
Mechanisms for Usage Control

A. Pretschner, M. Hilty, D. Basin
Information Security, ETH Zurich, Switzerland
{pretscha,hiltym,basin}@inf.ethz.ch

C. Schaefer, T. Walter
DoCoMo Euro-Labs, Munich, Germany

{schaefer,walter}@docomolab-euro.com

ABSTRACT
Usage control is a generalization of access control that also
addresses how data is used after it is released. We present
a formal model for different mechanisms that can enforce
usage control policies on the consumer side.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

1. INTRODUCTION
Usage control [4] generalizes access control by controlling

not only who may access which data, but also how the data
may be used or distributed afterwards. We consider dis-
tributed settings, where processes act in the roles of data
providers and data consumers. A data provider gives sensi-
tive data to a data consumer based on conditions both on
the past (which we ignore in this paper) and the future. The
latter requirements come as obligations that restrict the fu-
ture usage of data. When data providers release data, they
would like mechanisms on the consumer’s side to enforce
their requirements. They would also like to check consis-
tency of policies, and if mechanisms are capable of enforc-
ing them. To this end, we present a model of usage control
mechanisms that formalizes the problem domain at a real-
istic level of complexity. Mechanisms are modeled as trace
transformers that map attempted events into actual usage-
controlled events. Our model allows the specification of a
wide range of usage control mechanisms—inhibition, execu-
tion, delay, modification, and signaling—which includes all
those found in practice. Moreover, it caters for concurrent
and ongoing usages. We assume some familiarity with the
Z language, the formalism employed in this paper.

2. SETUP AND POLICY LANGUAGE
Usage control requirements are negotiated between data

providers and consumers, and enforced using consumer-side
mechanisms. Data consumers request data. Using negotia-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

tors, the consumer and provider negotiate the usage request,
a topic not treated in this paper. Upon successful negotia-
tion, data is transferred from the provider to the consumer
and the usage control requirements are activated. From this
point onward, mechanisms on the consumer’s side will en-
force the requirements (which is, in general, not fully pos-
sible for all requirements: taking photographs of a monitor
will always be an option). We assume the consumer pos-
sesses a secure data store and that, prior to usage, all data is
routed through usage control mechanisms whenever it leaves
the store. This paper’s sole focus is on the mechanisms.

Semantic Model. Our model is based on classes of pa-
rameterized events. The event classes include usage and
other, with the latter including activation events. An event
consists of the event name and parameters, represented as
a partial function from names to values. We will describe
instantiated event parameters as (name, value) pairs. An
example is the event (play , {(obj , o)}), where play is the
name of the event and the parameter obj has the value o.

The definition of events in the Z language is shown below.
EName, PName, and PVal define disjoint basic types for
event names, parameter names, and parameter values.

[EName,PName,PVal]; Ev == EName × (PName 7→ PVal)

EClass ::= usage | other ; getclass : EName → EClass

Events are ordered via a refinement relation refinesEv.
Event e2 refines event e1 iff e2 has the same event name as
e1 and all parameters of e1 have the same value in e2. e2 can
also have additional parameters specified; see [1] for a for-
malization. The idea is that when specifying usage control
requirements, we do not want to specify all parameters. For
instance, if the event (play , {(obj , o)}) is prohibited, then
the event (play , {(obj , o), (device, d)}) should also be pro-
hibited. The event (nil ,∅) is reserved and denotes no event.

We need a language to define obligations. Its semantics
will be defined over traces: mappings from abstract points
in time—represented by the natural numbers—to possibly
empty sets of maximally refined events. We cater for us-
age events that execute over a time interval, e.g., watching
a movie. For example, if a time step lasts 1 minute and
a user plays a movie for 3 minutes, there will be 3 consec-
utive events indexed with start and ongoing, respectively:
((play , {(obj ,mov)}), start), and twice ((play , {(obj ,mov)}),
ongoing). The data type IndEv defines such indexed events.
We also need to express that usage is desired by a user
(DesIndEv): not every attempted usage is executed.

Index ::= start | ongoing; IndEv == Ev × Index

DesIndEv ::= TRY 〈〈IndEv〉〉; Trace : N→ P(IndEv ∪DesIndEv)

We use the temporal logic OSL [1] as language for usage

control requirements. Its syntax is provided by Φ+ (+ for
future; we slightly deviate from the Z syntax).

