
Deconstructing Alice and Bob

Carlos Caleiro1

CLC, Department of Mathematics, IST, Lisbon, Portugal

Luca Viganò2 David Basin3

Department of Computer Science, ETH Zurich, Switzerland

Abstract

Alice&Bob–notation is a simple notation for describing security protocols as sequences of message
exchanges. We show that, despite the fact that Alice&Bob–notation does not include explicit con-
trol flow constructs, it is possible to make some of these aspects explicit when producing formal
protocol models without having to resort to more expressive protocol description languages. We
introduce a notion of incremental symbolic run to formally handle message forwarding and con-
ditional abortion. In incremental symbolic runs, we use variables to represent messages that the
principals cannot read, and we characterize each of the execution steps in order to build a collec-
tion of symbolic subruns of increasing lengths, reflecting the data possessed by the principals up
to that point in the execution. We contrast this with the simpler (more standard) approach based
on formalizing the behavior of principals by directly interpreting message exchanges as sequences
of atomic actions. In particular, we provide a complete characterization of the situations where
this simpler approach is adequate and prove that incremental symbolic runs are more expressive
in general.

Keywords: Security protocols, protocol models, Alice and Bob notation, control flow, message
forwarding, protocol abortion.

1 Email: ccal@math.ist.utl.pt
2 Email: vigano@inf.ethz.ch
3 Email: basin@inf.ethz.ch
This work was supported by FCT and EU FEDER through POCTI (via the Project Quant-
Log POCTI/MAT/55796/2004 of CLC) and by the FET Open Project IST-2001-39252 and
BBW Project 02.0431, “AVISPA: Automated Validation of Internet Security Protocols and
Applications”.

Electronic Notes in Theoretical Computer Science 135 (2005) 3–22

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.007

mailto:ccal@math.ist.utl.pt
mailto:vigano@inf.ethz.ch
mailto:basin@inf.ethz.ch
http://www.elsevier.com/locate/entcs

1 Introduction

The so-called Alice&Bob–notation is commonly used to describe security pro-
tocols as sequences of message exchange steps of the form

A → B : M .

While this notation is intuitive and compact, it is informal and making it more
precise requires defining the sequence of actions taken by each honest principal
participating in the protocol. This can be achieved by directly interpreting
(i.e. “compiling”) each message exchange as a sequence of actions, e.g. actions
for sending and receiving messages and for applying cryptographic operations
such as encryption and decryption, generation of fresh data, application of
hash functions, and the like.

This approach, which we call the direct-compilation approach, can be used
to formalize the behavior of the different protocol participants for a large
subclass of protocols, namely those protocols that consist of a linear sequence
of message exchange steps, without control flow constructs (such as loops or if-
then-elses). In such protocols, there is only a weak form of implicit branching:
each step either succeeds or aborts due to a failed operation, e.g. when a
message received does not comply to the protocol specification.

For non-linear protocols with explicit control flow, however, alternative
notation must be used, based on richer specification languages that make
explicit what is left implicit (or even unspecified) in Alice&Bob–notation. A
number of such languages have been proposed, e.g. based on automata, process
calculi, or even temporal logic, such as the high-level protocol specification
language HLPSL of the AVISPA project [5].

We show that, despite the fact that the Alice&Bob–notation does not in-
clude explicit control flow constructs, it is possible to make some of these
aspects explicit when producing formal protocol models without having to re-
sort to more expressive protocol description languages. The approach that we
present here focuses on handling protocols that require message forwarding
and conditional abortion. To illustrate these two problems, observe that in
some protocols, the principals receive submessages that are opaque (or “un-
readable”) to them — in the sense that these principals cannot decompose
these submessages — which they should simply forward to other principals in
subsequent protocol steps. For example, a protocol might state that a prin-
cipal A should receive and immediately forward a message {M}K encrypted
with a symmetric key K that A does not yet have. It is possible that such an
encrypted message can be analyzed sometime later, as the participants accu-
mulate data incrementally during each protocol run. Hence, when new data

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–224

is received, a principal may only then be able to determine that some previ-
ously received message does not have the required structure and thus abort
the protocol. That is, in some later step A may receive the key K (or receive
enough information to compose it herself) and can thus decrypt {M}K . In
this case, A should abort the protocol run whenever M does not conform to
the protocol description (for example, if it does not contain a nonce that A
generated and sent to some other principal earlier in the protocol run).

Our main contribution in this paper is to introduce a notion of incremental
symbolic run to formally handle message forwarding and conditional abortion.
In incremental symbolic runs, we use variables to represent opaque submes-
sages, and we characterize each of the execution steps in order to build a
collection of symbolic subruns of increasing lengths, where the structure of
messages reflects the growth of the relevant data during protocol execution.
Said another way, the structure of messages in these subruns reflects the data
possessed by the principals up to that point in the execution. We can thus
define the sequences of symbolic runs of growing length that adequately model
the behavior of each of the protocol participants. We then discuss the relation-
ship between incremental symbolic runs and the runs that one obtains from
the direct-compilation approach. We provide a complete characterization of
the situations when the direct-compilation approach works, and show that in
other situations the more expressive incremental symbolic runs are required.

