressed as a formula �β, where β contains only past operators [36].

2 In fact, a weaker requirement suffices, namely, each Di is an automatic structure [12,
32] and the Dis are uniformly represented. When using automatic structures, no
further requirements on Ψ ′ are necessary and our monitoring algorithm can work
with any Φ that is logically equivalent to ¬Ψ ′. The intermediate results are also
“automatic” and effectively computable [10].
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the ease of exposition, we assume in the following that the temporal subformulae
of Φ are of the form β SI γ and �[0,b) β. The more general case for the temporal
operator UI is along the same lines as �[0,b) but is technically more involved.
The cases for  I and #I are straightforward and omitted here.

Signature Extension and Structure Construction. The extended signature Ŝ con-
tains all constants and predicates in S, with the same arities. Moreover, for each
temporal subformula α of Φ, Ŝ includes the new auxiliary predicates pα and rα,
of arities n and n+ 1 respectively, where n is the number of free variables in α.
For θ, a subformula of Φ over the signature S, θ̂ denotes the transformed formula
over Ŝ, where each α ∈ tsub(θ) with the free variables x̄ is replaced by pα(x̄).

For i ∈ N, c ∈ C, and r ∈ R, we define |D̂i| := |D̄| ∪ N, cD̂i := cDi , and

rD̂i := rDi . The auxiliary relations in the D̂is are defined inductively over both
time and the formula structure. Furthermore, their construction is incremental
in the sense that it reuses the auxiliary relations from the previous time points.

We start with the auxiliary relations for a subformula α of the form β S[b,b′) γ.
The non-metric variant of the construction reflects that β S γ is logically equiv-
alent to γ ∨ β ∧ (β S γ): For i ≥ 0 and assuming without loss of generality that
β and γ have the same vector of free variables, we define

pD̂i

βSγ := γ̂D̂i ∪

{
∅ if i = 0,

β̂D̂i ∩ pD̂i−1

βSγ if i > 0.

Observe that this definition only depends on the relations in D̂i for which the
corresponding predicates occur in the subformulae of β̂ or γ̂, and on the auxiliary

relation p
D̂i−1

βSγ , when i > 0.
To incorporate the timing constraint for the interval [b, b′) of the S operator,

we first incrementally construct the auxiliary relations for rα similar to the

definition above: For i ≥ 0, we define rD̂i
α := N ∪ U , where N := γ̂D̂i × {0} and

U :=

{
∅ if i = 0,{

(ā, y)
∣∣ ā ∈ β̂D̂i , y < b′, and (ā, y + τi−1 − τi) ∈ rD̂i−1

α

}
if i > 0.

Intuitively, a pair (ā, y) is in rD̂i
α if ā satisfies α at the time point i independent

of the lower bound b, where the “age” y indicates how long ago the formula α

was satisfied by ā. If ā satisfies γ at the time point i, it is added to rD̂i
α with the

age 0. For i > 0, we also update the tuples (ā, y) ∈ rD̂i−1
α when ā satisfies β at

time point i, i.e., the age is adjusted by the difference of the time stamps τi−1

and τi in case the new age is less than b′. Otherwise it is too old to satisfy α and

the updated tuple is not included in rD̂i
α .

Finally, we obtain the auxiliary relation pD̂i
α from rD̂i

α by checking whether

the age of a tuple in rD̂i
α is old enough:

pD̂i
α :=

{
ā
∣∣ (ā, y) ∈ rD̂i

α , for some y ≥ b
}
.

