
Specifying and Analyzing Security Automata
using CSP-OZ ∗

David Basin
Department of Computer

Science
ETH Zurich

8092 Zurich, Switzerland
basin@inf.ethz.ch

Ernst-Ruediger Olderog
Department of Computing

Science
University of Oldenburg

26129 Oldenburg, Germany
olderog@informatik.uni-

oldenburg.de

Paul E. Sevinc
Department of Computer

Science
ETH Zurich

8092 Zurich, Switzerland
paul.sevinc@inf.ethz.ch

ABSTRACT
Security automata are a variant of Büchi automata used to
specify security policies that can be enforced by monitoring
system execution. In this paper, we propose using CSP-OZ,
a specification language combining Communicating Sequen-
tial Processes (CSP) and Object-Z (OZ), to specify security
automata, formalize their combination with target systems,
and analyze the security of the resulting system specifica-
tions. We provide theoretical results relating CSP-OZ spec-
ifications and security automata and show how refinement
can be used to reason about specifications of security au-
tomata and their combination with target systems. Through
a case study, we provide evidence for the practical usefulness
of this approach. This includes the ability to specify con-
cisely complex operations and complex control, support for
structured specifications, refinement, and transformational
design, as well as automated, tool-supported analysis.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; F.4.3
[Mathematical Logic and Formal Languages]: Formal
Languages

General Terms
Security, Languages, Verification

Keywords
CSP-OZ, security automata

1. INTRODUCTION
Security automata were introduced by Schneider [32] as a
means for characterizing the class of security policies en-
forceable by mechanisms that work by monitoring system

∗This work was partially supported by the Zurich Informa-
tion Security Center. It represents the views of the authors.

ASIACCS’07,March 20-22, 2007, Singapore.

execution. These automata are a variant of Büchi automata
that accept finite and infinite sequences of input symbols.
They execute in tandem with a target system, restricting
the target to those executions permitted (i.e., accepted) by
the automaton. In addition to using security automata as
a theoretical construct to characterize the class of security
policies enforceable by monitoring, Schneider observed that,
when specified using guarded commands, security automata
also provide a useful notation to specify such policies.

Our focus in this paper is on this second aspect: how can
security automata be specified in a practical way? More gen-
erally, how can one specify monitor-like enforcement mech-
anisms and their combination with target systems? Any
proposed solution should scale to complex, real-world sys-
tems. Ideally, it should embody proven techniques from the
world of specification languages (namely, abstractions for
specifying, structuring, and composing designs) and support
for refinement, transformation, and other kinds of reasoning
about specifications. In this paper, we show how the spec-
ification language CSP-OZ [12] can be used to meet all of
these requirements.

Our contributions are both theoretical and practical. The-
oretically, we formally connect Schneider’s concepts to the
theory of Communicating Sequential Processes (CSP) [21]
and thereby also to CSP-OZ. To begin with, we relate the ac-
ceptance condition of security automata to the trace model
of CSP. In doing so, we prove that trace refinement in CSP
is sufficient for checking safety properties of security au-
tomata. Afterwards, we show that CSP’s parallel composi-
tion with synchronizing events provides a formal counterpart
for Schneider’s notion of the tandem simulation of a secu-
rity automaton with a target system. We then prove a gen-
eral result relating systems secured with security automata
to unprotected systems: when restricted to a common in-
terface, the secure system is a refinement of the insecure
system.

Practically, we show how a combination of CSP with Object-
Z [35] can be used as a specification language for specify-
ing and reasoning about security automata. Our thesis is
that the resulting language, CSP-OZ, is very well suited for
specifying and reasoning about complex security automata
and their combination with large-scale systems. This in-

q q

not Send

FileRead

not FileRead

0 1

state vars state:{0,1} initial 0

transitions not FileRead ∧ state = 0 → skip

FileRead ∧ state = 0 → state := 1

not Send ∧ state = 1 → skip

Figure 1: Security automaton specified graphically and as guarded commands

cludes the ability to specify concisely complex operations
and complex control, support for structured specifications,
refinement, and transformational design, as well as auto-
mated, tool-supported analysis.

We present a case study in banking that provides support
for the above thesis. We specify a (simplified) secure bank as
the composition of an insecure bank with a security automa-
ton and we analyze the resulting combination using a model
checker. Afterwards, we use transformational development
to explore and formally relate different system architectures.
For example, we relate an insecure bank with a secure bank
(the latter is a refinement of the former) and show that there
are different equivalent ways of structuring an architecture
for authentication, authorization, and access control. This
shows that CSP-OZ is a good starting point not only for
specifying security automata, but also for exploring and in-
terrelating different points in the security-design space. In a
companion paper [34], we have applied CSP-OZ to a larger
example, specifying a system for secure document process-
ing.

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide background on security automata and
CSP-OZ. In Section 3, we formally relate CSP-OZ specifi-
cations to security automata, show how to combine these
specifications with those of target systems, and establish
general results about such formalizations. In Section 4, we
present our case study and, in Section 5, we discuss related
work and draw conclusions.

2. BACKGROUND
Security automata are a variant of Büchi automata [36] that
accept safety properties. In [32], a security automaton is
a four-tuple A = (Q ,S , I , δ), where: Q is a countable set
of automaton states; S ⊆ Q is a set of initial states; I is
a countable set of input symbols; and δ : Q × I → 2Q is
a transition function, where 2Q denotes the power set of
Q . As usual, δ can be extended to a function δ∗ : Q ×
I ∗ → 2Q such that, for w ∈ I ∗ a finite sequence of input
symbols, δ∗(q ,w) records the set of states reachable from q
by iteratively applying δ to each input symbol in w .

There are two primary differences with other presentations
of Büchi automata. First, the set of states and inputs may
be infinite. The infinite-state set allows one to model en-
forcement mechanisms as infinite-state systems, which is a
common abstraction of many computer programs. Similarly,
the infinite set of input symbols allows one to model the
monitoring of a target system that itself is infinite-state or
can react to infinitely many events. Second, a different ac-
ceptance condition is used. Namely, to process a (finite or
infinite) sequence s1s2 · · · of input symbols, the current state
set Q ′ of the security automaton starts equal to S . As each

input symbol si is read, the security automaton changes Q ′

to
⋃

q∈Q′ δ(q , si). If Q ′ is ever empty (indicating no tran-

sition), then the input is rejected and otherwise the input
is accepted. Under this definition, security automata can
accept both finite and infinite input sequences.1 We write
L∞(A) to denote the set of all input sequences accepted by
A. In [32], it is noted that L∞(A) is a safety property in the
sense of Alpern and Schneider [2, 3]. Furthermore, let L(A)
denote the set of all finite input sequences accepted by A.