The approach that we propose is general and independent of the details
of the particular formalism chosen for modeling the protocols (e.g. multiset
rewriting, distributed temporal logic, strand spaces, process algebras, trace-
based models, and so on) and of the details of the intruder model (which could
be the standard Dolev-Yao model or the model of an intruder with different
capabilities). Therefore, our results can be used to provide a formal footing for
using Alice&Bob-notation in security protocol analysis tools even for protocols
that explicitly rely on message forwarding and conditional abortion. Moreover,
although we do not explore this possibility here, our work provides a good basis
for generating protocol implementations from Alice&Bob-style descriptions
that explicitly carry out necessary executability and abortion tests.

We proceed as follows. In §2 we illustrate the problems with message
forwarding and conditional abortion by means of concrete examples, and in
§3 we show how incremental symbolic runs provide a formal solution to these
problems. In §4 we draw conclusions. Due to lack of space, we will often only
give informal justifications of the technical results; details can be found in [3].

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 5

2 Message forwarding and conditional abortion

To illustrate the problems with message forwarding and conditional abortion,
we first introduce an algebra of messages and define the actions that can be
performed by the principals participating in a protocol run.

2.1 Messages and actions

Let a set Pr of principal identifiers and a set Num of “numbers” be given.
The elements of Num model random data, like nonces or keys. We will use
upper-case letters like A, B, C, . . . to denote principals and N to denote num-
bers. We also use lower-case letters like a, b, c, . . . for variables that range over
principals, n to range over numbers, and m to range over messages. All of
these variables may be annotated with subscripts.

Definition 2.1 Messages are built inductively from atomic messages (iden-
tifiers, numbers, and variables) by pairing, encryption, and hashing. We
write these operations as M1; M2, {M1}M2

(the encryption of M1 by M2), and
H(M1), for M1 and M2 messages and H a hash function. The set sub(M) of
submessages of a message M is defined inductively by

sub(M) =

⎧⎨
⎩

{M} if M is atomic,
{M1; M2} ∪ sub(M1) ∪ sub(M2) if M = M1; M2,

{{M1}M2
} ∪ sub(M1) ∪ sub(M2) if M = {M1}M2

,

{H(M1)} ∪ sub(M1) if M = H(M1).

If S is a set of messages, then we will also write sub(S) to denote the set
of all submessages of messages in S, i.e. sub(S) =

⋃
M∈S sub(M).

We follow the perfect cryptography assumption and the free-algebra as-
sumption, where syntactically different terms denote different messages. For
readability, we will often write K to denote messages intended to be used as
encryption keys. We also assume that every message K has an inverse K−1

that must be used for decrypting messages encrypted with K. We further
assume that (K−1)

−1
= K and that it is not possible to compute K−1 from

K. If K−1 = K then we speak of symmetric encryption, and of asymmetric
encryption otherwise. As notation, we will write KA to denote a public key of
the principal A, whose inverse is A’s private key K−1

A , and we will write KAB

to denote a symmetric key that is shared by the principals A and B.

Definition 2.2 The actions that can be performed by a principal participating
in a protocol are:

• s(M, A) — sending the message M to the principal A,

• r(M) — receiving the message M , and

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–226

(nspk1) a → b : (n1). {n1; a}Kb

(nspk2) b → a : (n2). {n1; n2}Ka

(nspk3) a → b : {n2}Kb

Fig. 1. The simplified Needham-Schroeder Public-Key Protocol (NSPK).

init-run : 〈f(n1).s({n1; a}Kb
, b) . r({n1; n2}Ka

) . s({n2}Kb
, b)〉

resp-run : 〈r({n1; a}Kb
) . f(n2) . s({n1; n2}Ka

, a) . r({n2}Kb
)〉

Fig. 2. The initiator and responder runs of NSPK.

• f(N) — generating the fresh number N .

Communication is assumed to be asynchronous and to take place over
a hostile network. Hence, principals specify the intended recipients of the
messages they send, but the receiving action does not explicitly name the
message’s sender. In fact, we can assume, as is standard, that the network
is controlled by, and can be identified with, a Dolev-Yao intruder [8] who
can compose, send, and intercept messages at will, but cannot break cryp-
tography. Note, however, that our results are independent of the particular
capabilities of the intruder. Note, too, that in this paper we consider the ac-
tions of principals from a fairly high level of abstraction, and we only model
the communication actions s(M, A) and r(M), and one internal action f(N).
Other internal actions, e.g. corresponding to the application of cryptographic
operations (such as explicit encryption and decryption, application of a hash
function, test for equality, etc.) can be modeled similarly and our results
extended straightforwardly.

2.2 Action sequences and protocol runs

Given an algebra of messages and a set of actions, there are many approaches
available for formally specifying and analyzing protocols, for example, using
formalisms based on multiset rewriting, distributed temporal logic, strand
spaces, process algebras, trace-based models, among others (see, for exam-
ple, [4,11,12,13]). The approach that we propose is general and independent
of the details of the particular formalism chosen. Rather than focusing on
any concrete approach, we thus consider a step that is common to all ap-
proaches: formally defining the precise sequences of actions that should be
executed by each of the protocol participants, given a description of a proto-
col in Alice&Bob–notation. By protocol participants we mean those principals
who send or receive messages in some step of the protocol. Hence, our task

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 7

amounts to extracting (or “compiling”) a sequence of precise actions for each
participant from a higher-level notation and, in doing so, giving that notation
a precise semantics in terms of the actions of the individual participants.

