
 1

A Microcontroller System for Experimentation
Niklaus Wirth, 16. 4. 2008

Abstract
We report on the design of a simple board for use in teaching about microcontrollers. The project
also describes a small language specifically designed for the PIC microcontroller. The project
showed that hands-on experience is essential in teaching about sensors and controlling devices,
and that the use of a small, hand-tailored language eases programming considerably.

1. Introduction
This work is largely motivated by my (former) teaching activities. In a course explaining the basic
principles of computers, and then computer architectures, it is a good idea to start small and
simple. Such simple computers still exist, fortunately, and provide the opportunity to directly offer
hands-on experiences in a laboratory. This is always much more impressive than simulation or
emulation. Furthermore, it can be established at very low cost, if the teacher is willing to lay
hands on by himself.

Here we present a small board equipped with two microcontrollers PIC fabricated by Microchip
Inc. On this board are drivers for stepper motors and a 2-phase motor, as well as DA and AD
converters. This allows to explain and experiment with peripheral devices in a direct way, a topic
that is often neglected in computer science curricula. The chapter on applications is therefore
held in a rather tutorial style.

Microcontrollers are (still) the domain of assembler codes for programming. In fact, there is much
to say for this, as the instruction sets are simple and the resources quite limited. Specifications of
conventional languages would have to be accompanied by long lists of restrictions, of do’s and
don’t do’s.

Nevertheless, programming with assemblers is tedious and error-prone, and the resulting texts
are cryptic and long. It was therefore felt to be worth a try to explore a “middle way”, to postulate
a small language adapted to the needs and limitations of a microcontroller, in this case the PIC.
The challenge lies in finding a form that offers the advantages of program structure, yet reflects
the limitations and the underlying architecture in such a way that neither is the programmer
misled nor does the compiler have to perform complicated and obscuring “optimization”. With this
in mind, the language PICL was designed. It is described in a separate Report. Its compiler and
the necessary support tools, such as a program loader, are programmed in Oberon available for
PCs. Its description is contained in another Memo.

As a preparation and prerequisite for the subsequently described applications, the following
chapter provides an overview over the PIC’s structure, reduced to the minimum necessary. Even
when programming in PICL, it is important for an engineer to be familiar with the PIC’s
architecture, its resources and limitations.

2. The PIC Architecture
The PIC processor is a typical microcontroller insofar, as control unit, arithmetic/logical unit, and
memory are all placed on a single chip.

The PIC features a Harvard architecture: The control unit fetches instruction from the instruction
memory, and the arithmetic unit handles data from a data memory. The two memories are
separate, the former is implemented as a read-only memory (ROM), and the data memory is a
regular random-access memory (RAM). Its elements are called registers, which is somewhat
misleading, because there is one genuine register, the W-register, directly coupled with the
arithmetic/logic unit (ALU).

 2

Also typical for a microcontroller is that its system bus is not accessible from outside the chip. Its
interface consists of two registers (A and B) consisting of 5 and 8 bits respectively, which can be
controlled and configured independently.

What makes this chip (the PIC16C84) particularly appropriate for experimentation, is that the
program memory is electrically programmable, erasable, and reloadable (EEPROM).

Fig. 1 The PIC architecture

The PIC’s instruction set is refreshingly small and simple. Instructions consist of 14 bits and are
divided into 4 classes as shown in Fig.2. The byte-oriented instructions operate on the W-register
(accumulator) and the addressed byte in memory, and they store the result either in the same
memory location or in the W-register. They include addition, subtraction, and the basic logical
operations. The bit-oriented instructions set, clear, or test a single bit addressed by the field adr,
and numbered by the field b. The literal data instructions are like the byte-oriented instruction,
except that one operand is the literal contained in the instruction instead of the addressed byte in
memory. Furthermore, there are a jump and a subroutine call instruction with an 11-bit address
field. (For further details, we refer to the manual).

Two of the addressable locations (registers) are the A and B ports, and one is the status register
S, containing a zero and a carry bit, the conventional condition code.