Φ+ ::= Efst 〈〈Ev〉〉 | Eall 〈〈Ev〉〉 | Tfst 〈〈Ev〉〉 | Tall 〈〈Ev〉〉 |
¬Φ+ | Φ+ ∧ Φ+ | Φ+ ∨ Φ+ | Φ+ ⇒ Φ+ | until〈〈Φ+ × Φ+〉〉 |
always〈〈Φ+〉〉 | after〈〈N× Φ+〉〉 | within〈〈N× Φ+〉〉 |
during〈〈N× Φ+〉〉 | repmax〈〈N× Φ+〉〉 |
replim〈〈N× N× N× Φ+〉〉 | repuntil〈〈N× Φ+ × Φ+〉〉

We distinguish between the start of an action (syntacti-
cally: Efst ; semantically: an indexed event with index start)
and any lasting action (syntactically: Eall ; semantically: in-
dexed events with any index). Tfst and Tall refer to the re-
spective attempted actions drawn from set DesIndEv. When
specifying events in obligations, by virtue of the refinement
relation refinesEv, there is an implicit universal quantifi-
cation over unmentioned parameters. ¬,∧,∨,⇒ have the
usual semantics. Our until operator is the weak-until oper-
ator from LTL. after(n) refers to the time after n time steps.
during specifies that something must constantly hold dur-
ing a specified time interval and within requires something
to hold at least once during a specified time interval.

Cardinality operators restrict the number of occurrences
or the duration of an action. The replim operator specifies
lower and upper bounds of time steps within a fixed time
interval in which a given formula holds. The repuntil oper-
ator is independent of any time interval: it limits the maxi-
mal number of times a formula holds until another formula
holds (e.g., the occurrence of some event). repmax defines
the maximal number of times a formula may hold in the in-
definite future. These cardinality operators are also used to
express limits on the accumulated usage time, e.g., by using
Eall(e) as an argument for limiting the accumulated time of
usage e. For instance, replim(20 , 0 , 5 ,Eall(play , {(obj ,mA)}))
specifies that movie mA may be played for at most five
time units during the next twenty time units. Similarly,
¬replim(20 , 0 , 2 ,Efst(play , {(obj ,mB)})) ⇒ after(25 ,
Efst(notify , {(rcv , subA)})) specifies that if the movie mB is
started more than twice during the next 20 time units, then
subject subA will be notified after 25 time units. We omit a
formalization of the semantics, |=f , for brevity’s sake [1, 2].

Obligations represent usage control requirements (“delete
after 30 days”; “do not distribute”). Each obligation has a
name that indexes respective activation events, and a for-
mula from Φ+ that must hold after its activation. A trace
satisfies an obligation iff the obligations’s formula holds at
the moment of the obligation’s activation, which is captured
by a dedicated event.

3. MECHANISMS
Mechanisms are the means by which usage can be con-

trolled. They are installed on the consumer’s side and may
be configured by the provider. Mechanisms consist of two
parts: a description of when they are applicable, often in-
cluding a triggering event, and the respective actions to be
taken. We have already introduced the distinction between
desired and actual usages. Mechanisms are triggered by de-
sired events. If the mechanism’s condition holds, the mech-
anism’s actions are executed. Otherwise, the overall system
guarantees that the desired usage is transformed into the
respective actual usage. We will later model the effect of
a set of mechanisms (not the mechanisms themselves) as a
function that maps possible traces—including desired usages
and activations only—to usage-controlled traces.

Since enforcement mechanisms can only make decisions
based on their current knowledge, we use a temporal logic of
the past, Φ−, to describe the conditions under which mech-
anisms perform their tasks. This is done by dualizing the
respective future operators in Φ+. The straightforward se-
mantics, |=f− , is defined elsewhere [2]. To express the past
nature of all operators, we superscript them with a −.

Because mechanisms can be configured, we allow for vari-
ables in the definition of conditions and triggering actions.
The latter are then events where either some parameter val-
ues or the name of the event is left unspecified. The re-
spective language is called Φ−

v which introduces a syntactic
category for variables (and events with variables, VarEv).
Elements from Φ−

v can be straightforwardly instantiated to
elements from Φ− by means of a substitution function called
subst f . Finally, to describe the overall functionality of mech-
anisms, we will use mixed formulae, Φ±, which combine
both future and past formulae in a restricted manner, as in
schema Mechanism below (see [2] for the semantics, |=f±).

