
A

Know your Enemy: Compromising Adversaries in Protocol Analysis

DAVID BASIN, ETH Zurich

CAS CREMERS, University of Oxford

We present a symbolic framework, based on a modular operational semantics, for formalizing different
notions of compromise relevant for the design and analysis of cryptographic protocols. The framework’s
rules can be combined to specify different adversary capabilities, capturing different practically-relevant
notions of key and state compromise. The resulting adversary models generalize the models currently used

in different domains, such as security models for authenticated key exchange. We extend an existing security-
protocol analysis tool, Scyther, with our adversary models. This extension systematically supports notions
such as weak perfect forward secrecy, key compromise impersonation, and adversaries capable of state-reveal

queries. Furthermore, we introduce the concept of a protocol-security hierarchy, which classifies the relative
strength of protocols against different adversaries.

In case studies, we use Scyther to analyse protocols and automatically construct protocol-security hi-
erarchies in the context of our adversary models. Our analysis confirms known results and uncovers new

attacks. Additionally, our hierarchies refine and correct relationships between protocols previously reported
in the cryptographic literature.

1. INTRODUCTION

Problem context. Many cryptographic protocols are designed to work in the presence
of various forms of corruption. For example, a Diffie-Hellman key agreement protocol,
where signatures are used to authenticate the exchanged public keys, provides perfect
forward secrecy [Günther 1990; Menezes et al. 1996]: the resulting key remains secret
even after all long-term keys are compromised by the adversary. Designing protocols
that work even in the presence of different forms of adversary compromise has consid-
erable practical relevance. It reflects our multifaceted computing reality with different
rings of protection (user space, kernel space, hardware security modules) offering dif-
ferent levels of assurance with respect to the computation of cryptographic functions
(for example, the quality of the pseudo-random numbers generated) and the storage of
keys and intermediate results.

Symbolic and computational approaches have addressed this problem to different
degrees. Most symbolic formalisms are based on the Dolev-Yao model. These offer, with
few exceptions, a limited view of honesty and conversely corruption: either principals
are honest from the start and always keep their secrets to themselves or they are
completely malicious and always under adversary control. Under this limited view,
it is impossible to distinguish between the security provided by early key-exchange
protocols such as the Bilateral Key-Exchange protocol [Clark and Jacob 1997] and
state-of-the art protocols such as (H)MQV [Law et al. 2003; Krawczyk 2005a]. It is also
impossible to discern any benefit from storing the long-term keys in a tamper-proof
module or performing part of a computation in a cryptographic coprocessor. While in
theory, some of these aspects could be explicitly encoded, no systematic attempts to

This paper combines and extends results reported in [Basin and Cremers 2010a; 2010b].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1094-9224/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 D. Basin and C. Cremers

do so have been made. Despite this, symbolic methods have the advantage that there
are numerous effective tools for symbolic protocol analysis, such as [Blanchet 2001;
Cremers 2008a; Schmidt et al. 2013].

In contrast to the above, researchers in the computational setting, such as [Krawczyk
2005a; Bellare and Rogaway 1995; Bellare et al. 2000; Bellare and Rogaway 1993; Katz
and Yung 2003; Canetti and Krawczyk 2001; LaMacchia et al. 2007; Shoup 1999; Bres-
son and Manulis 2008; Just and Vaudenay 1996; Cremers and Feltz 2013], have de-
fined stronger adversary models where principals may be selectively corrupted during
protocol execution. For example, their short-term or long-term secrets, or the results of
intermediate computations may be revealed (at different times) to the adversary. These
models are used to establish stronger properties such as perfect forward secrecy or re-
silience to state-reveal attacks. There are, however, drawbacks to these computational
models. Namely, they have been defined just for key-agreement protocols, whereas one
may expect similar definitions to exist for any security protocol. Moreover, contrary to
the security models used in symbolic approaches, there is no automated tool support
available for the stronger adversary models.

Our starting point is an operational semantics for security protocols. We parame-
terize this semantics by a set of rules that formalize adversarial capabilities. These
rules capture three fundamental dimensions of compromise: whose data is compro-
mised, which kind of data it is, and when the compromise occurs. For each of these
dimensions we define a partitioning based on the work in the computational setting.
For example, for the whose data dimension, we distinguish between the actor (which is
the agent that executes the thread), the intended peers, and other agents. As a result,
different rule combinations formalize symbolic analogs of different practically-relevant
notions of key and state compromise from the computational setting. The operational
semantics gives rise, in the standard way, to a notion of correctness with respect to
state and trace-based security properties.

Contributions. We present a framework for analyzing security protocols in the pres-
ence of adversaries with a wide range of compromise capabilities. We show how analogs
of adversary models studied in the computational setting can be modeled in our frame-
work. For example, we can model attacks against implementations of cryptographic
protocols involving the mixed use of cryptographic co-processors for the secure storage
of long-term secrets with the computation of intermediate results in less-secure main
memory for efficiency reasons. Such implementations are common and reflect the folk-
lore in the PKCS#11 community that if the primary goal is high throughput, one only
uses the private-key acceleration capabilities of the hardware and performs all other
cryptographic operations (such as symmetric cryptography and hashing) on the host
computer [Gutmann].

Our models bridge another gap between the computational and symbolic approaches
by providing symbolic definitions for adversaries and security properties that were pre-
viously only available in the computational setting. Moreover, by decomposing security
properties into an adversary model and a basic security property, we unify and gener-
alize many existing security properties.

We introduce the concept of a protocol-security hierarchy, in which protocols are
classified by their relative strength against different adversaries. Protocol-security hi-
erarchies can be used to select or design protocols based on implementation require-
ments and the worst-case expectations for adversaries in the application domain. This
concept can be generalized to classify arbitrary secure systems and is of independent
interest.

Our framework directly lends itself to protocol analysis. As an example, we extend
Scyther [Cremers 2008a], a symbolic protocol analysis tool. This results in the first

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:3

Initiator Â
Private key: a

Public key: A = ga

Responder B̂
Private key: b

Public key: B = gb

generate({x})

X = gx

generate({y})

Y = gy

sessionkey: H ((Y Be)x+da) sessionkey: H ((XAd)y+eb)

Fig. 1. Simplified presentation of the HMQV protocol, where d = H̄ (X, B̂) and e = H̄ (Y, Â).

automated tool that systematically supports notions such as weak perfect forward se-
crecy, key compromise impersonation, and adversaries that can reveal the local state of
agents. We analyze a set of protocols with the tool and rediscover many attacks previ-
ously reported in the cryptographic literature, including a so-called session-state reveal
attack attack on the MQV and HMQV protocols [Kunz-Jacques and Pointcheval 2006],
which can occur when HMQV is partly implemented using a secure component such
as an HSM. Furthermore, our tool finds previously unreported attacks. Our results in
the domain of key exchange protocols provide evidence that our symbolic methodology
can effectively support cryptographers in designing security protocols, complementing
the (manual and time-consuming) construction of computational proofs.

We also extend Scyther to automatically compute protocol-security hierarchies. In
case studies, we use this extension to compute hierarchies that refine and correct re-
lationships reported in the cryptographic literature. This further shows that symbolic
methods can be effectively used for analyses that were previously possible only using
a manual computational analysis.

Organization. We review different adversary capabilities and cryptographic models
for authenticated key exchange in Section 2. We present our framework in Section 3.
In Section 4, we use it to construct protocol-security hierarchies. In Section 5, we show
applications of our framework and report on case studies. We also prove general re-
sults relating models and properties, which aid the construction of protocol-security
hierarchies. We discuss related work in Section 6 and draw conclusions in Section 7.

2. BACKGROUND ON SECURITY MODELS FOR AUTHENTICATED KEY EXCHANGE

Although the models we develop are not specific to any type of security protocol, they
are inspired by the domain of key-exchange protocols. This is because most research
on adversary compromise has been performed in the context of authenticated key-
exchange (AKE) protocols in the computational setting. We start by recalling the main
elements of AKE security models. We cover the models in some detail because they
provide the context for the design choices made for our framework. Readers familiar
with computational AKE models and modern AKE protocols can skip this section.

The goal of an AKE protocol is to establish a shared symmetric (session) key be-
tween agents. For example, consider the simplified presentation of the HMQV proto-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 D. Basin and C. Cremers

col [Krawczyk 2005b] shown in Figure 1. The protocol assumes as given a generator g
for a group G, and two hash functions that we identify with H and H̄ .

The protocol has two roles, Initiator and Responder, which we assume are named
Â and B̂ respectively. Then, Â’s long-term private key is a and B̂’s key is b. Their
corresponding long-term public keys are A = ga and B = gb, respectively.

The protocol proceeds as follows. The initiator generates a fresh random value x and
sends gx to the responder. After receiving gx, the responder generates a fresh random
value y and sends gy to the initiator. Now they both compute a session key based on
the exchanged values and their long-term keys. Due to the algebraic properties of the
modular exponentiation, the session keys computed by both parties are identical. An
adversary should not be able to compute the session key if he does not have one of the
long-term private keys. In fact, even if he obtains long-term private keys, he should
not be able to compute the session key unless he also knows either x or y.

For such AKE protocols, advanced security models have been defined. Examples in-
clude [Bellare and Rogaway 1995; Bellare et al. 2000; Bellare and Rogaway 1993],
[Bresson and Manulis 2008], [Canetti and Krawczyk 2001; Krawczyk 2005a], [Cre-
mers and Feltz 2013], [Katz and Yung 2003], and [LaMacchia et al. 2007]. We take
these models as a starting point for our analysis.

2.1. The eCK model

As a concrete example of how security models for key exchange protocols formalize
adversarial compromise, we briefly describe the eCK model [LaMacchia et al. 2007].

The eCK model formalizes an adversary that fully controls the network: he can
eavesdrop, redirect, or deflect any message, and can insert messages at will. Addi-
tionally, the adversary can learn certain values that were intended to be secret. In
particular, he can learn:

— The long-term private keys of agents, by corrupting the agents.
— Agents’ session keys, by learning the session keys of corrupted agents or by perform-

ing cryptanalysis.
— The randomness generated by agents, either because weak or corrupted random num-

ber generators are used that leak the data they generate, or because the adversary
can perform side channel attacks.

As is common in key exchange models [Bellare and Rogaway 1993], the eCK model
describes a game and its winning conditions. A protocol is secure with respect to the
model if there exists no adversary (modeled as a probabilistic polynomial-time Turing
machine) that has more than negligible advantage over guessing in winning the game.
Roughly speaking, the rules of the game allow the adversary to interact with agents
that are executing instances of the protocol, and the adversary wins the game if he can
distinguish a real session key from a random bit string.

An AKE protocol usually consists of two roles: the Initiator role (performed by the
agent that starts the protocol session) and the Responder role (which is activated when
an agent receives the first message). Each agent can perform each role. We call a single
role instance, as executed by an agent, a thread. Note that in computational models
a thread is often referred to as a (local) session. We identify a thread by a thread
identifier tid from the set of possible thread identifiers TID .

eCK game. We consider any number of agents with identities A,B,C, Each agent
has a long-term public/private key pair associated to its identity. Initially, the adver-
sary knows all identities and the long-term public key of each agent, but no long-term
private keys. The adversary can perform a given set of actions, historically called
queries. For the eCK model, the queries are as follows:

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:5

(1) Test(A,B, comm)
If the message comm is the empty message, this query models the adversary
scheduling the start of an initiator thread. In particular, the agent A activates
a new initiator thread, trying to communicate with B, and computes the first mes-
sage to send. The result of the query is that the adversary is given the sent message.
This models that the adversary can eavesdrop all sent messages.
If comm is not the empty message, this query models the adversary sending a
message comm to the agent A, claiming that the message was sent by B. This
message can be accepted by any active thread, updating its state, or it can result
in the activation of a new responder thread at A that receives the message. In both
cases, the adversary is given the response message computed by A.

(2) Long-TermKeyReveal(A)
The adversary is given the long-term private key(s) of A.