Fig. 2. PIC instruction formats

3. Support Tools

RAM
Regs
64x8

W-Reg

ALU

Ports A, B

PC
and

stack

EEprom

1K x 14

IR decode

8-bit data bus

opc d adr

7

op b adr

3 2

opc literal

4 8

7

byte-oriented operators

bit-oriented operators

literal data instructions

10x address call and jump instructions

11

00

01

11

4

 3

The main tools used in these experiments are the PICL compiler and the program loader. They
are available in the form of commands (in any text):

PICL.Compile @ selects the marked text for compilation
PICL.Program loads the compiler program into program memory

In addition, further commands are available in the same module:

PICL.Verify verifies the preceding loading
PICL.Reset puts the PIC in reset mode (keeps the reset signal low)
PCL.Run start execution (removes the reset signal)
PICL.Erase erases the loaded program

This tool uses a 5-wire serial connection to the PIC via the PC’s parallel port. The signal
assignments are as follows:

Signal PC PIC .

Data D0 out / D5 in B7
Clock D1 out B6 in
Data D5 in A4 out

Reset’ D2 out MCR
Program D3 out MCR

Note: MCR is a 3-level signal and therefore connects to 2 binary signals at the parallel port. For
further details, see Sect. 5.

4. Applications

4.1. A serial data link

For the following applications, in fact for practically all applications, a communication link to the
host computer is a prerequisite. Therefore we first describe a pair of read/write procedures for the
PIC, communicating with its corresponding pair on the PC. The latter are described in Oberon,
the former in PICL.

The first step in designing such a package is the definition of the data protocol. This protocol is
determined by the available lines. Here we have 3 lines available. This implies a serial protocol,
and we choose a byte (8 bits) as unit for transmission. A fairly obvious choice in our case is a
handshake protocol, because it is timing-independent. This is desirable, particularly if the two
partners have quite different speeds.

4.1.1. Serial communication using the handshake protocol

The underlying principle is that the sender issues a request signal on the request line, and at the
same time applies the data bit on the data line. After the receiver has noticed the request and
sensed the data line, it issues an acknowledge signal. After noticing this acknowledgement, the
sender resets the request and proceeds with the transmission of the next bit. This process is
shown in Fig. 3. The idle values of req and ack are 1.

Fig. 3. Handshake protocol

req

ack

data bit 0 bit 1

 4

The procedures for sending and receiving for the host computer (PC) use auxiliary procedures
wait(b) for delaying until ack = b, and S(b) for applying b to the data line.

PROCEDURE wait(b: INTEGER);
 VAR ch: CHAR;
BEGIN (*test D5, ack*)
 REPEAT SYSTEM.PORTIN(in, ch) UNTIL ORD(ch) DIV 20H MOD 2 = b)
END wait;

PROCEDURE S(d: LONGINT); (*send d*)
BEGIN SYSTEM.PORTOUT(out, d)
END S;

PROCEDURE R(VAR b: INTEGER);
 VAR ch: CHAR;
BEGIN (*read D6, dat*) SYSTEM.PORTIN(in, ch); b := ORD(ch) DIV 40H MOD 2
END R;

PROCEDURE Send*(d: LONGINT);
 VAR i: INTEGER;
BEGIN wait(1);
 FOR i := 0 TO 7 DO
 S(d MOD 2 + 4); wait(0);
 S(d MOD 2 + 6); wait(1);
 d := d DIV 2
 END ;
 S(7)
END Send;

PROCEDURE Receive*(VAR d: LONGINT);
 VAR x, b, i: INTEGER;
BEGIN x := 0;
 FOR i := 0 TO 7 DO
 wait(0);
 R(b); x := (x DIV 2) + (b * 80H); S(5);
 wait(1); S(7)
 END ;
 d := x
END Receive;

The procedures for sending and receiving for the PIC are straight-forward. Note that in PILC the
statement !s sets s to 1, !~s sets s to 0, and ?s waits, until s = 1.

