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ABSTRACT
We introduce the concept of Separation of Duties (SoD) as
a Service, an approach to enforcing SoD requirements on
workflows and thereby preventing fraud and errors. SoD as
a Service facilitates a separation of concern between busi-
ness experts and security professionals. Moreover, it allows
enterprises to address the need for internal controls and to
quickly adapt to organizational, regulatory, and technolog-
ical changes. In this paper, we describe an implementa-
tion of SoD as a Service, which extends a widely used, com-
mercial workflow system, and discuss its performance. We
present a drug dispensation workflow deployed in a hospital
as case study to demonstrate the feasibility and benefits of
our proof-of-concept implementation.
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1. INTRODUCTION
New technologies and methodologies, such as Service-Ori-

ented Architectures (SOAs), facilitate the integration of le-
gacy information systems with new system components and
the dynamic outsourcing of business functionality. These
advances enable organizations to concentrate on mission-
critical and value-generating business activities and to out-
source less central activities. Software as a Service (SaaS)
is a new software delivery model that is motivated by these
technical developments and new business models [22]. SaaS
decouples the ownership and the use of software by providing
its functionality as a service and facilitates a demand-driven,
late binding of system components. Along with this decom-
position and distribution of work comes the need to structure
and organize business tasks, which is typically done in the
form of business processes, modeled as workflows.

The second trend that motivates our work is the increasing
effort of organizations to enforce internal controls in order
to fight fraud and to comply with regulatory requirements.
For example, regulations such as the Sarbanes-Oxley Act [1]
mandate companies to document their business processes,
to identify fraud and security vulnerabilities, and to apply
appropriate countermeasures. Most security requirements
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for business processes are concerned with human activities,
as the most severe security risks stem from human interac-
tion [9]. Separation of Duties (SoD) is a popular class of
constraints on human activities that prevent a single user
from executing all critical tasks in a workflow. Therefore,
the collusion of at least two users is required to commit
fraud. Various frameworks have been developed for spec-
ifying and analyzing authorization constraints for business
processes. However, they are limited in the kinds of con-
straints they can handle and typically force a tight coupling
of the workflow and constraint definition. The SoD algebra
(SoDA) of Li and Wang [16] constitutes a notable exception.
It allows one to model expressive SoD constraints decoupled
from a workflow definition.

In this paper, we address both the trend toward loosely-
coupled, service-oriented architectures and the increasing
need for internal, process-oriented controls. A common char-
acteristics of these two developments is change. SaaS is mo-
tivated by fast-changing business environments, and internal
controls must be quickly adapted to changing regulations
and threats. Past research has largely ignored the impact
of changing authorizations on running workflows. The Eu-
ropean fraud survey of Ernest & Young confirms that orga-
nizational changes, triggered by acquisitions and job cuts,
are among the major sources of fraud [9]. In [5], we showed
how to bridge the gap between workflow-independent SoD
constraints, formalized as SoDA terms, and their enforce-
ment in a general workflow model [5]. Our approach also
accounts for changing authorizations and thereby general-
izes the original SoDA semantics [16].

Concretely, we describe the architecture and implementa-
tion of an SaaS instance, called SoD as a Service, for en-
forcing SoD constraints on workflows. We illustrate how off-
the-shelf, widespread software components can be combined
and extended to improve internal controls, while remaining
flexible with respect to change. Our theoretical models from
[5] serve as blueprint. Although the runtime complexity of
these models is exponential, our implementation achieves an
acceptable runtime performance for workflows used in prac-
tice. Through an extensive and realistic case study, we test
the applicability of SoD as a Service to a real-world scenario
and identify critical design decisions. We carry out perfor-
mance measurements that confirm the results of our com-
plexity analysis. A more detailed description of the results
presented in this paper is given in the technical report [6].

Our first contribution is the introduction of the concept
of SoD as a Service, providing SoD enforcement as a ser-
vice. SoD as a Service has a number of attractive properties.



