Midpoints versus Endpoints
From Protocols to Firewalls*

Diana von Bidder-Senn!, David Basin', Germano Caronni?

(1) ETH Ziirich, 8092 Ziirich, Switzerland
(2) Google Inc., Mountain View
diana.bidder@inf.ethz.ch, basin@inf.ethz.ch, gecQacm.org

Abstract. Today’s protocol specifications only define the behaviour of
principals representing communication endpoints. But in addition to end-
points, networks contain midpoints, which are machines that observe or
filter traffic between endpoints. In this paper, we explain why midpoints
should handle protocols differently from endpoints and thus midpoint
specifications are needed. With a case study, using the TCP protocol
and three different firewalls as midpoints, we illustrate the consequences
of the current lack of protocol specifications for midpoints, namely that
the same protocol is implemented differently by the different firewalls. We
then propose a solution to the problem: We give an algorithm that gener-
ates a midpoint automaton from specifications of endpoint automata. We
prove that the resulting midpoint automata are correct in that they for-
ward only those messages that could have resulted from protocol-conform
endpoints. Finally, we illustrate the algorithm on the TCP protocol.

1 Introduction

Networks contain different kinds of principals. Some are communication end-
points, such as clients and servers, while others are midpoints (also called mid-
dlebozes [Gro02a]) that forward, filter, or, more generally, transform traffic. A
midpoint that simply forwards traffic is straightforward to implement. But as
soon as stateful filtering comes into play, the midpoint must know the communi-
cation protocols used. This is TCP for packet filters and diverse application-level
protocols for application-level firewalls. If a midpoint does not know enough
about the protocols it filters, there exist ways to bypass a security policy. A
prominent example is sending file-sharing traffic over http when using packet
filters.

Protocol specifications are normally written for endpoints. Starting from such
specifications, it is not clear how a midpoint should enforce the protocol-conform
execution by the endpoints, as it can neither observe nor correctly track the
protocol states of endpoints (see for more details on this problem).
Another problem is that filtering midpoints need to be as secure (i.e. as strict)

* This work was partially supported by armasuisse. It represents the views of the
authors.

as possible. However, they should also be user-friendly (and therefore not overly
strict). This leads to different interpretations on how a midpoint should handle
a given protocol.

The implications of the lack of protocol specifications for midpoints are that
manufacturers of devices acting as midpoints have no guidelines on how they
should implement a protocol. In practice, midpoint manufacturers implement the
same protocol differently, based on their own interpretation of how the midpoint
should handle the endpoint data. This implementation is then incrementally
adapted based on practical experience. To show how this looks in practice, we
present the TCP automata of three different firewalls in and analyse
their differences.

As a solution to this problem, we show how to systematically generate mid-
point specifications from endpoint specifications. We propose an algorithm that,
given the protocol automata for the endpoints, generates a protocol automaton
for the midpoint. Roughly speaking, the algorithm tracks all possible endpoint
states at each point in time, taking into account messages in transit and possible
network behaviour. We prove that the midpoint automata constructed forward
only those messages that could have resulted from protocol-conform endpoints.
Overall, our contributions are an analysis of why different protocol specifications
are needed for midpoints than for endpoints, what the implications of the lack of
such specifications are, and a solution for this problem. We use the TCP protocol
as an example.

The remainder of this paper is organised as follows. In we briefly
describe background and related work. We then, in Becfion 3 explain why mid-
points are different from endpoints and therefore need their own protocol specifi-
cations, before presenting, in Section 4] the results of our case study. InSection 5
we present an algorithm to generate a midpoint automaton from endpoint au-
tomata and prove it correct. Finally we conclude and report on future work in

Section 6l

2 Background and Related Work

We will use the TCP protocol [ISI81] for our examples, which we briefly sum-
marise here. TCP is a connection-oriented protocol, which is used by applications
to transport data to communication partners in a reliable way. TCP itself uses
IP to transport the data and just adds a header for flow control, reliability, and
multiplexing purposes. As TCP is connection-oriented, there is an initiation —
called a three-way-handshake (see — and a tear down (see
for each connection. With the use of sequence numbers and acknowledgements,
TCP ensures that (a copy of) every packet reaches its destination.

For protocol specifications, we use Mealy machines (automata) [Mea55]. A
Mealy machine is a six-tuple M = (Q, ¥, I',d, X, q1), where Q = {q1,¢2, .-, }
is a finite set of states; ¥ = {o01,02,...,0/x} is a finite input alphabet; I' =
{7,727} is a finite output alphabet; § : Q x ¥ — Q is the transition

Alice message sent Bob

CLOSED LISTEN
SYN-SENT — SYN —

<~ SYN&ACK — SYN-RECEIVED
ESTABLISHED — ACK — ESTABLISHED

Fig.1. TCP three-way-handshake

Alice message sent Bob
— FIN & ACK —
+ FIN & ACK —
— ACK —

Fig. 2. TCP connection tear down

function; X : Q x X — I' is the output function; and q; € @ is the initial state.
Note that we write ¢; M g; to denote that 6(¢;,z) = ¢; and A(g;,x) = y.