As a first concrete example, consider the simplified Needham-Schroeder
Public-Key Protocol (NSPK) [6]. Fig. 1 shows the usual Alice&Bob–style de-
scription of NSPK, where a and b are variables ranging over principals that
identify the roles played in one run of the protocol. The arrows represent
communication from the sender to the receiver, where the parenthesized vari-
ables prefixing the first two messages signify that these nonces must be freshly
generated before the message is composed and sent.

Let us write w = 〈w1.w2.w3 . . . 〉 to denote a (possibly infinite) sequence w
composed of the elements w1, w2, w3, Let |w| denotes its length, where
|〈〉| = 0 for the empty sequence 〈〉 and |w| = ∞ whenever w is infinite. We
also write w � w′ to denote the concatenation of the two sequences, provided
that the first sequence is finite, and we write w|i to denote the prefix of w of
length i, i.e. w|i = 〈w1 . . . wi〉, provided that 0 ≤ i ≤ |w|.

Formalizing protocols requires defining the sequences of actions (s, r, and
f) taken by each principal running the protocol. In the concrete case of the
NSPK protocol, there are two participants playing in two roles, an initiator
and a responder, represented respectively by a and b. Their roles correspond
to the execution of the two sequences of actions shown in Fig. 2: init-run, by
the principal named a, and resp-run, by the principal named b. We say that
these runs are symbolic as they contain variables which can be instantiated to
generate sequences of concrete message exchanges, i.e. concrete protocol runs.

Looking at these two sequences, it is immediately apparent that they prop-
erly represent the behavior of the protocol participants playing in the respec-
tive roles. In particular, given the available information at each step: (i) the
content of each of the received messages can be decomposed and checked, and
(ii) each of the sent messages can be constructed.

2.3 Message forwarding

Things are generally not as simple as in the NSPK protocol. In fact, in
Alice&Bob–style protocol descriptions, it is left implicit that certain messages
should be analyzed after they are received, and their contents checked, while
other messages must be synthesized before they are sent. Clearly, a participant
in NSPK must analyze the content of every message he receives in order to
be able to send his next message. However, this may not always be the case,
as we illustrate by means of another concrete example: in Fig. 3 we present
the Otway-Rees Authentication/Key-Exchange Protocol (OR) [6], where an
initiator a and a responder b attempt to mutually authenticate each other

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–228

(or1) a → b : (n1). i; a; b; {n1; i; a; b}Kas

(or2) b → s : (n2). i; a; b; {n1; i; a; b}Kas
; {n2; i; a; b}Kbs

(or3) s → b : i; {n1; Kab}Kas
; {n2; Kab}Kbs

(or4) b → a : i; {n1; Kab}Kas

Fig. 3. The Otway-Rees Authentication/Key-Exchange Protocol (OR).

and exchange a shared key Kab with the help of a server s, with whom they
respectively share the keys Kas and Kbs (i is a run identifier, contained in
all of the four messages). A direct transcription of messages into actions, as
done with NSPK, yields the sequence of actions resp-run shown on the left of
Fig. 4. Note that, in contrast to the NSPK example, this sequence does not
properly represent the expected behavior of the responder. The problem is
with b’s first action in the run, where he receives i; a; b; {n1; i; a; b}Kas

. Because
he does not possess the key Kas, he cannot check that the fourth part of this
message is of the form {n1; i; a; b}Kas

, i.e. the concatenation of the plaintext
i; a; b with some nonce n1 generated by a.

In this protocol, we must interpret the submessage {n1; i; a; b}Kas
differ-

ently. For b, this submessage is opaque: it represents a chunk of information
that he cannot decompose. In this protocol, he should simply forward this
chunk to s in the second step just as he must later forward to a the sub-
message {n1; Kab}Kas

that he receives from s. The proper way of formally
representing such situations is to replace these chunks by new message vari-
ables in b’s actions, as shown in the symbolic run resp-possrun on the right
of Fig. 4 using the new message variables m1 and m2.

4

The use of message variables allows us to represent message forwarding
when translating Alice&Bob–style protocol descriptions into formal models.
The symbolic run resp-possrun allows m1 and m2 to be instantiated with

4 We proceed similarly in the case of asymmetric encryption. For instance, in

a → b : (n1, n2). {a; n1; c}Kb
; {a; b; n1; n2}Kc

b → c : a; b; n1; {a; b; n1; n2}Kc

b is not supposed to check the contents of {a; b; n1; n2}Kc
in the message that he receives.

Not only is b not supposed to have K−1
c to decrypt the message, but he also cannot re-

produce the message (i.e. compose it himself) since he should not possess n2. Indeed,
for b, this could just be any message that he later forwards to c. If we introduce a
new variable m to represent that message, then the possible runs of b should start with
the more general r({a; n1; c}Kb

; m) followed by s(a; b; n1; m, c) instead of the two actions
r({a; n1; c}Kb

; {a; b; n1; n2}Kc
) and s(a; b; n1; {a; b; n1; n2}Kc

, c).

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 9

resp-run : resp-possrun :

〈r(i; a; b; {n1; i; a; b}Kas
) . 〈r(i; a; b; m1) .

f(n2) . f(n2) .

s(i; a; b; {n1; i; a; b}Kas
; {n2; i; a; b}Kbs

, s) . s(i; a; b; m1; {n2; i; a; b}Kbs
, s) .

r(i; {n1; Kab}Kas
; {n2; Kab}Kbs

) . r(i; m2; {n2; Kab}Kbs
) .

s(i; {n1; Kab}Kas
, a)〉 s(i; m2, a)〉

Fig. 4. The responder runs of OR.

messages that do not conform to the prescribed structure — the symmetric
encryption of a nonce concatenated with the plaintext submessage at the be-
ginning of the message — as the principal playing the responder role cannot
tell the difference. We will show how to obtain, in general, the correct sequence
of actions, i.e. the correct symbolic run, in a rigorous way.