PROCEDURE Rec(): INT;
 INT i, x;
BEGIN x := 0; i := 8;
 REPEAT ?~B.6; ROR x;
 IF B.7 THEN !x.7 ELSE !~x.7 END ;
 !~A.4; ?B.6; !A.4; DEC i
 UNTIL i = 0;
 RETURN x
END Rec;

PROCEDURE Send(INT x);
 INT i;
BEGIN ?B.6; !S.5; !~B.7; !~S.5; i := 8;
 REPEAT
 IF x.0 THEN !B.7 ELSE !~B.7 END ;
 !~A.4; ROR x; ?~B.6; !A.4; ?B.6; DEC i
 UNTIL i = 0;
 !S.5; !B.7; !~S.5
END Send;

This protocol is symmetric with respect to the two partners. The req and ack lines simply
exchange their roles. However, the data line is always driven by the sender, and therefore needs
to be bidirectional. Here, the data line is driven by the PC, except when the PIC sends a byte.
Setting the data line (B.7 is a tri-state pin) to output mode is achieved by the first line of procedure

 5

Send. (Bit 5 of the status register S enables the program to access the tri-state control register).
The transmission rate achieved by this protocol is about 50 Kbit/s, if a 3.68 MHz oscillator is
used for the PIC.

4.1.2. Serial communication using an asynchronous protocol

In this case, all three lines maintain their direction independent of who is sender and who is
receiver. The clock is always generated by the same partner, which is therefore called the
master.

Fig. 4a. Asynchronous protocol; master = sender

Fig. 4b. Asynchronous protocol; master = receiver

The disadvantage of this solution is its dependence on timing. If the master is sender (Fig. 4a),
then there is no feedback from the receiver as to whether the data were received correctly. And if
the master is the receiver, there is no certainty that the sender is actually providing data. This
may seem to be quite unacceptable, but it is often used in practice and works well, provided the
timing is correct. Sender and receiver in the faster partner must include appropriate delays, and if
the partner changes, the delays must be adjusted.

The procedures for the PC, which acts as master, use auxiliary procedures S and R for accessing
the parallel port, and wait for delaying the process.

CONST out = 378H; in = 379H; (*port addresses*)
 del0 = 2000; del1 = 1000; (*processor dependent*)

PROCEDURE wait(k: LONGINT);
BEGIN
 REPEAT DEC(k) UNTIL k = 0
END wait;

PROCEDURE S(d: LONGINT);
BEGIN SYSTEM.PORTOUT(out, d)
END S;

PROCEDURE R(VAR b: INTEGER);
 VAR ch: CHAR;
BEGIN (*read D6, dat*) SYSTEM.PORTIN(in, ch); b := ORD(ch) DIV 20H MOD 2
END R;

PROCEDURE Send*(d: LONGINT);
 VAR i: INTEGER;
BEGIN
 FOR i := 0 TO 7 DO
 S(d MOD 2 + 4); wait(del0);
 S(d MOD 2 + 6); wait(del1);
 d := d DIV 2
 END ;
 S(7)

req

data bit 0 bit 1

req

data bit 0 bit 1

 6

END Send;

PROCEDURE Receive*(VAR d: LONGINT);
 VAR x, b, i: INTEGER;
BEGIN x := 0;
 FOR i := 0 TO 7 DO
 S(5); wait(del0);
 S(7); R(b); x := (x DIV 2) + (b * 80H); wait(del1)
 END ;
 d := x
END Receive;

The routines for the PIC use B7 and A4 for data, and B6 for the clock. B7 and B6 are
permanently configured for input, A4 is configured for output with idle value 1.

PROCEDURE Rec(): INT;
 INT i, d;
BEGIN d := 0; i := 8;
 REPEAT ?~B.6; ROR d;
 IF B.7 THEN !d.7 ELSE !~d.7 END ;
 ?B.6; DEC i
 UNTIL i = 0;
 RETURN d
END Rec;

PROCEDURE Send(INT x);
 INT i;
BEGIN i := 8;
 REPEAT ?~B.6;
 IF x.0 THEN !A.4 ELSE !~A.4 END ;
 ROR x; ?B.6; DEC i
 UNTIL i = 0
END Send;

4.2. A Digital to Analog Converter

Converting a digital signal encoded as an integer into an analog voltage is fairly straight-forward.
An integer x is typically represented by n bits such that

x = xn-12n-1 + … + x121 + x020, xi = 0 or 1

A voltage v corresponding (analog) to x is obtained by feeding the sum of currents into a
differential amplifier, where each current corresponds to a bit of x, which control a current switch
feeding its current either to the amplifier or to ground. (Given a high-gain amplifier, we can think
of both its input being at zero potential). The currents are fed through identical resistors (2R) from
a so-called R-2R ladder (see Fig. 5) This ladder is such that each component halves the voltage,
i.e.