Mechanism

ϕp : Φ−v ; ϕ : Φ−; α : Φ+; ψ : Φ±; m : Mode

uap : VarEv ; ua : Ev ; σ : Var 7→ (PVal ∪ EName)

ϕ = substf (ϕp , σ) ∧ ua = subst(uap , σ)

∀ s : Trace; t : N • (s, t) |=f− ϕ⇔ (rmTry(s), t) |=f− ϕ

ψ =
∧

e∈maxRefs(ua)

(
Tm (e) ∧± (Em (e) ⇒± ϕ)

)
⇒± α

The general form of mechanisms is defined by the schema
Mechanism. Mechanisms are defined by formulae ψ of type
Φ± (abbreviated by ψ : Φ±). ψ references the triggering
(desired) action ua (possibly nil, i.e., no trigger is provided)
together with its Mode m. The latter indicates whether
or not the triggering action refers to a first usage or to all
usages, i.e., first and ongoing usages (Mode ::= fst | all).
We do not require ua to be maximally refined as we often
want to specify an entire class of triggering actions. For
instance, we may wish to specify that playing a movie is
prohibited, without enumerating all possible devices. ψ also
references the condition ϕ : Φ− under which the mechanism
performs its task, and the effects α : Φ+. The definition does
not relate mechanisms to sets of traces of a usage-controlled
system yet; this will be done below. maxRefs computes the
set of maximally refined events for any event; this is needed
because traces consist of maximally refined events only.

If the triggering action of a mechanism is executed—as
indicated by a respective TRY event and syntactically cap-
tured by predicates Tfst and Tall (in the schema, we use
variable m : Mode as index)—then we require the following.
Under the assumption that adding the actual usage satisfies
ϕ, the effect α of the mechanism is “executed.” This means
that, in principle, a mechanism can itself invalidate its con-
dition (and this can also be done by other mechanisms).

When applying a mechanism, the respective TRY (·) events
are kept because more than one mechanism may be applica-
ble. The remaining desired actions that are not controlled
by any mechanism—either because they are not triggering
events of any mechanism or because no condition was true—
are transformed into actual usages in the end. We require
ϕ not to depend on any TRY events. This is what the
auxiliary function rmTry : Trace → Trace is needed for.

Mechanisms are parameterized. The respective variables
are used in both the triggering actions (uap) and the con-
ditions (ϕp). By providing substitutions σ, variables are

instantiated. The process of instantiating variables models
the configuration of mechanisms.

Four Classes of Mechanisms. There are four classes of
control mechanisms [2]: inhibition, finite delay, modification
of usage, and execution of actions. Inhibition reduces the set
of possible executions. Delays postpone usages. Modifica-
tions change usages, for instance, by converting an editing
usage into a reading usage only or by lowering the quality
of an output signal. The execution of actions adds events
to the execution, e.g., logging events, or sending signals to
the provider. In principle, all usage control policies could
be enforced by inhibitors and executors only; modifiers and
delayers merely increase user convenience. For instance, a
mechanism may not categorically forbid watching unpaid
movies, but rather reduce the quality considerably.

Because we differentiate between desired and actual us-
ages, the effect of a mechanism may add events to a trace,
but never remove any. Inhibition is then modeled as not
adding the actual usage corresponding to a desired usage.
The effect of applying a set of mechanisms to a trace is
the trace that satisfies all formulae of the mechanisms and
that, in addition, exhibits, at each time step, a minimum set
of events—mechanisms may add events that relate to their
“task” but not arbitrary events. This is handled below.

Executors add events to a trace. If event ua is desired at
time t and ϕ also holds at t , then the sequences of events in
exacts are executed. The composition of mechanisms (given
below) ensures that the desired usage ua is also converted
into an actual usage, provided that this would not affect
any other mechanism. Function subst substitutes variables
w.r.t. the substitution provided as σ by schema Mechanism.

Executor
Mechanism; exactsp : P seqVarEv ; exacts : P seqEv

exacts = map
(
λ t : seqVarEv • maps(λ x : VarEv •

subst(x , σ), t), exactsp
)

α =
∧

es∈exacts

#es∧
i=1

after(i − 1,Tall (es(i)))

The Eraser deletes an object (variable V (1)) V (2) days
after it was stored. Note the absence of a triggering action.