2.4 Conditional abortion

In general, we will require that principals proceed eagerly and always check
the contents of an encrypted or hashed message as soon as this is possible
(if it is ever possible at all). For example, an encrypted message {M}K shall
thus only be treated as such if the principal has the key to decrypt it, K−1,
or the ability to build it from M and K. Note that it is possible that such an
encrypted message can only be analyzed sometime later. If that is the case, we
assume that the principal will carry out this analysis, and abort the protocol
run if the contents were not as expected.

For concreteness, observe that participants accumulate data incrementally
during each protocol run. Hence, when new data is received, a principal
may only then be able to determine that some previously received message
does not have the required structure and hence abort the protocol. Consider,
for instance, a situation where a principal A receives a message containing a
submessage {M}K encrypted with a symmetric key K that A does not possess.
Furthermore, suppose that, in some later step, A is sent K (or receives enough
information to compose it herself) and can thus decrypt {M}K . In this case,
A should abort the execution of the protocol whenever M does not conform
to the protocol description (for example, it is not a nonce that A generated
and sent to some other agents earlier in the protocol run). 5

5 As an example involving asymmetric encryption, consider the following extension of the

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2210

(asw1) a → b : (n1). {Ka; Kb; t; H(n1)}
K

−1

a

(asw2) b → a : (n2). {{Ka; Kb; t; H(n1)}
K

−1

a

; H(n2)}
K

−1

b

(asw3) a → b : n1

(asw4) b → a : n2

Fig. 5. The Exchange Subprotocol of the ASW Protocol, simplified.

To give an example of where a similar situation occurs with message hashes,
consider the ASW Protocol, an optimistic fair-exchange protocol for contract
signing proposed by Asokan, Shoup and Waidner in [2]. Fig. 5 displays (a
slightly simplified version of) the Exchange Subprotocol of ASW. The idea is
that if two honest participants execute this subprotocol, and there are neither
network failures nor intruder intervention, then afterwards both will possess
a valid contract. We write t to denote the contract text, and write {M}K−1

a

to denote the digital signature of message M by principal a, whose public key
for signature verification is Ka. The principals a and b generate nonces N1

and N2, which are called their respective secret commitments to the contract.
Given these, they compute their public commitments by hashing these values,
yielding H(N1) and H(N2), respectively. The protocol then proceeds in two
rounds: in the first, each principal expresses his public commitment to the
agreed-upon contract but does not disclose his secret commitment. In the
second round, they then exchange their respective secret commitments. Each
principal can then hash the secrecy commitment received and verify that it
indeed corresponds to the public commitment from the first round. At the
end of this exchange, each principal possesses a valid standard contract of the
form {Ka; Kb; t; H(n1)}K−1

a
; {{Ka; Kb; t; H(n1)}K−1

a
; H(n2)}K−1

b

; n1; n2.

Fig. 6 displays the responder run resp-run (written horizontally for the
sake of readability). As with the OR protocol, this sequence does not properly
represent the expected behavior of the responder. The problem is that before
carrying out the action r(n1), the principal b cannot check the structure of the
submessage H(n1), even though he knows the hash function H . Therefore,
until n1 is received, the submessage H(n1) is again just an opaque chunk of

message exchanges of Footnote 4:

a → b : (n1, n2). {a; n1; c}Kb
; {a; b; n1; n2}Kc

b → c : a; b; n1; {a; b; n1; n2}Kc

c → b : {n2}Kb

After b receives the message from c, he can check that the m that he previously received
and forwarded to c has indeed the required format. In this case, b’s checking of the message
can take place not because b has possession of K−1

c , but rather because he now has n2 and
thus he can construct the message {a; b; n1; n2}Kc

and compare it with m.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 11

resp-run :

〈r({Ka; Kb; t; H(n1)}K−1
a

) . f(n2) .s({{Ka; Kb; t; H(n1)}K−1
a

; H(n2)}K−1

b

, a) .r(n1) . s(n2, a)〉

resp-possrun :

〈r({Ka; Kb; t; m1}K−1
a

)〉

〈r({Ka; Kb; t; m1}K−1
a

) . f(n2)〉

〈r({Ka; Kb; t; m1}K−1
a

) . f(n2) .s({{Ka; Kb; t; m1}K−1
a

; H(n2)}K−1

b

, a)〉

〈r({Ka; Kb; t; H(n1)}K−1
a

) . f(n2) .s({{Ka; Kb; t; H(n1)}K−1
a

; H(n2)}K−1

b

, a) .r(n1)〉

〈r({Ka; Kb; t; H(n1)}K−1
a

) . f(n2) .s({{Ka; Kb; t; H(n1)}K−1
a

; H(n2)}K−1

b

, a) .r(n1) . s(n2, a)〉

Fig. 6. The responder runs of ASW.

information to be stored. However, when receiving n1, b should hash it and
abort the protocol execution if it does not coincide with the opaque submessage
previously stored. In this case, he should not even execute the last sending
action of the run. This kind of problem is standard for protocols involving
commitments to values by principals.