Despite the fact that midpoint automata are central for the construction of
firewalls and other security gateways, the problem we address has only partly
been identified before [Gro00, Gro02b]. To our knowledge, we are the first to
present a formal treatment of the problem and to provide an approach for solv-
ing it. The closest related work is [BCMGO1], which describes how to build a
monitor to find out if a system correctly implements an endpoint specification.
The authors report on the same problems as ours in determining the state of an
endpoint. This problem arises as packets can be reordered or lost between the
monitor and the endpoint. They propose several monitoring algorithms. Unfor-
tunately, their algorithm that takes arbitrary reordering and loss into account
is very inefficient (the authors call it brute-force) and their refinements are too
constrained to be useful in our setting. In principle, their solution could be used
to solve our problem, by using one monitor per endpoint and attaching the out-
put of one monitor to the input of the other. As their monitors are inefficient,
this is not a practical solution since firewalls should execute very efficiently, i.e.,
make each decision with minimal overhead l Note that we also solve a different
problem than they do: We do not care if the endpoints correctly implement a
protocol. Our goal is to only let messages arising from correct protocol runs pass
the firewall, independently of how the endpoints create them.

Related areas are firewall testing [MWZ05, ASH03], test-case generation for
Mealy machines [Gil61, Cho78,SD88, FvBK*91, CVI89] and the testing of TCP
endpoint automata [BFNT06, Pax97]. In firewall testing a midpoint is tested.
The starting point of previous work has been the firewall rulesets but not the
underlying automata. The area of test case generation for Mealy machines is
related, as these methods can be used to generate test cases for the midpoint
automata resulting from our algorithm.

! This is not a problem with our generated automata. The generation takes time but
their execution is very fast.

3 The Source of the Problem

In this section, we explain why midpoints are different from endpoints and why
they thus need a different protocol specification. The problem arises with the
filtering midpoints. These base their decisions — basically drop or forward —
on the protocol states the endpoints are in. Unfortunately the two endpoints of
a connection can be in different states and not all of these states are observable
by the midpoint.

Consider the following example: the TCP connection initiation (three-way-
handshake) shown in Imagine the second packet gets lost after being
forwarded by the midpoint (scenario 1). Alice is now in the state SYN-SENT,
whereas Bob is in state SYN-RECEIVED. To the midpoint, this situation looks
the same as the situation where the second packet reaches Alice, but the third
packet gets lost before being received by the midpoint (scenario 2).

Given that the midpoint cannot differentiate between these scenarios, in what
state should the midpoint be? And how should it react upon receiving a SYN
packet from Alice? In scenario 1, the SYN is a retransmission and should be
forwarded. Whereas in scenario 2, a SYN does not conform with a correct pro-
tocol execution (Alice should not send SYN packets in state ESTABLISHED) and
should therefore be dropped.

The endpoints see the situation differently. Alice can clearly distinguish be-
tween scenario 1, where she would repeat her SYN, and scenario 2, where she
would repeat her ACK. Bob cannot distinguish between the scenarios (or at least
not until he has seen Alice’s reaction), but he does not need to: he would repeat
his SYN&ACK in any case.

Another scenario is possible: Alice may have crashed and the SYN at hand
could represent a new connection initiation (with the same source port as before).
This scenario can also happen later on in a connection. What should the midpoint
then do? Should it forward the SYN and risk damage to Bob? Should it just
block the packet and hinder Alice from communicating with Bob? Should it send
a RST in Bob’s name? Should it also send a RST in Alice’s name to Bob? All
these questions must be answered when giving a midpoint specification of TCP.

In this example, we see that one reason why midpoints cannot always track
the protocol states of the endpoints lies in packet loss. But packet loss is only part
of the problem. Another reason lies in the fact that certain endpoint constructs
lead to ambiguity from the midpoint’s perspective. These are:

1. Multiple transitions with the same output:

Consider two transitions g; i‘i g and g; b—/a) gr- Assume that the mid-
point has previously forwarded b to an endpoint with these two transitions
and afterwards receives an a. It cannot know from which transition this a
originated.
2. Transitions without output:

In this case, a midpoint cannot distinguish between the start state of the
transition and the end state of the transition (at least until it has seen
other, unambiguous output from the endpoint). A special case is hidden

states, which are states where all incoming and outgoing transitions have no
output. Such states can never be identified by a midpoint.

3. A packet can be sent in different states:
This makes an unambiguous mapping between packets and states impossible.
While this is not a source of tracking problems, it does make recovering from
them difficult.

4 Case Study: Differences in Midpoints based on TCP

In the last section, we explained why it is nontrivial to build a midpoint from
endpoint specifications. In this section, we now show the implications of a lack of
midpoint specifications by documenting the current state of affairs. For this, we
took three commonly used firewalls — Checkpoint [Ltd], netfilter / iptables [ea],
and ISA Server [Mic] — and reverse engineered them, testing them against our
(as there is no other) TCP midpoint specification given in [SBCO05] and then
analysing the results by hand.