(3) EphemeralKeyReveal(tid)
tid is the thread identifier of an active thread. The adversary is given the ephemeral
keys of tid . This terminology stems from Diffie-Hellman style key exchange. In prac-
tice, and along the lines of the examples given in the eCK model, this means that
all random values previously generated by the thread are given to the adversary.

(4) Reveal(tid)
tid is the thread identifier of an active thread that has computed a session key k.
The key k is given to the adversary.

(5) Test(tid)
This query can only be performed once. tid is the thread identifier of an active
thread that has computed a session key k. A coin is flipped and its outcome stored
as b ∈ {0, 1}. If b = 1, the adversary is given k (as in the Reveal query). If b = 0, a
random bit string is drawn from the key space and returned to the adversary.

(6) Guess(b′)
This query can only be performed if the Test query has been performed earlier.
After the Guess query has been performed, the game ends. The query models the
adversary guessing (encoded by the parameter b′ ∈ {0, 1}) whether he received the
real session key or a random bit string as a result of the Test query.

If there were no additional restrictions in the model, the adversary could always guess
the correct bit by performing Reveal(tid) and then Test(tid). This would amount to mod-
eling that the adversary can learn all session keys at any time, and hence no protocol
could ensure that a session key remains secret in this adversary’s presence. Thus, to
ensure that at least some protocols are correct with respect to an AKE model, the
models restrict the adversary, effectively limiting the queries that he can make. The
models aim to specify the fewest possible restrictions but at the same time allow some
protocols to be correct.

For the eCK model, we introduce a property clean to model when the adversary has
met the intended restrictions with respect to a certain thread. We refer to a sequence
of queries performed by the adversary as an experiment.

To model the clean property, we additionally introduce matching threads. Informally
speaking, the purpose of a key exchange model is to establish a key shared between
two threads. Hence, given a thread tid , the notion of matching threads formalizes when
a thread tid ′ is supposed to compute the same session key as intended by the protocol.

Matching threads for two-message protocols in the eCK model. Let tid be a thread.
We say its identifying tuple is

(role, ID , ID∗, comm1, . . . , commn),

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 D. Basin and C. Cremers

where role is the role (Initiator or Responder) performed by the thread, ID is the iden-
tity of the agent executing the thread, ID∗ is the identity of the intended communica-
tion partner, and comm1, . . . , commn is the sequence of messages communicated (sent
or received) so far. For a thread tid of a two-message protocol with the identifying tuple
(r,A,A′, comm1, comm2), another thread tid ′ is said to be a matching thread if and only
if its identifying tuple is (r′, A′, A, comm1, comm2), where r 6= r′.

Clean property for the eCK game. Let E be an experiment, and let tid be a thread
executed by A with the intended communication partner B. If a matching thread1 for
tid exists, we denote this by tid∗. In the context of E, tid is clean unless one of the
following conditions holds:

(1) E includes Reveal(tid) or Reveal(tid∗).
(2) E includes both Long-TermKeyReveal(A) and EphemeralKeyReveal(tid).
(3) A matching thread tid∗ exists and E includes both Long-TermKeyReveal(B) and

EphemeralKeyReveal(tid∗).
(4) No matching thread tid∗ exists and E includes Long-TermKeyReveal(B).

Winning condition for the eCK game. The adversary wins the eCK game in an exper-
iment E if b′ = b and the Test thread is clean.

eCK security. A protocol is secure in the eCK model if matching threads compute
the same session key, and no probabilistic polynomial-time adversary has more than
negligible advantage (over guessing) in winning the eCK game.

2.2. Observations on AKE models

Security models such as the eCK model are complex, monolithic definitions that are
hard to disentangle and for which it is hard to understand the design choices. To fur-
ther complicate matters, in general, any two computational models are incomparable
due to (often minor) differences not only in the adversary notions, but also in the defi-
nition of matching threads, the execution models, and security property specifics. The
details of some of these definitions and their relationships have been studied by, e. g.,
[Choo et al. 2005b; Choo et al. 2005a], [Bresson et al. 2007], [Cremers 2011; 2010],
[LaMacchia et al. 2007], and [Menezes and Ustaoglu 2008].

In this article, we would like to model different types of adversaries, irrespective
of the execution model and the security property (such as secrecy or authentication).
However, separating the execution model, the adversary model, and the security prop-
erties in the eCK model is non-trivial because the model is presented in a monolithic
way. This observation holds for all AKE security models.

In the next section, we develop an operational semantics with a set of adversary-
compromise rules. Our aim is to factor and generalize the adversarial capabilities
given by AKE models.

3. COMPROMISING ADVERSARY MODEL

We define an operational semantics that is modular with respect to the adversary’s
capabilities. Our framework is compatible with most existing semantics for security
protocols, including trace and strand-space semantics. We have kept our execution
model minimal to focus on the adversary rules. However, it would be straightforward
to incorporate a more elaborate execution model, e. g., with control-flow commands.

1In the context of the protocols so far considered in the eCK model, the matching thread is always unique.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:7

3.1. Notational preliminaries

Let f be a function. We write dom(f) and ran(f) to denote f ’s domain and range. We
write f [b ← [a] to denote f ’s update, i. e., the function f ′ where f ′(x) = b when x = a
and f ′(x) = f(x) otherwise. We write f : X 7→ Y to denote a partial function from X
to Y . For any set S, P(S) denotes the power set of S and S∗ denotes the set of finite
sequences of elements from S. We write 〈s0, . . . , sn〉 to denote the sequence of elements
s0 to sn, and we omit brackets when no confusion can result. For s a sequence of length
|s| and i < |s|, si denotes the i-th element of s. We write ŝ s′ for the concatenation of the
sequences s and s′. Abusing set notation, we write e ∈ s iff ∃i.si = e. When the elements
of s are sets, we write union(s) for

⋃

e∈s e. We define last(〈〉) = ∅ and last(sˆ〈e〉) = e.
Let Sub be a set of substitutions. We write [t0, . . . , tn / x0, . . . , xn] ∈ Sub to denote

the simultaneous substitution of ti for xi, for 0 ≤ i ≤ n. We extend the functions dom
and ran to substitutions. We write σ ∪ σ′ to denote the union of two substitutions,
which is defined when dom(σ) ∩ dom(σ′) = ∅, and write σ(t) for the application of the
substitution σ to t. Finally, for R a binary relation, R∗ denotes its reflexive transitive
closure.

3.2. Terms and events

As we will see in the next section, protocols are executed by instantiating their roles
resulting in threads (also known as role instances, runs, local sessions, or strands).
Each thread executes a sequence of events that send or receive messages. We introduce
these elements in a bottom-up fashion, starting with terms, which represent messages.

We assume given the infinite sets Agent , Role, Fresh, Var , Func, and TID of agent
names, roles, freshly generated terms (nonces, session keys, coin flips, etc.), variables,
function names, and thread identifiers. We assume that TID contains two distin-
guished thread identifiers, Test and tidA. These identifiers single out a distinguished
“point of view” thread (similar to the thread selected by the Test query in AKE models)
and the adversary thread, respectively.

When role specifications are instantiated in threads, the roles are instantiated with
concrete agent names. To bind local terms, such as freshly generated terms or local
variables, to a specific thread, we write T♯tid. This denotes that the term T is local to
the thread identified by tid.

Definition 3.1. Terms

Term ::=Agent | Role | Fresh | Var | Fresh♯TID | Var♯TID

| (Term,Term) | pk(Term) | sk(Term) | k(Term,Term)

| {|Term |}aTerm | {|Term |}
s
Term | Func(Term

∗)

For each X,Y ∈ Agent , sk(X) denotes the long-term private key, pk(X) denotes the
long-term public key, and k(X,Y) denotes the long-term symmetric key shared be-
tween X and Y . Moreover, {| t1 |}

a
t2

denotes the asymmetric encryption (using a pub-
lic key) or the digital signature (using a signing key) of the term t1 with the key t2,
and {| t1 |}

s
t2

denotes symmetric encryption. The set Func is used to model other crypto-
graphic functions, such as hash functions. Freshly generated terms and variables are
assumed to be local to a thread.

Depending on the protocol analyzed, we assume that symmetric or asymmetric long-
term keys have been distributed prior to protocol execution. We also assume the exis-
tence of an inverse function on terms, where t−1 denotes the inverse key of t. We have
that pk(X)−1 = sk(X) and sk(X)−1 = pk(X) for all X ∈ Agent , and t−1 = t for all other
terms t.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 D. Basin and C. Cremers

We define a binary relation ⊢, where M ⊢ t denotes that the term t can be inferred
from the set of terms M . Let t0, . . . , tn ∈ Term and let f ∈ Func. We define ⊢ as the
smallest relation satisfying:

t ∈M ⇒M ⊢ t M ⊢ t1 ∧M ⊢ t2 ⇔M ⊢ (t1, t2)

M ⊢ {| t1 |}
s
t2
∧M ⊢ t2 ⇒M ⊢ t1 M ⊢ t1 ∧M ⊢ t2 ⇒M ⊢ {| t1 |}

s
t2

M ⊢ {| t1 |}
a
t2
∧M ⊢ (t2)

−1 ⇒M ⊢ t1 M ⊢ t1 ∧M ⊢ t2 ⇒M ⊢ {| t1 |}
a
t2

∧

0≤i≤n

M ⊢ ti ⇒M ⊢ f(t0, . . . , tn)

Subterms t′ of a term t, written t′ ⊑ t, are defined as the syntactic subterms of t,
e. g., t1 ⊑ {| t1 |}

s
t2

and t2 ⊑ {| t1 |}
s
t2

. We write FV (t) for the free variables of t, where

FV (t) =
{

t′
∣

∣ t′ ⊑ t ∧ t′ ∈ Var ∪ {v♯tid | v ∈ Var ∧ tid ∈ TID}
}

.

Definition 3.2. Events

AgentEvent ::= create(Role,Agent) | send(Term) | recv(Term)

| generate(P(Fresh)) | state(P(Term)) | sessionkeys(P(Term))

AdversaryEvent ::= LKR(Agent) | SKR(TID) | SR(TID) | RNR(TID)

Event ::= AgentEvent | AdversaryEvent

We explain the interpretation of the agent and adversary events shortly. Here we
simply note that the first three agent events are standard: starting a thread, sending
a message, and receiving a message. The message in the send and receive events does
not include explicit sender or recipient fields although, if desired, they can be given as
subterms of the message. The last three agent events tag state information, which can
possibly be compromised by the adversary. The four adversary events specify which in-
formation the adversary compromises. These events can occur any time during protocol
execution and correspond to different kinds of adversary queries from computational
models. All adversary events are executed in the single adversary thread tidA.

3.3. Protocols and threads

A protocol is a partial function from role names to event sequences, i. e., Protocol :
Role 7→ AgentEvent∗. We require that no thread identifiers occur as subterms of events
in a protocol definition.

Example 3.3 (Simple protocol). Let {Init,Resp} ⊆ Role, key ∈ Fresh, and x ∈ Var .
We define the simple protocol SP as follows.

SP(Init) = 〈generate({key}), state({key, {|Resp, key |}ask(Init)}),

send(Init,Resp, {| {|Resp, key |}ask(Init) |}
a
pk(Resp)), sessionkeys({key})〉

SP(Resp) = 〈recv(Init,Resp, {| {|Resp, x |}ask(Init) |}
a
pk(Resp)),

state({x, {|Resp, x |}ask(Init)}), sessionkeys({x})〉

A message sequence chart representation of this protocol is shown in Figure 2.
In this protocol, the initiator generates a key and sends it (together with the respon-

der’s name) signed and encrypted, along with the initiator’s and responder’s names.
The recipient expects to receive a message of this form. The additional events mark
session keys and state information. The state information depends on the protocol’s
implementation and marks which parts of the thread’s state are stored at a lower pro-
tection level than the agent’s long-term private keys. The state information in SP cor-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:9

Init Resp

generate({key})

state({key, {|Resp, key |}a
sk(Init)})

{| {|Resp, key |}a
sk(Init) |}

a
pk(Resp)

state({key, {|Resp, key |}a
sk(Init)})

sessionkeys({key}) sessionkeys({key})

Fig. 2. Message sequence chart depicting the protocol SP from Example 3.3.

responds to, e. g., implementations that use a hardware security module for encryption
and signing and perform all other computations in ordinary memory.