We now address the bounded future operator �[0,b), with b ∈ N\{0}. Assume
that α = �[0,b) β. For i ∈ N, let `i := max{k ∈ N | τi+k − τi < b} denote the
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lookahead offset at time point i. Note that only β̂D̂i , . . . , β̂D̂i+`i are relevant for

determining α(D̄,τ̄ ,i). For i ∈ N, we could directly define pD̂i
α as

⋂
j∈{0,...,`i} β̂

D̂i+j .
However, this construction has the drawback that for i and i + 1, we must

recompute the intersections of the β̂D̂i+j s for j ∈ {1, . . . , `i}.
We instead define pD̂i

α in terms of the incrementally-built auxiliary relation

rD̂i
α , where (ā, k) ∈ rD̂i

α iff ā ∈ β̂D̂i+j , for all j ∈ {k, . . . , `i}. As before, we

construct rD̂i
α from two sets N and U . N contains the elements from the new

time points i + `i−1, . . . , i + `i, where `−1 := 0 for convenience. U contains the

updated elements from r
D̂i−1
α , if i > 0. To update an element (ā, k) ∈ rD̂i−1

α , we
check that ā also satisfies β at the new time points. Furthermore, we decrease

its index k, if k > 0. Formally, for i ≥ 0, we define rD̂i
α := N ∪ U , where

N :=
{

(ā, k)
∣∣ `i−1 ≤ k ≤ `i and ā ∈ β̂D̂i+k+j , for all j ∈ N with k + j ≤ `i

}
and U := ∅ when i = 0 and if i > 0, then

U :=
{

(ā,max{0, k−1})
∣∣(ā, k) ∈ rD̂i−1

α and if `i−`i−1 ≥ 0 then (ā, `i−1) ∈ N
}
.

Finally, we define pD̂i
α := {ā | (ā, 0) ∈ rD̂i

α }.
We remark that both constructions of the auxiliary relations for the subfor-

mulae for the forms β SI γ and �[0,b) β can be optimized. For example, we can

delete a tuple (ā, k) in rD̂i

�[0,b) β
if it also contains a tuple (ā, k′) with k′ < k.

Example. Before presenting our monitoring algorithm, we illustrate the formula
transformation and the constructions of the auxiliary relations with the formula

�∀x. in(x)→ ♦[0,6) out(x) .

To detect violations, we negate this formula and push negation inwards. To deter-
mine which elements violate the property, we also drop the quantifier, obtaining
the formula ♦

(
in(x)∧�[0,6) ¬out(x)

)
. Since relations for out are finite, ¬out(x)

describes an infinite set and therefore the auxiliary relations for the subformula
�[0,6) ¬out(x) are infinite. Hence, we further rewrite the formula into the logi-

cally equivalent formula ♦Φ, with Φ := in(x) ∧ �[0,6)

(
¬out(x) ∧ �[0,6) in(x)

)
.

The formula Φ is in our monitorable MFOTL fragment.
Observe that α := �[0,6)

(
¬out(x) ∧ �[0,6) in(x)

)
and α′ := �[0,6) in(x) are

the only temporal subformulae of Φ. The transformed formula Φ̂ = in(x)∧pα(x)
is over the signature Ŝ that extends Φ’s signature with the auxiliary unary
predicates pα and pα′ and the binary predicates rα and rα′ .

We only illustrate the incremental constructions of the auxiliary relations
for α by considering the temporal structure in Figure 2, which also depicts the

relations for pα′ . Observe that to build the relations rD̂i
α , for i ≥ 0, we require

the relations outDi+k and the auxiliary relations p
D̂i+k

α′ with k ∈ {0, . . . , `i}, for
the lookahead offset `i at time point i.

For the time point i = 0, we have `0 = 3 because τ3− τ0 < 6 and τ4− τ0 = 6.

Furthermore, the auxiliary relation rD̂0
α is {(c, k)|0 ≤ k ≤ 3}∪{(d, k)|1 ≤ k ≤ 3}.
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-
time

index i:

time stamp τi:

inDi :

outDi :

pD̂i
α′ :

0

1

{a, c}
∅

{a, c}

1

1

{b, d}
∅

{a, b, c, d}

2

3

∅
{b}

{a, b, c, d}

3

6

{c}
{a}

{a, b, c, d}

4

7

∅
{d}

{c}

5

9

{d}
∅

{c, d}

· · ·

· · ·
· · ·
· · ·

· · ·

Fig. 2. A temporal structure.