We propose to tackle this conditional abortion problem, as well as the mes-
sage forwarding problem we described in the previous subsection, by introduc-
ing incremental symbolic runs. In these runs, we use variables to represent
opaque submessages (as explained before), and we characterize each of the
execution steps in order to build a collection of symbolic subruns of increasing
lengths, where the structure of messages reflects the growth of the relevant
data during protocol execution. Said another way, the structure of messages
in each subrun reflects the data possessed by the principals up to that point
in the execution. To illustrate this, the proper way of formally representing
the responder run of the ASW protocol is, instead of resp-run, the sequence
resp-possrun of subruns (a sequence of sequences, of growing length) shown
in Fig. 6.

We will now formalize these intuitive explanations and notions.

3 Incremental symbolic runs

3.1 The direct-compilation approach

In general, a protocol description in Alice&Bob–notation involves j princi-
pal variables a1, . . . , aj, corresponding to j distinct protocol participants,
each playing a role, and k number variables n1, . . . , nk. We write Part =
{a1, . . . , aj} to denote the set of all protocol participants. A protocol descrip-
tion consists of a sequence 〈step1 . . . stepm〉 of message exchange steps, each
of the form

(stepq) xs → xr : (nq1
, . . . , nqt

). M ,

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2212

where xs �= xr and M includes at least all of nq1
, . . . , nqt

but can also involve
any of the number variables generated in previous steps, as well as any of
the principal variables identifying the protocol participants. The variables
nq1

, . . . , nqt
are supposed to represent values that must be freshly generated

by xs just before the message M is sent to xr. We will assume that these
values are fresh, i.e. that they do not occur in any message of the preceding
steps of the protocol description, nor in the inverse of any of its submessages.
This means that the new numbers have not appeared before and cannot be
used to generate the inverse of any key already used.

These steps are meant to prescribe a sequence of actions to be executed
by each of the participants in a run of the protocol. Let us assumed fixed a
protocol description in the following definition and in the remainder of the
paper, so that, for example, we simply speak of “the participants” meaning
the participants of the given protocol.

Definition 3.1 Let x ∈ Part. The sequence of actions corresponding to the
execution of x’s role in the protocol is x-run = stepx

1 � · · · �stepx
m, where stepx

q

is defined by

stepx
q =

⎧⎪⎨
⎪⎩

〈f(nq1
) . . . f(nqt

) . s(M, xr)〉 if x = xs,

〈r(M)〉 if x = xr,

〈〉 otherwise.

We call this the direct-compilation approach as x-run directly formalizes
the sequence of actions to be executed by the protocol role, as described in
the Alice&Bob–style protocol description (cf. the x-runs in Fig. 2, Fig. 4, and
Fig. 6). However, as we remarked in the previous sections, a symbolic run
such as x-run may not be enough, not only because it does not take message
forwarding and conditional abortion into account, but also because it may
happen that the correct partial executions of a run cannot be modeled simply
by considering prefixes of x-run.

3.2 The knowledge of principals

The construction should therefore be guided by the role-relevant data that
each principal collects during his run of the protocol. In general, messages are
analyzed (decomposed) and synthesized (composed) by following simple rules.

Definition 3.2 Let S be a set of messages. The set analyz(S) is the least
superset of S closed under the rules

M1; M2

M1

,
M1; M2

M2

,
{M}K K−1

M
,

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 13

and the set synth(S) is the least superset of S closed under the rules

M1 M2

M1; M2
,

M K

{M}K

,
M

H(M)
.

The least superset of S closed under the analysis and synthesis rules is denoted
by close(S).

It is quite straightforward to show that if one does not allow encryption
using composed messages as keys, i.e. if one considers only atomic keys, then
close(S) = synth(analyz(S)). Below, we will also identify another situa-
tion where this is true. In general, however, synth(analyz(S)) � close(S),
that is, the inclusion is proper. For instance, if S contains just the mes-
sage M1; {M}(M1;M1)−1 then M ∈ close(S) but M /∈ synth(analyz(S)). If
S = close(S) then we shall say that S is a closed set of messages.

For a given x ∈ Part, assume now that x-run = 〈a1, . . . , as〉. For 1 ≤ i ≤ s,
we want to define x-possruni as the view that x has of his run up to the
ith action, as explained above. Of course, we must rely on the data that x
collects during the actions he took up to that point in the run, assuming that
he knows some initial protocol-relevant data. If we call this data Di

x, then we
can visualize the evolution of data sets during x-run = 〈a1, . . . , as〉 as follows:

a1 a2 a3 as−1 as
D0

x
�� D1

x
�� D2

x
�� . . . �� Ds−1

x
�� Ds

x

.

Obviously, Di
x ⊆ Di+1

x and D0
x should consist of only the protocol-relevant

data that the principal x holds before he starts his role of the protocol, e.g. the
identities of the participants, their public keys, and x’s own private and shared
keys. Then Di+1

x constitutes the extension of Di
x by the new information that

x gets by executing the action ai+1. It should be clear that nothing new is
obtained by sending a message.

Definition 3.3 The data collected by a principal executing an action a is the
set gets(a) defined by:

gets(a) =

⎧⎪⎨
⎪⎩

∅ if a = s(M, y),

{M} if a = r(M),

{n} if a = f(n).

The data sets can now be defined as follows:

Definition 3.4 The sets Di
x, for 0 ≤ i ≤ s, are inductively defined by:

• D0
x = close(Part ∪ {Ky | y ∈ Part} ∪ {K−1

x } ∪ {Kxy | y ∈ Part}), and

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2214

• Di
x = close(Di−1

x ∪ gets(ai)) if i > 0.