Protocols are executed by agents who execute roles (represented by sequences of
agent events), thereby instantiating role names with agent names. Agents may execute
each role multiple times. Each instance of a role is called a thread. We distinguish
between the fresh terms and variables of each thread by assigning them unique names,
using the function localize : TID → Sub. Note that we abuse notation and extend the
domain of substitutions to Var ∪ Role ∪ Fresh.

Definition 3.4 (Localize). Let tid ∈ TID . Then

localize(tid) =
⋃

cv∈Fresh∪Var

[cv♯tid / cv].

Using localize, we define a function thread : (AgentEvent∗ × TID × Sub) → AgentEvent∗

that yields the sequence of agent events that may occur in a thread.

Definition 3.5 (Thread). Let l be a sequence of events, tid ∈ TID , and let σ be a
substitution of role names by agent names and, optionally, variables by terms. Then
thread(l, tid, σ) = σ(localize(tid)(l)).

Example 3.6. Let {A,B} ⊆ Agent . For a thread t1 ∈ TID performing the Init role
from Example 3.3, we have localize(t1)(key) = key♯t1 and

thread(SP(Init), t1, [A,B / Init,Resp]) =

〈generate({key♯t1}), state({key♯t1, {|B, key♯t1 |}
a
sk(A)}),

send(A,B, {| {|B, key♯t1 |}
a
sk(A) |}

a
pk(B)), sessionkeys({key♯t1})〉 .

Test thread. When verifying security properties, we will focus on a particular thread.
In the computational setting, this is the thread where the adversary performs a so-
called test query. In the same spirit, we call the thread under consideration the test
thread, with the corresponding thread identifier Test . For the test thread, the sub-
stitution of role names by agent names, and all free variables by terms, is given by
σTest and the role is given by RTest . For example, if the test thread is performed by
Alice in the role of the initiator, trying to talk to Bob, we have that RTest = Init and
σTest = [Alice,Bob / Init,Resp].

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 D. Basin and C. Cremers

3.4. Execution model

We define the set Trace as (TID × Event)∗, representing possible execution histories.
The state of our system is a four-tuple (tr, IK , th, σTest) ∈ Trace × P(Term) × (TID 7→
Event∗) × Sub, whose components are (1) a trace tr, (2) the adversary’s knowledge IK ,
(3) a partial function th mapping thread identifiers of initiated threads to sequences
of events, and (4) the role to agent and variable assignments of the test thread. To
facilitate defining the partner function later, we include the trace as part of the state
and fix the test substitution at the start of the system.

Definition 3.7 (TestSubP). Given a protocol P , we define the set of test substitutions
TestSubP as the set of ground substitutions σTest such that dom(σTest) = dom(P) ∪
{v♯Test | v ∈ Var} and ∀r ∈ dom(P). σTest(r) ∈ Agent .

We define the initial adversary knowledge AK 0 as

AK 0 = Agent ∪ {pk(a) | a ∈ Agent} ∪ {c♯tidA | c ∈ Fresh}.

The adversary initially knows the names of all agents, their public keys, and a set of
adversary-generated constants, which we denote by fresh symbols that are bound to
the adversary’s thread identifier tidA. In contrast to most Dolev-Yao models, the initial
adversary knowledge does not include any long-term secret keys. The adversary may
learn these from long-term key reveal (LKR) events.

For P a protocol, the set of initial system states IS (P) is defined as

IS (P) =
⋃

σTest∈TestSubP

{

(〈〉,AK 0, ∅, σTest)
}

.

The semantics of a protocol P ∈ Protocol is defined by a transition system that com-
bines the execution rules from Figure 3 with a set of adversary rules from Figure 4.
We first present the execution rules.

The createP rule starts a new instance (a thread) of a role R of the protocol P . A
fresh thread identifier tid is assigned to the thread, thereby distinguishing it from
existing threads, the adversary thread, and the test thread. The rule takes the protocol
P as a parameter. The role names of P , which can occur in events associated with
the role, are replaced by agent names by the substitution σ. Similarly, the createTestP
rule starts the test thread. However, instead of choosing an arbitrary role, it takes an
additional parameter RTest , which represents the test role and will be instantiated in
the definition of the transition relation in Def. 3.10. Additionally, instead of choosing
an arbitrary σ, the test substitution σTest is used.

The send rule sends a message m to the network. In contrast, the receive rule accepts
messages from the network that match the pattern pt, where pt is a term that may
contain free variables. The resulting substitution σ is applied to the remaining protocol
steps l. Note that, as is standard, we have identified the network with the adversary.
Hence messages are sent directly to and received from IK .

The last three rules support our adversary rules, given shortly. The generate rule
marks the fresh terms that have been generated,2 the state rule marks the current
local state, and the sessionkeys rule marks a set of terms as session keys.

Auxiliary functions. We define the long-term secret keys of an agent a as

LongTermKeys(a) = {sk(a)} ∪
⋃

b∈Agent

{k(a, b), k(b, a)} .

2Note that this rule need not ensure that fresh terms are unique. The function thread maps freshly generated
terms c to c♯tid in the thread tid, ensuring uniqueness.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:11

R ∈ dom(P) σ ∈ Role → Agent tid 6∈ (dom(th) ∪ {tidA,Test}) l = thread(P (R), tid, σ)

(tr, IK , th, σTest) −→ (trˆ〈(tid, create(R, σ(R)))〉, IK , th[l←[tid], σTest)
[createP]

a = σTest (RTest) Test 6∈ dom(th) l = thread(P (RTest),Test , σTest)

(tr, IK , th, σTest) −→ (trˆ〈(Test , create(RTest , a))〉, IK , th[l←[Test], σTest)
[createTestP]

th(tid) = 〈send(m)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, send(m))〉, IK ∪ {m}, th[l←[tid], σTest)
[send]

th(tid) = 〈recv(pt)〉ˆl IK ⊢ σ(pt) dom(σ) = FV (pt)

(tr, IK , th, σTest) −→ (trˆ〈(tid, recv(σ(pt)))〉, IK , th[σ(l)←[tid], σTest)
[recv]

th(tid) = 〈generate(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, generate(M))〉, IK , th[l←[tid], σTest)
[generate]

th(tid) = 〈state(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, state(M))〉, IK , th[l←[tid], σTest)
[state]

th(tid) = 〈sessionkeys(M)〉ˆl

(tr, IK , th, σTest) −→ (trˆ〈(tid, sessionkeys(M))〉, IK , th[l←[tid], σTest)
[sessionkeys]

Fig. 3. Execution rules

For traces, we define an operator ↓ that projects traces on events belonging to a par-
ticular thread identifier. For all tid, tid′ ∈ TID , e ∈ Event , and tr ∈ (TID × Event)∗, we
define 〈〉 ↓ tid = 〈〉 and

(〈(tid′, e)〉ˆtr) ↓ tid =

{

〈e〉ˆ(tr ↓ tid) if tid = tid′, and

tr ↓ tid otherwise.

Similarly, for event sequences, the operator ⇂ selects the contents of events of
a particular type. For all e ∈ Event , m ∈ Term, l ∈ Event∗, and evtype ∈
{create, send, recv, generate, state, sessionkeys}, we define 〈〉 ⇂ evtype = 〈〉 and

(〈e〉ˆl) ⇂ evtype =

{

〈m〉ˆ(l ⇂ evtype) if e = evtype(m), and

l ⇂ evtype otherwise.

During protocol execution, the test thread may intentionally share some of its short-
term secrets, such as a session key, with other threads. Hence some adversary rules
require distinguishing between the intended partner threads and other threads. There
are many notions of partnering in the literature. Here we use partnering based on
matching histories for protocols with two roles. A similar notion for protocols with any
number of roles is non-injective (message) agreement, as in [Cremers et al. 2006].

Definition 3.8 (Matching histories). For sequences of events l and l′, we define
MH(l, l′) ≡

(

l ⇂ recv = l′ ⇂ send) ∧ (l ⇂ send = l′ ⇂ recv
)

.

Our partnering definition is parameterized over the protocol P and the test role RTest .
These parameters are later instantiated in the transition-system definition.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 D. Basin and C. Cremers

Definition 3.9 (Partnering). Let R be the non-test role, i. e., R ∈ dom(P) and R 6=
RTest . For tr a trace, Partner(tr, σTest) =

{

tid
∣

∣ tid 6= Test ∧
(

∃a.create(R, a) ∈ tr ↓ tid
)

∧

∃l . MH(σTest(P (RTest)), (tr ↓ tid)ˆl)
}

.

A thread tid is a partner iff (1) tid is not Test , (2) tid performs the role different from
Test ’s role, and (3) tid’s history matches the Test thread (for l = 〈〉) or the thread may
be completed to a matching one (for l 6= 〈〉).

Some protocols, such as HMQV, are symmetric in both communication and key com-
putation. For such protocols, a slightly modified definition of partnering is required,
where requirement (2) is dropped. For details on these subtleties we refer to [Cremers
2011].

3.5. Adversary-compromise rules

We define our adversary-compromise rules in Figure 4. They factor the security defini-
tions from the cryptographic protocol literature along three dimensions of adversarial
compromise: which kind of data is compromised, whose data it is, and when the compro-
mise occurs. Not all combinations of capabilities have been used for analyzing protocols.
Some combinations are not covered because of impossibility results (e. g. [Krawczyk
2005a]), whereas other combinations have simply been overlooked.

Compromise of long-term keys. The first four rules model the compromise of an agent
a’s long-term keys, represented by the long-term key reveal event LKR(a). In tradi-
tional Dolev-Yao models, this event occurs implicitly for dishonest agents before the
honest agents start their threads.

The LKRothers rule formalizes the adversary capability used in the symbolic analysis
of security protocols since Lowe’s man-in-the-middle attack on the Needham-Schroeder
protocol [Lowe 1996]: the adversary can learn the long-term keys of any agent a that
is not an intended partner of the test thread. Hence, if the test thread is executed by
Alice, communicating with Bob, the adversary can learn, e. g., Charlie’s long-term key.

The LKRactor rule allows the adversary to learn the long-term key of the agent execut-
ing the test thread, also called the actor. The intuition is that a protocol may still func-
tion as long as the long-term keys of the other partners are not revealed. This rule al-
lows the adversary to attempt so-called Key Compromise Impersonation attacks [Just
and Vaudenay 1996]. The rule’s second premise is required because our model does
not allow the compromise of the partner’s key before the end of the test session, but it
does allow agents to communicate with themselves: in such cases, revealing the actor’s
long-term key would also reveal the partner’s key.

The LKRafter and LKRaftercorrect rules restrict when the compromise may occur. In par-
ticular, they allow the compromise of long-term keys only after the test thread has
finished. This is captured by the premise th(Test) = 〈〉. If a protocol satisfies secrecy
properties with respect to an adversary that can use LKRafter, it is said to satisfy Perfect
Forward Secrecy (PFS) [Günther 1990; Menezes et al. 1996]. LKRaftercorrect has the addi-
tional premise that a finished partner thread must exist for the test thread. This con-
dition stems from [Krawczyk 2005a] and prevents the adversary from both inserting
fake messages during protocol execution and learning the key of the involved agents
later. If a protocol satisfies secrecy properties with respect to an adversary that can
use LKRaftercorrect, it is said to satisfy weak Perfect Forward Secrecy (wPFS). This prop-
erty is motivated by a class of implicitly authenticated protocols sketched in [Krawczyk
2005a] whose members fail to satisfy PFS, although some satisfy this weaker property.