1 `← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2 i← 0 % index of next query evaluation in input sequence (D0, τ0), (D1, τ1), . . .
3 Q←

{(
α, 0,waitfor(α)

) ∣∣ α is a temporal subformula of Φ
}

4 loop
5 Carry over constants and relations of D` to D̂`.
6 forall (α, j, ∅) ∈ Q do % respect ordering of subformulae

7 Build auxiliary relations p
D̂j
α and r

D̂j
α .

8 Discard auxiliary relations that were involved in the construction of r
D̂j
α .

9 while all auxiliary relations pD̂i
α are built for α ∈ tsub(Φ) do % eval query

10 Output (Φ̂)D̂i and τi.

11 Discard structure D̂i−1, if i > 0.
12 i← i+ 1

13 Q←
{(
α, `+ 1,waitfor(α)

) ∣∣ α is a temporal subformula of Φ
}
∪{(

α, j,
⋃
α′∈update(S,τ`+1−τ`)

waitfor(α′)
∣∣ (α, j, S) ∈ Q and S 6= ∅

}
14 `← `+ 1 % process next element (D`+1, τ`+1) in input sequence

Fig. 3. Monitoring algorithm MΦ.

In general, a pair (ā, k) is in rD̂i
α iff ā did not occur in one of the relations outDi+j ,

with j ∈ {k, . . . , `i} and ā previously appeared in inDj′ , for some j′ ≤ i+ j with

τi+j−τj′ < 6. For example, the pair (c, 2) is in rD̂0
α , since c is not in outD2∪outD3

and c is in inD0 and hence in pD̂2

α′ and pD̂3

α′ . Recall that the lookahead offset `0

is 3 and therefore we only look at the time points 0 through 3. We obtain pD̂0
α

as {ā | (ā, 0) ∈ rD̂0
α } = {c}, which contains also the satisfying elements for Φ at

time point 0, since pD̂0
α ∩ inD0 = {c}.

For the time point i = 1, the lookahead offset `1 is 2. Since `1 = `0−1, we need

not consider any new time points, i.e., we obtain rD̂1
α from rD̂0

α by updating the

tuples contained in rD̂0
α , yielding rD̂1

α = {(c, 0), (c, 1), (c, 2), (d, 0), (d, 1), (d, 2)}
and pD̂1

α = {c, d}. The corresponding set of violating elements is pD̂1
α ∩ inD1 =

{d}. For the time point i = 2, we must also account for the new time point 4,

since `2 = 2. The only new element in rD̂2
α is (c, 2). The updated elements are

(c, 0) and (c, 1). The pairs in rD̂1
α with the first component d are not updated

since d ∈ outD4 . We therefore obtain pD̂2
α = {c} and pD̂2

α ∩ inD2 = ∅.

The Monitoring Algorithm. Figure 3 presents our monitoring algorithm MΦ.
Without loss of generality, we assume that each temporal subformula occurs
only once in Φ. In the following, we describe MΦ’s operation.

MΦ uses two counters ` and i. The counter ` is the index of the current element
(D`, τ`) in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequen-
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tially. Initially, ` is 0 and it is incremented with each loop iteration (lines 4–14).
The counter i ≤ ` is the index of the next time point i (possibly in the past, from

`’s point of view) for which we evaluate Φ̂ over the structure D̂i. The evaluation

is delayed until the relations pD̂i
α for α ∈ tsub(Φ) have all been built (lines 10–

12). Furthermore, MΦ uses the list3 Q to ensure that the auxiliary relations of

D̂0, D̂1, . . . are built at the right time: if (α, j, ∅) is an element of Q at the be-
ginning of a loop iteration, enough time has elapsed to build the relations for
the temporal subformula α of the structure D̂j . MΦ initializes Q in line 3. The
function waitfor identifies the subformulae that delay the formula evaluation:

waitfor(α) :=


waitfor(β) if α = ¬β or α = ∃x. β,

waitfor(β) ∪ waitfor(γ) if α = β ∧ γ or α = β SI γ,

{α} if α = �[0,b) β,

∅ otherwise.