Clearly, for every i > 0, we have that

Di
x =

⎧⎪⎨
⎪⎩

Di−1
x if ai = s(M, y),

close(Di−1
x ∪ {M}) if ai = r(M),

close(Di−1
x ∪ {n}) if ai = f(n).

3.3 Executability

The construction of the sets Di
x completely neglects the messages that x sends

during his run. This is justified: x does not learn anything by sending a
message, as reflected in Definition 3.3. However, it must be the case that x
can build the messages that he sends using the data currently available to him.
This assumption, which is often left implicit in protocol analysis approaches,
can be formalized in the present setting.

Definition 3.5 The role of x is executable provided that, for every 1 ≤ i ≤ t,
if ai = s(M, y) then M ∈ Di−1

x . The protocol is itself executable if all of its
roles are.

Although executability is somewhat orthogonal to the problem we are dis-
cussing here, we will make use of it later on. From now on, in any case, we
will assume that the protocol specifications that we work with are executable.

3.4 Opacity and transparency

From now on, let us also suppose that the data collected by a principal x up
to a given point in the execution of his role is the closed set D. We can now
define when the precise form of a message can be understood by a principal.
Indeed, as we have seen in previous examples, it may be that the actual form of
some messages cannot be understood given the available data. To provide an
adequate symbolic treatment of messages, we introduce new message variables
mM for each encrypted or hashed submessage, respectively M = {M ′}K or
M = H(M ′). These are precisely the (sub)messages that are opaque to a
principal, in the sense that the currently available data does not allow him
to “read through” (i.e. decompose) these (sub)messages, thereby recognizing
their precise form and extracting their content.

Definition 3.6 The view vD(M) that a principal has of a message M is

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 15

defined inductively by

vD(M) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M if M is atomic,

vD(M1); vD(M2) if M = M1; M2,

{vD(M1)}vD(K) if M = {M1}K and K−1 ∈ D or M1, K ∈ D,

H(vD(M1)) if M = H(M1) and M1 ∈ D,

mM otherwise.

It is clear that if a message variable mM occurs in vD(M ′) then M must
be an opaque submessage of M ′. Note that the converse is false because an
opaque submessage need not be outermost. For instance, v∅(H(H(M))) =
mH(H(M)), where of course mH(M) does not occur. This happens, despite the
fact that H(M) is a submessage of H(H(M)), because H(M) appears only
inside H(H(M)) which is itself opaque.

We now define what it means for a message to be transparent or opaque,
given D.

Definition 3.7 A message M is D-transparent if vD(M) = M and D-opaque
if vD(M) = mM .

We will also say that a set of messages S is D-opaque, or D-transparent,
provided that all the messages in S are. In case D is itself D-transparent, we
will simply refer to D as transparent. Note that it follows from Definition 3.6
that M is D-opaque precisely when M = {M1}K , K−1 /∈ D and {M1, K} � D,
or else if M = H(M1) and M1 /∈ D. Obviously, given the definitions, D-
transparency is related to the absence of D-opaque submessages. By induction
on the structure of messages, we can prove:

Proposition 3.8 A message M is D-transparent if and only if sub(M) does
not contain D-opaque elements.

To better understand how the view that a principal has of a message may
evolve, we also prove:

Proposition 3.9 Let D ⊆ D′, with D′ closed. Given a message M ′ the
following are equivalent:

(i) vD(M ′) = vD′(M ′),

(ii) if mM occurs in vD(M ′) then it also occurs in vD′(M ′),

(iii) if mM occurs in vD(M ′) then M is D′-opaque.

The implications from (i) to (ii) and (ii) to (iii) are straightforward. A
simple induction on the structure of M ′ establishes the implication from (iii)
to (i).

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2216

Note that if D ⊆ D′ then it is immediate that D′-opaque messages are
also D-opaque. Hence, as a corollary of the previous proposition, if D′′ is also
closed and D ⊆ D′ ⊆ D′′ then vD(M ′) = vD′′(M ′) implies that vD(M ′) =
vD′(M ′) = vD′′(M ′).

The following proposition tells us that if an opaque message does not
appear as a submessage of any message in a set S, then it cannot appear
as a submessage of any message in close(S).

Proposition 3.10 Let M be a D-opaque message and let S ⊆ D. Then,
M ∈ sub(close(S)) if and only if M ∈ sub(S).

The direct implication follows by induction on the closure rules; it suffices
to show that all the rules preserve the absence of M as a submessage of the
messages involved. The converse implication is trivial due to the monotonicity
of sub and the reflexivity of close.

Proposition 3.10 has the next two propositions as immediate corollaries.

Proposition 3.11 If S is a set of atomic messages then close(S) is transpar-
ent.

Note that, by definition, atomic messages are always transparent. Hence,
if S is a set of atomic messages then sub(S) = S does not contain opaque
elements. Therefore, Proposition 3.10 implies that also sub(close(S)) does not
contain opaque elements. Finally, Proposition 3.8 guarantees that close(S) is
transparent.

Proposition 3.12 Let M ′ be a message and D′ = close(D ∪ {M ′}). If D is
transparent then, D′ is transparent if and only if M ′ is D′-transparent.

By induction on the structure of messages, we can obtain a result similar
to the one in Proposition 3.10 that explains how message variables appear
during protocol execution:

Proposition 3.13 Let S be a set of messages and D′ = close(D ∪ S). If
M ′ ∈ D′, M /∈ sub(D), and mM occurs in vD′(M ′) then mM also occurs in
vD′(S).