As a result, we derived three distinct TCP automata (see [vBBCO07] for de-
tails). Below we describe three of the differences:

A ’clean’ three-way-handshake is not enforced To initiate a TCP connection, a so
called three-way-handshake is used (see [FigureTJ). So let us assume the firewall
has accepted a SYN from an endpoint Eq (Alice) to another endpoint E; (Bob).
If there is now a SYN&ACK from E; to Eg, then everything works as expected:
the packet should be let through and the firewall should enter the next state.
If there is another SYN from Ey to Ej, then this will be a retransmission (it
could be that the first SYN was lost between the firewall and E;) and should
be allowed as well. If there is a RST from E; to Ey, then E; does not want this
connection, the packet should be let through, and the TCP automaton initialised.
All other packets make no sense at this time and therefore should be blocked.
Unfortunately, in all of the tested firewalls, additional packets were let through.
As one example, a FIN from FE; to Ey is allowed during connection initiation
in netfilter. But there is no connection to be closed: If E; is not accepting the
connection, then it would send a RST.

After a FIN, data from both sides is still accepted If Ey sends a FIN to Fj,
then this means that Ey wants to close the connection. After this FIN, E; is
still allowed to send data, but Ey is not (it makes not sense to send data after
requesting to close the connection), except for the ACK belonging to E;’s FIN.
As packets may not arrive in their correct ordering at the firewall, the firewall
cannot just drop all packets from Fy after having seen a FIN from B. But the
firewall should just let through older packets (based on the sequence number),
a retransmission of the FIN, and the ACK to E;’s FIN&ACK (after having
received E;’s FIN&ACK). To accomplish this task, the firewall has to keep track
of the sequence numbers. This appears not to be done and therefore too many
packets are let through.

SYNs are accepted during already established connections SYNs are only used for
connection initiation. That means that if a connection is fully established, there
will be no more legitimate SYNs (based on the sequence numbers) belonging to
that connection. But netfilter and ISA Server accept SYNs (from the initiator of
the connection) all the time. Checkpoint does block the SYNs, but always allows
SYN & ACK, which is not much better.

These findings show that there is a lack of consensus, at best, and a general
lack of understanding, at worst, about how TCP should be handled by a firewall.
The result is that every vendor does something different. We would like to con-
tribute a solution to this problem by showing, systematically, how to construct
midpoint specifications from endpoint specifications.

5 Construction of a Midpoint Automaton from Endpoint
Automata

In the preceding sections, we saw why there is a need for midpoint specifications.
Basically there are two ways to construct such a specification: write it directly or
generate it from the endpoint specifications. The first alternative has two major
drawbacks: 1) the consistency with the endpoint specifications must somehow be
assured and 2) it requires additional work for the protocol designers. The second
alternative overcomes both problems.

5.1 Setting

We subsequently consider only two-party protocols, i.e. protocols for only two
endpoints. This covers most network protocolsE Let Ey and E; be the end-
points and M the midpoint through which communication passes. Communica-
tion takes place in the form of messages, where the endpoint specification of the
communication protocol determines when an endpoint may send which kind of
message. For every message arriving at the midpoint, the midpoint can either

forward the message or drop it (Figure 3.

m m’ m
EO M El EO M El

Fig.3. A message m from endpoint Ey to endpoint E; is forwarded (left) or
dropped (right) by the midpoint M.

We write X — Y : m to express that the message m is sent from the endpoint
X to the other endpoint Y, where X € {Ey, E1},Y € {Eo,E1},and Y # X. As
there is a midpoint M between Eg and Ey, every X — Y : m can be divided into

2 It is straightforward to extend our approach to protocols with more endpoints.

the two parts X — M : m and M — Y : m’. This makes explicit on which side
of the midpoint a message is and also simplifies the specification of the actions
of the midpoint: m' = m if the midpoint forwards the message unaltered, m = —
(where — signifies no external output) if the midpoint drops the message, and
m' # m if the midpoint alters the message before forwarding it. The messages
may be altered, for example, when using Network Address Translation (NAT)
in the firewall. For the sake of simplicity, we will not consider this case.

We will construct our midpoints to be permissive rather than restrictive.
This means that our midpoint forwards messages if they could have resulted
from protocol-conform endpoints. Thus our midpoint can possibly accept an
incorrect message, but only in the cases where there is a scenario where this
message could occur.

For the transport of the messages between the endpoints (via the midpoint),
we assume a network that either (1) delivers messages, although not necessarily
preserving the order, or (2) looses them.

5.2 Idea

Before giving the construction of a midpoint automaton from endpoint automata
in we first sketch the ideas behind our construction.

We model the global state of a system (the endpoints, midpoint, and network)
at some time ¢ as a state st' = (g, ¢, g%, net), where ¢! is the state of endpoint
E; at time t, ¢}, is the state of the midpoint M at time ¢, and net® consists of
all messages travelling between the endpoints at time t.

The midpoint M has to base its actions on the state of its environment. If
M could observe all actions in the system, ¢4, = (¢§, ¢¢, nett) would hold at any
time ¢, meaning that M always knows the exact states of the endpoints and the
contents of the network. But midpoints generally cannot always determine the
correct values of these components and hence we will let the state of our midpoint
be a set of such triples, where each of these triples represents a possibly correct
view of the system. Thus the triples of one state ¢}, are equivalent in the sense
that they are not distinguishable by the midpoint with its current knowledge,
i.e. based on the traffic it has previously observed.

To provide further intuition about the functioning of a midpoint, let us
consider an example. Suppose the system starts in the global state st' = (qi,
{(q1,q1,net")}, a1, netl)E Assume the following steps are taken:

1. M sends (forwards) a message = to Ep.
To track the fact that the network now contains x, M must change its state
to ¢3; = {(q1,q1,net?)}, where net?> = net' U{M — E, : z}. The global
state is then st* = (g1, {(q1, q1,net?)}, g1, net?).