The list Q is updated in line 13 before we increment ` and start a new loop
iteration. For an update, we use the set update(U, t) defined as

{�[0,b−t) β |�[0,b) β ∈ U and b− t > 0} ∪ {β |�[0,b) β ∈ U and b− t ≤ 0} ,

where U is a set of formulae and t ∈ N. The update adds a new tuple (α, ` +
1,waitfor(α)) to Q, for each temporal subformula α of Φ, and it removes the
tuples of the form (α, j, ∅) from Q. Moreover, for tuples (α, j, S) with S 6= ∅,
the set S is updated using the functions waitfor and update, accounting for the
elapsed time to the next time point, i.e. τ`+1 − τ`.

In lines 6–8, we build the relations for which enough time has elapsed, i.e.,
the auxiliary relations for α in D̂j with (α, j, ∅) ∈ Q. Since a tuple (α′, j, ∅)
does not occur before a tuple (α, j, ∅) in Q, where α is a subformula of α′, the

relations in D̂j for α are built before those for α′. To build the relations, we
use the incremental constructions described earlier in this section. After we have
built these relations for α in D̂j , we discard relations no longer needed to reduce
space consumption. For instance, if j > 0 and α = β SI γ, then we discard the

relations r
D̂j−1
α and p

D̂j

α′ with α′ ∈ tsub(β) ∪ tsub(γ).

In lines 9–12, if the auxiliary relations for pα in D̂i of all immediate temporal
subformulae α of Φ have been built, then MΦ outputs the valuations violating Ψ ′

at time point i together with τi. Furthermore, after each output, the remainder
of the extended structure D̂i−1 is discarded (if i > 0) and i is incremented by 1.

Note that because MΦ does not terminate, it is not an algorithm in the strict
sense. However, it effectively computes the elements violating Ψ ′, for every time

point n. More precisely, whenever MΦ outputs the set (Φ̂)D̂i in line 10, then this

set is finite, effectively computable, and (Φ̂)D̂i = (¬Ψ ′)(D̄,τ̄ ,i). Moreover, for each
n ∈ N, MΦ eventually sets the counter i to n in some loop iteration.

3 We abuse notation by using set notation for lists. Moreover, we assume that Q is
ordered so that (α, j, S) occurs before (α′, j′, S′), whenever α is a proper subformula
of α′, or α = α′ and j < j′.
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Since MΦ iteratively processes the structures and time stamps in the temporal
structure (D̄, τ̄), we measure its memory usage with respect to the processed
prefix of (D̄, τ̄). The counters ` and i are at most the length of the processed
prefix. Hence, in the nth loop iteration, we need O(log n) bits for these two
counters. We can modify the monitoring algorithm MΦ so that it is independent
of the prefix length by replacing the two counters with a single counter that stores
`−i, i.e., the distance of ` from i. Since the listQ stores tuples that contain indices
of the processed prefix, we must make them relative to the next query evaluation.
Under the additional assumption that there are at most m equal time stamps in
τ̄ , the number of bits for the new counter is then logarithmically bounded by the
maximal lookahead offset, which is at most m ·s, where s is the sum of the upper
bounds of the intervals of the future operators occurring in Φ. Furthermore, the
number of elements in the list Q is bounded by m · s · k, where k is the number
of temporal subformulae in Φ. Most importantly, the number of elements in the
auxiliary relations that MΦ stores in the nth loop iteration can be polynomially
bounded by m, s, k, and the cardinality of the active domain of the processed
prefix, where adom`(D̄) := {cD̄ | c ∈ C} ∪

⋃
0≤n≤`

⋃
r∈R{dj | (d1, . . . , dι(r)) ∈

rDn and 1 ≤ j ≤ ι(r)}. The degree of the polynomial is linear in the maximal
number of free variables occurring in a temporal subformula of Φ. To achieve
this polynomial bound, we must optimize the incremental construction of the
auxiliary relations for rβS[b,∞)γ so that the age of an element is the minimum of
its actual age and the interval’s lower bound b.