Eraser

Executor [before−(V (2),Efst ((store, {(obj ,V (1))})))∧−

¬−within−(V (2),Efst ((delete, {(obj ,V (1))})))/ϕp ,

(nil ,∅)/uap , fst/m, {〈(delete, {(obj ,V (1))})〉}/exactsp]

Modifiers replace an event ua by a set of events modifyBy
under certain conditions. Constraint 2 of schema Modifier
states that, in contrast to executors, modifiers are always
triggered by a desired usage and, furthermore, that events
are replaced by different events. The specified effect, α, is
similar to that of Executors, except that the events that are
added are drawn from the set modifyBy rather than exacts
and that ua is not added if the mechanism is applicable. An
example of a modifier is given by the schema NoPayNoGood :
songs not paid for will only be played in reduced quality.

Modifier

Mechanism; modifyByp : P VarEv ; modifyBy : P Ev

modifyBy = maps(λ x : VarEv • subst(x , σ),modifyByp)

ua 6= (nil ,∅) ∧ ua 6∈ modifyBy

α = ¬Em (ua) ∧
∧

e∈modifyBy

Tall (e)

NoPayNoGood

Modifier [always−(¬−Efst ((pay, {(obj ,V (1))})))/ϕp ,

(play, {(obj ,V (1), (qual , full))})/uap , all/m,

{(play, {(obj ,V (1)), (qual , red)})}/modifyByp]

Inhibitors prevent specified events from happening when
given conditions are met. Hence, they are modifiers with an
empty modifyBy set. An example for an inhibiting control
mechanism is given by the schema Subscription. It ensures
that each play is preceded by a pay that dates back at most
V (2) days.

Inhibitor

Modifier [∅/modifyByp]

Subscription

Inhibitor [¬−within−(V (2),Efst ((pay, {(obj ,V (1))})))/ϕp ,

(play, {(obj ,V (1))})/uap , all/m]

Delayers. Delaying mechanisms perform a sequence of
events, seqe, if ua is desired and condition ϕ is true. Once
this sequence of events has occurred, the request to execute
ua is expressed again. Delayers always delay an attempted
usage, which motivates the second constraint of schema De-
layer. We omit an example for brevity’s sake [2].

Delayer

Mechanism; seqep : seq1 VarEv ; seqe : seq1 Ev

ua 6= (nil ,∅) ∧ seqe = map(λ x : VarEv • subst(x , σ), seqep)

α = ¬Em (ua) ∧
#seqe∧
i=1

after(i − 1,Tall (seqe(i))) ∧

after(#seqe,Tm (ua))

Composition and Semantics. In this paper, we use
trace transformers to express properties of usage-controlled
systems, as opposed to simply using sets of traces. If the se-
mantics of a set of mechanisms and the system specification
were both given by sets of traces, then we could simply define
the composition of the two as the intersection of the sets of
traces. However, this imposes constraints on the system: it
must be liberal enough, i.e., under-specified, to allow for the
effects of applying mechanisms (because we do not confine
ourselves to inhibitors, applying mechanisms is not simply
a trace refinement). In contrast, specifying mechanisms as
trace transformers allows us to apply them to arbitrary sys-
tems that, when specified, must not take into account the
possibility of future mechanisms being applied.

Simultaneously applied mechanisms may interfere with
each other: two mechanisms may be triggered by the same
event; the effect of one mechanism may trigger another (and
this may lead to loops); and the effect of one mechanism may
invalidate the condition of a mechanism that was applied be-
fore. We simply forbid such cases here [2].

The schema CombinedMechanism above defines the com-
position of mechanisms in terms of functions µ and µ∗.
The trace transformer µ applies all mechanisms and pos-
sibly adds usages that are allowed by the mechanisms (e.g.,
action ua of executors). The function µ∗ afterwards trans-
forms TRY events that are not controlled by any mech-
anism into the respective actual usage, and then removes
all remaining TRY events. We use an auxiliary function,
addEv : Trace × N× Ev ×Mode → Trace, that adds an event
with a given mode to a trace at a specified time.