3 This means that Eo and E; both are in their start states, the network content is
net' and the midpoint knows about all this. Note that g1 of Eo and ¢1 of E1 are not
the same as they do not belong to the same automaton.

EO

[OO
° x/z1 ylz2 e

. x/z1l . ylz2 .

Fig. 4. Two consecutive endpoint transitions

M

(AL, gB, {M -> EO: x, M -> EO: y}) |

(1. 6B, {M -> EO: x, M -> EQ: y)) |

(91, gB, {M -> E0: x, M -> EO: y}) |

9

2. x is received by Fy and used as input to its automaton. Suppose, for Ey

in state ¢p, there are only two transitions: ¢ ﬂ g2 and ¢ _—/z) q3. As
M does not know if and when Ey makes a transition, it cannot directly
act on this step and thus its state is wrong. The global state is st® =
(g2, {(q1, q1, net®)}, q1, net®), where net® = net> \ {M — Ey : 2} U {E; —
M :y}.
3. A message y reaches M.

To take a correct decision, M must compute what could have happened (all
possible successor steps) since its last step. This is either:

— nothing, i.e., (q1,q1,net?),

— Eq consumes z, makes a transition to g2, and outputs y: (ga, q1,net?), or

— Ey makes a transition to g3, and outputs z: (g3, q1,net>?U{Ey — M : 2}).
Now, M can determine its reaction on y. If there is one or more triple having
y in its net (a possibly correct scenario where y occurred), y is forwarded
and M’s next state will consist of all these matching triples with their nets
updated: g3, = {(g2,q1,net*)}, where net* = (net®\{Ey - M : y}) U{M —
E; : y}. The global state is st* = (ga, {(g2, q1,net)}, g1, nett).

In the example above, there was only one endpoint transition between two
consecutive midpoint transitions. In such a case, tracking (computing all pos-
sible successor states) is not difficult. The situation is more complex if more
than one endpoint transition can happen between two consecutive midpoint
transitions. [Figure 4] provides an example. Since communication need not be or-
der preserving, after two consecutive endpoint transitions, the second message
(Eo — M : 22) may reach the midpoint first. Thus it would not be enough if the
midpoint computed only the next possible state (reachable in one step), but all
possible successor states are needed, as only this would lead to {(g1,¢8,{M —
Eo:x,M — Ey : y}),(q2,98,{M — Eq : y,Eo = M : 21}),(q3,q98,{Eo = M :
z1,Ey - M : 22})} and thus lead to the correct action — forwarding 22 — and
the correct next state {(gs,qp,{Eo = M : 21, M — E; : 22})}.

Let us return to our first example to illustrate why all possibly correct mes-
sages must be forwarded. Assume that we have the following sequence of actions:

1. M forwards a message = to Ej.
2. zx is lost by the network.

3. FEjy takes the transition to state gs.
4. An intruder sends message y (which is incorrect at gs).
5. y reaches M.

For the midpoint, this scenario looks exactly the same as the one before. But
here y is an incorrect message. As we never want to block correct messages (our
decision for a permissive rather than restrictive midpoint), we have to accept y
here (it could be the correct one from above).

5.3 Construction

We will now give the technical details of our construction of a midpoint automa-
ton from endpoint automata. A two-party protocol p can be specified by two
Mealy automata (one for each endpoint):

Ao = (Qo, X0, 0,00, Ao, qo,1) and AL =(Q1, 21, 11,01, A1, ¢1,1).

Note that Xy = I'1 and [= X since these automata must be able to commu-
nicate with each other. Often even Ag and A; are the same.

The network can be modelled as a multiset (also called bag) net, which stores
all messages in transit between the midpoint and the endpoints. Specifically

net C M(S) ={z' |z C S,z' =5 z},

where S is the set of messages allowed by the protocol and =, denotes set equality
(the sets contain the same elements, ignoring repetition).

In our construction, net will be part of a state of a deterministic automaton.
Since we cannot handle a network of infinite size we must forbid actions of the
endpoints and the network that can put infinitely many packets into the net-
work. Hence, for the endpoints, we forbid loops without input in their protocol
automata. For the network, we do not model message duplication. These restric-
tions are not problematic as the former should not be present and the latter can
easily be detected and handled on another layer. Thus, it suffices to consider

net C P(S),where S ={X =Y :m|X,Y € {Eo, E1,M},Y # X,m € (XoUIlp)}.

Before starting with the construction of the midpoint automaton, we need to
define the actions that are possible in our system. These are either transitions
by the endpoints or the midpoint, based on their automata, network loss, or a
message inserted by an intruder.

Definition 1 st!t! = (gi™, ¢4t ¢!t net*!) is a successor state of st! =
(g6, a4y, gt , nett), denoted st® = st'™', if one of the following conditions holds.

Midpoint transition: For any msg € net with msg = (E; — M :m),

t+1
qO _q07
t+1
=0,

ahf" = dn(dhy, msg),

net'tt = (net® \ {msg}) U {\um(dl;, msg)}.