Figure 1 provides a simple example, taken from [32], of a se-
curity automaton represented in two equivalent ways. The
automaton specifies a security policy prohibiting the execu-
tion of Send operations after a FileRead has been executed.
The left-hand side specifies the automaton graphically, us-
ing predicates as syntactic sugar to denote sets of events.
For example, the predicate not FileRead is satisfied by any
input symbols (modeling system execution steps) that are
not file-read operations. Formally, this automaton accepts
all input sequences that are either (i) finitely or infinitely
many not FileRead operations, or (ii) finitely many not Fil-
eRead operations followed by one FileRead operation, or
(iii) sequences of kind (ii), followed by finitely or infinitely
many not Send operations. The right-hand side provides
an alternative representation of the automaton as a set of
guarded commands. In this example, there is no essential
difference between the two. But in general, there may be
other state variables, in which case the guarded commands
describe something more akin to an extended state machine
[38], where state variables may be updated during transi-
tions. Hence, analogously to the way that extended state
machines may specify transition systems substantially more
compactly than ordinary automata, specifying automata us-
ing guarded commands may result in significant savings over
pictures or explicitly enumerated transition tables.

While Schneider’s examples are elegant, they are also rela-
tively simple.2 They require neither complex control struc-
tures nor complicated functions over rich (e.g., recursive)
data types. Moreover, each is small enough to be speci-
fied and understood as a simple list of guarded commands.
Schneider suggests that policies may be combined by con-
junction, which corresponds to conjoining security automata
(via a product construction), whereby an execution is re-
jected if and only if it is rejected by any automaton in the

1Note that the acceptance of an infinite sequence s1s2 · · ·
does not imply that there exists an infinite sequence of con-
secutive transitions in A, i.e., that qi+1 ∈ δ(qi , si) for all
i ≥ 1 and q1 ∈ S . However, if the transition function ex-
hibits bounded nondeterminism, i.e., the range of δ is always
a finite set, then such an infinite transition sequence does
exist by König’s lemma. The results in this paper do not
depend on the existence of such infinite transition sequences.
2We will compare with other alternatives in Section 5.

collection. But conjunction is only one way of combining
specifications and there are substantially more expressive
starting points for formalizing processes than guarded com-
mands; recall the desiderata for practical specification lan-
guages mentioned in the introduction. This was our moti-
vation for investigating alternative specification techniques
and their advantages.

CSP-OZ is a specification language for reactive systems [12,
13] that combines two views of such systems: a control view
specified using the notation of Communicating Sequential
Processes (CSP) [21, 31] and a data view specified using
Object-Z (OZ) [9, 35]. Each CSP-OZ specification can be
seen as a structured way of presenting a possibly infinite-
state process that manipulates a possibly infinite data space.
We briefly describe some of the main characteristics of this
language and its sublanguages. The references should be
consulted for further details.

CSP was introduced by Hoare [20, 21]; its central concepts
are synchronous communication along channels between dif-
ferent processes, parallel composition, and hiding of inter-
nal communication. Syntactically, CSP processes are built
up from several sets of symbols. The starting point is the
set (a, b ∈) Σ of visible events. Structured events of the
form (c, v), where c is a channel of some type T and v is
a data value from T , are called communications. For a tu-
ple v = (v1, ..., vn), with n ≥ 1, the communication (c, v) is
also written as c.v1.vn . Subsets (A,B) of Σ are called
alphabets. Besides events, there is the symbol τ 6∈ Σ repre-
senting an internal or silent action of a process. The set of
actions is given by (α, β ∈) Act = Σ ∪ {τ}. We also need
the set (X ,Y ∈) Idf of (process) identifiers that can appear
as names of CSP processes.

We consider the set (P ,Q ∈) Proc of CSP processes defined
by the BNF syntax

P ::= STOP | a → P | P uQ | P 2 Q

| P [| A |] Q | P \A | X .

STOP represents a process that cannot engage in any ac-
tion. The process a → P first engages in an event a and
then behaves like P . This prefix operator is a restricted form
of sequential composition. The process P uQ represents in-
ternal nondeterministic choice and can choose to behave like
P or Q , without influence of the environment (e.g., a user or
another process). In contrast, in the alternative composition
P 2 Q , the environment selects by its first communication
whether this process behaves like P or Q . In the paral-
lel composition P [| A |] Q , the processes P and Q run in
parallel, but must synchronize on all events in the synchro-
nization alphabet A. The hiding operator P \ A conceals
all events in the alphabet A. These events are transformed
into internal actions τ . Finally, a process identifier X rep-
resents a call of a process P defined by a corresponding
equation X = P . Processes are often specified by systems
of mutually recursive equations where the identifiers have
parameters ranging over data values: X (v1, ..., vn) = P . By
convention, the unary prefix operator a → binds stronger
than the binary operators u, 2, and [| A |].

Associative operators like u and 2 can be replicated. For

example, 2 a : A • a → P(a) defines a process ready to

engage in any communication a in the alphabet A and then
behave as P(a). We will also employ standard notation for
output and input on channels: output c!v → P stands for

c.v → P and input c?x → P(x) stands for 2 v : T •
c.v → P(v), where T is the type of channel c and P(v)
results from P(x) by substituting the value v for the variable
x . Boolean expressions e over such variables can be used as
guards: e & P equals P if e evaluates to true, otherwise
it equals STOP. The channel alphabet {| c |} denotes the
event set {c.v | v ∈ T}. For multiple channels c1, ..., cn , the
notation {| c1, ..., cn |} is defined accordingly.

CSP has a rich theory comprising an operational, trace,
failures-divergences, and algebraic semantics with consis-
tency proofs [6, 28, 31]. The operational semantics assigns
to each process P a nondeterministic automaton A(P) =
(QP ,SP , IP , δP), where: QP , the set of states, is the set of
CSP processes; SP , the set of initial states, is {P}; IP , the
set of input symbols, is Σ ∪ {τ}; and δP is the nondeter-
ministic transition function. δP is given by an inductively
defined relation −→: QP × IP × QP , whose rules describe
process execution, namely q ′ ∈ δP (q , a) iff q

a−→ q ′. All
states in A(P) are considered accepting.

Note that the components of A(P) have the same type as
those of security automata. However, automata in CSP only
accept finite sequences over the set Σ, called traces. For a
nondeterministic automaton A, define its (automaton) trace
semantics as T (A) = {w − τ | w ∈ L(A)}, where L(A) is
the language of classical automata theory where all states
are considered accepting and w − τ denotes the sequence w
with all occurrences of τ deleted. The (CSP) trace semantics
assigns to each process P the set of traces T (P) = T (A(P)).
A process Q refines a process P in the trace model T , ab-
breviated P vT Q , if T (Q) ⊆ T (P). Informally, Q refines
P if Q is more deterministic than P , i.e., if Q has fewer
traces than P . Trace refinement is insensitive to nonde-
terminism and divergence. To make finer distinctions, the
failures-divergences semantics FD of CSP was developed [6,
31], with its associated notion of refinement, P vFD Q . For
M∈ {T ,FD}, we write P =M Q if P vM Q and Q vM T .

For A as above let its τ -closure be the automaton A−τ =
(Q ,S ′, I ′, δ′), where:

• S ′ =
⋃

q0∈S, w∈{τ}∗ δ∗(q0,w),

the set of states reachable from S via zero or more
τ -actions;

• I ′ = I \ {τ}; and

• δ′ : Q×I ′ → 2Q , with δ′(q , a) =
⋃

w∈I∗, w−τ=a δ∗(q ,w).