Constraint 2 of schema CombinedMechanism specifies three

CombinedMechanism
M : P Modifier ; I : P Inhibitor ; D : P Delayer ; E : P Executor

µ : Trace → Trace; µ∗ : Trace → Trace; ucmechs : P(Modifier ∪ Inhibitor ∪Delayer ∪ Executor)

ucmechs = M ∪ I ∪D ∪ E

∀ i : Trace; t : N; e : Ev ; md : Mode • i(t) ⊆ (µ(i))(t) ∧ (µ(i), t) |=f±
∧

u∈ucmechs

u.ψ

∧
(
(addEv(µ(i), t , e,md), t) |=f− Tmd (e) ∧−

∧
u∈{v :ucmechs|(e refinesEv v.ua∨v.ua=(nil,∅))∧v.m=md}

¬−u.ϕ
)

⇒ (µ(i), t) |=f Emd (e)

∀ i : Trace; t : N; e : Ev ; md : Mode • ¬∃ o : Trace • (o, t) |=f±
∧

u∈ucmechs

u.ψ

∧
(
(addEv(o, t , e,md), t) |=f− Tmd (e) ∧−

∧
u∈{v :ucmechs|(e refinesEv v.ua∨v.ua=(nil,∅))∧v.m=md}

¬−u.ϕ
)
⇒ (o, t) |=f Emd (e)

∧ i(t) ⊆ o(t) ∧ o(t) ⊆ (µ(i))(t) ∧ ∃ t ′ : N • i(t ′) ⊂ o(t ′) ∧ o(t ′) ⊂ (µ(i))(t ′)

∀ i : Trace; t : N • (µ∗(i))(t) = ((µ(i))(t) \DesIndEv) ∪ {e : Ev ; j : Index |
TRY ((e, j)) ∈ (µ(i))(t) ∧ e ∈ Ev \ {m : Mechanism | m ∈ ucmechs • m.ua} • (e, j)}

− −−plus noninterference constraints −−−

(d)

{TRY((e,start))} {TRY((e,start))}

2 31

{TRY((e1,start)),TRY((e2,start))}(a)

{(e,start),
 TRY((e,start))}

{(e1,start),
 TRY((e1,start)),TRY((e2,start))}

2 31

{(e,start),
 TRY((e,start))}(c)

{(e,start),
 TRY((e,start))}

{(e,start),
 TRY((e,start))}

2 31

{TRY((e1,start)),TRY((e2,start))}(b)

{(e,start),
 TRY((e,start))}

{(e,start),
 TRY((e,start))} TRY((e1,start)),TRY((e2,start))}

{(e1,start),(e2,start),

2 31

(e)
{(e,start),
 TRY((e,start))} TRY((e1,start)),TRY((e2,start))}

{(e2,start),

2 31

{(e,start),
 TRY((e,start))}

Figure 1: Possible effects of an inhibitor

conditions, one per conjunct. First, the effect of applying
mechanisms at most adds events. Second, the resulting trace
satisfies always(u.ψ) for all mechanisms u in the system.
Third, those desired usages for which no mechanism was
applicable are transformed into actual usages, unless their
transformation would render a mechanism applicable. The
intuition behind the formalization is that if a desired usage e
occurs and no mechanism with a trigger that is refined by e
is applicable (because all conditions ϕ do not hold), then ei-
ther the actual usage is part of the trace, or adding this event
would make one of the mechanisms applicable. We quantify
over all potentially applicable mechanisms even though this
is forbidden by the interference conditions described below;
this is done to cater for relaxations of those conditions.

The motivation for the third case, and its complexity, is
as follows. Consider an inhibitor i with condition i .ϕ =
¬−repmax−(3,Efst(e)), for some event e. This inhibitor en-
sures that e happens at most three times. Consequently,
i .ψ = (Tfst(e) ∧ i .ϕ) ⇒ ¬Efst(e). Let e = (play , {(name,
123)}) and both e1 = (play , {(name, 123), (device, 1)}) and
e2 = (play , (name, 123), (device, 2)}) be refinements of e.
Furthermore, let s denote a trace with (s, 1) |=f Tfst(e),
(s, 2) |=f Tfst(e), and (s, 3) |=f Tfst(e1) ∧ Tfst(e2) (Fig. 1
(a); for simplicity’s sake, we neither consider maximum re-
finements here nor do we show the (nil ,∅) events). In other
words, at time 3, there are two concurrent desired play
events on different devices. Applying i will add (e, start)
to both s(1) and s(2) because ¬i .ϕ holds at both times, and
adding the events does not invalidate ¬i .ϕ. Furthermore,
(s, 3) |=f− ¬ i .ϕ, i.e., the inhibitor is not applicable at time
3 either.