Correct endpoint transition: For any msg € net' with msg = (M — E; : m)
(the endpoint taking an input from the network) or for m = — (no input)

msg' = (Bi = M : Xi(gf,m)) ifi(gf,m)) # —,
— otherwise,

net't = (net® \ {msg}) U {msg'},

(1b)
g™t = 8igf, m),
qiti = qi—i;
ahrt = di-
Incorrect transition:
msg' € (I; \ {\i(gf,m)|[(M — E; :m) € net’ or m = =}),
net™™ = net' U {msg'},
@t =g, (1c)
g™t =di,
ar = di-
Network loss: for any msg € nett,
%" = 45
g =di, ”
1 _ 1 (1d)
dy =AM

net't! = nett \ {msg}.

Note that as the network is modelled by a set, the permutation of messages
is handled implicitly. Furthermore, note that an endpoint transition must not
produce output. We denote empty output as '—’.

Definition 2 Transitions ([[a), ([B) and [{d) represent correct transitions. We
denote a message resulting from a correct transition as a correct message and
all other messages as incorrect messages.

Definition 3 A correct trace is a trace st' - st - ... - st™, where every tran-
sition st* F st't1, with 1 <14 < n, is a correct transition.

Definition 4 The message history of a trace tr = st' F st - ... F st" is
a sequence of messages my,ma,...,my, where t is the number of non-midpoint
transitions in tr that produce output, and m; is the output from the ith of these
transitions.

Definition 5 The midpoint message history of a trace tr = st' F st? - ... F st®
is a sequence of messages mi,Ms,...,Mg, where s is the number of midpoint
transitions in tr, and m; is the input of M at its ith transition in tr.

Definition 6 Two traces are midpoint equivalent if they have the same mid-
point message history.

Definition 7 Two triples (a,c¢,d) and (e, g, h) are midpoint equivalent if there
exist two midpoint equivalent traces tri and tro with tri = s' F s> F ... F
(a,b,c,d) and tro = st' F st - ... (e, f,g,h).

To have a correctly functioning midpoint, two properties about a midpoint
state g must be satisfied: 1) one of the triples in gy is the correct one (Defini-
tions B and @) and 2) only possibly correct messages are forwarded (Definition

).

Definition 8 ¢!, is a correct tracking at time t if ¢}, is neither too small nor
too large. Not too small means that (q§, ¢t , net?) € ¢b,. Not too large means that
all g € ¢4, are midpoint equivalent to (gb, ¢t ,nett).

Definition 9 M tracks endpoints correctly if for every midpoint transition
(@t gt g net™) (g, g%y, g}, net™) in a trace, ¢y is a correct track-
g at time n.

Definition 10 M computes outputs correctly if for every trace tr = st* ... F
st™ and every t, 1 <t <mn we have:

M — E;:m if E; = M : m occurs in the message
history of any trace tr' which is mid-

Nt (ghes i — M = m) = fory of any
point equivalent to tr,

— otherwise.

where j =1 — 4.

As M cannot distinguish between ¢r and ¢r' in the above, it must forward all
messages that occur in any of these traces, in order to avoid ever dropping a
correct message.

Endpoint Fo |Network Midp. |correct midpoint transition
(SM(QM, _) = {(QI,unnetM \ {M — FEo: :I)})}

Am(gm, —) = —

‘L@ dm(qar, =) = {(g2, 9, , netsr \ {M — Eo : z})}

Am(qar, =) = —

E0

E

dum(gm, —) = {(g3, 98, , netsr \{M — Eo : z})}
Am(qar, —) = —

om(gm,Bo — Er @ y) = {(a3,9m,, (netm \
(M = Eo:2})U{M — By : y})}
i@;)\M(qM,Eo—)El:y)ZEo—)El:y
"W ém(gm, Bo — Ev : y) = {(g4,98,, (netam \
(M = Eo:2})U{M — Ey : y})}
)\(qM,Eo—>E1:y)=E0—>E1 Yy
B v (gar, Eo — B : y)

= {(q4,qE1,netM u {M — E1 y})}
)\(qM,Eo—>E1:y)=E0—>E1 Yy

om(qnr, —) = {(ga,9m,, netm)}
Mol ==
om(qm, —) = {((g5, a5, , netum)}
Am(gm, —) = —

Fig.5. A transition in an endpoint, from a midpoint’s view

-
g
E

-
g
E

OO,

(=]
<
E

BBE BBEE EBBH H BE

(=]

Based on Ay and A;, we will now construct a Mealy automaton Ay for the
handling of protocol p by the midpoint:

Ay = (Qumy Enays gy 0015 Aty S)

Qum = P(Qo x Q1 x net)

S ={Ey— M:a|ac b\ {-}}U{E = M:a|ac i\ {-}}

Ty ={M—Ey:alac(Zo\{-}}U{M—E:alac(Z\{-}}U{-}
au = {(20,1,01,1,{})}

Before we define the functions §p; and Apy, we first analyse the different possible
scenarios. We do this with the help of There we describe the relation-
ship between the actions of an endpoint FEy (the situation for E; is analogous),
the network, and the midpoint M. In particular, we consider how the four dif-
ferent types of transitions an endpoint can take (z/—, z/y, —/y, and —/—, for
x € Xy, y € Ip) look from the endpoints’, the network’s, and the midpoint’s
respective point of view. These are shown in columns 1 — 3, where one row rep-
resents one case. Note that one view (row) of one principal can belong to several
views of another principal.