Taking the τ -closure of an automaton does not change its
trace semantics, i.e., T (A) = T (A−τ) for every automaton
A.

The FDR (Failures-Divergence Refinement) model checker
[15, 30] provides tool support for CSP. Given finite-state
processes P and Q , FDR can automatically check whether
the refinement relations P vT Q or P vFD Q hold. Ad-
ditionally, FDR can check whether a finite-state process is
deadlock-free, divergence-free, or deterministic (intuitively,

one that can never reach a state where it can accept or refuse
the same event). Other properties can be checked with FDR,
provided they can be reduced to refinement checks using test
processes. We will see an example of this in Section 4.

Z is a language based on set theory and predicate logic for
specifying data, state spaces, and state transformations [22,
40]. It comprises the mathematical tool kit, a collection of
convenient notation and definitions, and the schema calcu-
lus for structuring state spaces and their transformations.
Object-Z is an object-oriented extension of Z [9, 35]. It in-
cludes the concepts of classes, instantiation, and inheritance,
although in this paper we only use the concept of classes. Z
and Object-Z both have a formal notion of data refinement.

CSP-OZ [12, 13, 14] integrates CSP and Object-Z. Here we
just describe its main features. Example specifications are
given in Section 4. The central notion of CSP-OZ is that of
a class, consisting of an interface, a CSP part, and an OZ
part. The specification of a class C takes the following form.

C

IF [interface]
P [CSP part]
Z [OZ part]

The interface IF declares channel names and types used by
the class. The CSP part P constrains the possible communi-
cation sequences along the interface channels using CSP pro-
cess notation. P may consist of multiple processes defined
by CSP process equations, one of which is a distinguished
process named main, which denotes the initial process. The
OZ part Z comprises a nameless state schema describing the
state space, a schema Init constraining the initial state,
and communication schemas com c describing the transfor-
mation of the state space induced by communicating along
an interface channel c.

The Semantics of CSP-OZ is defined by a transformation
into CSP [12, 13]. Thus, each CSP-OZ specification de-
notes a process that can be analyzed in the trace or failures-
divergences model of CSP. Hence, provided all classes spec-
ified use only finite-state CSP processes and finite data, the
FDR model checker can be used to prove refinement prop-
erties of the CSP-OZ specification [14].

For a given class C , the transformation maps the OZ part of
C into a CSP process that runs in parallel and communicates
with the CSP part of C . Formally, C is transformed into
the process

proc(C) = main [| Ev |] OZMain

that consists of the parallel composition of main calling the
main process in the CSP part and a parameterized process
OZMain representing the semantics of the OZ part of C .
The parallel composition synchronizes on the alphabet Ev
of all events common to the CSP and the OZ part. The
recursive process equations defining OZMain are given in
Appendix A.

3. SPECIFYING SECURITY AUTOMATA
AND THEIR COMBINATION

In this section, we describe how we use CSP-OZ to spec-
ify security automata, target systems, and their combina-
tion. In doing so, we formally relate CSP-OZ specifications
with Schneider’s security automata and prove general results
about the relationship between protected and unprotected
systems.

3.1 Specifying security automata
We define a mapping from each CSP-OZ class C to a secu-
rity automaton. Take the transformational semantics of C ,
which yields a CSP process of the form proc(C) = main [|
Ev |] OZMain. We now define the security automaton spec-
ified by C as A(proc(C))−τ , i.e., the τ -closure of the au-
tomaton given by the operational semantics of CSP.

In this translation, we map the CSP process proc(C) to the
security automaton A(proc(C))−τ , but these have different
semantics. Recall that the trace semantics of a CSP process
P is the set of finite traces accepted by the automaton A(P),
where all states are considered accepting. In contrast, secu-
rity automata A are a variant of Büchi automata that accept
sets L∞(A) of finite and infinite sequences. Fortunately, the
semantics are in tight correspondence for security automata
defined by CSP processes.

Proposition 1. For a CSP process P and a sequence
w ∈ Σ∗ ∪ Σω: w ∈ L∞(A(P)−τ) iff T (P) contains
all finite prefixes of w.

This proposition establishes that we can indeed view a CSP-
OZ class with its trace semantics as a structured specifica-
tion of a security automaton with a different, but equiv-
alent, notion of acceptance. Moreover, it is easy to show
the converse: any security automaton can be represented in
CSP-OZ, indeed directly in CSP itself.

Security automata accept safety properties, as noted in Sec-
tion 2. Since we can specify security automata in CSP-OZ or
just CSP, we can use trace refinement to check these prop-
erties. For instance, to check whether a security automaton
specified by a class C satisfies a safety property specified via
the process P , we check the refinement P vT proc(C). This
is sufficient because, by Proposition 1, we have that

L∞(A(P)−τ) ⊇ L∞(A(proc(C)−τ)) iff T (P) ⊇ T (proc(C)).

In contrast, the above semantics are not fine enough to de-
tect properties such as deadlock or divergence freedom. If an
automaton can nondeterministically choose between a suc-
cessful transition and a deadlock or divergence, only the suc-
cessful transition will be represented in the trace. This is the
case for both Schneider’s semantics L∞(A(proc(C))−τ) and
our trace semantics T (proc(C)). However, in our setting,
we can check these properties by analyzing the automaton
A(proc(C)) using the richer failures-divergences semantics.

3.2 Combination with target systems
In [32, p. 40], Schneider describes how security automata
are to be combined with a target system via a simulation:
“The target is executed in tandem with a simulation of the
security automaton. In particular, initialization or creation

of the target causes an initialized instance of the security
automaton simulation to be created. And each step that the
target is about to take generates an input symbol, which is
sent to that simulation.” In this setting, input rejected
by the security automaton causes termination of the target.
Hence, policy enforcement is by execution cutting.

Automata specified in CSP-OZ can also be combined with
target systems in the way described above. In this paper,
however, we will explore another possibility, where we work
entirely at the specification level. Namely, using CSP’s par-
allel composition, we can provide a formal account of how
an unprotected target system UnpSys is combined with a
security automaton SecAut to yield a secure system SecSys:

SecSys = UnpSys [| A |] SecAut .

Here, we choose the synchronization set A such that SecAut
obtains all relevant information of UnpSys and blocks all
transitions of UnpSys that are unsafe. The synchroniza-
tion set provides a formal counterpart of Schneider’s ac-
count of the target system generating input for the security
automaton. One possibility is to require that the security
automaton synchronizes with, and hence accepts, all tran-
sitions of the target system. This corresponds to taking
A = α(UnpSys), where α(UnpSys) denotes the set of all
events possible for the process UnpSys. Alternatively, the
security automaton can be specified to monitor only some
subset of target system transitions by choosing a smaller
synchronization set. Moreover, the security automaton can
introduce additional events not present in the target system.
This may be used to specify security mechanisms that react
to new events, such as user inputs. For example, the secu-
rity automaton in our bank example will introduce events
for entering the pin and tan.