Given the above modifications to MΦ and the additional assumption on
the number of equal time stamps, the monitor’s memory usage is polynomi-
ally bounded and independent of the length of the processed prefix. Moreover,
the bound on the cardinalities of the auxiliary relations is independent of how
often an element of |D̄| appears in the relations of the processed prefix of the
given temporal structure (D̄, τ̄).

3 Case Studies

We have carried out several case studies where we formalized and monitored a
wide range of policies from the domain of security and regulatory compliance. In
the following, we give two representative examples and report on the monitors’
runtime performance for these cases. Other examples are given in [9].

3.1 Approval Requirements

Consider a policy governing the publication of business reports within a company,
where all reports must be approved prior to publication. A simplified form of
such a policy might be

� ∀f. publish(f)→ � approve(f) .

But this is too simplistic. More realistically, we would also require, for example,
that the person publishing the report must be an accountant and the person
approving the publication must be the accountant’s manager. Moreover, the
approval must happen within, say, 10 days prior to publication.
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Note that predicates like approving a report and being someone’s manager
differ in the following respect. The act of approving a report represents an event :
It happens at a time point and does not have a duration. In contrast, being some-
one’s manager describes a state that has a duration. Since MFOTL’s semantics
is point-based, it naturally captures events. Entities like system states do not
have a direct counterpart in MFOTL. However, we can model them using start
and finish events. The following formalization of the above policy illustrates
these two different kinds of entities and how we deal with them in MFOTL. To
distinguish between them, we use the terms event predicate and state predicate.

Signature. The signature consists of the unary relation symbols accS and
accF , and the binary relation symbols mgrS , mgrF , publish, and approve.
Intuitively, mgrS(m, a) marks the time when m becomes a’s manager and
mgrF (m, a) marks the corresponding finishing time. Analogously, accS(a) and
accF (a) mark the starting and finishing times of a being an accountant. We
use these predicates to simulate state predicates in MFOTL, e.g., the formula
acc(a) := ¬accF (a)S accS(a) holds at the time points where a is an accountant.
It states that a starting event for a being an accountant has previously occurred
and the corresponding finishing event has not occurred since then. Analogously,
mgr(m, a) := ¬mgrF (m, a) S mgrS(m, a) is the state predicate expressing that
m is a’s manager.

Formalization. Before formalizing the approval policy, we formalize assump-
tions about the start and finish events in a temporal structure (D̄, τ̄). These
assumptions reflect the system requirement that these events are generated in a
“well-formed” way. First, we assume that start and finish events do not occur at
the same time point, since their ordering would then be unclear. For example,
for the start and finish events of being an accountant, we assume that (D̄, τ̄)
satisfies the formula

�∀a.¬
(
accS(a) ∧ accF (a)

)
.

Furthermore, we assume that every finish event is preceded by a matching start
event and between two start events there is a finish event. Formally, for the start
and finish events of being an accountant, we assume that (D̄, τ̄) satisfies

�∀a. accF (a)→  acc(a) and �∀a. accS(a)→ ¬ acc(a) .

The assumptions for mgrS and mgrF are similar and we omit them.
Our formalization of the policy that whenever a report is published, it must

be published by an accountant and the report must be approved by her manager
within at most 10 time units prior to publication is now given by the formula

�∀a.∀f. publish(a, f)→ acc(a) ∧ �[0,11) ∃m.mgr(m, a) ∧ approve(m, f) . (P1)

Note that the state predicates acc and mgr can change over time and that such
changes are accounted for in our MFOTL formalization of this security policy.
In particular, at the time point where m approves the report f , the formula (P1)
requires that m is a’s manager. However, m need no longer be a’s manager when
a publishes f , although a must be an accountant at that time point.
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The resulting monitor for (P1) can be used in an offline setting, e.g., to read
log files and report policy violations. When the monitor is built into a policy
decision point, it can also be used, in this case, for policy enforcement.