It enables a loose coupling between a workflow engine that
executes the business logic, a user repository that adminis-
ters users and their authorizations, and the enforcement of
abstract SoD constraints. Loose coupling and the employ-
ment of the service concept in turn facilitates a separation
of concerns. Business experts can focus on modeling busi-
ness processes, managers on the organizational design, and
security professionals on the enforcement of internal con-
trols – each of them requiring minimal interaction with the
other two. Our architecture is also well-suited for enforc-
ing SoD constraints on legacy systems. In exchange for a
moderate increase in communication, our architecture al-
lows a reduction of implementation costs and configuration
efforts. At the same time, changing legal requirements or
organizational changes can quickly be reflected in the IT in-
frastructure. Our architecture and implementation pinpoint
the design decisions one faces when trying to achieve this
kind of modularity and flexibility. Our second contribution
is an empirical validation of the theoretical models in [5].

2. BACKGROUND
In industry, workflows are specified using modeling lan-

guages such as the Business Process Modeling Notation
(BPMN) [18]. Different formalisms have been used to give
workflow languages a precise semantics. We use the process
algebra CSP [20] to analyse our architecture’s runtime com-
plexity. Furthermore, CSP facilitates a precise and compact
description of our architecture as the composition of simple
components.

CSP describes a system as a set of communicating pro-
cesses. An event is the smallest unit of activity; let Σ de-
note the set of all events. A sequence of events, written
〈e1, e2, . . . , en〉, is called a trace and Σ∗ is the set of all traces
over Σ. For two traces t1 and t2, their concatenation is de-
noted t1ˆ t2. A process describes a communication pattern.
The denotational semantics of CSP defines the behavior of a
process P as a prefix-closed set of traces T(P ) ⊆ Σ∗, each de-
scribing a possible execution of P . For a trace t and an event
e, if t ∈ T(P ) we say that P accepts t and if t̂ 〈e〉 ∈ T(P ) we
say that P engages in e (after P accepted t). Processes can
be parametrized. For a variable v, P (v) describes a class
of processes, where the behavior of an instance of P (v) de-
pends on the value of v. Finally, for two processes P and
Q and a set of events E, P ‖

E

Q is the parallel process that

engages in an event e ∈ E if both P and Q engage in e, and
it engages in an event e /∈ E if P or Q engages in e.

2.1 Workflows
A unit of work is called a task. Because SoD constraints

are concerned with human activities, we concentrate on tasks
that are executed by humans, either directly or through the
execution of a program on their behalf. A workflow models
the temporal ordering and causal dependencies of a set of
tasks that together implement a business objective.

The execution of a workflow by a workflow engine is called
a workflow instance. A workflow engine may execute multi-
ple instances of the same workflow in parallel. The execution
of a task in a workflow instance is called a task instance. Let
U be a set of users and T a set of tasks. We model the execu-
tion of a task t ∈ T by a user u ∈ U by the composite event
b.t.u, where b indicates that this is a business event. The set
of all business events is ΣB . In addition, we use the event

done to denote that a workflow has finished. Given a work-
flow w, we model w as a process W . Every trace i ∈ T(W )
corresponds to a workflow instance of w. For i ∈ Σ∗, the
function users(i) returns the set of users who executed a
task in i, e.g. users(〈b.t1.Bob, b.t2.Claire, b.t3.Bob, done〉) =
{Bob, Claire}.

2.2 Authorizations
We use Role-based Access Control (RBAC) [10] to model

authorizations. Let a set of roles R, a user-assignment (re-
lation) UA ⊆ U×R, and a permission-assignment (relation)
PA ⊆ R× T be given. We call a tuple (UA,PA) an RBAC
configuration. A user u is authorized to execute a task t if
there is a role r ∈ R such that (u, r) ∈ UA and (r, t) ∈ PA.
We say that u acts in role r if (u, r) ∈ UA. We do not
consider sessions but they could be modeled with the ad-
ministrative commands introduced below. Users and their
credentials, including their assignments to roles, are typi-
cally stored and administrated in a user repository.