To conclude this sequence of technical results, we consider what happens to
the notion of opacity when D is augmented, not by an arbitrary message, but
by a fresh number. (Recall that freshness means that the value does not occur
in any previous message, nor in the inverse of a submessage of any previous
message.)

Proposition 3.14 Let n be a number variable such that n /∈ sub(D ∪
sub(D)−1), and D′ = close(D ∪ {n}). If M ∈ sub(D) and M is D-opaque,

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 17

then M is also D′-opaque.

3.5 Incremental runs

Our aim now is to define the sequence of symbolic runs of growing length
that adequately models the execution of each role of the protocol. For each
participant x, we need to pick each prefix of x-run and apply to it the view
that results from the data x possesses up to that point in the execution. For
this purpose, we extend the definition of the view v to actions and sequences
of actions in the natural way.

Definition 3.15 Let x ∈ Part. If s = |x-run|, then the sequences of actions
corresponding to the (possibly partial) execution of x’s role of the protocol are
x-possrun1, . . . , x-possruns, where x-possruni = vDi

x
(x-run|i) for 1 ≤ i ≤ s.

In general, x-run can be understood as a perfect description of a complete
run of the protocol for participant x, which complies to the protocol descrip-
tion in a full, although maybe not realizable, way. In contrast, x-possruns can
be understood as the possible, though maybe imperfect, complete run, in the
sense that it correctly models the execution of each role of the protocol taking
into account the available data and the way messages can be manipulated.

Still, in some cases, the direct approach of just considering x-run (and its
prefixes) “works fine”, in the sense that, for each role, the perfect complete
run is representative of all possible partial runs. More precisely, x-run is
representative if x-possruni = x-run|i for every 1 ≤ i ≤ s. This certainly
holds true in the case of NSPK, but the same cannot be said about OR and
ASW. Below, we provide a complete characterization of the situations when
the direct-compilation approach works.

Proposition 3.16 The sequence x-run is representative if and only if every
received message is transparent when it is received, i.e. if ai = r(M), then M
is Di

x-transparent.

The direct implication is straightforward, and the converse follows by in-
duction on the sequence of actions in the execution of each role, by exploiting
Propositions 3.11 and 3.12.

Cases such as that of the OR protocol, however, still maintain some of the
regularity of the simplest cases, namely the absence of abortion conditions.
Indeed, the complete possible run x-possruns is still representative of all the
others, that is, x-possruni = x-possruns|i for every 1 ≤ i ≤ s. The next
proposition gives us a precise characterization of these situations.

Proposition 3.17 The sequence x-possruns is representative if and only if
every received message preserves the message variables that occur in the views

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2218

of previously received messages, i.e. if 1 ≤ j < i ≤ s, aj and ai are receiving
actions, and mM occurs in vDi−1

x
(aj), then mM also occurs in vDi

x
(aj).

Proposition 3.9 plays an essential role in the proof of this result. The
direct implication follows easily. The converse implication follows by a careful
inspection of the sequence of actions in the execution of each role, by exploiting
Propositions 3.10, 3.13, and 3.14.

Note that in this case only message forwarding may be necessary. The
precise meaning of forwarding can also be clarified with the help of Proposi-
tions 3.9, 3.10, and 3.13, as explained in the proof of Proposition 3.17: if a
sent message contains an opaque submessage M then M must also occur, and
be opaque, in some previously received message.

Of the examples we have considered, ASW is the most complex one because
the growth of the data available to the principal executing the role may turn
opaque elements into non-opaque ones. When that happens, namely if ai is
a receiving action, mM occurs in vDi−1

x
(aj) for some j < i but mM does not

occur in vDi
x
(aj), we claim that the protocol participant x should abort the

execution of his role of the protocol whenever the actual values of mM and
vDi

x
(M) do not coincide. This is what we call conditional abortion.

3.6 Modeling security protocols

We can now conclude our investigation of the “correct” way of modeling secu-
rity protocols specified using Alice&Bob–notation. As we have shown above,
making the usual assumption that the sequence x-run and its prefixes repre-
sent the behavior of a principal executing the role may lead one to considering
models that do not comply with all the possibilities allowed by the proto-
col. Instead, we claim that all the incremental sequences x-possrun must be
considered.

We now explain how to concretize the symbolic information contained in
these sequences. A protocol instantiation is a variable substitution σ that
assigns to each variable a ground message (that is, without variables) of the
same type. Namely, σ assigns a principal identifier to each principal variable,
a number to each number variable, and a message to each message variable.
Moreover, σ should be injective on the protocol participants, that is, if a1 and
a2 are two principal variables then σ(a1) �= σ(a2). We extend σ to messages,
actions, and sequences in the natural way.

In general, if we denote the set of all protocol instantiations by Inst, the
set of all possible concrete protocol runs of a principal A, in any of the j roles,
is given by RunsA =

⋃j

i=1

⋃|ai-run|
l=1 {σ(ai-possrunl) | σ ∈ Inst, σ(ai) = A}.

Denotational protocol models, for instance, should then be built by choos-

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 19

ing, for each principal A, a set of (prefixes of) concrete sequences in RunsA.
For example, in strand spaces, each of these sequences should correspond to
a strand.