Vi = Vref * 2n-I,

where Vref is a so-called reference voltage. Hence, the output voltage is Vref * (x/2n). The
disadvantage of this simple circuit is that an inverting amplifier is used which required a negative
supply voltage. This is inconvenient, as it also produces a negative output.

 7

Fig. 5. Current switching R-2R ladder

A more convenient, and fortunately even simpler solution is to make use of the dual role of voltage
and current in resistor networks, and to exchange Vref and Vout as input and output of the ladder.
Fig. 6 shows that this solution does not even require an amplifier.

Fig. 6. Voltage switching backward R-2R ladder

Such DA converters are available as single chips. Some accept the input in parallel with n input
pins, others provide a shift register and accept a single, serial signal and a clock for controlling the
shifter. The latter are slower, but more convenient in connection with microcontrollers. We select
the MAX539 device, an 8-pin DIP. It has 3 digital inputs: the serial data (connected to the PIC B.0
signal), the shift clock (connected to the PIC B.1 signal, and an enable signal (connected to the
PIC A.0 signal). The input values consist of 12 bits (n = 12) and must be fed with the most
significant bit first. Our solution feeds 8 bits only, followed by 4 insignificant bits of arbitrary value.

The PIC driver procedure contains a single repeat statement, shifting the input d onto the data line
B.0.

PROCEDURE DAConversion(INT d);
 INT i, x;
BEGIN !~B.1; x := d;
 i := 8;
 REPEAT !~B.1;
 IF d.7 THEN !B.0 ELSE !~B.0 END ;
 !B.1; ROL d; DEC i
 UNTIL i = 0;
 i := 4;
 REPEAT !~B.1; ROL d; !B.1; DEC i
 UNTIL i = 0;
 B := x
END DAConversion

We have (intentionally) neglected the problems of timing. The clock rate must of course be
appropriate for the converter. The program above yield a rate of … MHz, whereas the converter’s
maximum rate is 1 MHz.

4.3. An Analog to Digital Converter

Vout

Vref

2R

R

1 0

-Vout

Vref

2R

R

R

1 0

V3 V1 V0 V2

 8

A-to-D conversion is significantly more complicated, and there are several different ways to
accomplish it. Basic to all solutions is a voltage comparator, i.e. a differential amplifier. It delivers
a single bit, indication which of the two inputs is higher.

Sequential ADCs use a single comparator and a series of 2n identical resistors, providing all
voltages Vk = Vref * (k/2n) for k = 0 … 2n-1. The converter then searches for the Vk closest to Vin by
performing a binary search. This takes some time, as there are n/2 comparisons to be made.

Much faster are converters using 2n comparators, so-called flash converters (typically used in
digital oscilloscopes). The task is then to find the largest k with Vk = 0, which can be
accomplished by a purely combinational digital circuit.

Here we use a sequential converter providing a serial output signal, the TLC549, also a 8-pin
DIP. Its data output is connected to the PIC’s A.3 port bit, the shift clock comes from B.1, and the
enable signal from A.1. The data is delivered with the most-significant bit first (MSB), as shown in
Fig. 7. The data must be sampled after the clock rises.

Fig. 7. ADC converter signals and timing

The chip contains a buffer holding the last measurement. This means that fetching a byte delivers
the data buffered from the preceding sample, and at the same time triggers the next sample (AD
conversion result).