Figure 5 depicts the relationships between our long-term key compromise rules
in the relevant dimensions: the rows specify when the compromise occurs and the
columns specify whose long-term keys are compromised. With respect to when a com-
promise occurs, we differentiate between before, during, and after the test thread. With

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:13

a ∈ Agent a 6∈ {σTest(R) | R ∈ dom(P)}

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRothers]

a = σTest (RTest) a 6∈ {σTest(R) | R ∈ dom(P) \ {RTest}}

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRactor]

a ∈ Agent th(Test) = 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRafter]

a ∈ Agent th(Test) = 〈〉 tid ∈ Partner(tr, σTest) th(tid) = 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, LKR(a))〉, IK ∪ LongTermKeys(a), th, σTest)
[LKRaftercorrect]

tid 6= Test tid 6∈ Partner(tr, σTest)

(tr, IK , th, σTest) −→ (trˆ〈(tidA, SKR(tid))〉, IK ∪ union((tr ↓ tid) ⇂ sessionkeys), th, σTest)
[SKR]

tid 6= Test tid 6∈ Partner (tr, σTest) th(tid) 6= 〈〉

(tr, IK , th, σTest) −→ (trˆ〈(tidA, SR(tid))〉, IK ∪ last((tr ↓ tid) ⇂ state), th, σTest)
[SR]

(tr, IK , th, σTest) −→ (trˆ〈(tidA,RNR(tid))〉, IK ∪ union((tr ↓ tid) ⇂ generate), th, σTest)
[RNR]

Fig. 4. Adversary-compromise rules

before Test

thread

during

Test thread

after Test

thread

key of

actor

keys of

peers

keys of

others

t

t

t

t

t

t

t

t

t

✓

✒

✏

✑

✓

✒

✏

✑
✎
✍

☞
✌

LKRactor

LKRothers

LKRafter,

LKRaftercorrect

Fig. 5. Relating long-term data reveal rules

randomness

session keys

other local

data

data of

Test and

partners

data of

others

t

t

t

t

t

t

✎
✍

☞
✌

✎
✍

☞
✌

✗

✖

✔

✕

RNR

SKR

SR

Fig. 6. Relating short-term data reveal rules

respect to whose keys are compromised, we differentiate between agents not involved
in the communication (others), the agent performing the test thread (actor), and the
other partner (peer). The ovals specify the effects of each long-term key reveal rule.

Compromise of short-term data. The three remaining adversary rules correspond to
the compromise of short-term data, that is, data local to a specific thread. In Figure 6,
we show the relevant dimensions: whose data, specified by the columns, and which
kind of data, specified by the rows. Whereas we assumed a long-term key compromise
reveals all long-term keys of an agent, we differentiate here between the different
kinds of local data. Because we assume that local data does not exist before or after a
session, we can ignore the temporal dimension.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 D. Basin and C. Cremers

We differentiate between three kinds of local data: randomness, session keys, and
other local data such as the results of intermediate computations. The notion that the
adversary may learn the randomness used in a protocol stems from [LaMacchia et al.
2007]. Considering adversaries that can reveal session keys, for example, by crypt-
analysis, is found in many works, such as [Bellare and Rogaway 1993]. An adversary
capable of revealing the local state is described in [Canetti and Krawczyk 2001].

In our adversary-compromise models, the session-key reveal event SKR(tid) and
state reveal event SR(tid) model that the adversary gains access to the session key
or, respectively, the local state of the thread tid. These are marked respectively by the
sessionkeys and state events.

The contents of the state change over time and are erased when the thread ends.
This is reflected in the SR rule by the last state marker for the state contents and the
third premise requiring that the thread tid has not ended. The random number reveal
event RNR(tid) models that the adversary learns the random numbers generated in
the thread tid.

Note that the premise of the SKR and SR rules requires that the compromised thread
is not a partner thread. In contrast, the premise of the RNR rule allows for the compro-
mise of all threads, including the partner threads. This rule is inspired by [LaMacchia
et al. 2007], where it is shown that it is possible to construct protocols that are correct
in the presence of an adversary capable of RNR.

For protocols that establish a session key, we assume the session key is shared by
all partners and should be secret: revealing it trivially violates this property. Hence
the SKR rule disallows the compromise of session keys of the test or partner threads.
Similarly, our basic rule set does not contain a rule for the compromise of other local
data of the partners. Including such a rule is straightforward. However it is unclear
whether any protocol would be correct with respect to such an adversary.

We call each subset of the set of adversary rules from Figure 4 an adversary model.

3.6. Transition relation

Given a protocol and an adversary model, we define the protocol’s behavior as a set of
reachable states.

Definition 3.10 (Transition relation and reachable states). Let P be a protocol, Adv
an adversary model, and RTest a role. We define a transition relation→P,Adv ,RTest

from
the execution rules from Figure 3 and the rules in Adv . The variables P , Adv , and
RTest in the adversary rules are instantiated by the corresponding parameters of the
transition relation. For states s and s′, s →P,Adv ,RTest

s′ iff there exists a rule in either
Adv or the execution rules with the premises Q1(s), . . . , Qn(s) and the conclusion s→ s′

such that all of the premises hold. We define the set of reachable states RS as

RS(P,Adv , RTest) =
{

s
∣

∣ ∃s0. s0 ∈ IS (P) ∧ s0 →
∗
P,Adv ,RTest

s
}

.

Finally, we define a partial order ≤A on adversary-compromise models based on
inclusion of reachable states.

Definition 3.11 (Order on adversary-compromise models ≤A). For all adversary
models Adv and Adv ′:

Adv ≤A Adv ′ ≡ ∀P,R.RS(P,Adv , R) ⊆ RS(P,Adv ′, R).

We write Adv =A Adv ′ if and only if Adv ≤A Adv ′ and Adv ′ ≤A Adv . As is standard, we
write Adv <A Adv ′ if and only if Adv ≤A Adv ′ and not Adv =A Adv ′.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:15

Table I. Decomposing security properties

Decomposition
Security property

Basic property Adversary model

Perfect Forward Secrecy Secrecy {LKRafter}
Weak Perfect Forward Secrecy Secrecy {LKRaftercorrect}
Known-Key Security & Unknown-Key Share Secrecy of session key {SKR}
Key Compromise Impersonation Authentication/Secrecy of sess. key {LKRactor}

3.7. Security properties

We now provide two examples of security property definitions. We give a symbolic def-
inition of session-key secrecy which, when combined with different adversary models,
gives rise to different notions of secrecy from the literature. We also define aliveness,
which is one of the many forms of authentication [Cremers et al. 2006; Lowe 1997].
Other security properties, like secrecy of general terms, symbolic indistinguishability,
or other variants of authentication can be defined analogously.

Definition 3.12 (Session-key secrecy). Let (tr, IK , th, σTest) be a state. We define the
secrecy of the session keys in (tr, IK , th, σTest) as

th(Test) = 〈〉 ⇒ ∀k ∈ union((tr ↓ Test) ⇂ sessionkeys). IK 0 k .

Definition 3.13 (Aliveness for two-party protocols). Let (tr, IK , th, σTest) be a state.
We say that (tr, IK , th, σTest) satisfies aliveness if and only if

th(Test) = 〈〉 ⇒ ∃i, i′, j, RTest , R, tid, a. tri = (Test , create(RTest , a))

∧ tri′ = last(tr ↓ Test) ∧ trj = (tid, create(R, σTest(R))) ∧R 6= RTest ∧ j < i′.

Intuitively, the above property formalizes that if the test thread ended, the trace con-
tains the first and last events of the test thread (tri and tri′) and additionally the
intended peer (σTest(R)) started a thread in the other role before the last event of the
test thread.

Let Φ be the set of all state properties. For all protocols P , adversary models Adv ,
and state properties φ ∈ Φ, we write sat(P,Adv , φ) iff ∀R. ∀s. s ∈ RS(P,Adv , R) ⇒ φ(s).
In the context of a state property φ, we say a protocol is resilient to an adversary
capability AC if and only if sat(P, {AC}, φ).

Decomposing security properties. Many definitions of security properties, such as per-
fect forward secrecy, contain elements of adversary capabilities. In our framework,
such properties are cleanly separated into a basic security property (such as secrecy or
authentication) and an adversary model. In Table I, we decompose different security
properties from the literature this way.

Our way of modeling security properties provides a uniform view of protocol prop-
erties in an execution environment where adversaries have given capabilities. It also
allows for direct generalizations of security properties. This leads to new, practically
relevant combinations of adversary models and basic security properties. For example,
for a hardware security module restricted to protecting long-term keys, relevant prop-
erties could be secrecy or agreement, resilient to state-reveal. Other properties arise by
considering the combination of our adversary models with other basic properties like
non-repudiation, (plausible) deniability, anonymity, or resistance to denial-of-service
attacks.

3.8. Relations between Models and Properties

As previously noted, by classifying different basic adversarial capabilities from the
literature, one arrives at a large number of adversary models. Here we provide general
results that aid in relating and reasoning with these models.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 D. Basin and C. Cremers

To begin with, our partial order on adversary models ≤A has implications for secu-
rity protocol verification. Given a state property φ like those from Section 3.6, a proto-
col that satisfies φ in a model also satisfies φ in all weaker models. Equivalently, falsifi-
cation in a model entails falsification in all stronger models. Formally, if Adv ≤A Adv ′,
then for all protocols P and state properties φ, sat(P,Adv ′, φ) ⇒ sat(P,Adv , φ) and,
equivalently, ¬sat(P,Adv , φ)⇒ ¬sat(P,Adv ′, φ).

Since adding adversary rules only results in more transitions and hence more reach-
able states, we have:

LEMMA 3.14 (ADDING RULES STRENGTHENS THE ADVERSARY). Let r be an adver-
sary rule from Figure 4 and Adv be an adversary model, i. e., a set of adversary rules.
Then Adv ≤A Adv ∪ {r}.

Most of our rules are independent in that they provide adversary capabilities not
given by other rules. The following lemma formalizes this.

LEMMA 3.15 (RULE INDEPENDENCE). Let Adv be an adversary model. Then we
have for all adversary rules r from Figure 4

(

r = LKRaftercorrect ∧ LKRafter ∈ Adv
)

⇔
(

Adv \ {r} =A Adv ∪ {r}
)

.

Proof of (⇒): Let r = LKRaftercorrect and LKRafter ∈ Adv . Each transition using LKRaftercorrect

can be simulated using LKRafter. Hence the sets of reachable states on both sides of the
above equality are equal and thus Adv \ {r} =A Adv ∪ {r}.
Proof of (⇐): Let Adv \ {r} =A Adv ∪ {r}. Suppose r 6= LKRaftercorrect. Then there are
transitions enabled by r that are not enabled by the other rules. In particular, even
if LKRaftercorrect ∈ Adv , there are protocols with roles that can be completed without
matching sessions, whereby LKRafter enables transitions not enabled by LKRaftercorrect.
Hence we have a contradiction and therefore r = LKRaftercorrect. Now suppose LKRafter 6∈
Adv . Then some transitions enabled by r are not enabled by Adv \ {r}, contradicting
Adv \ {r} =A Adv ∪ {r}. Hence r = LKRaftercorrect and LKRafter ∈ Adv .

COROLLARY 3.16. The rules in Figure 4 give rise to 25×3 = 96 models with distinct
sets of reachable states.

This corollary follows from Lemmas 3.14 and 3.15. In particular, the five rules except
for LKRaftercorrect and LKRafter are independent, giving rise to 25 models. The LKRafter rule
strictly subsumes the transitions enabled by the LKRaftercorrect rule, and therefore the
union of the two rules does not yield additional transitions. The possible combinations
of these two rules therefore yield three distinct sets of enabled transitions.

Interestingly, to evaluate some properties it is only necessary to consider traces up
to the end of the test session.