In the fourth column, the correct midpoint transition is shown. That is
the transition the midpoint must take if it wants to correctly track the end-

point’s state and the messages in the networkHl For this we assume qu =
{(q1,qE,,netp)} to be the state of the midpoint after its last transition (where
applicable, this is forwarding z). Note that netys contains all the messages in
the network. Therefore a message has to be removed from nety, if it is no longer
in the network, either because it was consumed by an endpoint or midpoint, or
lost by the network.

As an example, let us explain the contents of the third row (in the first
column, the third and the forth row coincide). Here a message z is forwarded
by M to Ey (3rd column), i.e. M — Ejp : . This message then reaches Ey (2nd
column), which uses it as input to its z/y-transition (1st column). After this
transition, Ey is in state ¢z (1st column) and a message y (Ep — M : y) has
been inserted into the network (2nd column). This message is then lost by the
network (2nd column). To correctly represent these actions, M has to change
its state as given: Ey is now in state g3 and the net no longer contains z (4th
column). Note that netys does not contain y as its insertion is compensated by
its removal.

With the help of we will now define the successor function. This
function computes all direct successor states of a triple of the midpoint state
(the transition function will then later choose some of these triples, based on
its input). The figure illustrates why we sometimes have more than one possible
successor state: the midpoint (3rd column) cannot distinguish all the scenarios
(rows). Note that only considers one endpoint, whereas succ considers
both endpoints (the equations @d)) and @d) for Eq correspond to the equations

€ and for Ey).

succ(gum) = U U U (2a)

9€qm (M —Eop:mi)€Enetyy (M—E1:ma4)Enetyy msgEnely

{(qo0, q1,netar), (2b)
(90,91, ety \ {msg}), (2¢)
(d0(g0,m1), a1, (netar \ {M — Ep : my1}) Ums) (2d)
(60(g0, =), q1, netar Ums) (2e)
(90, 01(q1,ma), (nety \ {M — Er : ma}) Ums), (2f)
(90,01(q1, —),netar Ume)} (2g)

* We will later give definitions of dar and Aar that incorporate all these scenarios. The
fifth column gives the number of the corresponding equations.

where

mo = {{EO - M} :)‘O(qoaml))‘O(qoar'nl) 76] (2h)
) otherwise,
m3:{{E0—>MI/\0(QO;—)} Xolao, =) # = -
0 otherwise,
e — {éE =M Alanma)} M, m) #)
otherwise,
g = {{E1 = M :Ai(q1,-)} Au(an, —) i (2K)
0 otherwise.

The function succ computes all the states that are reachable in one step by an
endpoint or the network. Since we are interested in all possible successor states,
we must compute the closure of succ, defined as

cl(suce(x)) = G succ'(z). 3)
=0

Observe that the closure is monotonic. It also has an upper bound, namely

cl(succ(ghs)) C P({(q0,q1,n)ld0 € Qo, a1 € Q1,n € net}).

Hence, as Qo, Q1, and net are finite, cl(succ(gy,)) is also finite.

We now can define d,;. The idea is to let our midpoint track all possible
actions. We do this by first calculating the closure of all possible next states
before actually executing a transition based on them.

Om (ghr,m) = U {(90, 1, (netar\{m})UAr(qar, m))}m € netar}
(90,91,metar) Ecl(succ(qy,))
(4)

Note that cl(succ(qi,)) represents all possible successor states of ¢,, whereas
dn(qhs, m) only contains those successor states of ¢4, that can be reached with
a message m. Ay is now straightforward: If there is any triple where the input
occurs, i.e. the message is correct in some midpoint-equivalent trace, the input
is forwarded.

(M - E;:y) if{E;— M:y} € netu,

out((go,q1,netm), B; > M :y) = {_ otherwise

(5)

where j =1 —1, and

out(g,m) if there exists a g € cl(succ(gm)) with (out(g,m) # —),

— otherwise.

(6)

Note that for each m, there is at most one non-empty (not '—’) value for
out(q, m). Hence, \ps is well-defined. This is due to the fact that our midpoint
either drops or forwards a message. This would have to be revised for a midpoint
that alters messages (e.g. a firewall performing Network Address Translation).

5.4 Correctness

As stated in a correctly functioning midpoint must satisfy two prop-
erties: 1) one of its state triples is correct and 2) only possibly correct messages
are forwarded. In this section, we prove that a midpoint, constructed as described

in Bection 5.7 satisfies the above properties.

Property I: one state triple is correct.
We prove the first property with the help of the following lemmas.

Lemma 1 Given an M produced by our midpoint construction and a trace st -
st2 b ... k- st™, if there is a correct tracking at time t1, then the tracking after
the next midpoint transition stt? - sttt t2 > t1, is also correct.

Lemma 2 Given an M produced by our midpoint construction and a trace tr =
stl b st2 - - F st”, for any midpoint transition stt? - stt?T1) there is a correct
tracking at each time t1, with 1 <t1 <2 < n.

Lemma 3 Given an M produced by our midpoint construction, M tracks end-
points correctly (as defined in Definition[).

Lemma Bl follows from the other two. If for every midpoint transition there
exists an earlier correct tracking (Lemma B), then the tracking after the mid-
point transition is correct (Lemma [l). Hence the tracking after every midpoint
transition is correct.