PROCEDURE ADConversion(): INT;
 INT d, i;
BEGIN !~B.1; d := 0; !~S.0; i := 8;
 REPEAT !~B.1; ROL d;
 IF A.3 THEN !d.0 ELSE !~d.0 END ;
 !B.1; DEC i
 UNTIL i = 0;
 RETURN d
END ADConversion;

4.4. Controlling a Stepper Motor

Stepper motors are used to turn the shaft to an exact position. They are typically used in disk
drives for positioning the read/write heads over the rotating disk. Their principle is explained in
Fig. 8. The rotor is pulled by a magnetic field applied to one of the windings or poles. By applying
current to consecutive poles, a movement results. The figure shows an arrangement with 4 poles
only. In reality there are many poles, typically 400 corresponding to the degrees of a full circle.
Every fourth pole is placed in the same winding (wire). Hence there are exactly 4 windings, called
phases, independent of the actual number of poles. Current always flows in the same direction in
all windings. Therefore this scheme is called unipolar.

clk

dat

cs’

d7 d0 d7

02

1

3

 9

Fig. 8. Schematic of a 4-pole stepping motor

The task of the microcontroller is to generate pulses on the 4 wires with appropriate timing. An
open-collector driver is placed between the PIC and each phase of the motor. We use two 75477
8-pin DIPs, each containing two drivers with an additional input for enabling or disabling, as
shown in Fig. 9. A 0 at the PIC’s output represents current flowing and a magnetic field
generated, a 1 that it is off.

Fig. 9. A 75447 motor driver pair

Fig. 10. The 4 phase signals for a unipolar stepper motor

The four phase signals are derived from the signal diagram shown in Fig. 10. They are generated
by the following PIC program. We assume ports B0 – B3 to be the phase signals. n denotes the
number of steps to be moved, and on and off are delay values determining the pulse width and
thereby the motor speed.

PROCEDURE delay(INT k);
BEGIN
 REPEAT k := k - 1 UNTIL k = 0
END delay;

PROCEDURE phase(INT x);
BEGIN B := x; delay(on); B := 0; delay(off)
END phase;

PROCEDURE StepForward(INT n);
BEGIN
 REPEAT phase(1); phase(3); phase(2); phase(6); phase(4); phase(12); phase(8); phase(9); DEC n
 UNTIL n = 0
END StepForward;

PROCEDURE StepBackward(INT n);
BEGIN
 REPEAT phase(9); phase(8); phase(12); phase(4); phase(6); phase(2); phase(3); phase(1); DEC n
 UNTIL n = 0
END StepBackward;

It is mandatory to ensure that no current flows, when the motor is idle, and after a reset signal to
the PIC. The former requires that the 4 phase outputs are set to 1. A reset causes all PIC ports to
assume a high-impedance state (input). Therefore no current will be drawn.

&

&

motor
a

b

enable 75447

ph 0

ph 1

ph 2

ph 3

 10

A more modern type of stepper motor is the bipolar motor. We note that in the unipolar type there
exist always pairs of wires, one wire for each direction of current flow. This can be simplified in
the interest of economy to a single wire instead of a pair. The disadvantage is that drivers must
be provided at both ends of the coil that are able to both source and sink currents. Together the
coil and its two drivers form a bridge as shown in Fig. 11. For our bipolar motor experiment we
use the SGS L293E chip, which contains two pairs of amplifiers. The schema to the right shows
the push-pull (totem-pole) configuration of transistor pairs in each amplifier. - The same signals
can be used for both kinds of motor.

Fig. 11. Bipolar motor driver (one phase only)

4.5. Running a 2-phase Motor

Our next experiment concerns the driving of a motor as it is typically used in small equipment
such as disks or diskettes. Instead of in steps, they proceed continuously. They are organized
similar to stepping motors, though, but have only 2 phases instead of 4, that is, there is a single
bidirectional winding (coil) or two unidirectional coils.

Evidently, current has to be applied alternatively to the 2 phases. As soon as the anchor has
reached the position to which it was attracted by the magnetic field, the direction of the current is
switched, and the anchor moves into the other direction. This, then, results in a continuous
rotation. The switch is called the alternator, and until recent times consisted of two contacts
mounted on the rotor shaft and two static brushes contacting them, thereby alternating between
the rotating contacts.