Definition 3.17 (Post-test invariant properties). We define the set of post-test invari-
ant properties as all state properties φ ∈ Φ that satisfy

∀P,R,Adv . ∀(tr, IK , th, σTest) ∈ RS(P,Adv , R). th(Test) = 〈〉 ⇒

∀s.(tr, IK , th, σTest)→
∗
P,Adv ,RTest

s⇒
(

φ((tr, IK , th, σTest))⇔ φ(s)
)

.

Aliveness, as given in Definition 3.13, is post-test invariant: the transitions that occur
after the end of the test thread do not influence the property. Other authentication
properties such as various forms of agreement [Lowe 1997] or synchronisation [Cre-
mers et al. 2006] are also post-test invariant. Secrecy however is not such a property.

THEOREM 3.18 (POST-TEST INVARIANT PROPERTIES AND FUTURE CAPABILITIES).
Let r be an adversary rule from Figure 4 and φ be a post-test invariant property. Then

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:17

for all protocols P and adversary models Adv ,

r ∈ {LKRaftercorrect, LKRafter} ∧ sat(P,Adv , φ)⇒ sat(P,Adv ∪ {r}, φ)

Put differently, post-test invariant properties are resilient to future capabilities.
This theorem follows as LKRaftercorrect and LKRafter only enable new transitions in

those states where the test thread has ended. By definition, post-test invariant proper-
ties are invariant with respect to such transitions. Hence, we need only consider 32 (out
of 96) models when analyzing a protocol with respect to post-test invariant properties.

Note that some alternate approaches use a fixed adversary model, but use differ-
ent assumptions in different security goals to constrain which adversary actions are
considered in that goal. In those approaches, our partial order on adversary models is
mirrored by the partial order of logical entailment among the assumptions.

4. PROTOCOL-SECURITY HIERARCHIES

We introduce the notion of a protocol-security hierarchy. Such a hierarchy orders sets
of security protocols with respect to the adversary models in which they satisfy their
security properties. Protocol-security hierarchies can be used to select or design proto-
cols based on implementation requirements and the worst-case expectations for adver-
saries in the application domain.

It follows from Corollary 3.16 that determining for which adversary models a pro-
tocol satisfies its state properties involves analyzing the protocol with respect to 96
models. Since this is infeasible to do by hand, we will use automated analysis methods
for this task.

Automated methods have the limitation that, for our models, even simple proper-
ties such as secrecy are undecidable. Fortunately, there exist semi-decision procedures
that are successful in practice in establishing the existence of attacks. Moreover, some
of these procedures can also successfully verify some protocols and properties. When
analyzing the security properties of protocols with respect to an adversary model, we
deal with undecidability by allowing the outcome of the analysis to be undefined, which
we denote by ⊥. The two other possible outcomes are F (falsified) or V (verified).

Definition 4.1 (Recursive approximation of sat). We say that a function f ∈
Protocol × A × Φ → {F,⊥, V } recursively approximates sat if and only if f is recur-
sive and for all protocols P , adversary models Adv , and state properties φ, we have
f(P,Adv , φ) 6=⊥⇒

(

f(P,Adv , φ) = V ⇔ sat(P,Adv , φ)
)

.

Given such a function f , we can define a protocol-security hierarchy.

Definition 4.2 (Protocol-security hierarchy). Let Π be a set of protocols, φ a state
property, A be a set of adversary models, and let f recursively approximate sat . The
protocol-security hierarchy with respect to Π, A, φ, and f is a directed graph H = (N,→)
that satisfies the following properties:

(1) N is a partition of Π, i. e.,
⋃

π∈N π = Π and for all π, π′ ∈ N we have that π 6= ∅ and
π 6= π′ ⇒ π ∩ π′ = ∅.

(2) The function f respects the partitions N in that for all P, P ′ ∈ Π we have
(

∃π ∈ N. {P, P ′} ⊆ π
)

⇔ ∀Adv ∈ A.f(P,Adv , φ) = f(P ′,Adv , φ).

(3) π → π′ if and only if

∀P ∈ π. ∀P ′ ∈ π′. ∀Adv ∈ A. f(P,Adv , φ) = V ⇒ f(P ′,Adv , φ) = V ∧

f(P ′,Adv , φ) = F ⇒ f(P,Adv , φ) = F .

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 D. Basin and C. Cremers

{Needham-Schroeder-Lowe}
{

{LKRothers, LKRafter, SKR, SR}
}

{Needham-Schroeder}
{

{LKRafter, SKR}
}

Fig. 7. A simple protocol-security hierarchy for authentication.

LEMMA 4.3. Let H = (N,→) be a protocol-security hierarchy with respect to Π, φ, A,
and f . Let ≤H be defined as follows: for all π, π′ ∈ N , π ≤H π′ iff π → π′. Then ≤H is a
partial order.

Proof. First,→ is reflexive by properties 2 and 3, and hence≤H is also reflexive. Second,
since → is transitive by Property 3, so is ≤H . Finally, assume π ≤H π′ and π′ ≤H π.
Then π → π′ and π′ → π. Hence, by Property 3, for all adversary models Adv ∈ A and
all protocols P ∈ π, P ′ ∈ π′, we have f(P,Adv , φ) = f(P ′,Adv , φ). By Property 2, this
implies that π = π′ and therefore ≤H is antisymmetric. Hence ≤H is a partial order.

Effectively, a node in a protocol-security hierarchy represents an equivalence class
of protocols whose members satisfy the security property with respect to the same set
of adversary models. When visualizing a protocol-security hierarchy, we display two
sets for each node: the set of protocols P and the set of adversary models S for which
the protocols satisfy the security property. Roughly speaking, each of the protocols in
P satisfies the security property with respect to the adversary model m if and only
if there exists an adversary model m′ such that m ≤A m′ and m′ ∈ S. Note that we
omit implied weaker adversary models from the visualisation, that is, if P satisfies its
properties with respect to m and m′ where {m,m′} ⊆ A and m ≤A m′, we include m′

but not m in the set of adversary models on the node.
Formally, we annotate each node π with all adversary models a ∈ A for which

∀a′ ∈ A,P ∈ π.(a <A a′ ⇒ f(P, a′, φ) = F) ∧ (a′ ≤A a⇒ f(P, a′, φ) 6= F)

where we use ≤A and <A from Definition 3.11.

Example 4.4 (Protocol-security hierarchy). In Figure 7 we show an example of
a simple protocol-security hierarchy for two well-known protocols, the Needham-
Schroeder protocol and Lowe’s variant, with respect to the synchronisation property.

The Needham-Schroeder protocol [Needham and Schroeder 1978] is resilient to ad-
versaries capable of LKRafter and SKR. By Theorem 3.18, all authentication properties
of any protocol are resilient to LKRafter. The fact that the protocol is resilient to SKR
is not surprising as the protocol does not contain any session keys. Conversely, if the
adversary has the LKRothers capability, the Needham-Schroeder protocol is vulnerable
to a man-in-the-middle attack. There are also attacks on the protocol if the adversary
has any capability from the set {LKRactor,RNR, SR}. For example, the protocol is vulner-
able to SR because the missing identity in the second message allows the adversary to
exploit a non-matching session to decrypt this message, in which he uses SR to reveal
the nonce of the first message. Therefore, the Needham-Schroeder protocol satisfies
synchronisation with respect to exactly four adversary models: ∅, {LKRafter}, {SKR},
and {LKRafter, SKR}. These four models are all weaker than or equal to {LKRafter, SKR}.
Hence we label the node with (1) the singleton set of the Needham-Schroeder protocol,
and (2) the (singleton) set of adversary models in which it is correct, where we omit all
weaker adversary models.

Lowe’s version of the protocol [Lowe 1996] was designed to prevent the man-in-the-
middle attack that exploits LKRothers. Perhaps surprisingly, his fix also prevents the

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:19

{TS2-2004}
{

{LKRothers,RNR},

{LKRothers, LKRaftercorrect}
}

{TS1-2004}
{

{LKRothers,RNR}
}

Fig. 8. A simple protocol-security hierarchy for secrecy. The edge is non-strict.

SR attack. In the fixed version of the protocol, sessions that do not match the test
session will not accept messages that contain the test-session’s nonce. Thus, the SR
rule can no longer be used to reveal these nonces, preventing the attack. Combining
these results, we draw a node for the Needham-Schroeder-Lowe protocol that lists
the protocol’s resilience to the adversary model {LKRothers, LKRafter, SKR, SR} and any
weaker models.

Because the Needham-Schroeder-Lowe protocol meets the security property with re-
spect to all adversary models (and more) than those for which the Needham-Schroeder
protocol meets the property, we draw an edge between the nodes.

Automatic generation of protocol-security hierarchies. Because of the large number
of possible adversary models, manual construction of protocol-security hierarchies is
infeasible for large sets of protocols and is best aided by a model checker.

The Scyther tool [Cremers 2008a] recursively approximates sat and produces an
output from {F,⊥, V }. F denotes that Scyther found an attack, thereby falsifying the
property, V denotes that Scyther verified the property, and ⊥ denotes that either a
timeout occurred or Scyther could not verify the property without bounds.

Using our extended version of the Scyther tool, the properties of a protocol can be
automatically analyzed with respect to all adversary models. Given a set of protocols,
the tool computes a protocol-security hierarchy by combining this data for each of the
protocols with the order ≤A on the adversary models. The protocol description files,
analysis tools, and graph generation scripts can be downloaded from [Cremers 2014].

Ideally we would like to establish hierarchies based on sat . However, only the recur-
sive approximation f is available, which may return ⊥, thereby providing only partial
information about sat . Consequently, some edges in the hierarchies (involving nodes
where f yields ⊥) are also based on this partial information. Roughly speaking, we say
an edge is strict if it also occurs between the protocols when given complete information
about sat . More formally:

Definition 4.5 (strictness of edges in a protocol-security hierarchy). We say an edge
π → π′ in a protocol-security hierarchy is strict if the following two properties hold.

(1) The protocols in π′ are at least as strong as those in π.

∀P ∈ π, P ′ ∈ π′. ∀Adv ∈ A. f(P,Adv , φ) 6= F ⇒ f(P ′,Adv , φ) = V

(2) The protocols in π are not equally strong as those in π′.

∀P ∈ π, P ′ ∈ π′. ∃Adv ∈ A. f(P,Adv , φ) = F ∧ f(P ′,Adv , φ) = V

All edges in the authentication hierarchies in Figure 7 and Figure 12 are strict. This
reflects Scyther’s success in either verifying or falsifying these protocols. In contrast,
for the secrecy hierarchies in Figure 8 and Figure 11, most protocols contain Diffie-
Hellman exponentiation, for which Scyther does not provide (unbounded) verification.
Therefore, the edges in these figures are only based on attacks. Because they are not
strict, they might not occur in the corresponding hierarchy based on sat .

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 D. Basin and C. Cremers

Table II. Mapping adversary-compromise models from the literature

Long-term data Short-term data
Owner Timing Type

Name others actor after aftercorrect SessionKey State Random Origin of model

AdvEXT external Dolev-Yao
Adv INT X Dolev-Yao [Lowe 1996]
AdvCA X Key Compromise Impersonation

[Just and Vaudenay 1996]
AdvAFC X Weak Perfect Forward Secrecy

[Krawczyk 2005a]
AdvAF X X Perfect Forward Secrecy [Günther

1990; Menezes et al. 1996]
AdvBR93 X BR93 [Bellare and Rogaway 1993]
AdvBR95 X X BR95 [Bellare and Rogaway 1995]
AdvBPR00 X X X X BPR00 [Bellare et al. 2000]
AdvCKw X X X X X CK2001-wPFS [Krawczyk 2005a]
AdvCK X X X X X CK2001 [Canetti and Krawczyk

2001]
AdveCK-1 X X X

AdveCK-2 X X X X
eCK [LaMacchia et al. 2007]

Intuitively, the interpretation of the set of adversary models of a node π, for hierar-
chies with non-strict edges, is the following:

(1) No attacks have been found on the protocols for these models and all weaker ones.
(2) For each node π′ higher in the hierarchy, there exists an adversary model a in

the annotation of π′ such that an attack was found on all protocols from π for the
adversary model a.