In both systems and their specifications, it is useful to dis-
tinguish between the functionality provided by the system
and that presented to the user via a restricted interface. In
our setting, both unprotected systems and protected sys-
tems may contain operations that should not be accessible
to the user. Hence we may choose to hide events in either
UnpSys or SecSys. For example, in the bank specification,
the event of executing a requested funds transfer will be
hidden from the user.

The above provides a formal account of both security au-
tomata and their combination with target systems in CSP-
OZ and, via translation, in CSP. Hence all methods and tool
support that these languages provide for analysis, refine-
ment, and transformation can be applied to these models.
Moreover, based on the semantics of CSP we can prove a
general refinement result, once and for all, relating insecure
and secure systems. Namely, when restricted to a common
interface, the secure system is a refinement of the insecure
system. We proceed by first stating several properties of
refinement and trace equivalence.

Lemma 1. Let P and Q be CSP processes, with A =
α(P) ∩ α(Q) and B ⊆ Σ. Then the following refinement
relationships hold in the trace semantics of CSP:

(1) If α(Q) ⊆ α(P) then P vT P [| A |] Q.

(2) If α(P) ∩ B = ∅ then

(P [| A |] Q) \ B =T P [| A |] (Q \ B).

Property (2) also holds in the failures-divergences semantics,
i.e., with =FD instead of =T . Property (1) does not hold in
the failures-divergences semantics because P [| A |] Q might
deadlock even if P is deadlock-free.

Proposition 2. Let U and S be CSP processes, with
A = α(U)∩α(S) and B = α(S) \α(U). Then the following
trace refinement holds:

U vT (U [| A |] S) \ B .

Proof. We apply Lemma 1:

U

vT {by (1), since α(S \ B) ⊆ α(U)}
U [| A |] (S \ B)

=T {by (2), since α(U) ∩ B = ∅}
(U [| A |] S) \ B) 2

Taking U = UnpSys,S = SecAut , and SecSys as above,

Proposition 2 yields UnpSys vT SecSys \ B . Thus, by
construction, when restricted to a common interface, the
secure system is a trace refinement of the unprotected target
system.

4. A BANKING EXAMPLE
We illustrate our approach by modeling part of the IT in-
frastructure of a simple bank, which offers customers op-
erations for accessing accounts and transferring funds. We
first model an insecure version of the bank as one without
any security measures beyond a simple, passwordless, login
mechanism. Afterwards, we secure the bank with a security
automaton that runs in parallel and synchronizes with the
bank.

4.1 Modeling the bank and its security policy
Our model consists of two processes running in parallel: the
bank and the security automaton. The formal specification
starts by introducing the sets

[UserID ,AccID ,PIN ,TN], Val : P Z, Sum : P N

needed to specify the parameters in the bank’s interface,
which provides operations for login and logout, for checking
the balance of an account, for requesting the transfer of some
sum of money from one account to another, for executing the
transfer, and for aborting the transfer. When defining the
channel types, Z naming conventions are used, e.g., variables
decorated with “?” and “!” denote inputs and outputs.

The state of a Bank (representing an insecure bank) main-
tains the set of its customers and the balances of all ac-
counts. It only accepts logins from users registered as cus-
tomers, but no credentials, like passwords, are required. Af-
ter a successful login, the user may check the balance of any
account and transfer funds. The bank processes only trans-
fer requests between two different accounts when the amount

to be withdrawn does not exceed the balance of the debiting
account. Therefore a transfer is modeled by two operations:
transferReq , which requests the transfer, and transferExec,
which transfers the requested funds only if the request suc-
ceeds. We will explain the significance of abort shortly.

The CSP part of Bank models the sequencing constraints of
the operations login, logout , balance, transferReq , transfer -
Exec, and abort . For example, balance is only possible after
a successful login. Whereas the data values of the operation
parameters u, s, a1, and a2 are determined by the user via
UserIF , the values of the parameters ok and v depend on
the state of a Bank and are determined by the communica-
tion schemas com login, com balance, and com transferReq
of the OZ part. Note that the communication schemas
com transferReq and com transferExec change transferOK
and bal , respectively, of the bank’s state as indicated by
the ∆ notation; following Z’s convention, these variables
are decorated by a prime to denote their value after trans-
formation. Note too that, as specified, the bank is single
threaded. Hence we do not need to consider problems of
processing (ACID) transactions.

Bank
chan login : [u? : UserID ; ok ! : B]
chan logout
chan balance : [a? : AccID ; v ! : Val]
chan transferReq : [s? : Sum; a1? : AccID ;

a2? : AccID ; ok ! : B]
chan transferExec : [s? : Sum; a1? : AccID ;

a2? : AccID]
chan abort

main = login?u?ok → (ok & Operate
2 ¬ok & main)

Operate = (balance → Operate
2 transferReq?s?a1?a2?ok →

(transferExec!s!a1!a2 → Operate
2 abort → Operate)

2 logout → main)

customers : P UserID
bal : AccID → Z
transferOK : B

Init
true

com login
u? : UserID
ok ! : B

ok ! ⇔ u? ∈ customers

com balance
a? : AccID
v ! : Val

v ! = bal(a?)

com transferReq
∆(transferOK)
s? : Sum
a1? : AccID
a2? : AccID
ok ! : B

ok ! ⇔ a1 6= a2 ∧
bal(a1?)− s? ≥ 0

transferOK ′ ⇔ ok !

com transferExec
∆(bal)
s? : Sum
a1? : AccID
a2? : AccID

transferOK ⇒
bal ′ = bal⊕
{a1? 7→ bal(a1?)− s?,
a2? 7→ bal(a2?) + s?}

¬transferOK ⇒
bal ′ = bal

In this example, the (unprotected) target system is UnpSys =
Bank . To secure this system, we specify a security automa-

ton SecAut , whose states record the credentials, privileges,
and the TAN (Transaction Authentication Number) lists of
its customers. The credentials specify the PIN (Personal
Identification Number) code of the customers, the privileges
specify which actions (balance check, transfer) a user can
perform on a given account, and the TAN list contains the
transaction authentication numbers to be used (each only
once) for each transfer operation. Formally, the set of ac-
tions is specified by

Actions :== Balance | Transfer .

After a successful login, the security automaton authenti-
cates the user by checking whether the PIN code entered
on the channel pin of SecUserIF agrees with the user’s cre-
dentials. When this is the case, the security automaton en-
ters the loop SecOperate, where it stays until the user logs
out. To check an account’s balance, the security automaton
checks whether the user has the corresponding privilege to
carry out the Balance action on the account a?, input by
the user. To transfer funds, the security automaton requires
that the user has the Transfer privilege for the account a1?
to be debited and moreover it checks whether the TAN en-
tered by the user agrees with the next number on the TAN
list.