Now, to satisfy ¬i .ϕ, an inhibitor could simply prohibit
both (e1 , start) and (e2 , start) at time 3 (Fig. 1 (b)). How-
ever, this seems undesirable from the consumer’s perspective
who has agreed to a policy stating that a movie must not
be played more than three (rather than two) times. The

inhibitor could also allow either (e1 , start) or (e2 , start) at
time 3, but not both, also satisfying ¬i .ϕ (Figs. 1 (c) and
(d)). When adding both (e1 , start) and (e2 , start) to s(3),
then the resulting trace would violate ¬i .ϕ (Fig. 1 (e)). Our
definition of µ ensures that either one from Figs. 1 (c) and
(d) is chosen non-deterministically (choosing none would in-
validate constraint 2). In essence, the problem is that we
have to express that “if, under a given condition, an event
was added, some formula must be true”, where adding the
event may in itself invalidate the condition. The problem is
thus not bound to the fact that we allow for parallel occur-
rences of events that are refinements of the same event.

Mechanisms are underspecified in that they can add arbi-
trary events, as long as the respective properties are not vio-
lated. That means that for a trace i , the set {o : Trace • ∀ t :
N • i(t) ⊆ o(t) ∧ (o, t) |=f±

∧
u∈ucmechs u.ψ ∧ . . .} contains

those traces that look like i , but may contain additional
events and yet satisfy the formula ψ of each mechanism.
We hence require the effect of applying a set of mechanisms
to be minimal, ensured by constraint 3. Constraints 2 and 3
together define the function µ. Minimal traces need not be
unique. Constraint 4 removes the remaining TRY (·) events
and transforms the desired usages that are not controlled
by any mechanism into the respective actual usages. This
defines function µ∗.

Usage-Controlled Systems. Thus far, the “original”
traces of a system have not been related to the usage-control-
led ones. We also have not provided basic constraints such
as the uniqueness of names, activation signals, etc. This is
now done in the schema UCSystem, which completes our
description of usage control mechanisms. Traces is the set
of traces that are possible in the unprotected system, i.e.,
without any mechanisms in place; we assume all usages to
be desired usages. UCTraces is the set of traces after appli-
cation of the mechanisms given by Es ∪Ms ∪ Is ∪Ds—each
of which is equipped with a substitution for the variables oc-

UCSystem

Traces : P Trace; UCTraces : P Trace; Es : P Executor ; Ms : P Modifier ; Is : P Inhibitor ; Ds : P Delayer ; Obls : P Obligation

Mechs : CombinedMechanism[Es/E ,Ms/M , Is/I ,Ds/D]

∀ s : Trace; e : IndEv | s ∈ Traces ∪UCTraces ∧ e ∈
⋃

ran(s) • ∀ f : Ev • f refinesEv e.1 ⇒ f = e.1

∀ s : Trace; e : DesIndEv | s ∈ Traces ∪UCTraces ∧ e ∈
⋃

ran(s) • ∀ f : Ev • f refinesEv (TRY ∼(e)).1 ⇒ f = (TRY ∼(e)).1

∀ s : Trace; t : N; e : IndEv | s ∈ UCTraces ∧ getclass(e) = usage • e ∈ s(t) ⇒ TRY (e) ∈ s(t)

Traces ⊆ ValidOriginalTraces ∩ TUniqueActivations ∩ValidNames(Obls); Obls ∈ UniqueObls

UCTraces = {s : Trace | s ∈ Traces • Mechs. µ∗(s)}

curring in formulae and triggering actions. Obls denotes the
obligations relevant to the system, i.e, those that will poten-
tially be activated. This schema specifies that a UCSystem
has the following properties. (i) If an event occurs in a trace,
all its parameters have been specified (e.1 denotes the first
component of the IndEv e, hence the Ev ; see constraint 1).
(ii) If a desired event occurs in a trace, all the parameters
of the respective event have been specified. (iii) For all ac-
tual usages, there is a respective desired usage (constraint
3). (iv) A desired nil event takes place in each step, in order
to allow for the activation of mechanisms without triggering
actions. Each ongoing event must be preceded by a cor-
responding start event. In the original traces, all usages
are desired usages. All this is achieved by the definition of
set ValidOriginalTraces. (v) Each activation occurs at most
once per trace (TUniqueActivations). (vi) Activation events
must relate to the sets of relevant obligations of the UCSys-
tem, namely Obls (function ValidNames). Items (iv)-(vi)
motivate the fourth constraint; we omit a definition of the
conditions for brevity’s sake. (vii) Obligation names must
be unique (UniqueObls). (viii) The set of usage-controlled
traces, UCTraces, consists of the original traces, with all
mechanisms being applied (constraint 6).