In Section 5.4 we perform an extensive case study that includes the automatic gen-
eration of larger protocol security hierarchies. We also show how such hierarchies can
be used in protocol analysis.

5. APPLICATIONS AND CASE STUDIES

5.1. Modeling adversary notions from the literature

We use our modular semantics to provide a uniform formalization of different adver-
sary models, including a number of established adversary models from the computa-
tional setting [Canetti and Krawczyk 2001; Bellare et al. 2000; Bellare and Rogaway
1995; Krawczyk 2005a; LaMacchia et al. 2007]. We focus on the adversary capabilities
only, abstracting from subtle differences between the computational models. For exam-
ple, the model in [Canetti and Krawczyk 2001] has an execution model that restricts
the agents’ choice of thread identifiers, leading to a different notion of partner threads
than in other models. Here we define partnering uniformly by matching histories. We
refer the reader to [Choo et al. 2005a; Menezes and Ustaoglu 2008; Bresson et al. 2007;
Choo et al. 2005b] for further details on the differences between computational models.

Table II provides an overview of different adversary models, interpreted as instances
of our semantics. We write AdvCK to denote the adversary model extracted from the
CK model [Canetti and Krawczyk 2001] and similarly for other models. A check (X)
denotes that the rule labeling the column is included in the adversary model named in
the row.

5.2. Tool support

We extended the symbolic security-protocol verification tool Scyther [Cremers 2008a;
2008b] with our adversary rules from Figure 4. We used this tool to automatically
analyze a set of protocols, described below. The tool, all protocol models, and test scripts
can be downloaded from [Cremers 2014].

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:21

SIG-DH-core.spdl
/* Two-move Diffie-Hellman in the unauthenticated-links model.
* From CK2001, p. 20
*/

// Collision-resistant one-way functions
hashfunction exp-g,exp;

// The protocol description
protocol SIG-DH-UM(I,R) {

role I {
fresh s: Nonce;
fresh x: Nonce;
var beta: Ticket;

send_1(I,R, I,s,exp-g(x));
recv_2(R,I, R,s,beta, { R,s,beta,exp-g(x),I }sk(R));
send_3(I,R, I,s, { I,s,exp-g(x),beta,R }sk(I));

claim(I,SKR, exp(beta,x));
}
role R {

fresh y: Nonce;
var s: Nonce;
var alpha: Ticket;

recv_1(I,R, I,s,alpha);
send_2(R,I, R,s,exp-g(y), { R,s,exp-g(y),alpha,I }sk(R));
recv_3(I,R, I,s, { I,s,alpha,exp-g(y),R }sk(I));

claim(R,SKR, exp(alpha,y));
}

}

Fig. 9. Input file for the Scyther tool, specifying the two-message signed Diffie-Hellman protocol.

In Figure 9 we show the concrete input file for the Scyther tool that specifies the
two-message signed Diffie-Hellman protocol. In the description, the Ticket type of the
variables alpha and beta corresponds to all possible terms. The abstract functions exp
and exp-g respectively denote modular exponentiation of two terms, and raising the
generator g to the power of a term. Additional rules to approximate the Diffie-Hellman
equational theory have been omitted from the figure but can be found in the down-
loadable model archives. The claim events claim(I,SKR,...) and claim(R,SKR,...)
encode the desired security property. Here, SKR denotes that the following term is a
session-key, which implies that (a) it can be revealed through the SKR rule, and (b)
it should be secret as in Definition 3.12. The adversary model is specified indepen-
dently, either through the tool’s GUI or through its command-line/batch mode. Scyther
coarsely approximates Diffie-Hellman using additional roles that model a subset of the
equations for modular exponentiation, see [Cremers 2014].

5.3. Attack examples

MQV, HMQV, and variants. The MQV protocol family [Krawczyk 2005b; Ustaoglu
2008; Law et al. 2003] is a class of authenticated key-exchange protocols designed to
provide strong security guarantees. The HMQV protocol was proven secure with re-
spect to the adversary model in [Krawczyk 2005a]. This model is the analog of our
AdvCKw model, where the local state of HMQV is defined as the random values gen-
erated for the Diffie-Hellman key-exchange. Our tool automatically finds that under
certain definitions of the session-state, the HMQV protocol is insecure in adversary

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 D. Basin and C. Cremers

Thread 1

Responder: Bob
(responding to Alice)

Not a partner

Thread Test

Responder: Alice
(responding to Bob)

Z = gz

generate({x})

X = gx

state({ZAe1 , x+ d1b}) generate({y})

StateReveal(1) Y = gy

sessionkeys({H ((ZAe1)x+d1b)}) sessionkeys({H ((XBd1)y+e2a)})

Fig. 10. SR attack on HMQV

models that contain SR rules, such as the CK model [Canetti and Krawczyk 2001]. The
attack found is similar to the one described in [Kunz-Jacques and Pointcheval 2006].

Below we describe the attack, which shows that MQV and HMQV are insecure in,
e. g., AdvCKw, if the final exponentiation in the computation of the session key is per-
formed in the local state. It is possible for an adversary to reuse the inputs to this
exponentiation to impersonate an agent in future sessions. The attack is not covered
in [Krawczyk 2005b; 2005a] because both the proof and the extended analysis given
there assume that the local state contains only the ephemeral keys (the temporary
private keys), which in this case correspond to the random values x and y.

A description of the HMQV protocol was given in Section 2; see Figure 1. We show
the SR attack on HMQV in Figure 10, where d1 = H̄ (X,Bob), e1 = H̄ (Z,Alice), and
e2 = H̄ (Y,Alice). The attack starts with Bob receiving a message gz apparently coming
from Alice. This message may have been sent by another agent or have been generated
by the adversary. Next, Bob generates x and sends X = gx, which is intercepted by
the adversary. Thread 1 is not a partner of the test thread because its history does
not match the test thread’s. Hence the adversary can compromise thread 1’s state,
accessing x + d1b. At any desired time, the adversary sends X to the responder test
thread of Alice. Alice computes and sends Y = gy and computes the session key based
on X and y. The adversary intercepts Y and computes H ((Y Ae1)x+d1b). This yields the
session key of the test thread.

We assume that in critical scenarios the protocol is implemented entirely in a
tamper-proof module or cryptographic coprocessor and the local state is therefore
empty, preventing this attack. Conversely, if (H)MQV is implemented entirely in un-
protected memory, the state will also include the long-term keys, which enables an
attack where the adversary compromises these keys using SR. This example shows
how analysis with respect to our models can help sharpen protocol implementation
requirements.

The YAK protocol [Hao 2010] adds additional information and zero-knowledge proofs
to the initial HMQV message exchange. In our analysis, YAK achieves the same secu-
rity guarantees as the HMQV protocol with respect to our adversary models. In con-
trast, the CF protocol [Cremers and Feltz 2011] adds explicit signatures to the initial
HMQV exchange to achieve perfect forward secrecy directly. Our analysis reveals that

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:23

CF indeed achieves perfect forward secrecy, confirming the results proven for CF in
the computational setting [Cremers and Feltz 2011].

KEA+ and Naxos. KEA+ [Lauter and Mityagin 2006] and Naxos [LaMacchia et al.
2007] belong to the same class of protocols. In [Lauter and Mityagin 2006], KEA+ is
proven correct with respect to a variant of the adversary model of [Krawczyk 2005a],
where the state is defined as containing only the ephemeral keys (the temporary pri-
vate keys used in the Diffie-Hellman key-exchange). We find that KEA+ and Naxos
admit SR attacks and therefore are insecure in, for example, the AdvCK model. Addi-
tionally, for KEA+ we find an attack using the LKRaftercorrect rule and hence KEA+ does
not satisfy weak perfect forward secrecy. This attack cannot be modified to work for
Naxos.

Yahalom. [Paulson 2001] presents two versions of the Yahalom protocol. The original
version of this protocol allows the adversary to reuse old keys. As a result, the com-
promise of an old session key can lead to attacks on future sessions. Paulson uses the
Isabelle theorem prover to prove that an improved version of the protocol does not suf-
fer from this attack. He proves that the loss of one session key does not lead to attacks
on other session keys. We find attacks on both protocols for adversaries capable of re-
vealing session keys (SKR). At first sight, this appears to contradict Paulson’s result,
however the discrepancy is due to different properties being considered. In [Paulson
2001], the adversary may compromise other session keys. In contrast, our SKR rule,
following the definitions from key-agreement literature, allows the adversary to com-
promise keys of threads that are not partners of the test thread.

Other case studies. In Table III, we summarize the attacks found using our tool on
protocols with a secrecy requirement with respect to the adversary models from Ta-
ble II. A cross (×) denotes that an attack was found. The set of protocols includes both
formally analyzed protocols (BKE and Yahalom) as well as protocols recently proposed
in computational settings (HMQV, UM, and SIG(NAXOS)). Our tool rediscovers the
attacks described in the literature, e. g., that signed Diffie-Hellman is insecure in the
eCK model [LaMacchia et al. 2007] and that the implicitly authenticated two-message
protocols KEA+, Naxos, and HMQV do not satisfy perfect forward secrecy. Addition-
ally our tool finds new attacks, for example on KEA+. The time needed for finding the
attacks listed ranged from less than a second to three minutes per attack. We present
further results obtained for these protocols in Section 5.4.

5.4. Examples of protocol-security hierarchies

In Figure 11, we show the protocol-security hierarchy for the secrecy property of a
set of protocols with respect to all possible sets of adversary rules from Figure 4. In
Figure 12, we show a protocol-security hierarchy for authentication properties.

Analyzing protocols using protocol-security hierarchies. Protocol-security hierarchies pro-
vide a novel way for choosing an optimal protocol for a given application domain, for
example, exchanging a secret as illustrated here. We discuss below the protocols in-
cluded in the protocol-security hierarchies in Figure 11 and 12. Both protocol-security
hierarchies are automatically generated by the Scyther tool. We only converted the
generated Graphviz graphs to PGF/Tikz format for visual consistency. In Figure 11,
we added annotations at the top and on the right hand side to highlight information
already present in the graph.

We show how the resulting hierarchies facilitate fine-grained protocol comparisons
that often refine or even contradict comparisons made in the literature. We start by dis-
cussing the hierarchy in Figure 11. This is a hierarchy for secrecy for the 21 protocols
from Table III with respect to all 96 adversary models.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 D. Basin and C. Cremers

Table III. Attacks found on secrecy with respect to the adversary models from Table II

EXT INT CA AFC AF BR CKw CK eCK-1 eCK-2

DH-GS ×
DH-GS-C × ×
BCNP-1 × × × × × ×
BCNP-2 × × × ×
CF × ×
DHKE-1 × × ×
HMQV-C × ×
HMQV × × ×
NAXOS × × ×
SIG(NAXOS) × ×
TS1 (2004) × × × × × × × ×
TS1 (2008) × × × × × ×
TS2 (2004) × × × × × × ×
TS2 (2008) × × × × ×
TS3 (2004) × × × × ×
TS3 (2008) × × × × ×
UM × × × × × × ×
YAK × × ×
KEA+ × × × × × ×
BKE × × × × × × ×
Yahalom-Paulson × × × × × × × ×

DH-GS, DH-GS-C, and DHKE-1. The original Diffie-Hellman protocol is only secure
in the presence of a passive adversary since the messages sent are not authenticated.
A simple improvement is for agents to sign each message sent, along with the intended
recipient, using the sender’s long-term signature key. The resulting protocol family is
referred to as signed Diffie-Hellman.

We analyze three variants from [Gupta and Shmatikov 2005]. They include a basic
two-message version and its extension, a three-message version with key-confirmation.
These two protocols appear to be modified versions of ISO entity authentication proto-
cols. We refer to the first protocol as DH-GS and to the second as DH-GS-C. The third
protocol is a signed Diffie-Hellman protocol called DHKE-1.