With the advent of power transistors it became possible to switch also high currents. The
transistors are controlled by signals obtained by sensors monitoring the rotor’s position. These
sensors are either optical or magnetic. In this way, a brushless motor is obtained. It operates
without losses of energy in the brushes, and needs no brush maintenance.

Here we use two MOSFETs (power transistors) IRF Z40, which are driven directly by the output
signals of the PIC (B.4 and B.5). The sensor signal from the motor is fed to port A.3 as shown in
Fig. 12. In the idle state both output must be low to cut the transistors off, and in order to be safe
in the reset state with high-impedance outputs, weak pull-down resistors (4.7K) should be
provided (not shown here).

Fig. 12. 2-phase motor controller circuit

The speed of a motor is determined by the current provided. Until recent times, the current was
controlled by a resistor in series with the coils. This implies that part of the energy is wasted in

enable

coil

anchor

motor PIC

B4

B5

A3

Z40 12V

 11

those resistors. The modern method is to not vary the value of the current, but the duration of its
flow, that is, not to apply a permanent current, but rather pulses. The speed is then determined by
the width of the pulses, and the method is called pulse width modulation (PWM). A micro-
controller is the ideal agent to vary the pulse width. Now that the energy sinking resistors are
gone, the setup becomes considerably more efficient.

The evident idea is to turn on the current for a time determined by a given speed parameter, and
then to turn it off until the sensor signals the start of the next period, at which moment the current
is turned on again. However, this scheme is unstable. Assume that the turn-on time is fixed by ton,
and that the time until the next phase is toff. The average current is then imax * ton /(ton + toff). Now
suppose that this value accelerates the rotor. As ton is fixed, a faster rotation causes toff to
decrease, and therefore the quotient and the average current and therefore the speed to further
increase. This continues until the maximum possible speed is reached, independent of the initial
value of ton.

The difficulty is solved by letting the speed parameter be toff rather than ton. Each phase therefore
begins with waiting toff units of time with the current switched off, then turning it on until the sensor
signal causes the current to be switched off again. Now an increase in speed causes ton to
become shorter, decreasing the current and counteracting the increase in speed. The resulting
driver program is straight-forward. It consists of a loop with the two phases. It terminates when a
byte is received over the communication line, i.e. when its clock signal goes low.

PROCEDURE TwoPhaseMotor(INT del);
 INT k;
BEGIN
 REPEAT
 REPEAT k := del;
 REPEAT delay(50); k := k - 1 UNTIL ~A.3 OR k = 0;
 IF A.3 THEN !B.4; ?~A.3; !~B.4 END ;
 k := del;
 REPEAT delay(50); k := k - 1 UNTIL A.3 OR k = 0;
 IF ~A.3 THEN !B.5; ?A.3; !~B.5 END ;
 UNTIL ~B.6;
 del := Rec()
 UNTIL del = 0
END TwoPhaseMotor;

4.6. A Temperature Sensor

As a last experiment we show the use of a temperature sensor. We chose the Dallas 1620, an 8-
pin DIP. It is in fact more complex than needed here, and we restrict our considerations to the
single task of receiving a value indication the current ambient temperature. In this case. the value
consists of 9 bits, received sequentially, LSB first.

The input signal is connected to the PIC port A.3, the clock again to B.1. In he repeat statement,
A.3 is copied into d.7, which is then shifted right. The 1620 delivers the temperature in half
degrees centigrade.

This chip can also serve as alarm, issuing a trigger signal when temperature exceeds or drops
below a certain value. Commands are provided to load these limiting values into internal
registers. Also sensing the current temperature therefore requires issuing a command. This is
done by the auxiliary procedure Tout. It sends an 8-bit value to the 1620 sensor. This routine is
also used to initialize the sensor correctly when the program is started after loading. As it uses
the data line A.3 as an output, its port needs to be reconfigured. This is done in the first line of
procedure Tout by setting A.3 to output.