Let (UA,PA) be an RBAC configuration. The RBAC pro-
cess RBAC(UA,PA) models the enforcement of role-based
authorizations and the administration of UA. RBAC(UA,PA)
engages in a business event b.t.u if u is authorized to exe-
cute t with respect to (UA,PA). Furthermore, we model the
administration of user-assignment relations with a set of ad-
ministrative events ΣA. For every user u ∈ U and every role
r ∈ R, ΣA contains the administrative events a.rmUA.u.r and
a.addUA.u.r, where a indicates that they are administrative
events. RBAC(UA,PA) engages in a.addUA.u.r and behaves
like RBAC(UA ∪ {(u, r)}, PA) afterward. Similarly, it en-
gages in a.rmUA.u.r and behaves likeRBAC(UA\{(u, r)}, PA)
afterward. In other words, a.addUA.u.r adds the tuple (u, r)
to UA and a.rmUA.u.r removes it from UA.

2.3 Separation of Duty Algebra
Li and Wang’s separation of duty algebra (SoDA) describes

SoD constraints independent of workflows. This decouples
workflow definitions and SoD enforcement and naturally fits
our SoD as a Service approach. In this paper, we merely
motivate SoDA by giving a few examples. See [16] for a
complete language definition.

SoDA formalizes SoD constraints as terms. Let a term φ
and a user assignment UA be given. A set of users U satis-
fies φ with respect to UA, written U `UA φ, if the users in U
and their assignments to roles in UA comply with the SoD
constraint described by φ. As examples, consider the terms
φ1 = All⊗All⊗All, φ2 = Pharmacistt (Nurse⊗Nurse), and
φ3 = (Therapist⊗Nurse)u (¬Patientu¬{Bob, Claire})+.
The term φ1 is satisfied by every set containing three users;
i.e., φ1 requires the separation of duties between three arbi-
trary users. The term φ2 is satisfied by either a user acting
as Pharmacist or two different users, both acting as Nurse.
Under the assumption that a Pharmacist has more medical
knowledge than a Nurse, this constraint could be used to en-
sure that the medical decisions of a Nurse are double-checked
by another Nurse while a Pharmacist’s decision need not be
checked by a second user. The term φ3 requires a user act-
ing as Therapist and another user acting as Nurse. In addi-
tion, both users must not act as Patient and may be neither
Bob nor Claire. These examples illustrate how SoDA can
be used to express quantitative and qualitative restrictions.
Terms define both the number of users and the kinds of users
that are required for the execution of a set of tasks.



In [5], we generalize the original SoDA semantics to a trace
semantics that also accounts for changing authorizations.
We thereby close the gap between the workflow-independent,
abstract specification of SoD constraints and their enforce-
ment on workflows. Given a user assignment UA and a term
φ, we describe the construction of a process SODφ(UA),
called SoD-enforcement process, that engages in all business
events that correspond to a satisfying set of users for φ with
respect to UA. Additionally, SODφ(UA) also engages in ad-
ministrative events that modify UA. The relation between
the satisfaction of φ by a set of users and the acceptance
of a trace by SODφ(UA) is as follows: For all terms φ,
all user-assignment relations UA, and all traces i ∈ Σ∗B , if
î 〈done〉 ∈ T(SODφ(UA)), then users(i) `UA φ.

Let a process W that models a workflow be given. Let φ
be a term that formalizes an SoD constraint, UA a user as-
signment, and PA a permission assignment. We call the par-
allel, partially synchronized composition of W , the RBAC
process, and the SoD-enforcement process SODφ the SoD-
secure (workflow) process SSWφ. Formally,

SSWφ(UA,PA) = (W ‖
ΣB

RBAC(UA,PA)) ‖
Σ

SODφ(UA) .

If SSWφ(UA,PA) engages in a business event b.t.u, then t
is one of the next tasks in the workflow modeled by W , u
is allowed to execute t with respect to UA and PA, and u
is also authorized to execute a task according to the SoD-
policy φ with respect to UA. In addition, RBAC and SODφ

can synchronously engage in an administrative event and
change their user assignments accordingly.