Proof sketch for Lemma [
We will only sketch the proof of the first lemma. The proof in its entirety can
be found in [vBBCOT].

Recall that dps consists of two parts: 1) compute all possible successor states
using cl(succ(qll)), and 2) keep only the state triples that are feasible with
respect to a given message. The second part directly reflects the definition of a
midpoint transition. To prove the first part, we show that succ can track one
non-midpoint transition correctly, and that taking the closure of succ computes
any number of non-midpoint transitions correctly.

Proof of Lemma 2]
We prove the lemma by induction on the midpoint transitions in a trace.

Base Case, the first midpoint transition in a trace.
The first state st! is a correct tracking at time 1:

Stl = (Qéaqll\la(I%anetl) = (q0,17 (q0,17Q1,17 {})7(11,17 {})

The first midpoint transition cannot take place before st! I st?. By Lemma, [T}
this means that the tracking after the first midpoint transition is correct.

Step Case, the nth midpoint transition, n > 1.

By the induction hypothesis, the tracking is correct after the (n —1)th midpoint
transition. By Lemma [Il this implies that the tracking is also correct after the
nth midpoint transition. QED.

Property II: only possibly correct messages are forwarded.
Lemma 4 M computes outputs correctly (as defined in Definition [IQ).
We show the correctness of (gl ,msg) in two steps:

1. msg = (E; = M : m) was inserted by a correct transition.
There is is a triple ¢%,,,. € ¢4, with ¢%,,.. = (¢i,qt,net’) (see the proof of
Lemma 1 in [vBBCO07]). The output of this triple, defined by Equation @), is
correct, namely msg' = (M — E; : m). For every other triple g, out(g, msg)
is either msg' or —. Thus, by Equation @), A (qh,, B; & M : m) is correct.
2. msg was inserted by an incorrect transition.
As seen above, there can only be a (o, q1,net) € ¢4, with msg € net if this
represents a possibly correct scenario. But, in this case, forwarding msg is
correctfi QED.

5.5 Discussion

In we analysed the TCP automata of several firewalls. We now com-
pute the TCP midpoint automaton using the construction just presented. For
endpoint automata, we use the automaton from the TCP specification for end-
points [ISI81, page 23].

The endpoint automaton in the TCP specification combines the initiator
and the responder role. These roles are handled differently by firewalls, which
distinguish between the networks outside and behind the firewall. Normally only
one side is allowed to initiate a connection. Therefore we made two copies of the
TCP endpoint automaton from the specification, one for each of the roles, which
we adapt as follows. We chose Ey to play the role of the initiator. Therefore
we denote the state CLOSED as the start state of automaton Ay and delete the
state LISTEN from Ag. Furthermore, as we are only interested in one run of the
protocol, we name the end state of Ay CLOSED2 (instead of CLOSED). To let E;

5 Note that in this case, the endpoints might not be able to continue their run of the
protocol; the incorrect endpoint is only able to continue to send messages if they
belong to a possibly correct scenario. This is the price of having a permissive firewall.

- Start EO
- no simultaneous open
- non-core input is ignored 212
- Input alphabet:
2 EO->M:S 3 El>MS
4 EO->M: SA 5 E1->M:SA
6 EO->M: A 7 E1->M:A
8 EO->M: F 9 El1>M:F

Fig. 6. Midpoint Automaton for TCP

play the role of the responder, we denote the state LISTEN as the start state of
A1 and delete the state SYN-SENT and the transitions from state CLOSED to state
LISTEN from A;. The resulting, minimised midpoint automaton can be found
in Note that although this automaton represents only a subset of the
TCP protocol this is not a limitation of our algorithm. Our algorithm can handle
sequence numbers and the like if they are part of an endpoint automaton.

As expected, in each state of the midpoint, there is considerable uncertainty
about the exact state of the endpoints. This is reflected in the fact that some
midpoint states consist of over 60 triples. Despite this, the automaton is of
manageable complexity, in particular the number of outgoing transitions per
state is small (1 — 3). The multiple transitions reflect the (limited) ways that
messages can be sent independently by the endpoints and how they can be
reordered by the network.

Note too that our midpoint automaton has 7 more states (a — g) than our
reverse-engineered TCP automata. This reflects the additional complexity nec-
essary to properly track possible network events. Let us illustrate this with an
example. In our midpoint automaton, it can clearly be seen that, to get from
state SYN_B to state FIN1 B, two messages — an ACK from E, and a FIN from
FE, — are needed. These messages are independent and thus can arrive in either
order at the firewall. If we look how actual firewalls handle this, we see that
the intended order of sending the ACK before the FIN leads to the same result,
but that the opposite order ends in state ESTABLISHED, leaving us without an
explanation why the FIN needs to be allowed in state SYN_B.

Our construction builds permissive midpoint automata. This reflects our de-
cision not to penalise protocol-conform endpoints for actions of the environment
(here the network). But it is a simple matter to modify the approach to construct
restrictive midpoint automata. These can be built by stopping — i.e. dropping
everything from then on — at states that consist of more than one triple. But
building a restrictive automaton makes little sense with current protocols: It
requires dropping more or less everything, as there will be uncertainty already
after a few packets.