In operational protocol models, on the other hand, the abortion conditions
come into play in a meaningful way. In this case, it suffices to execute, step-
wise, the sequence σ(〈vD1

x
(a1), . . . , vDs

x
(as)〉), and to guard the execution of

each action with a condition whose failure should lead to abortion. For in-
stance, σ(vDi

x
(ai)) can occur, after the sequence σ(〈vD1

x
(a1), . . . , vDi−1

x
(ai−1)〉)

is complete, but only if σ(mM) = σ(vDi
x
(M)) for each message variable mM

that has appeared so far. A full-fledged formalization of this process would
require a more accurate representation of the principals’ activity by employing
additional internal actions. We leave this for future work.

4 Concluding remarks

We have shown that, despite the fact that the Alice&Bob–notation does not
include explicit control flow constructs, it is possible to make aspects such as
message forwarding and conditional abortion explicit when producing formal
protocol models without having to resort to more expressive protocol descrip-
tion languages. In particular, we have shown that, when considering such
aspects, the direct-compilation approach does not correctly formalize all the
possible behaviors of the principals, for which incremental symbolic runs are
required.

Several expressive protocol specification languages have been proposed to
make explicit what is left implicit (or even unspecified) in Alice&Bob–style
descriptions. Some of the problems that we have investigated here have also
been considered for other specification languages. For instance, the syntax
of Casper [10] includes a “%”-notation for representing unreadable messages
by means of variables. The introduction of this notation requires an explicit
extension of the standard Alice&Bob–notation and direct assistance by the
user in writing protocol descriptions. In contrast, we have shown how to
automatically handle opacity without changing the notation or involving the
user by instead changing the interpretation of the terms used in Alice&Bob–
notation.

The way we define the view that a principal can have of a message given
his current knowledge is similar to the message patterns considered by Abadi
and Rogaway in [1], albeit for a rather different purpose (reconciling cryp-
tographic and formal methods protocol analysis approaches). The main dif-
ference is that we distinguish between distinct opaque elements by means of
distinct variables, whereas Abadi and Rogaway use only one variable (their

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2220

“box” symbol). This difference reflects the different objectives: Abadi and Ro-
gaway aim to define a notion of equivalence between messages up to opaque
submessages, while we are interested in describing precisely all the possible
concrete instances of messages that match the pattern. In this sense, different
variables can be given different values, which cannot be done if we use the
same variable. Moreover, even if two messages are opaque, one can certainly
still compare them and check if they are equal.

In §3.6, we have also briefly hinted at how our work could be integrated
with the strand space protocol analysis approach. Capturing the non-determi-
nism that results from message forwarding and conditional abortion would not
require an enrichment of the strand space approach itself; rather, one could
just enlarge the number of strands in the space that models the protocol
under consideration. However, in the general case, i.e. for protocols with
explicit control flow, the extension of strand spaces with a notion of conflict
as suggested in [7,9] seems to be the only option.

As we have previously remarked, we have only focused in this paper on
sending and receiving messages and generating fresh numbers. However, other
internal actions (e.g. corresponding to the application of cryptographic oper-
ations) can be modeled similarly and our results extended straightforwardly.
Such an extension would allow us to fully formalize the process of compiling
messages to sequences of actions and thus extend the ideas described in §3.6 to
directly build analysis tools based on them. We also believe that incremental
symbolic runs will provide a good basis for generating protocol implemen-
tations from Alice&Bob-style descriptions that explicitly carry out necessary
executability and abortion tests.

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[2] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange.
In Proc. IEEE Symposium on Research in Security and Privacy, pages 86–99, 1998.

[3] C. Caleiro, L. Viganò, and D. Basin. Deconstructing Alice and Bob (extended version).
Technical Report 486, Department of Computer Science, ETH Zurich, 2005.

[4] C. Caleiro, L. Viganò, and D. Basin. Metareasoning about Security Protocols using Distributed
Temporal Logic. In Proc. IJCAR’04 Workshop on Automated Reasoning for Security Protocol
Analysis (ARSPA’04), pages 67–89. ENTCS 125(1), 2005.

[5] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani, S. Mödersheim, and
L. Vigneron. A High Level Protocol Specification Language for Industrial Security-Sensitive
Protocols. In Proc. SAPS’04. Austrian Computer Society, 2004.

[6] J. Clark and J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0,
17. November 1997. URL: www.cs.york.ac.uk/∼jac/papers/ drareview.ps.gz.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–22 21

www.cs.york.ac.uk/~jac/papers/
drareview.ps.gz

[7] F. Crazzolara and G. Winskel. Composing strand spaces. In Proc. FST TCS 2002, LNCS
2556, pages 97–108. Springer-Verlag, 2002.

[8] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

[9] J. Y. Halpern and R. Pucella. On the relationship between strand spaces and multi-agent
systems. ACM Trans. Info. and System Security, 6(1):43–70, 2003.

[10] G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of Computer
Security, 6(1):53–84, 1998.

[11] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6:85–128, 1998.

[12] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Modelling and Analysis of
Security Protocols. Addison Wesley, 2000.

[13] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7:191–230, 1999.

C. Caleiro et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 3–2222

	Introduction
	Message forwarding and conditional abortion
	Messages and actions
	Action sequences and protocol runs
	Message forwarding
	Conditional abortion

	Incremental symbolic runs
	The direct-compilation approach
	The knowledge of principals
	Executability
	Opacity and transparency
	Incremental runs
	Modeling security protocols

	Concluding remarks
	References