3. IMPLEMENTATION
In the following, we describe an implementation of SoD

as a Service. Our goal is to demonstrate the flexibility
of this approach, to analyze its scalability, and to iden-
tify performance-critical parameters. We use the SoD-secure
process as blueprint for our implementation because its sub-
processes naturally map to components of a SOA as illus-
trated in Figure 1. The components’ interfaces can be in-
ferred from the sets of events on which the respective pro-
cesses synchronize. We proceed by implementing W by a
workflow engine, RBAC by a user repository, and SODφ

by a program called an SoD-enforcement monitor. Work-
flow engines and user repositories are well-established con-
cepts. We use off-the-shelf components to realize them. The
standalone SoD-enforcement monitor, however, is something
fundamentally new. Hence, we implement it from scratch
(indicated by dark gray in Figure 1).

3.1 Technical Objectives
We aim at realizing an effective, practical, and efficient

implementation. By effective we mean that the implemen-
tation fulfills its purpose. Namely, it should support the
execution of arbitrary workflows, facilitate changing RBAC
configurations, and correctly enforce SoD constraints that
are specified as SoDA terms.

We understand practicability in the sense that the inte-
gration and configuration effort is moderate. The main com-
ponents of our system should be loosely coupled in order to
reduce the cost of integration and to allow the integration
of pre-existing components, such as a legacy workflow sys-
tem. Furthermore, the system should be configurable using
standard means, e.g. a workflow definition, an RBAC config-

Figure 1: From theory to practice

uration, and an SoD policy, rather than requiring additional,
labor-intensive settings.

The performance of our implementation is a critical suc-
cess factor for this work. We call the runtime of a system
with a workflow engine and a user repository, but without
an SoD-enforcement monitor, the runtime baseline. Our ob-
jective is to enforce SoD constraints efficiently, that is with
a low overhead compared to the runtime baseline.

3.2 Architecture
Figure 1 shows our general approach of mapping the pro-

cesses W, RBAC, and SODφ to three individual system
components. The concrete software tools we use and their
intercommunication are illustrated in Figure 2. Gray boxes
again indicate the components that we developed versus
those that are standardly available.

Workflow engine: We use the IBM WebSphere Process
Server (WPS) [15] as workflow engine. WPS runs on
top of the IBM WebSphere Application Server (WAS)
[14], IBM’s Java EE application server.

User repository: The IBM Tivoli Directory Server (TDS)
[13] serves as a user repository. TDS is an LDAP
server whose LDAP schema we configured to support
the RBAC relations.

SoD enforcement monitor: We implemented the SOD-
enforcement monitor in Java and wrapped it as a web
service, using Apache Axis [21] running on top of
Apache Tomcat.

Along with the various web-service standards, many semi-
formal business process modeling languages have emerged.
Backed by numerous software vendors, the Web Service Busi-
ness Process Execution Language (WS-BPEL) [3], or BPEL
for short, is a popular standard for describing business pro-
cesses at the implementation-level. A BPEL process defini-
tion can be directly executed by a workflow engine.
BPEL4People [2] is an extension of BPEL for describing hu-
man tasks. At design time, we define a workflow in BPEL,
including BPEL4People extensions, and deploy it to WPS.

LDAP supports RBAC with the object class accessRole.
Instances of this class represent a role and store the dis-
tinguished name of their members, typically instances of
inetOrgPerson, in the field member. We encode U , R, and
UA in LDAP’s export format LDIF and send it to TDS, or
we administer them directly through TDS’ web interface.

Using an ASCII version of the SoDA grammar, we en-
code SoDA terms as character strings. We send them to the
SoD-enforcement monitor with a standalone client. The in-
terface of our SoD-enforcement monitor implementation is
described in [6].

By adopting a service-oriented architecture, we achieve a
loose coupling between our three main system components.



Figure 2: Architecture

This allows us to integrate two off-the-shelf components and
our newly developed SoD-enforcement monitor. Hence, we
achieve the flexibility described in Section 3.1.

The downside of the SOA approach is the increased com-
munication and serialization overhead. To determine whether
a user is authorized to execute a task instance with respect
to an SoD constraint, the SoD-enforcement monitor requires
context information, which must be sent across the network.
Our design decisions in this regard are explained in Sec-
tion 3.5 and the performance analysis in Section 4.3 show
that the communication overhead is acceptable. Similar
trade-offs between flexible, distributed architectures with an
increased communication overhead versus monolithic archi-
tectures with a smaller communication overhead have been
made in the past. For example, the Hierarchical Resource
Profile for XACML [4] proposes sending the hierarchy, based
on which an access control decision is made, to the access
control monitor along with the access request. As with our
architecture, the access control monitor needs considerable
context information to compute an access decision.