SecAut
chan login, logout , balance, transferReq,

transferExec, abort [types omitted]
chan pin : [p? : PIN ; ok ! : B]
chan tan : [t? : TN ; ok ! : B]

main = login?u?ok → (ok & Identify
2 ¬ok & main)

Identify = pin?p?ok → (ok & SecOperate
2 ¬ok & Identify)

SecOperate = balance → SecOperate
2 transferReq → TanCheckExec
2 logout → main

TanCheckExec =
tan?t?ok → (ok & transferExec → SecOperate

2 ¬ok & abort → SecOperate)
2 logout → main

credentials : customers → PIN
privileges : P(UserID ×AccID ×Actions)
tanlist : customers → N → TN
uid : UserID
tid : customers → N

Init
∀ uid : customers • tid(uid) = 0

com login
∆(uid)
u? : UserID

uid ′ = u?

com pin
p? : PIN
ok ! : B

ok ! ⇔ (p? =
credentials(uid))

com balance
a? : AccID

(uid , a?,Balance) ∈
privileges

com transferReq
a1? : AccID

(uid , a1?,Transfer) ∈
privileges

com tan
∆(tid)
t? : TN
ok ! : B

ok ! ⇔ (t? = tanlist(uid)(tid(uid)))
(ok ! ⇒ tid ′ = tid ⊕ {uid 7→ tid(uid) + 1}) ∧

(¬ok ! ⇒ tid ′ = tid)

The secure system is specified by

SecSys = Bank [| A |] SecAut .

Here A = {| login, balance, transferReq , transferExec, abort ,
logout |}. To the user, a constrained view of the system may

be presented, for example, SecSys \B , where the operations
in B = {| transferExec, abort |} are hidden.

4.2 Formal analysis
Using the transformational semantics of CSP-OZ outlined
in Section 2, we can perform a formal analysis of the bank
example. First, we perform basic “sanity checks”, in partic-
ular checking the system against different use cases in the
form of traces. For example, for suitable choices of the data
domains,

SecSys vT login.u1.true → pin.p1.true →
transferReq .3.ac1.ac2.true → STOP

describes a partial run of the secure system.

Second, we check several general properties of the specifica-
tions based on their failures-divergences semantics: Bank ,
UnpSys, SecAut , and SecSys are all deadlock-free, livelock-
free, and deterministic.

Third, we check trace refinement properties. Note that
UnpSys 6vT SecSys, i.e., the secure system does not refine
the unprotected system. This is simply because SecSys has
new communication capabilities along the channels pin and
tan, which are not part of UnpSys. However, if we hide these

channels then UnpSys vT (SecSys \ {| pin, tan |}), i.e., the
secure system, restricted to a common interface, refines the
unprotected system.

Finally, we check two security properties of SecSys. Infor-
mally stated they are:

(1) No balance check occurs before a sequence of successful
login and pin entries.

(2) No transferExec occurs before a successful tan entry.

We formalize these properties using CSP test processes. For
example, property (2) is checked by the test process P2 spec-
ified as follows:

P2 = tan?t .true → P2T

2 (2 x : A2 • x → P2)

P2T = transferExec?s?a1?a2 → P2

2 (2 x : A2 • x → P2)

with A2 = {| login, balance, transferReq , abort , logout , pin |}
∪ {tan.t .false | t ∈ TN }. Then the trace refinement P2 vT
SecSys shows that (2) holds.

By restricting the bank’s data to range over finite domains,
we have used FDR to check all of these properties auto-
matically. See Appendix B for details. The third property
though does not actually require model checking as it follows
directly from Proposition 2.

4.2.1 Transformation
The combination CSP-OZ also allows us to perform seman-
tic preserving transformations. In particular, we can elim-
inate the parallel composition between the target and se-
curity automaton by using a transformation akin to Mil-
ner’s expansion law [25]. Applying this transformation to
SecSys0 = Bank [| A |] SecAut yields a CSP-OZ specifica-
tion where all communication schemas of Bank and SecAut
with the same name are conjoined. For example, eliding the
declaration parts, we obtain

com balance
...

val ! = bal(a?)
(uid , a?,Balance) ∈

privileges

com transferReq
...

ok ! ⇔ bal(a1?)− s? ≥ 0
transferOK ′ ⇔ ok !
(uid , a1?, transfer) ∈

privileges

where the unprotected bank operations and security checks
concerning the privileges appear as conjuncts next to each
other.

In general, we can use such transformations to explore dif-
ferent designs, which may reflect different ways of secur-
ing systems, e.g., corresponding to different security archi-
tectures or security design patterns. This simple example
shows the relationship between two common security archi-
tectures. The security automaton represents a policy deci-
sion point. Parallel composition represents a system where
decisions about allowed operations are separated from the
operations themselves and the policy enforcement point is
represented implicitly, not by a process, but rather by the
operational semantics of synchronous communication. This
architecture can be directly refined to a concrete platform
with support for declarative access control, where, for ex-
ample, the middleware serves as a policy enforcement point
by intercepting method calls and querying the policy deci-
sion point to check whether the resulting step is allowed.
In contrast, when we transform the specification by elimi-
nating parallel composition, the security checks are moved
to, and incorporated in, the respective (previously insecure)
operations. This factorization of the policy decision point
into the individual methods is in the style of programmatic
access control, where each method takes responsibility itself
for checking whether it is authorized by the security policy.

4.3 Discussion
In a companion paper [34], we have applied CSP-OZ to spec-
ifying access control for documents, modeled as attributed
trees. The full specification comprises around 25 pages and
is given in [33]. While we have not performed any formal
analysis of the resulting specification, the case study demon-

strates that our specification approach scales to realistic ex-
amples.

The banking example illustrates how we can use different
features of CSP-OZ to specify and reason about security au-
tomata and their composition with systems. The following
characteristics are important for this application.

• The ability to specify event-based and state-based be-
havior as complementary aspects of the overall system
behavior.

• Support for the parallel composition of specifications
with synchronization on common events.

• Notions and laws of refinement, which enable correct
proofs and system transformation.

• Tool support for reasoning about specifications.

Other specification languages have some of these character-
istics, but few possess all of them. One alternative is CSP ‖
B [37], which combines CSP with B machines [1]. Whereas
in Object-Z, any Z predicate can be used to specify state
transformations, B uses the restricted format of guarded,
nondeterministic assignments. Tool support is also avail-
able for CSP ‖ B [7]. Another alternative is Circus [39],
which combines CSP, Z, and concepts of the refinement cal-
culus [27]. Circus also has a model checker [16], inspired by
FDR.

We now return to the abort operation in the Bank specifi-
cation and explain the reasons for it and its implications.
The inclusion of abort is not needed for the functioning of
the insecure system but it acts as a “hook” in Bank that
prevents the secure system from deadlocking. By omitting
abort , a deadlock can arise: if a transferReq is granted but
an incorrect tan is entered, then transferExec blocks. Note
that a deadlock would correspond to Schneider’s concept of
execution cutting, which is acceptable from a security point
of view. Indeed, without the abort alternative, we still have

the trace refinement UnpSys vT (SecSys \ {| pin, tan |}).
However, from a usability point of view, we would like our
systems to be able to recover from attempted security vio-
lations.

In the ideal world, we could design unprotected systems
completely independent of security concerns. The above dis-
cussion indicates that we can achieve this using execution
cutting, provided we are not concerned about deadlocks.
But this is usually unacceptable in practice. The alterna-
tive we have taken, using abort , corresponds to sending a
notification to the target system or throwing an exception.
But to cause a transfer of control in the target system, the
target system must be designed to respond to such notifica-
tion and this requires building-in appropriate functionality
in the target system prior to its composition with the se-
curity automaton. This indicates why, in practice, security
cannot be completely factored out during system design.