Scyther finds attacks on the signed Diffie-Hellman protocols for all models contain-
ing the RNR rule. This is consistent with the proof in [Gupta and Shmatikov 2005],
which does not consider this rule, as well as with the observation in [LaMacchia et al.
2007] that RNR allows an attack on the basic signed Diffie-Hellman protocols.

Contrary to our expectations, the two-message DH-GS protocol ends up higher in
our hierarchy than the three-message variant with key-confirmation DH-GS-C. Closer
inspection reveals that there are two reasons for this. First, the additional property
that the DH-GS-C protocol is meant to achieve, namely, key-confirmation, is not con-
sidered in this hierarchy because it is only based on secrecy. Second, the protocol uses
an incorrect mechanism to achieve key confirmation: the only difference between the
responder’s key confirmation part and the initiator’s key confirmation part is the order
of the included identities, which is insufficient to distinguish them. As a result, Scyther
finds an attack on a responder thread in which a party performs a session with itself
by performing both roles. After observing the first message and the responder’s re-
sponse, the adversary re-uses the responder’s confirmation to immediately finish the
test thread. The adversary then leaks both long-term private keys, and finishes the
partial initiator thread with a session identifier i that is different from the one used
by the responder test thread. As a result, although both threads compute the same
key, they are not partners, as they disagree over the session identifier included in the

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:25

{DH-GS}
{

{LKRothers, LKRactor, LKRafter, SKR, SR}
}

{SIG(NAXOS)}
{

{LKRothers, SKR, SR,RNR},
{LKRothers, LKRactor, LKRafter, SKR},
{LKRothers, LKRaftercorrect, SKR, SR}

}

{DHKE-1}
{

{LKRothers, LKRactor, LKRafter, SR},

{LKRothers, LKRafter, SKR, SR}
}

{DH-GS-C}
{

{LKRothers, LKRactor, LKRafter, SR},

{LKRothers, LKRactor, LKRaftercorrect, SKR, SR}
}

{CF, HMQV-C}
{

{LKRothers, SKR,RNR},

{LKRothers, LKRactor, LKRafter, SKR}
}

{TS3-2004, TS3-2008}
{

{LKRothers, LKRafter, SKR}
}

{HMQV, YAK, NAXOS}
{

{LKRothers, SKR,RNR},

{LKRothers, LKRactor, LKRaftercorrect, SKR}
}

{TS2-2008}
{

{LKRothers, SKR, SR,RNR},

{LKRothers, LKRaftercorrect, SKR, SR}
}

{BCNP-2}
{

{LKRothers, LKRactor, LKRaftercorrect, SKR, SR}
}

{TS2-2004, UM}
{

{LKRothers,RNR},

{LKRothers, LKRaftercorrect}
}

{BCNP-1, KEA+}
{

{LKRothers, LKRactor, SKR, SR}
}

{TS1-2008}
{

{LKRothers, SKR, SR,RNR}
}

{BKE}
{

{LKRothers, SKR}
}

{TS1-2004}
{

{LKRothers,RNR}
}

{Yahalom-Paulson}
{

{LKRothers}
}

w
ea

k
P

er
fe

ct
F

or
w

a
rd

S
ec

re
cy

P
er

fe
ct

F
or

w
a
rd

S
ec

re
cy

Resilient against RNR

Fig. 11. Protocol-security hierarchy for secrecy of the 21 protocols from Table III with respect to all 96
adversary models.

second and third message. Hence the adversary can use SKR on the initiator thread to
reveal the session key of the test thread.

This attack on DH-GS-C can be prevented, for example, by differentiating between
the two confirmation messages by including distinct constants, as is common.

JKL-TS1, JKL-TS2, and JKL-TS3. Jeong, Katz and Lee propose the protocols TS1,
TS2, and TS3 in 2004 in [Jeong et al. 2004]. TS1 is designed to satisfy key indepen-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 D. Basin and C. Cremers

dence (keys of non-matching sessions may be revealed), whereas TS2 and TS3 should
additionally satisfy forward secrecy (long-term keys of the agents may be revealed af-
ter the test session ends). They prove TS1 and TS2 correct in the random oracle model
and TS3 in the standard model. Four years later, the authors released a new version
of the paper with updated protocols and security models. The main difference is that
the original models did not capture certain unknown-key share attacks, and the orig-
inal protocols where lacking sufficient information on the identity of the participants
to prevent these attacks. We differentiate between the two versions by annotating the
protocols with (2004) or (2008).

Our protocol-security hierarchy reveals the following. First, the TS3-2004 protocol
is incomparable to the other two protocols from the original paper. In contrast to TS2-
2004, TS3-2004 is additionally resilient to LKRafter and SKR, but it is not resilient to
RNR. Second, the TS1-2004 protocol is not resilient to SKR, which implies that it does
not satisfy key independence. Indeed, the missing identities in the session identifier of
the protocol cause the protocol to be vulnerable to SKR. This is a flaw in the security
model in [Jeong et al. 2004], which does not adequately capture such attacks. Third,
Jeong et al. suggest that the TS2-2004 protocol satisfies forward secrecy. Our analysis
shows that it only satisfies weak perfect forward secrecy, i. e., resilience to LKRaftercorrect.
The security model [Jeong et al. 2004] requires the adversary to be passive when cor-
rupting agents. This is in contrast to TS3-2004, which does satisfy perfect forward
secrecy. In this case, the authors have proven a weaker claim (weak perfect forward
secrecy) whereas they might have been able to prove that TS3-2004 satisfies a stronger
property.

The repaired protocols from the 2008 version of the paper address the unknown-key
share attacks. Subsequently, TS1-2008 and TS2-2008 improve upon their predecessors
from 2004 by being resilient to SKR (and, as a side effect, to SR.) The properties of
TS3-2008 remain unchanged from its predecessor TS3-2004.

UM. The Unified-Model (UM) protocol [Blake-Wilson and Menezes 1999] was origi-
nally proposed by Ankney, Johnson, and Matyas in 1995. It is a conceptually clean
protocol design. However, our analysis confirms that it is vulnerable to both LKRactor

and SKR, providing similar security to TS2-2004.

BKE. For the bilateral key-exchange (BKE) protocol [Clark and Jacob 1997], we find
attacks in all models in our hierarchy except for adversaries capable of LKRothers or SKR.
BKE is therefore among the weakest protocols in our hierarchy. However, because it is
resilient to SKR, it is not weaker than TS1 or TS2.

BCNP-1 and BCNP-2. Boyd, Cliff, Nieto, and Paterson propose two protocols [Boyd
et al. 2009], which we refer to as BCNP-1 and BCNP-2. When comparing their proto-
cols to others, they focus on two properties, KCI resistance (resilience to LKRactor) and
weak forward secrecy (resilience to LKRaftercorrect). Additionally, they claim that BCNP-2
provides more security than TS3 [Jeong et al. 2004]. Our analysis allows for a more
fine-grained comparison of the different protocols, confirming many remarks made in
[Boyd et al. 2009] but established by automatic instead of manual analysis. The hier-
archy also explains why BCNP-2 does not provide more security than TS3. BCNP-2
is incomparable to TS3 because, unlike TS3, it is KCI-resilient (resilience to LKRactor)
but does not satisfy perfect forward secrecy (resilience to LKRafter). This disproves their
claim that BCNP-2 provides more security than TS3.

NAXOS, SIG(NAXOS), and CF. [LaMacchia et al. 2007] proposes the Naxos protocol
along with a new security model called eCK, claiming that this model is the strongest
model for AKE protocols. However, our hierarchy reveals that NAXOS is not stronger
than most other protocols in our set because it is vulnerable to SR and LKRafter. This

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:27

{CCITT X.509-1}
{

{LKRothers, LKRactor, LKRafter, SKR, SR,RNR}
}

{CCITT X.509-3}
{

{LKRafter, SKR, SR,RNR}
}

{Needham-Schroeder-Lowe}
{

{LKRothers, LKRafter, SKR, SR}
}

{Needham-Schroeder}
{

{LKRafter, SKR}
}

Fig. 12. Protocol-security hierarchy for authentication with respect to all 96 adversary models.

result has independent consequences, reported in [Cremers 2010]. NAXOS is resilient
to adversaries that are capable of both RNR and SKR.

In [Cremers and Feltz 2013], the authors show that by applying a signature-based
transformation, protocols that are secure in an eCK-like model can be made to addi-
tionally satisfy a strong notion of perfect-forward secrecy. The SIG(NAXOS) protocol
is the result of applying this transformation to the NAXOS protocol. Our analysis con-
firms the results from their paper.

Next, we discuss the hierarchy for authentication presented in Figure 12. We verify
the protocols with respect to a strong form of authentication called synchronisation
[Cremers et al. 2006]. Protocols that satisfy synchronisation also satisfy aliveness.

Needham-Schroeder and Needham-Schroeder-Lowe. These protocols were al-
ready discussed in Example 4.4.

CCITT X.509-1 and X.509-3. The CCITT X.509 standard [CCITT 1987] contains sev-
eral protocol recommendations. Here we consider X.509-1 and X.509-3. X.509-1 sat-
isfies its authentication properties with respect to the strongest possible adversary
model, i. e., the adversary with all capabilities from Fig 4. The X.509-3 protocol is not
resilient to LKRothers or LKRactor. However, unlike Needham-Schroeder(-Lowe), it is re-
silient to RNR.

6. RELATED WORK

Related work in computational analysis. Most research on adversary compromise has
been performed in the context of key-exchange protocols in the computational setting,
e. g. [Canetti and Krawczyk 2001; Krawczyk 2005a], [Shoup 1999], [Bellare and Ro-
gaway 1995; Bellare et al. 2000; Bellare and Rogaway 1993], [Katz and Yung 2003],
[LaMacchia et al. 2007], [Cremers and Feltz 2013], and [Bresson and Manulis 2008].
In general, any two computational models are incomparable due to (often minor) differ-
ences not only in the adversary notions, but also in the definitions of partnership, the
execution models, and security property specifics. As these models are generally pre-
sented in a monolithic way, where all parts are intertwined, it is difficult to separate
these notions. Details of some of these definitions and their relationships have been
studied by, e. g., [Choo et al. 2005b; Choo et al. 2005a], [Bresson et al. 2007], [LaMac-
chia et al. 2007], [Cremers 2011], and [Menezes and Ustaoglu 2008].

The CryptoVerif tool [Blanchet 2006] is a mechanized tool for computational analysis.
Its adversary model covers Adv INT, corresponding to static corruption, i. e., the classical
Dolev-Yao adversary. It also supports multiple test queries as in [Abdalla 2006].

Related work in symbolic analysis. In the symbolic setting, [Guttman 2001] has mod-
eled a form of forward secrecy. With respect to verification, the only work we are aware
of is where researchers have verified (or discovered attacks on) key-compromise related

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 D. Basin and C. Cremers

properties of particular protocols. These cases do not use a compromising adversary
model, but are ad-hoc constructions of key compromise, made for specific protocols,
which can be verified in a Dolev-Yao style adversary model.

[Abadi et al. 2007] analyzed the JFK protocol in the Pi Calculus and showed it
achieves perfect forward secrecy, by giving the adversary all long-term keys at the
end of the protocol run. This corresponds to manually instrumenting the analog of
our LKRafter rule. In [Blanchet 2009], a form of session-key compromise is modeled in
the ProVerif framework by assuming that session-keys are compromised strictly be-
fore the target thread starts. This form of session-key compromised is covered by our
SKR rule; however, our rule covers many additional scenarios, such as parallel-session
key-compromise and unknown-key share attacks. Paulson used his inductive approach
to reason about the compromise of short-term data [Paulson 2001]. To model compro-
mise, he adds a rule to the protocol, called Oops, that directly gives short-term data to
the adversary. This rule is roughly analogous to our SKR rule. [Gupta and Shmatikov
2006; 2005] link a symbolic adversary model that includes dynamic corruptions to an
adversary model used in the computational analysis of key-agreement protocols. They
describe in [Gupta and Shmatikov 2006] a cryptographically-sound logic that can be
used to prove security in the presence of adaptive corruptions, that is, the adversary
can dynamically obtain the long-term keys of agents.