PROCEDURE ReadTemp(): INT;
 INT d, i;
BEGIN !A.2; TOut($AA); i := 9;
 REPEAT !~B.1; ROR d;
 IF A.3 THEN !d.7 ELSE !~d.7 END ;
 !B.1; DEC i

 12

 UNTIL i = 0;
 !~A.2; ROL d; RETURN d
END ReadTemp;

PROCEDURE TOut(INT d);
 INT i, x;
BEGIN !~B.1; !S.5; !~A.3; !~S.5; x := d;
 i := 8;
 REPEAT !~B.1;
 IF d.0 THEN !A.3 ELSE !~A.3 END ;
 !B.1; ROR d; DEC i
 UNTIL i = 0;
 !S.5; !A.3; !~S.5
END TOut;

5. Integration of Experiments
5.1. Hardware

If we wish to integrate all the described experiments on a single board, we must realize that the
PIC has too few pins to accommodate all devices. Two PICs are required. The signals and their
chosen pin assignments are summarized as follows for the two PICs:

Serial data link data in B7
 data out A4
 clock out B6

Digital to analog data out B0
 clock in B1
 enable out A0

Analog to digital data in A3
 clock out B1
 enable out A1

Temperature sensor data in/out B0
 clock out B1
 enable out A2

LEDs data out B0 – B5

Serial data link data in B7
 data out A4
 clock out B6

Stepper motors 4 phases out B0 – B3
 enable out A0, A1

2-phase motor 2 phases out B4, B5
 sensor in A3

LED data out A2

 13

Fig. 13. Block diagram of PIC board

The connection to the host computer consists of a clock line and a data line in each direction.
These lines are shared by the two processors. This implies that they would interfere if running at
the same time. The following scheme is used in order to avoid this situation. When starting (after
reset), programs must first sense the data line (B.7). Programs on PIC-0 must go into an idle
loop, if B.7 = 0, and those running on PIC-1 enter an idle loop, if B.7 = 1. The outgoing data line is
connected to port A.4, which is an open-collector output, thus allowing the two outputs to be tied
together. A pull-up resistor must be provided.

And finally, a provision must be made for programming the processors, i.e. for loading programs
into the EEPROM. Here the specification of the PIC determines that B.6 be the clock line, and B.7
the data line. (We therefore have chosen the same assignments for the communication in
general). The exception is the outgoing data line. In programming mode, it is used for verification
of loaded programs, i.e. as output. This implies that B.7 is used bidirectionally using its tri-state
facility. If the PC keeps D0 high, the line signal can be read at D6 thanks to a diode. The
connections are shown in Fig. 14.

Fig. 14. Connections between PC and PICs

The MCLR (master clear, reset) signal of the PIC accepts three voltage levels, depending on the
logic levels of PC outputs D2 (reset) and D3 (program):

D3 (prog) D2 (rst) MCLR .

0 0 0V (reset)
0 1 5V (run)
1 0 12V (program)

PIC-0 PIC-1

step0 step1 motor DAC ADC Temp LED

4 2

link to PC

PC
parallel port PIC

A4
B7

B6

MCLR

 D6
 D5

 D0
 D1

 D2
 D3

 14

5.2. Software

Integration of the drivers means that there is a common loop accepting commands from the
communication line and dispatching control to the various drivers. We assume that for every
command, the first byte determines the driver to be called, and subsequent bytes are parameters.
The following commands are provided for the processor driving motors:

code command parameters

0 mirror receive/send check
1 activate stepper forward device, no.of steps, ontime, offtime
2 activate stepper backward device, no.of steps, ontime, offtime
3 activate 2-phase motor offtime
4 idle

The parameters ontime and offtime determine the pulse width and thereby the speed.
INT cmd, dev, dat, on, off;

PROCEDURE Idle;
BEGIN B := $0F; A := $14;
 REPEAT !A.2; longdelay; !~A.2; longdelay UNTIL ~B.6
END Idle;