5. RELATED WORK AND CONCLUSIONS
A number of researchers have studied the expressiveness of
variants of security automata and alternative enforcement
mechanisms. For example, in [24] the authors formalize

edit automata, which go beyond execution monitoring by
allowing run-time program modification. Alternatively, [17]
examines the class of policies enforceable by transforming
target programs using rewriting. In contrast, our work is
not concerned with expressiveness in the sense of enlarg-
ing the class of enforceable policies beyond those of security
automata. Rather, we provide a foundation that is more
expressive than security automata in terms of providing a
language that is higher-level, more natural and concise, and
which also supports transformation and analysis.

A related research area concerns how to map access control
specifications to code that enforces the specified policy. For
example, [10] specifies access control policies for Java stack
inspection in the policy specification language PSLang. Poli-
cies are translated by a trusted rewriter into inline reference
monitors by merging checks into the target systems. Other
examples are the Polymer system [5] and Naccio [11], both
of which produce Java bytecode from security specifications,
again inlined into the target system. In contrast, the Pon-
der Policy Specification Language [8] and the Model-Driven
Security approach of [4] map descriptions of access control
policies into both procedural access control infrastructures
(Java assertions) and declarative access control infrastruc-
tures (RBAC) for middleware platforms.

Each of the above-mentioned approaches (and there are many
others) offers its own “domain specific” policy specification
language along with some means of associating policies with
target systems. Some of these languages, for example Poly-
mer, are quite rich and well suited for modularly specifying
and combing policies. These approaches, however, have a
rather different focus than ours: mapping policies to security
infrastructure as opposed to analyzing and transforming the
policies themselves. As these languages are precise, and, in
most cases semantically well defined, the formal analysis of
policy specifications should be possible. However, this would
require concrete work, in each case, to make precise the link
from the domain-specific language to the appropriate rea-
soning theory, notions of refinement and transformational
development (where they exist), and tool support.

Security automata are closely related to runtime monitors,
which determine whether safety properties are violated at
runtime. Research in this direction, e.g., [18, 19], has fo-
cused on the generation of efficient monitors from safety
properties specified as formulas in Linear Temporal Logic
and the integration of monitors in different programming
languages. While this approach is well suited for monitoring
properties involving simple control patterns, like precedence
and bounded response, it is less well-suited for specifying
security properties with complex interaction between con-
trol and data, like those arising in our document processing
example.

Within the process algebra community, synchronous par-
allel composition is commonly used to specify systems by
building up constraints on traces. Namely if P and Q are
processes, then P [| A |] Q specifies a process where P may
only carry out those events in A permitted by Q . This
was the starting point for our work. Phrased in the ter-
minology of security automata, Q describes the security au-
tomaton and synchronous parallel composition combines the

processes into one that uses execution cutting for policy en-
forcement. Our contributions have been to make this cor-
respondence exact for a rich specification language, where
we build upon existing concepts, results, and tools, to show
that the result can be applied to realistic examples, and to
highlight some of the advantages in proceeding this way.

Our focus in this paper has been on the specification, the
first stage (after requirements analysis) in system develop-
ment. One direction for future work is to explore the next
stage: the link to code. In contrast to the use of direct map-
pings, like those discussed above, we have the possibility of
using refinement to establish a formal link between CSP-OZ
specifications at different levels of detail. In particular, by
introducing more components that run in parallel one can
refine towards a distributed implementation. For a predeces-
sor of the CSP-OZ notation, this has been shown in [29]. To
proceed to an actual implementation, the approach of [26]
could be pursued where CSP-OZ specifications are linked
to a Java implementation by generating (as an intermediate
step) assertional contracts expressed in the Java Modeling
Language (JML) [23] from the specification. These contracts
can then be satisfied by a Java program implementing the
specification. Taken together, this would provide a formal
framework for carrying out the development and analysis of
security-critical systems, as well as for making a formal link
to code.

Another direction, which is particularly interesting from the
security standpoint, is to use the transformational approach
suggested to explore the relationships between different se-
curity architectures. We have provided a simple example
of how this can be done to relate declarative and program-
matic access control. Other studies can be undertaken here,
for example ways of distributing monitoring between clients
and servers for different classes of distributed applications.

6. REFERENCES
[1] J. Abrial. The B-Book — Assigning Programs to

Meanings. Cambridge University Press, 1996.

[2] B. Alpern and F. Schneider. Defining Liveness. Inf.
Process. Lett., 21(4):181–185, 1985.

[3] B. Alpern and F. Schneider. Recognizing Safety and
Liveness. Distributed Computing, 2:117–126, 1987.

[4] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: from UML models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology, 15(1):39–91, January
2006.

[5] L. Bauer, J. Ligatti, and D. Walker. Composing
security policies with Polymer. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
305–314, June 2005.

[6] S. Brookes, C. Hoare, and A. Roscoe. A theory of
communicating sequential processes. Journal of the
ACM, 31:560–599, 1984.

[7] M. Butler and M. Leuschel. Combining CSP and B for
specification and property verification. In
J. Fitzgerald, I. Hayes, and A. Tarlecki, editors,
Formal Methods 2005, volume 3582 of LNCS.
Springer, 2005.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder Policy Specification Language. In POLICY
’01: Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, pages
18–38, London, UK, 2001. Springer-Verlag.

[9] R. Duke, G. Rose, and G. Smith. Object-Z: A
specification language advocated for the description of
standards. Computer Standards and Interfaces,
17:511–533, 1995.

[10] Ú. Erlingsson and F. Schneider. IRM enforcement of
Java stack inspection. In IEEE Symposium on
Security and Privacy, pages 246–255, 2000.

[11] D. Evans and A. Twyman. Flexible policy-directed
code safety. In IEEE Symposium on Security and
Privacy, pages 32–45, 1999.

[12] C. Fischer. CSP-OZ: A combination of Object-Z and
CSP. In H. Bowman and J. Derrick, editors, Formal
Methods for Open Object-Based Distributed Systems,
volume 2, pages 423–438. Chapman & Hall, 1997.

[13] C. Fischer. Combination and Implementation of
Processes and Data: From CSP-OZ to Java. PhD
thesis, Bericht Nr. 2/2000, University of Oldenburg,
April 2000.

[14] C. Fischer and H. Wehrheim. Model-checking CSP-OZ
specifications with FDR. In K. Araki, A. Galloway,
and K. Taguchi, editors, Integrated Formal Methods,
pages 315–334. Springer, 1999.

[15] Formal Systems (Europe) Ltd. Failures-Divergence
Refinement – FDR 2 User Manual, May 2003.

[16] L. Freitas. Model Checking Circus. PhD thesis,
University of York, October 2005.

[17] K. Hamlen, J. Morrisett, and F. Schneider.
Computability classes for enforcement mechanisms.
ACM Trans. Program. Lang. Syst., 28(1):175–205,
2006.

[18] K. Havelund and G. Rosu. Efficient monitoring of
safety properties. Software Tools for Technology
Transfer, 6(2):158–173, 2004.