As discussed in [Secfion 3 a midpoint may send (spoofed) messages to the
endpoints to tear down (reject) an unwanted connection. Note that the deci-
sion whether such a message is sent is part of the midpoint’s policy, not of the
automaton. Therefore, similar to instantiating a new instance of the midpoint
automaton after receiving the first packet of a connection, the sending of such
messages should result in the deletion of the corresponding instance of the mid-
point automaton.

6 Conclusion and Future Work

In this paper, we have shown why midpoints must behave, and hence be specified,
differently from endpoints. Furthermore we have given an algorithm to generate
midpoint automata from endpoint automata. Our solution should be of interest
to at least two groups: those building midpoints and those analysing (e.g. testing)
them. Both groups will benefit from having a general method to systematically
construct midpoint specifications from those for endpoints.

The construction presented has two minor limitations: it requires that the
endpoint automata do not have loops without input and it does not take dupli-
cation in the network into account. The first point is unproblematic, as loops
without input should not be present since these would enable one endpoint to
loop infinitely without communicating (only “talking” not “listening”) with the
other endpoint. We believe the problem of duplicates (or retransmissions) should
be solved independent of protocol automata. The midpoint should remember the
packets seen (unique id) and its decision, and then apply the same decision to
duplicates received later. We intend to investigate if this solution is feasible.

We plan to use our algorithm in the area of firewall conformance testing.
Namely, when testing a given firewall, we first determine the differences between
the automaton implemented in the firewall and the generated midpoint automa-
ton Ay, for every protocol pE Then the user can decide if the additional or
missing transitions represent a problem. If not, we continue with the test of the
policy, as described in [SBCO05], based on the protocol automaton of the given
midpoint. In this way, firewall conformance testing (and testing of other kinds
of midpoints as well) is possible and we can give the users information (and
control) on the strictness of their firewalls.

5 In the ideal case there are no differences at all or any differences are at least given
(and justified) by the midpoint vendor

References

[ASHO03]

[BCMGO1]

[BFNT06]

[ChoT8]

[CVI89)]

[ea]

Ehab Al-Shaer and Hazem Hamed. Management and translation of filtering
security policies. In Proc. 88th Int. Conf. Communications (ICC 2003),
IEEFE, pages 256-260, May 2003.

Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A.
Gunter. What packets may come: automata for network monitoring. In
POPL, pages 206219, 2001.

Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael
Smith, and Keith Wansbrough. Engineering with logic: HOL specification
and symbolic-evaluation testing for TCP implementations. In POPL, pages
55-66. ACM, 2006.

Tsun S. Chow. Testing software design modeled by finite-state machines. In
IEEE Transactions on Software Engineering, volume SE-4, pages 178-187,
May 1978.

Wendy Y. L. Chan, Son T. Vuong, and M. Robert Ito. An improved
protocol test generation procedure based on UIOS. In SIGCOMM, pages
283-294, 1989.

Harald Welte et al netfilter /iptables (ip_conntrack 2.1).
http://wuw.netfilter.org/.

[FvBK*91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar

[Gil61]
[Gro00]
[Gro02a]
[Gro02b)
[ISI81]
[Ltd]
[Mea55]
[Mic]
[MWZ05]
[Pax97]

[SBCO5]

[SDsS]

[vBBCO7]

Amalou, and Abderrazak Ghedamsi. Test selection based on finite state
models. volume 17, pages 591-603, 1991.

A. Gill. State-identification experiments in finite automata. In Information
and Control, vol. 4, pages 132 — 154, 1961.

Network Working Group. RFC 2979: Behavior of and requirements for
internet firewalls, October 2000.

Network Working Group. RFC 3234: Middleboxes: Taxonomy and issues,
February 2002.

Network Working Group. RFC 3360: Inappropriate tcp resets considered
harmful, August 2002.

University of Southern California Information Sciences Institute. RFC 793:
Transmission control protocol, September 1981.

Checkpoint Software Technologies Ltd. Checkpoint R55W.
http://www.checkpoint.com/.

G.H. Mealy. Method for synthesizing sequential circuits. In Bell System
Technical Journal, volume 34, pages 1045-1079, 1955.

Microsoft. ISA server v4.0.2161.50.
http://www.microsoft.com/isaserver/default.mspx.

A. Mayer, A. Wool, and E. Ziskind. Offline firewall analysis. In Interna-
tional Journal of Information Security, pages 125-144, 2005.

Vern Paxson. Automated packet trace analysis of TCP implementations.
In SIGCOMM, pages 167179, 1997.

Diana Senn, David Basin, and Germano Caronni. Firewall conformance
testing. In Lecture Notes in Computer Science, volume 3502, pages 226—
241, May 2005.

Krishan Sabnani and Anton Dahbura. A protocol test generation proce-
dure. In Computer Networks and ISDN Systems 15, pages 285-297, 1988.
Diana von Bidder, David Basin, and Germano Caronni. Midpoints versus
endpoints: From protocols to firewalls. Technical report 552, ETH Ziirich,
Department of Computer Science, March 2007.

http://www.netfilter.org/
http://www.checkpoint.com/
http://www.microsoft.com/isaserver/default.mspx

	Midpoints versus Endpoints From Protocols to Firewalls
	Diana von Bidder-Senn1, David Basin1, Germano Caronni2