3.3 Enforcement of SoD Constraints
In this section, we explain how our prototype system im-

plements an SoD-secure workflow process SSWφ. The pro-
cess SSWφ engages in three kinds of events: business events,
administrative events, and the event done. The implemen-
tation and handling of administrative events and the event
done is straightforward and therefore not discussed. We take
a closer look at business events and explain why every ex-
ecution of a task instance in our system corresponds to a
business event that is accepted by SSWφ. A business event
corresponds to the execution of a sequence of steps in our
implementation.

Consider the SoD-secure workflow process

SSWφ(UA,PA) = (W ‖
ΣB

RBAC(UA,PA)) ‖
Σ

SODφ(UA),

for a SoDA term φ, an RBAC configuration (UA,PA), and
a workflow process W that models a workflow w. Assume
that i ∈ T(SSWφ(UA,PA)) corresponds to an unfinished
workflow instance of w. Let UA′ be the user assignment
after executing the administrative events in i. Assume that
t is a task in w. Furthermore, assume that ti, an instance of
t, is the next task instance that is executed. We now look
at the state transitions of ti. We refer to an arrow labeled
with n in Figure 2 as An.

Instantiation: The creation of ti is triggered by the termi-
nation of the preceding task instance, corresponding to the
rightmost business event in i or by the creation of i itself.

RBAC Authorization: In SSWφ, authorization decisions
are made by the RBAC and the SODφ process andW simply
defines the order in which tasks must be executed. This is
different in our system and also in most commercial workflow
systems. For example, BPEL4People requires the definition
of a query, called people link, for every task. When the work-
flow engine instantiates the task, it executes the respective
query against the user repository. The returned users are
candidates for executing the newly created task instance.

For a user u, the process RBAC(UA′, PA) accepts the
business event b.t.u if u is assigned to one of the roles in
Rt = {r ∈ R | (r, t) ∈ PA} according to UA′. Therefore,
during design time, we specify t’s people link in such a way
that the user repository returns all users who are assigned
to a role in Rt. In other words, the user repository keeps
track of the user-assignment relation UA and the workflow
definition specifies the permission-assignment relation PA.
Implicitly, we assume a one-to-one relation between permis-
sions and tasks.

WPS evaluates t’s people link after every instantiation
of t. Initially, the people link is sent to TDS (A1). After-
wards, TDS returns the set of users U1 = {u ∈ U | ∃r ∈
Rt . (u, r) ∈ UA′} to WPS (A2).

Refine to SoD-compliant Users: Next, we select those
users from U1 who are allowed to execute ti with respect
to φ and i. Namely, we compute the set of users U2 =
{u ∈ U1 | i ˆ〈b.t.u〉 ∈ T(SODφ(UA′))}.

WPS provides a plugin interface that allows one to post-
process the sets of users returned by a user repository. We
wrote a plugin for this interface that sends U1, their assign-
ments to roles UA′1 = {(u, r) ∈ UA′ | u ∈ U1}, and the
identifiers of w and i to the SoD-enforcement monitor (A3).
We refer to this web service call as a refinement call. See [6]
for a detailed interface description.

For every workflow, the SoD-enforcement monitor stores
the corresponding SoDA term. Furthermore, it keeps track
of the users who execute task instances (see step Claim). To-
gether with the above mentioned inputs, this allows the com-
putation of U2. The output, U2, is returned to WPS (A4).

Display: A user can interact with WPS through a person-
alized, web interface. Once a user has successfully logged
into the system, WPS displays a list of task instances that
the user is authorized to execute. We call this list the user’s
inbox. For every user u ∈ U2, i ˆ〈b.t.u〉 ∈ SSWφ(UA,PA).
Therefore, WPS displays ti in the inbox of every user in U2.