4. RELATED WORK
UCON [4] adds the notion of ongoing usage to access

control. UCON assumes that the data never leaves the
data provider’s realm. This facilitates control as there is
no explicit and consequential distinction between providers
and consumers; one consequence is that UCON policies are
device-dependent. This is in contrast to our distributed ap-
proach where data is given away. Possibly closest to our
work is that of Zhang et al. [5] who define an obligation
language for UCON where ongoing access models can be
specified. Since UCON works with (only) one reference
monitor, the fundamental abstraction of mechanisms is not
introduced (even though their onA1 model essentially cor-
responds to our delayers, the onA2 and onA3 models cor-
respond to our executors, and their pre models do what our
inhibitors do). Modifiers are not handled. Furthermore, be-
cause of the TLA-based declarative perspective, the authors
specify properties of usage-controlled traces but not how to
enforce them; there is no notion of “active” mechanism like
ours. All cited models have not been applied to any decision
or synthesis problems, and they do not cater for the config-
uration of mechanisms and the notion of event refinement.

Ligatti et al. propose edit automata for enforcing security
policies [3]. Edit automata are similar to our work in that
they represent trace transformers; our inhibitors have the
same effect as their suppression automata, and our execu-
tors and modifiers are similar to their insertion automata.
Delayers are not treated in the theoretical model. The main
difference with our work is that our approach is logic-based

rather than automaton-based. Edit automata neither cater
for refinements of events nor for concurrent events.

5. CONCLUSIONS
We have presented a model of consumer-side mechanisms

for distributed usage control. This model can be used to
formally check if a set of mechanisms is able to enforce a
given obligation and to check interference of mechanisms
[2]. Our specification of mechanisms as trace transformers
is intuitive and allows systems to be specified independently
of any usage control mechanisms: the system’s definition
need not encompass the possible effects of any mechanisms.

We believe that the complexity of our formalization of
mechanisms is of an essential, rather than an accidental, na-
ture and reflects the complexity inherent in the problem do-
main in its full generality. Restricting usage control to mere
inhibition, omitting parameters in mechanisms, not catering
for usages that extend over more than one time step, ignor-
ing interference of mechanisms, and defining mechanisms as
trace properties rather than trace transformers would sig-
nificantly simplify our model. However, this would be an
over-simplification, preventing answers to many relevant and
interesting research and development problems.

The notion of a secure data store is of course critical and
may seem like a strong assumption. However, current trends
in operating systems, hardware, trusted platform technol-
ogy, and approaches to DRM are clear steps towards the
existence of such secure data stores. A second assumption
relates to the “dynamic” scenario: if a provider applies the
decision procedures as described in this paper, then he must
possess trustworthy information about the consumer’s mech-
anisms. It seems likely that this could also be achieved
using trusted platform technology and attestation mecha-
nisms. We are currently working on the problem of rights
delegation.

6. REFERENCES
[1] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and

T. Walter. A Policy Language for Usage Control. In
Proc. ESORICS, pages 531–546, 2007.

[2] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter.
Enforcement for Usage Control: A System Model and a
Policy Language for Distributed Usage Control.
Technical Report I-ST-20, DoCoMo Euro-Labs, 2006.

[3] J. Ligatti, L. Bauer, and D. Walker. Edit Automata:
Enforcement Mechanisms for Run-time Security
Policies. Intl. J. of Inf. Security, 4(1-2):2–16, 2 2005.

[4] J. Park and R. Sandhu. The UCON ABC Usage
Control Model. ACM Transactions on Information and
Systems Security, 7:128–174, 2004.

[5] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu.
A logical specification for usage control. In Proc.
SACMAT, pages 1–10, 2004.