[19] K. Havelund and G. Rosu. An overview of the runtime
verification tool java pathexplorer. Formal Methods in
System Design, 24(2):189–215, 2004.

[20] C. Hoare. Communicating sequential processes.
CACM, 21:666–677, 1978.

[21] C. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[22] International Organization for Standardization.
Information technology – Z formal specification
notation – Syntax, type system and semantics, first
edition, July 2002.

[23] G. Leavens, Y. Cheon, C. Clifton, C. Ruby, and
D. Cok. How the design of JML accomodates both
runtime assertion checking and formal verification.
Science Computer Programming, 55:185–208, 2005.

[24] J. Ligatti, L. Bauer, and D. Walker. Edit automata:
Enforcement mechanisms for run-time security
policies. International Journal of Information
Security, 4(1–2):2–16, 2005.

[25] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[26] M. Möller, E.-R. Olderog, H. Rasch, and
H. Wehrheim. Linking CSP-OZ with UML and Java:

A Case Study. In E. Boiten, J. Derrick, and G. Smith,
editors, Integrated Formal Methods, volume 2999 of
LNCS, pages 267–286. Springer, 2004.

[27] C. Morgan. Programming from Specifications. Prentice
Hall, 1990.

[28] E.-R. Olderog and C. Hoare. Specification-oriented
semantics for communicating processes. Acta Inform.,
23:9–66, 1986.

[29] E.-R. Olderog and S. Rössig. A case study in
transformational design of concurrent systems. In
M.-C. Gaudel and J.-P. Jouannaud, editors, Theory
and Practice of Software Development, volume 668 of
LNCS, pages 90–104. Springer, 1993.

[30] A. Roscoe. Model-checking CSP. In A. Roscoe, editor,
A Classical Mind – Essays in Honour of
C.A.R. Hoare, pages 353–378. Prentice-Hall, 1994.

[31] A. Roscoe. Theory and Practice of Concurrency.
Prentice-Hall, Englewood Cliffs, NJ, first edition,
1998.

[32] F. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, 2000.

[33] P. E. Sevinç and D. Basin. Controlling access to
documents: A formal access control model. Technical
report, ETH Zurich, 2006.

[34] P. E. Sevinç, D. Basin, and E.-R. Olderog. Controlling
access to documents: A formal access control model.
In G. Müller and G. Schneider, editors, Proc. of
ETRICS 2006, volume 3995 of LNCS, pages 352–367.
Springer, 2006.

[35] G. Smith. The Object-Z Specification Language.
Kluwer Academic Publisher, 2000.

[36] W. Thomas. Automata on infinite objects. In
Handbook of Theoretical Computer Science, volume B,
pages 133–191. MIT Press/Elsevier, 1990.

[37] H. Treharne and S. Schneider. Communicating B
machines. In ZB2002: International Conference of Z
and B Users, volume 2272 of LNCS. Springer, 2002.

[38] G. von Bochmann and J. Gecsei. A unified method for
the specification and verification of protocols. In IFIP
Congress, pages 229–234, 1977.

[39] J. Woodcock and A. Cavalcanti. The semantics of
Circus. In ZB2002: International Conference of Z and
B Users, volume 2272 of LNCS, pages 184–203.
Springer, 2002.

[40] J. Woodcock and J. Davies. Using Z — Specification,
Refinement, and Proof. Prentice-Hall, 1996.

APPENDIX
A. TRANSFORMING CSP-OZ INTO CSP
Recall from Section 2 that a CSP-OZ class C is transformed
into a process proc(C) = main [| Ev |] OZMain. Here we
complete this account by describing OZMain.

OZMain is defined by recursive process equations using repli-
cated versions of the CSP operators u and 2. The OZ part is
represented by a loop OZPart(st) that, at each iteration, is
ready for communication along some channels. Which chan-
nel c is ready and its effects depend on the schema com c. In
the definition, we use the following notation. Let st denote
the list of variables declared in the State schema of C , and

let st ′ be the corresponding list of primed variables. For a
channel c declared in IF , let inop , outop denote the list of
input and output parameters of this operation. Then the
schema com c depends on the values of st , inc , outc , st

′. For
a given list ` of typed variables, let Val(`) denote the set
of all corresponding lists of values that these variables may
assume based on their type.

OZMain = u v st : {v st : Val(st) | Init} •

OZPart(v st)

OZPart(st) = 2(c, v inc) : {c : IF ; v inc : Val(inc) |

∃ outc ; st ′ • com c} • (u(v outc , v st ′) :

{v outc : Val(outc); v st ′ : Val(st ′) |
com c} • c.v inc .v outc → OZPart(v st ′))

By the first equation, the process OZMain can nondeter-
ministically choose any values v st for the state variables
st that satisfy Init to start with. For the 2 operator in
the second equation, c ranges over all channels declared in
IF and v inc ranges over all value lists in Val(inc) such
that the precondition of the communication schema for c,
i.e. ∃ outc ; st ′ • com c, holds for these values. Finally, for
any chosen c and values v inc , the subsequent u operator
is determined as follows: v outc ranges over all value lists
in Val(outc) and v st ′ ranges over all value lists in Val(st ′)
such that com c holds for these values. So the OZPart(v st)
is ready for every communication event c.v inc .v outc along
a channel c in IF where for the values v inc the commu-
nication schema com c is satisfiable for some output values
v outc and successor state v st ′. For given input values
v inc , any such v outc and v st ′ can be nondeterministi-
cally chosen to yield c.v inc .v outc and the next recursive
call OZPart(v st ′). Thus input and output along channels
c are modeled by the subtle interplay of the CSP alternative
and nondeterministic choice.

B. BANK EXAMPLE IN FDR
What follows is the entire input script for the bank example
in the concrete syntax of FDR. Included in this script are
the various properties that have been checked.

m = \ x,S @ member(x,S)

-- abbreviation for membership function

-- Definitions of constants

datatype UserID = u1 | u2 | u3

-- concrete set of user ids

datatype AccID = ac1 | ac2

-- concrete set of accounts

Val = {(-6)..6}

-- concrete set of values accounts may assume

Sum = {1..6}

-- concrete set of sums customers may transfer

-- CSP Part Bank

channel login: UserID.Bool

channel logout

channel balance: AccID.Val

channel transferReq: Sum.AccID.AccID.Bool

channel transferExec: Sum.AccID.AccID

channel abort

mainB = login?u?ok -> (ok & Operate

[] not ok & mainB)

Operate = (balance?a?v -> Operate

[] transferReq?s?a1?a2?ok ->

(transferExec!s!a1!a2 -> Operate

[] abort -> Operate)

[] logout -> mainB)

-- OZ Part Bank

-- We represent the current balance bal as a set of

-- pairs (account-id, value). This requires some

-- auxiliary functions defined below:

ValSet = \b,a @ { v | v <- Val, m((a,v),b) }

pick({x}) = x

PickVal = \b,a @ pick(ValSet(b,a))

withdrawOK = \b,a1,a2,s @

not(a1==a2) and

(PickVal(b,a1) - s >= 0)

upd = \b,a,v @

let

bminus = diff(b,{(a,vold) | vold <-Val })

within

union(bminus, {(a,v)})