Claim: In the workflow terminology, if a user requests to
execute a task, he is said to claim the task. One of the users
in U2 must claim ti by clicking on ti in his inbox. Assume
the user u claims ti. Instantaneously, ti is removed from the
inboxes of all other users. At this point, we must communi-
cate to the SoD-enforcement monitor that u is executing ti.
In addition, we send the roles assigned to u to the monitor
(A5). We refer to this web service call as a claim call.

Termination: Afterwards, u is prompted with a form whose
completion constitutes the work associated with ti. The
work is completed when the form is submitted. If ti is not
a task instance that terminates the workflow instance, its
termination triggers the instantiation of another task.



Figure 3: Case study: Drug dispensation workflow in BPMN

Summarizing, our system effectively enforces abstract SoD
constraints as specified in Section 3.1. Arbitrary workflows,
constrained by a possibly changing RBAC configuration and
an abstract SoD policy, can be executed on WPS. The ap-
plicability of our approach is further demonstrated with the
case study in Section 4.

3.4 Complexity
Due to space limitations, we present the complexity re-

sults for our SoD-enforcement monitor implementation with-
out proof and refer to [6] for more details. In particular,
we discuss the runtime complexity of a refinement call. The
complexity of claim calls are negligible compared to the com-
plexity of refinement calls and is therefore not discussed.

In general, the problem of deciding whether a term is sat-
isfied by a set of users is NP-complete [16]. The SoD-en-
forcement monitor must solve this decision problem for every
user received through a refinement call. Therefore, it comes
as no surprise that refinement calls have a worst-case expo-
nential runtime complexity in O(|U1|m 2e p(|U|, |R|)) where
m is the number of operators in φ and p is a polynomial
function. If φ contains no +-operators then e ≤ m and if φ
contains +-operators then e ≤ |U|. The number of opera-
tors is typically linear in the number of tasks of the workflow.
Our experience with business process catalogs, such as the
IBM Insurance Application Architecture (IAA) [12], is that
workflows contain a good dozen human tasks on the average.
Furthermore, most workflow languages allow the decompo-
sition of workflows into sub-workflows. Given these numbers
and observations, we conclude that the performance penalty
imposed by the SoD as a Service approach is acceptable for
most workflows.

3.5 Design Decisions and Assumptions
An SoD-enforcement process SODφ(UA) is parametrized

by the user assignment UA and keeps track of administrative
changes by engaging in administrative events and modifying
UA accordingly. Our SoD-enforcement monitor, however,
does not store all tuples of UA. It receives all relevant tu-
ples as call parameters and stores only those of users who
claimed a task instance. Although this approach increases
the communication overhead between WPS and the SoD-
enforcement monitor, it reduces unnecessary replication. In

large enterprises, a user repository may contain thousands of
entries and only a few of them may be relevant with respect
to a given workflow.

Our SoD-enforcement monitor is stateful because the en-
forcement of SoD constraints ranges over multiple tasks and
may depend on user assignments. The service must there-
fore keep track of the users who execute task instances and
the roles they act in at that time. Workflow engines such as
WPS may store the users who executed task instances but
they do not store the history of their user assignments. This
information is stored in the SoD-enforcement monitor; the
workflow engine and the user repository remain unchanged.

For simplicity, our SoD-enforcement monitor cannot cope
with the abort or suspension of task instances. In practice,
however, WPS users can return unfinished task instances
to the workflow engine or trigger the abortion of a workflow
instance. Further design considerations are elaborated in [6].

4. CASE STUDY

4.1 Scenario
We illustrate SoD as a Service with a drug dispensation

workflow from [17]. This workflow defines the tasks that
must be executed to dispense drugs to patients within a
hospital. The drugs dispensed in this process are either in an
experimental state or very expensive and therefore require
special diligence.