7. CONCLUSIONS

We see our work as a first step in providing models and tool support for systematically
modeling and analyzing security protocols with respect to adversaries endowed with
different compromise capabilities. We presented applications to protocol analysis and
constructing protocol-security hierarchies.

Our adversary capabilities generalize those from the computational setting and com-
bine them with a symbolic model. In doing so, we unify and generalize a wide range
of models from both settings. Exploring the exact nature of this generalization as well
as mappings between the two settings remains as future work. It would be interesting
to develop methods for designing protocols, e.g., using refinement as in [Sprenger and
Basin 2010; 2012], that are optimized for different adversarial scenarios or strength-
ening existing protocols.

Our definitions of adversaries and security properties from the computational set-
ting allow us to apply symbolic techniques to problems that were previously tackled
only by computational approaches. We developed the first tool capable of systematically
handling notions such as weak perfect forward secrecy, key compromise impersonation,
and session state compromise. In case studies, our tool not only rediscovered many at-
tacks previously reported in the cryptographic literature, e. g., on HMQV and DH-GS,
it also found new attacks, e. g., on KEA+. These examples show that our symbolic ad-
versary models are surprisingly effective for automatically establishing results that,
until now, required labor-intensive manual computational analysis.

Our formalization can serve as a reference for defining the adversarial concepts
from the computational setting in other symbolic frameworks. These include Strand
Spaces [Guttman 2001], the Pi calculus [Abadi et al. 2007], and the frameworks
of [Paulson 1998] and [Schmidt et al. 2013].

Finally, the concept of a protocol-security hierarchy can be naturally extended to any
domain where security properties of systems can be evaluated with respect to a set of
adversary models. This leads to the more general notion of a security hierarchy. For ex-
ample, in the domain of access control, attackers could have different capabilities with
respect to how policies are enforced. A hierarchy in this setting could help distinguish
the degrees of security provided by different access-control mechanisms.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Know your Enemy: Compromising Adversaries in Protocol Analysis A:29

REFERENCES

ABADI, M., BLANCHET, B., AND FOURNET, C. 2007. Just Fast Keying in the Pi calculus. ACM Transactions
on Information and System Security (TISSEC) 10, 3, 1–59.

ABDALLA, M. 2006. Password-based authenticated key exchange in the three-party setting. IEE Proceedings
- Information Security 153, 27–39(12).

BASIN, D. AND CREMERS, C. 2010a. Modeling and analyzing security in the presence of compromising
adversaries. In Computer Security - ESORICS 2010. LNCS Series, vol. 6345. Springer, 340–356.

BASIN, D. A. AND CREMERS, C. J. 2010b. Degrees of security: Protocol guarantees in the face of compro-
mising adversaries. In Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual
Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings. LNCS Series, vol.
6247. Springer, 1–18.

BELLARE, M., POINTCHEVAL, D., AND ROGAWAY, P. 2000. Authenticated key exchange secure against dic-
tionary attacks. In EUROCRYPT. LNCS. Springer, 139–155.

BELLARE, M. AND ROGAWAY, P. 1993. Entity authentication and key distribution. In CRYPTO. Springer,
232–249.

BELLARE, M. AND ROGAWAY, P. 1995. Provably secure session key distribution: the three party case. In
Proc. STOC ’95. ACM, 57–66.

BLAKE-WILSON, S. AND MENEZES, A. 1999. Authenticated diffie-hellman key agreement protocols. In Pro-
ceedings of the Selected Areas in Cryptography. SAC ’98. Springer, London, UK, 339–361.

BLANCHET, B. 2001. An efficient cryptographic protocol verifier based on Prolog rules. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW). IEEE, 82–96.

BLANCHET, B. 2006. A computationally sound mechanized prover for security protocols. In IEEE Sympo-
sium on Security and Privacy. 140–154.

BLANCHET, B. 2009. Automatic verification of correspondences for security protocols. J. Comput. Secur. 17, 4,
363–434.

BOYD, C., CLIFF, Y., NIETO, J. M. G., AND PATERSON, K. G. 2009. One-round key exchange in the standard
model. IJACT 1, 3, 181–199.

BRESSON, E. AND MANULIS, M. 2008. Securing group key exchange against strong corruptions. In ASI-
ACCS. ACM, 249–260.

BRESSON, E., MANULIS, M., AND SCHWENK, J. 2007. On security models and compilers for group key
exchange protocols. In IWSEC. LNCS Series, vol. 4752. Springer, 292–307.

CANETTI, R. AND KRAWCZYK, H. 2001. Analysis of key-exchange protocols and their use for building secure
channels. In EUROCRYPT. LNCS Series, vol. 2045. Springer, 453–474.

CCITT. 1987. The directory authentification framework. Draft Recommendation X.509, Version 7.

CHOO, K.-K., BOYD, C., AND HITCHCOCK, Y. 2005a. Examining indistinguishability-based proof models
for key establishment proofs. In ASIACRYPT. LNCS Series, vol. 3788. Springer, 624–643.

CHOO, K.-K., BOYD, C., HITCHCOCK, Y., AND MAITLAND, G. 2005b. On session identifiers in provably
secure protocols. In SCN’05. LNCS Series, vol. 3352. Springer, 351–366.

CLARK, J. AND JACOB, J. 1997. A survey of authentication protocol literature. http://citeseer.ist.psu.edu/
clark97survey.html.

CREMERS, C. 2008a. The Scyther Tool: Verification, falsification, and analysis of security protocols. In Proc.
CAV. LNCS Series, vol. 5123. Springer, 414–418.

CREMERS, C. 2008b. Unbounded verification, falsification, and characterization of security protocols by pat-
tern refinement. In CCS ’08: Proc. of the 15th ACM conference on Computer and communications security.
ACM, 119–128.

CREMERS, C. 2010. Session-StateReveal is stronger than eCK’s EphemeralKeyReveal: Using automatic
analysis to attack the NAXOS protocol. International Journal of Applied Cryptography 2, 83–99.

CREMERS, C. 2011. Examining indistinguishability-based security models for key exchange protocols: the
case of CK, CK-HMQV, and eCK. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. ASIACCS ’11. ACM, 80–91.

CREMERS, C. 2014. Scyther tool with compromising adversaries extension. Includes protocol description
files and test scripts. Available online at http://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html.

CREMERS, C. AND FELTZ, M. 2011. One-round strongly secure key exchange with perfect forward secrecy
and deniability. Cryptology ePrint Archive, Report 2011/300. http://eprint.iacr.org/.

CREMERS, C. AND FELTZ, M. 2013. Beyond eCK: Perfect Forward Secrecy under Actor Compromise and
Ephemeral-key Reveal. Designs, Codes and Cryptography, 1–36.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 D. Basin and C. Cremers

CREMERS, C., MAUW, S., AND DE VINK, E. 2006. Injective synchronisation: an extension of the authentica-
tion hierarchy. Theoretical Computer Science, 139–161.

GÜNTHER, C. 1990. An identity-based key-exchange protocol. In EUROCRYPT’89. LNCS Series, vol. 434.
Springer, 29–37.

GUPTA, P. AND SHMATIKOV, V. 2005. Towards computationally sound symbolic analysis of key exchange
protocols. In Proc. FMSE 2005. ACM, 23–32.

GUPTA, P. AND SHMATIKOV, V. 2006. Key confirmation and adaptive corruptions in the protocol security
logic. In FCS-ARSPA’06. 113–142.

GUTMANN, P. Abstract performance characteristics of application-level security protocols. Draft paper at
www.cs.auckland.ac.nz/∼pgut001/pubs/app sec.pdf.

GUTTMAN, J. D. 2001. Key compromise, strand spaces, and the authentication tests. ENTCS 45, 1–21.
Invited lecture, 17th Annual Conference on Mathematical Foundations of Programming Semantics.

HAO, F. 2010. On robust key agreement based on public key authentication. In Financial Cryptography and
Data Security, R. Sion, Ed. LNCS Series, vol. 6052. Springer Berlin Heidelberg, 383–390.

JEONG, I. R., KATZ, J., AND LEE, D. H. 2004. One-round protocols for two-party authenticated key ex-
change. In ACNS 2004. LNCS Series, vol. 3089. Springer, 220–232.

JUST, M. AND VAUDENAY, S. 1996. Authenticated multi-party key agreement. In ASIACRYPT 1996. LNCS
Series, vol. 1163. 36–49.

KATZ, J. AND YUNG, M. 2003. Scalable protocols for authenticated group key exchange. In CRYPTO. LNCS
Series, vol. 2729. Springer, 110–125.

KRAWCZYK, H. 2005a. HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology ePrint
Archive, Report 2005/176. http://eprint.iacr.org/, retrieved on April 14, 2009.

KRAWCZYK, H. 2005b. HMQV: A high-performance secure Diffie-Hellman protocol. In CRYPTO. LNCS Se-
ries, vol. 3621. Springer, 546–566.

KUNZ-JACQUES, S. AND POINTCHEVAL, D. 2006. A new key exchange protocol based on MQV assuming
public computations. In Security and Cryptography for Networks, R. Prisco and M. Yung, Eds. LNCS
Series, vol. 4116. Springer, 186–200.

LAMACCHIA, B., LAUTER, K., AND MITYAGIN, A. 2007. Stronger security of authenticated key exchange.
In ProvSec. LNCS Series, vol. 4784. Springer, 1–16.

LAUTER, K. AND MITYAGIN, A. 2006. Security analysis of KEA authenticated key exchange protocol. In
PKC 2006. LNCS Series, vol. 3958. 378–394.

LAW, L., MENEZES, A., QU, M., SOLINAS, J., AND VANSTONE, S. 2003. An efficient protocol for authenti-
cated key agreement. Designs, Codes and Cryptography 28, 119–134.

LOWE, G. 1996. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In TACAS’96.
LNCS Series, vol. 1055. Springer, 147–166.

LOWE, G. 1997. A hierarchy of authentication specifications. In Proc. 10th IEEE Computer Security Foun-
dations Workshop (CSFW). IEEE, 31–44.

MENEZES, A. AND USTAOGLU, B. 2008. Comparing the pre- and post-specified peer models for key agree-
ment. In ACISP 2008. LNCS Series, vol. 5107. 53–68.

MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. 1996. Handbook of Applied Cryptography. CRC
Press.

NEEDHAM, R. AND SCHROEDER, M. 1978. Using encryption for authentication in large networks of com-
puters. Commun. ACM 21, 12, 993–999.

PAULSON, L. 1998. The inductive approach to verifying cryptographic protocols. Journal of Computer Secu-
rity 6, 85–128.

PAULSON, L. 2001. Relations between secrets: Two formal analyses of the Yahalom protocol. Journal of
Computer Security 9, 3, 197–216.

SCHMIDT, B., MEIER, S., CREMERS, C., AND BASIN, D. 2013. The TAMARIN Prover for the symbolic anal-
ysis of security protocols. In Proc. CAV. LNCS Series, vol. 8044. Springer, 696–701.

SHOUP, V. 1999. On formal models for secure key exchange (version 4). revision of IBM Research Report RZ
3120 (April 1999).

SPRENGER, C. AND BASIN, D. 2010. Developing security protocols by refinement. In 7th ACM Conference
on Computer and Communications Security (CCS 2010). ACM, Chicago, USA, October 4-8, 361–374.

SPRENGER, C. AND BASIN, D. 2012. Refining key establishment. In Proceedings of the 25th IEEE Computer
Security Foundations Symposium (CSF). 230–246.

USTAOGLU, B. 2008. Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS.
Des. Codes Cryptography 46, 3, 329–342.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