3.2 Transaction Requirements

Our next example is a compliance policy for a banking system that processes
customer transactions. The requirements stem from anti-money laundering reg-
ulations such as the Bank Secrecy Act [1] and the USA Patriot Act [2].

Signature. Let S be the signature (C,R, ι), with C := {th}, R :=
{trans, auth, report}, and ι(trans) := 3, ι(auth) := 2, and ι(report) := 1. The
ternary predicate trans represents the execution of a transaction of some cus-
tomer transferring a sum of money. The binary predicate auth denotes the autho-
rization of a transaction by some employee. Finally, the unary predicate report
represents the situation where a transaction is reported as suspicious.

Formalization. We first formalize that executed transactions t of any customers
c must be reported within at most 5 days if the transferred money a exceeds a
given threshold th.

�∀c.∀t.∀a. trans(c, t, a) ∧ th ≺ a→ ♦[0,6) report(t) . (P2)

Moreover, transactions that exceed the threshold must be authorized by some
employee e prior to execution.

�∀c.∀t.∀a. trans(c, t, a) ∧ th ≺ a→ �[2,21) ∃e. auth(e, t) . (P3)

Here we require that the authorization takes place at least 2 days and at most
20 days before executing the transaction. Our last requirement concerns the
transactions of a customer that has previously made transactions that were
classified as suspicious. Namely, every executed transaction t of a customer c,
who has within the last 30 days been involved in a suspicious transaction t′,
must be reported as suspicious within 2 days.

�∀c.∀t.∀a. trans(c, t, a) ∧
(
�[0,31) ∃t′.∃a′. trans(c, t′, a′) ∧ ♦[0,6) report(t′)

)
→

♦[0,3) report(t) .
(P4)

3.3 Experimental Evaluation

We implemented a Java prototype of the monitoring algorithm and evaluated
its performance on the above policies. As input data, we synthetically generate
finite prefixes of temporal structures, as this allows us to study the algorithm’s
performance under different parameter settings. Namely, for each formula, we
synthesize finite prefixes of temporal structures over the formula’s signature
by drawing the time stamps and the elements of the relations from predefined
sample spaces using a discrete uniform distribution. We restrict ourselves to
relational structures with singleton relations that also satisfy the given well-
formedness assumptions. To assess the monitor’s long-run performance, we then
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Table 1. Experimental results of the steady-state analysis.

event frequency

formula aspect 110 220 330 440 550 sample space

(P1)

ipt 14.1 21.8 26.0 37.7 39.4

Ω20×20×2000
sc 672±70.5 1,267±135.2 1,857±200.3 2,442±265.4 3,024±331.2

omax 1,208 2,155 3,006 3,988 4,884
radom 281 477 661 818 950

(P2)

ipt 7.0 13.1 17.9 21.0 29.6

Ω1000×25000×2
sc 353±4.4 700±8.7 1,044±12.0 1,386±15.2 1,725±20.7

omax 2,135 3,959 5,172 7,377 8,714
radom 404 762 1,098 1,422 1,726

(P3)

ipt 1.7 2.8 3.7 4.8 10.4

Ω1000×25000×2×200
sc 119±1.3 235±2.6 350±3.9 465±5.0 579±5.6

omax 158 282 412 545 659
radom 492 893 1,252 1,583 1,893

(P4)

ipt 2.2 3.5 4.7 6.0 7.6

Ω1000×25000×2
sc 140±2.8 405±9.0 801±19.1 1,334±32.2 1,994±47.8

omax 723 1,270 2,242 3,302 4,360
radom 404 762 1,098 1,422 1,726

conduct a steady-state analysis [35], which is a standard method for estimating
the behavior of non-terminating processes in the limit. For more information on
our experimental setup, see [9].