A BPMN model of the dispensation workflow is shown in
Figure 3. We use BPMN annotations to define the permis-
sion-assignment relation, e.g. a Pharmacist is authorized
to execute instances of the task approve drug dispense. A
workflow instance is started by a Patient who requests drugs
by handing his prescription to a Nurse. The Nurse retrieves
the patient’s record from the hospital’s database and for-
wards all data to a PrivacyAdvocate who checks whether
the patient’s data must be anonymized. If anonymization
is required, this is done by a computer program. We ig-
nore this task in our forthcoming discussion as we focus
on human tasks. If therapeutic notes are contained in the
prescription, they are reviewed by a Therapist. In paral-
lel, research-related data is added by a Researcher, if the
requested drugs are in an experimental state. Finally, a
Pharmacist either approves the dispensation and a Nurse



collects the drugs from the stock and gives them to the pa-
tient, or he denies the dispensation and a Nurse informs the
Patient accordingly.

Fraudulent or erroneous drug dispensations may jeopar-
dize the patients’ health, may violate regulations, and could
severely impact the hospital’s finances and reputation. We
assume that the hospital enforces SoD constraints in order to
reduce these risks. A Pharmacist may not dispense drugs to
himself; i.e. he should not act as Patient and Pharmacist

within the same workflow instance. Similarly, the Nurse

who prepares the drugs should not be the same user as the
Pharmacist who approves the dispensation. Furthermore,
the PrivacyAdvocate must be different from any other user
involved in the same workflow instance. Finally, the nurse
Claire may not be involved in the dispensation due to her
drug abuse history. However, as a Patient she may re-
ceive drugs. All these constraints are encoded by the term
φ = Patient ⊗ ( (¬{Claire})+ u ( PrivacyAdvocate ⊗
Pharmacist ⊗ ( Nurse t Researcher t Therapist )+)).

4.2 Configuration and Execution
We defined the drug dispensation workflow in BPEL, ex-

tended by BPEL4People, and deployed it on WPS. Using the
web interface of TDS, we set up an initial user assignment
UA as depicted in Figure 4. Furthermore, we configured
WPS to use TDS as user repository.

Figure 4: Initial user-assignment relation UA

We represented the SoD term φ as a string and sent it to
the SoD-enforcement monitor. In addition, we configured
the plugin interface of WPS to use our plugin to post-process
user repository requests, i.e. to send them to the SoD-en-
forcement monitor and to inform it about users who claimed
task instances.

We executed instances of the workflow using the default
web interface of WPS. For example, we log into WPS as Dave
and start a workflow instance by submitting a form that
corresponds to the task request drugs. Next, we log into
the system as Emma, claim the newly created instance of the
task retrieve patient record, and execute it by filling in
the corresponding form. As Fritz, we claim and execute the
instance of check anonymization requirements. The drugs
requested by Dave do not require additional research data.
However, we review the therapeutic notes included in Dave’s
prescription as Bob. Because a Patient may not dispense
drugs to himself, Dave must not approve the dispensation.
Because there is no other user available who acts in the role
Pharmacist, which is required for the approval, we add an
assignment of Alice to Pharmacist to UA by executing the
corresponding administrative command in TDS. Now, we

can approve the dispensation as Alice. Finally, acting as
Gerda, we get the drugs from the stock and dispense them.

4.3 Performance
Compared to the runtime baseline, the runtime of our pro-

totype system is increased by a refinement and a claim call
for every task instance. In the following, we discuss the per-
formance penalty imposed by these calls. We call the time
it takes to call a web service and to retrieve its return values
the total runtime of a web service. We decompose this run-
time into two parts: the communication time encompasses
the time to serialize, transmit, and deserialize the exchanged
data and the computation time is the time to execute the
service’s functionality

We executed ten workflow instances like the one outlined
in the previous section and measured the total runtime for
each refinement and claim call. We refer to an instance of
request drugs as t1, to an instance of retrieve patient

record as t2, etc. Figure 5 illustrates the averaged commu-
nication and computation time in milliseconds per task.

(a) Refinement calls (b) Claim calls

Figure 5: Average service call times in ms

The communication time depends on various factors in-
cluding the network throughput, the network latency, the
payload size, and also the time taken to serialize Java objects
to SOAP message parameters with the Apache Axis frame-
work. We run the service client and the SoD-enforcement
monitor on two different computers at the same geograph-
ical location, connected by a standard enterprise network
with an average latency of 1ms. Both computers have off-
the-shelf configurations.1 The communication time averages
between 150ms and 200ms per call.