-- The set of customers is defined as a concrete

-- subset of UserID. It appears as a global parameter

-- of the process OZB.

cust = {u1, u2}

OZB(bal,transferOK) =

(m(bal,Set({(a,v)|a<-AccID,v<-Val})) and

m(transferOK,Bool)) &

(([] (u,ok): {(u,m(u,cust)) | u <- UserID } @

login.u.ok -> OZB(bal,transferOK))

[]([] (a,v) :

{(a,PickVal(bal,a)) |

a <- AccID, card(ValSet(bal,a))==1} @

balance.a.v -> OZB(bal,transferOK))

[]([] (s,a1,a2,ok):

{(s,a1,a2,withdrawOK(bal,a1,a2,s)) |

s<-Sum, a1<-AccID, a2 <-AccID,

card(ValSet(bal,a1)) == 1 } @

transferReq.s.a1.a2.ok -> OZB(bal,ok))

[] transferExec?s?a1?a2 ->

if transferOK and card(ValSet(bal,a1))==1 and

card(ValSet(bal,a2))==1

then

let

v1 = PickVal(bal,a1) - s

v2 = PickVal(bal,a2) + s

within

OZB(upd(upd(bal,a1,v1),a2,v2), transferOK)

else OZB(bal,transferOK)

)

-- Parallel Composition of CSP and OZ part of the Bank

-- starts with the following initial balance of the

-- accounts:

bal = { (ac1,3), (ac2,-2) }

Bank =

mainB

[|{| login,balance,transferReq,transferExec |}|]

OZB(bal,false)

-- Unprotected System

UnpSys = Bank

-- SecAut

datatype Actions = Balance | Transfer

datatype PIN = p1 | p2

-- concrete set of pins

datatype TN = t1 | t2 |t3

-- concrete set of tans

-- CSP Part SecAut

channel pin: PIN.Bool

channel tan: TN.Bool

mainS = login?u?ok -> (ok & Identify

[] not ok & mainS)

Identify = pin?p?ok -> (ok & SecOperate

[] not ok & Identify)

SecOperate =

balance?a?val -> SecOperate

[] transferReq?s?a1?a2?ok -> TanCheckExec

[] logout -> mainS

TanCheckExec =

tan?t?ok -> (ok & transferExec?s?a1?a2 ->

SecOperate

[] not ok & abort ->

SecOperate)

[] logout -> mainS

-- OZ Part SecAut

-- The following definitions appear as

-- global parameters of the process OZS:

priv = { (u1,ac1,Balance),

(u1,ac1,Transfer),

(u2,ac2,Balance),

(u2,ac2,Transfer),

(u3,ac1,Balance),

(u3,ac1,Transfer),

(u3,ac2,Balance) }

-- concrete set of privileges

cred(u1) = p1

cred(u2) = p2

-- concrete set of credentials

N = 2

-- N+1 is the concrete length of the tanlist

tanlist(u1,0) = t1

tanlist(u1,1) = t3

tanlist(u1,2) = t2

tanlist(u2,0) = t1

tanlist(u2,1) = t2

tanlist(u2,2) = t3

-- concrete tanlist

tid0 = { (u1,0), (u2,0) }

-- initial tan indices

OZS(uid,tid) =

(m(uid,UserID) and m(tid,Set({(u,v) |

u <-cust, v<-{0..N} }))) &

(login?u?ok -> OZS(u,tid)

[]([] (p,ok): {(p,m(uid,cust) and p == cred(uid)) |

p <- PIN } @ pin.p.ok -> OZS(uid,tid))

[]([] a: {a | a <- AccID,

m((uid,a,Balance),priv)} @

balance.a?v -> OZS(uid,tid))

[]([] a1: {a1 | a1 <- AccID,

m((uid,a1,Transfer),priv)} @

transferReq?s.a1?a2?ok -> OZS(uid,tid))

[]([] (t,ti,ok): {(t,ti,t == tanlist(uid,ti)) |

t <- TN, ti <- {0..N},

card(ValSet(tid,uid)) == 1,

ti == PickVal(tid,uid) } @

tan.t.ok -> ((ok and (ti < N) &

OZS(uid,upd(tid,uid,ti+1))

[](not ok or (ti == N) &

OZS(uid,tid)))))

)

-- Parallel Composition of CSP and OZ part of the SecAut

SecAut =

mainS

[|{| login,pin,balance,transferReq,tan |}|]

OZS(u3,tid0)

-- Secure System

A = {| login, balance, transferReq, transferExec,

abort, logout |}

SecSys = Bank [| A |] SecAut

-- has alphabet A union {| pin, tan |}

--

-- Individual Traces (Use Cases): two examples

--

assert SecSys [T= login.u1.true -> pin.p1.true ->

transferReq.3.ac1.ac2.true ->

tan.t1.true ->

transferExec.3.ac1.ac2 -> STOP

-- satisfied

assert SecSys [T= login.u1.true -> pin.p1.true ->

transferReq.3.ac1.ac2.true ->

tan.t2.false ->

transferExec.3.ac1.ac2 -> STOP

-- not satisfied: tan t2 is false

--

-- General Properties

--

-- Deadlock

-- Bank, UnpSys, SecAut, SecSys are all

-- deadlock free. -- checked

-- Livelock (Divergence)

-- Bank, UnpSys, SecAut, SecSys are all

-- livelock free. -- checked

-- Determinism

-- Bank, UnpSys, SecAut, SecSys are all

-- deterministic. -- checked

--

-- Refinement Properties

--

assert UnpSys [T= SecSys

-- not satisfied due to pin and tan

assert UnpSys [T= SecSys \ {|pin, tan |}

-- checked for values up to 6

--

-- Security Properties

--

-- No balance check before a sequence of successful

-- login and pin, belonging to the credentials of

-- the user.

A1 = {| transferReq, transferExec, abort, tan |}

P1 = ([] u : { u | u <- UserID,

member(u,cust) } @

login.u.true -> P1L(u))

[]([] u : { u | u <- UserID,

not member(u,cust) } @

login.u.false -> P1)

[] logout -> P1

[] ([] x : A1 @ x -> P1)

P1L(u) =

([] p : { p | p <- PIN, p == cred(u) } @

pin.p.true -> P1LP)

[]([] p : { p | p <- PIN,

not(p == cred(u)) } @

pin.p.false -> P1L(u))

[] logout -> P1

[] ([] x : A1 @ x -> P1L(u))

P1LP = balance?a?v -> P1LP

[] logout -> P1

[] ([] x : A1 @ x -> P1LP)

assert P1 [T= SecSys

-- satisfied

-- No transferExec before a successful tan.

A2 = union({| login, balance, transferReq,

abort, logout, pin |},

{ tan.t.false | t <- TN })

P2 = tan?t.true -> P2T

[] ([] x : A2 @ x -> P2)

P2T = transferExec?s?a1?a2 -> P2

[] ([] x : A2 @ x -> P2)

assert P2 [T= SecSys

-- satisfied