Table 1 summarizes our experimental results using a 1.4 GHz dual core com-
puter with 3 GBytes of RAM. The size of the sample space for the m different
kinds of data, e.g., managers, accountants, and files, is denoted by Ωn1×···×nm

.
The sample space for time stamps is chosen so that the different lengths of the
generated temporal structures simulate scenarios with the (approximate) event
frequencies 110, 220, . . . , 550, i.e., the number of structures associated with each
time point that approximately occur in the time window specified by the met-
ric temporal operators of the given formula. We measure the following aspects.
(1) ipt denotes the steady-state mean incremental processing times, in millisec-
onds. The incremental processing time is the time the monitor needs to construct
and update the auxiliary relations in one loop iteration. (2) sc denotes a point
estimate of the steady-state mean space consumption, where the actual average
space consumption lies in the specified interval with a probability of 95%. We
measured the monitor’s space consumption as the sum of the cardinalities of
the auxiliary relations. (3) omax denotes the maximal space consumption that
we observed in our experiments. Finally, (4) radom denotes the average of the
cardinalities of the relevant active domains4 after the warm-up phase.

The results of our experiments, depicted in Table 1, predict low space con-
sumption and running times of the monitoring algorithm in the long run. This

4 The relevant active domain with respect to a time point is the set of data elements of
the temporal structure that appear in the relations in the formula’s time window at
the time point. Although these cardinalities are only a rough complexity measure for
the processed input prefix, they help us judge the monitor’s performance better than
more simplistic measures like the cardinality of the active domain of the processed
prefix or the length of the prefix. In particular, the cardinalities of the relevant active
domains relate the incremental update times and the cardinalities of the auxiliary
relations to the input prefix of a temporal structure with respect to the formula to
be monitored. The elements that do not occur in the relevant active domain for a
time point are irrelevant for detecting policy violations at that time point.
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suggests that we can monitor realistic policies with manageable overhead. More-
over, the monitoring algorithm scales well with respect to the event frequency:
the growth rates of all four aspects measured are approximately linear with
respect to the event frequency.

Our results also shed light on the relationship between formula structure and
monitoring efficiency. The state predicates used in (P1) result in additional tem-
poral subformulae and hence increased space consumption and processing time.
Moreover, the maximal observed space consumption is close to the estimated
steady-state mean space consumption for formulae only referring to the past.
For formulae containing future operators, i.e. (P2) and (P4), these values differ
up to a factor of 6 since the monitoring algorithm delays the policy check at time
points when it depends on future events. The information about the current time
point must be stored in auxiliary relations until this check is performed.

4 Related Work

Temporal logics are widely applicable in computing since they allow one to for-
mally and naturally express system properties and they can be handled algorith-
mically. For instance, in system verification, the propositional temporal logics
LTL, CTL, and PSL are widely used [16,42,50]. Linear-time temporal logics like
first-order extensions of LTL and different real-time extensions [4] have also been
used to formalize [8,19,24,28,29,31,51] and to reason about [8,14,19,20] system
policies. However, reasoning about policies has been mostly carried out in just
the propositional setting [8,20]. For instance, in [8], policy consistency is reduced
to checking whether an LTL formula is satisfiable and verification techniques for
LTL are proposed for checking runtime compliance. This kind of reasoning is in-
adequate for systems with unboundedly many users or data elements. Note that
although a system has only finitely many users at each time point, the number
of users over time is usually unbounded.