 15

BEGIN B := $CF; A := $10;
 !S.5; B := $C0; A := $08; !~S.5; (*set tri-state control*)
 IF B.7 THEN
 REPEAT cmd := Rec();
 IF cmd = 0 THEN dat := Rec(); Send(dat)
 ELSIF cmd = 1 THEN dev := Rec(); dat := Rec(); on := Rec(); off := Rec();
 IF dev = 0 THEN !A.0 ELSIF dev = 1 THEN !A.1 ELSIF dev = 2 THEN !A.0; !A.1 END ;
 StepForward(dat); !~A.0; !~A.1
 ELSIF cmd = 2 THEN dev := Rec(); dat := Rec(); on := Rec(); off := Rec();
 IF dev = 0 THEN !A.0 ELSIF dev = 1 THEN !A.1 ELSIF dev = 2 THEN !A.0; !A.1 END ;
 StepBackward(dat); !~A.0; !~A.1
 ELSIF cmd = 3 THEN dat := Rec(); TwoPhaseMotor(dat)
 ELSIF cmd = 4 THEN Idle
 END
 END
 ELSE
 REPEAT !A.2; longdelay; !~A.2; longdelay END
 END
END

The program for the PIC driving DAC and ADC has the same structure: an infinite loop accepting
commands:

code command parameters

0 mirror receive/send check
8 DA conversion data
9 AD conversion data (to PC)
10 sense temperature data (to PC)
11 show counter on LEDs -
12 show shifter on LEDs
13 multiply x, y
14 divide x, y

 INT cmd, dat, dat1;

BEGIN B := $FF; A := $13;
 !S.5; B := $C0; A := $08; !~S.5;
 IF ~B.7 THEN
 !A.2; TOut(3); TOut($EE); !~A.2;
 REPEAT cmd := Rec();
 IF cmd = 0 THEN dat := Rec(); Send(dat); B := dat
 ELSIF cmd = 8 THEN dat := Rec(); DAConversion(dat)
 ELSIF cmd = 9 THEN dat := ADConversion(); dat := ADConversion(); Send(dat)
 ELSIF cmd = 10 THEN dat := ReadTemp(); Send(dat)
 ELSIF cmd = 11 THEN Count
 ELSIF cmd = 12 THEN Shift
 ELSIF cmd = 13 THEN dat := Rec(); dat1 := Rec(); Multiply; Send(dat1); Send(dat)
 ELSIF cmd = 14 THEN dat := Rec(); dat1 := Rec(); Divide; Send(dat); Send(dat1)
 END
 END
 ELSE
 REPEAT !B.0; longdelay; !~B.0; longdelay END
 END
END

The partner program on the PC is written in Oberon and provides a very convenient environment
for experimentation. This is mostly due to the possibility to declare in one and the same module an
arbitrary number of procedures acting as commands. They can be activated by a mouse click on
text written anywhere, for example in the window containing the program text. An example is
shown below. The procedures are contained in two separate modules called Motors and DAC.

Motors.TestIO 55 Motors.Idle
Motors.StepForward 0 50 200 50
Motors.StepBackward 0 50 200 70
Motors.StepForward 1 100 120 120
Motors.StepBackward 1 100 70 70

 16

Motors.Turn 10 Motors.SetSpeed 1 Motors.SetSpeed 50 Motors.SetSpeed 0

DAC.TestIO 85 DAC.TestIO 170~
DAC.DAC 0 DAC.DAC 64 DAC.DAC 128 DAC.DAC 192
DAC.DAC 255
DAC.ADC DAC.Count DAC.Shift DAC.Temp
DAC.Multiply 2 5 DAC.Divide 14 5

6. Conclusions

The first point to be emphasized is the importance of physical experimentation and hands-on
experience when teaching about computers sensing or driving equipment. The presented setup
demonstrates that with little effort and using inexpensive parts a system can be designed and
built that shows how computers operate in ways and on problems that are often ignored in CS
curricula.

The second point is that experimentation can be vastly enhanced by adequate software
environments. Here this includes both the system and the language Oberon. They are
supplemented by the language PICL for the microcontroller PIC. After many years of skepticism
the author is now convinced that even a very small language can considerably ease the writing of
programs, even small ones, and free the programmers of the tedious coding with assemblers. An
additional benefit of the simple language is a very small compiler.

This project involved language design, compiler construction, familiarity with a microcontroller,
interface design, even insider’s knowhow about how to get access to the PC’s parallel port. The
hard lesson was, as always, that the devil hides in the details. It was fun to outwit him!