The computation time for claim calls was always around
24ms. The computation time of refinement calls, however,
increased with the number of executed task instances. As
explained in Section 3.4, the operators in φ cause this time
to increase exponentially.

Finally, we compare the total runtime of these additional
calls to the time it takes to execute a task instance in a sys-
tem without an SoD-enforcement monitor. The refinement
call increases the time between the termination of a pre-
ceding task instance and the moment the new task instance
is ready to be claimed by a user. The durations for these
steps range between 2 and 15 seconds, depending on the load
on WPS and the latest patches installed on it. Claiming a
new task instance takes only 1–3 seconds. A user clicks on
the instance in his inbox and the corresponding form is dis-
played on his screen. In both cases, the additional runtime

1Client: MS Windows XP on Intel Core Duo 2 GHz proces-
sor with 3 GB RAM. Server: MS Windows Server 2003 on
Intel Xeon 2.9 GHz processor with 4 GB RAM.



caused by the SoD-enforcement monitor calls is an order of
magnitude smaller than the runtime baseline.

Given the observations made in Section 3.4 and the times
reported here, we conclude that the integration of our SoD as
a Service implementation into an existing workflow system
imposes a performance penalty below 10%. Consequently,
we achieved all the objectives described in Section 3.1.

5. RELATED WORK AND CONCLUSIONS
A classification of SoD constraints is given in [11]. In gen-

eral, SoD mechanisms are tightly coupled with the workflow
to be controlled, e.g. [7]. Li and Wang’s SoD algebra [16]
is the first approach that enables an abstract specification
of SoD constraints, leaving open which users are allowed
to perform which tasks. They proved that the complex-
ity of checking whether a SoDA term is satisfied by a set
of users is NP-complete [16]. Furthermore, they developed
algorithms for the static enforcement of high-level SoD con-
straints, formalized in SoDA [23]. However, their approach
is only applicable to a subset of terms.

BPEL4People supports basic dynamic SoD constraints [2].
Although not fully specified, the query language for people
links in BPEL4People allows one to exclude users who have
executed previous tasks from being assigned to new task
instances in the same workflow instance. By using SoDA
terms, our architecture supports more expressive constraints
than BPEL4People.

Paci et al. propose another access control extension for
BPEL [19] based on the work of Crampton [8]. Autho-
rizations, including SoD constraints, are enforced by a web
service, which pools all information that is relevant for en-
forcement: the history of workflow instances, the RBAC
configuration, and SoD constraints. The underlying work-
flow model, however, does not support loops, which is in
conflict with the expressiveness of BPEL. Moreover, unlike
our work, their constraint language requires a tight coupling
between constraints and the workflow definition and does
not support changing authorizations.

With this work, we addressed two major trends in In-
formation Security and business computing. First, we pre-
sented a flexible mechanism for enforcing internal controls,
with applications to fraud reduction and compliance with
regulatory requirements. Second, we introduced the para-
digm of SoD as a Service, which enables the dynamic inte-
gration and configuration of this enforcement mechanism in
a service-oriented environment. Both contributions match
well with the dynamics of today’s business environments in-
cluding changing regulations and organizational structures.

Concretely, our work bridges the gap between the theoret-
ical models of [5] and a realistic implementation in an enter-
prise workflow environment. Our implementation also serves
as a proof-of-concept for SoD as a Service. The SoD-en-
forcement monitor is configurable through web service calls
and provides its SoD-enforcement functionality as a service.
Furthermore, it accounts for changing authorizations and
therefore also to organizational changes. The choice of soft-
ware components for our architecture illustrates how SoD
as a Service enables the integration of new internal con-
trols into existing workflow environments. We discussed the
challenges that inherently arise if such flexibility is pursued.
An increased communication overhead needs to be balanced
against duplication of contextual information. Furthermore,
the computation time during refinement calls may grow ex-

ponentially with the number of tasks that are executed. A
promising idea for future work is to decompose SoDA terms
into subterms and to enforce them on critical subsets of hu-
man tasks of workflows. This would further reduce the run-
time of our service and allow task-specific constraints.
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