In the domain of security and compliance checking, bounds on the number
of users or data elements are usually unrealistic. Hence most monitoring algo-
rithms, e.g. [11,17,18,21,23,30,34,40,44], are of limited use in this domain. The
rule-based monitoring approach implemented in the closely related EAGLE [6]
and RuleR [7] frameworks partially overcomes this limitation. There, properties
are given as so-called temporal equations, which can have parameters referring
to data that are instantiated during monitoring. EAGLE’s rule-based approach
has been used in [19] to monitor regulations, where one distinguishes between
provisions and obligations and where regulations can refer to other regulations.
Analogous to the use of parametric temporal equations in EAGLE and RuleR,
the monitoring algorithm from [41, 43] for auditing log files instantiates the pa-
rameters occurring in the given temporal formula during the monitoring process.
Roughly speaking, such instantiations create propositions on demand and the
number of propositions can be unbounded. These instantiations can also be seen
as a restricted form of existential quantification, where variables are assigned to
values that appear at the current position of the input trace.
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The linear-time temporal logic used for monitoring in [25, 26] directly sup-
ports quantification. However, quantified variables only range over elements that
appear at the current position of the input trace. Similar to [6, 7, 43], quantifi-
cation is handled by instantiations. In contrast, our monitoring algorithm does
not create propositions at runtime. Instead it creates auxiliary relations for the
temporal subformulae of the given MFOTL formula. Our monitoring algorithm
thereby handles more general existential and universal quantification; however,
formulae must be domain independent. A simple, albeit artificial, example is
the formula �∃x. ( p(x))∧#¬q(x) whose negation is ♦∀x. ( p(x))→ # q(x),
which is in our monitorable fragment. However, elements a ∈ |D̄| for which
a ∈ pDi−1 holds, need not appear at the current time point i, for i > 0. The
monitoring approach in [48] is similar to the one in [25] but instead of using a
tableau construction as in [25], it uses so-called parametric alternating automata,
which are instantiated during runtime. Other differences to our monitoring algo-
rithm are that the monitoring algorithms in [25,48] do not handle past operators
and future operators need not be bounded.

Our monitoring algorithm is based on Chomicki’s monitor for checking
integrity constraints on temporal databases [13]. It extends and improves
Chomicki’s monitor by supporting bounded future operators and by simplify-
ing and optimizing the incremental update constructions for the metric oper-
ators. Moreover, when using automatic structures, no syntactic restrictions on
the MFOTL formula to domain-independent queries are necessary. Other mon-
itoring algorithms for temporal databases are given in [38, 46]. Both of these
algorithms support only future operators and neither handles arbitrary quanti-
fier alternation. Processing database streams is also related to monitoring and
compliance checking. However, query languages like CQL [5] are less expressive
temporally. What they usually provide instead are operators for manipulating
sequences, for example, transforming streams into relations and vice versa.

In this paper, our focus is on monitoring for compliance checking, rather
than policy enforcement [37,45]. Enforcement is more difficult as it may necessi-
tate changing future actions or predicting when existing actions have consistent
extensions. It is also complicated by distribution, as a monitor may be able to
observe events, but not necessarily control them.

5 Conclusions

We have given an overview of some of the ideas behind our approach to runtime
monitoring using an expressive fragment of a metric first-order temporal logic.
We have also given examples illustrating how policies can be formalized and we
have analyzed the monitor’s resource requirements.

Of course, our approach is not a panacea. Policies outside the scope of
MFOTL include those for which no domain-independent formalization exists
or those requiring a more expressive logic. An example of the latter is the re-
quirement a report must be filed within 3 days when all transactions of a trader
over the last week sum up to more than $50 million, involving the aggregation
operator for summation. Similarly, our experiments indicate that the monitoring
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algorithm does not handle all policies equally well as a policy’s syntactic form
may influence monitoring efficiency. In general, for monitoring those properties
formalizable in MFOTL, there may be more efficient, specialized algorithms than
ours. Despite these limitations, MFOTL appears to sit in the sweet spot between
expressivity and complexity: it is a large hammer, applicable to many problems,
and has acceptable runtime performance.

We have indicated that our monitors can be used in some cases for policy
enforcement. We plan to explore how this can best be done and to compare
the performance with competing approaches. We would also like to carry out
concrete case studies in the application domains presented in this paper.
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