
Shared Arrangements: practical inter-query sharing
for streaming dataflows

Frank McSherry∗ Andrea Lattuada Malte Schwarzkopf‡ Timothy Roscoe
∗Materialize, Inc. Dept. of Computer Science, ETH Zürich ‡Brown University

mcsherry@materialize.io, {andreal,troscoe}@inf.ethz.ch, malte@cs.brown.edu

ABSTRACT
Current systems for data-parallel, incremental processing and view
maintenance over high-rate streams isolate the execution of inde-
pendent queries. This creates unwanted redundancy and overhead
in the presence of concurrent incrementally maintained queries:
each query must independently maintain the same indexed state
over the same input streams, and new queries must build this state
from scratch before they can begin to emit their first results.

This paper introduces shared arrangements: indexed views of
maintained state that allow concurrent queries to reuse the same in-
memory state without compromising data-parallel performance and
scaling. We implement shared arrangements in a modern stream
processor and show order-of-magnitude improvements in query re-
sponse time and resource consumption for incremental, interactive
queries against high-throughput streams, while also significantly
improving performance in other domains including business ana-
lytics, graph processing, and program analysis.

PVLDB Reference Format:
Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, Timothy Roscoe.
Shared Arrangements: practical inter-query sharing for streaming dataflows.
PVLDB, 13(10): 1793-1806, 2020.
DOI: https://doi.org/10.14778/3401960.3401974

1. INTRODUCTION
In this paper, we present shared arrangements, a new technique

for efficiently sharing indexed, consistent state and computation be-
tween the operators of multiple concurrent, data-parallel streaming
dataflows. We have implemented shared arrangements in DD, the
current implementation of Differential Dataflow [28, 27, 1], but
they are broadly applicable to other streaming systems.

Shared arrangements are particularly effective in interactive data
analytics against continually-updating data. Consider a setting in
which multiple analysts, as well as software like business intel-
ligence dashboards and monitoring systems, interactively submit
standing queries to a stream processing system. The queries re-
main active until they are removed. Ideally, queries would install
quickly, provide initial results promptly, and continue to deliver up-
dates with low latency as the underlying data change.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3401960.3401974

Data-parallel stream processors like Flink [12], Spark Stream-
ing [40], and Naiad [28] excel at incrementally maintaining the
results of such queries, but each maintain queries in independent
dataflows with independent computation and operator state. Al-
though these systems support the sharing of common sub-queries,
as streams of data, none share the indexed representations of rela-
tions among unrelated subqueries. However, there are tremendous
opportunties for sharing of state, even when the dataflow operators
are not the same. For example, we might expect joins of a rela-
tion R to use its primary key; even if several distict queries join R
against as many other distinct relations, a shared index on R would
benefit each query. Existing systems create independent dataflows
for distinct queries, or are restricted to redundant, per-query in-
dexed representations of R, wasting memory and computation.

By contrast, classic relational databases have long shared indexes
over their tables across unrelated queries. The use of shared indexes
reduces query times tremendously, especially for point look-ups,
and generally improves the efficiency of queries that access rela-
tions by the index keys. While they have many capabilities, rela-
tional databases lack streaming dataflow system’s support for low-
latency, high-throuhput incremental maintenance of materialized
query results [19, 8]. Existing shared index implementations share
all reads and writes among multiple workers, and are not immedi-
ately appropriate for dataflow workloads where the operator state is
sharded across independent workers. In this work, we seek to trans-
port the shared index idiom from relational databases to streaming
dataflows, applying it across changing maintained queries.

Our main observations are that (i) many dataflow operators write
the same internal state, representing the accumulated changes of
each of their input streams, (ii) these dataflow operators often ac-
cess this state with independent and fundamentally different pat-
terns, and (iii) this state can be efficiently shared with single-writer,
multiple-reader data structure. Shared arrangements are our design
for single-writer, multiple-reader, shared state in dataflow systems.

To illustrate a natural setting for shared arrangements, we run
a mix of interactively issued and incrementally maintained TPC-
H [6] queries executed as dataflows against a stream of order fulfill-
ment events (i.e., changes to the lineitem relation). This is simi-
lar to a modern business analytics setting with advertisers, impres-
sions, and advertising channels, and our dynamic query setup mim-
icks the behavior of human analysts and business analytics dash-
boards. (TPC-H is originally a static “data-warehousing” bench-
mark; our streaming setup follows that used by Nikolic et al. [29].)
We measure the query installation latency—i.e., the time until a
new query returns results—as well as update processing latency and
standing memory footprint. Figure 1 reports the performance of
DD with shared arrangements (“shared”) and without (“not shared”;
representative of other data-parallel stream processors). The mea-

1793

5%
10%
15%
20%
25%

not shared

5%

10%

100us 1ms 10ms 100ms 1 s
latency

shared

(a) Query installation latency.

 0.25

 0.5

 0.75

 1

1ms 10ms 100ms 1 s

co
m
pl
em
en
ta
ry

 c
df

latency

not shared
shared

(b) Update processing latency.

10GB

30GB

60GB

90GB
120GB

 1000 3000 5000

not shared

sharedre
si
de
nt

 s
et

 s
iz
e

round

(c) Memory footprint (RSS).

Figure 1: Shared arrangements reduce (a) query installation latency distribution, (b) update processing latency distribution, and (c) the
memory footprint of concurrent TPC-H queries that randomly arrive and retire. The setup uses 32 workers, runs at TPC-H scale factor 10,
and loads rows from relations round-robin. Note the log10-scale x-axes in (a) and (b), and the log10-scale y-axis in (c).

surements show orders of magnitude improvements in query in-
stallation latency (a weakness of existing dataflow systems), and
improved update processing latency and memory use.

Shared arrangements achieve these improvements because they
remove the need to maintain dataflow-local indexes for each query.
As a concrete example throughout this paper, we consider TPC-
H queries 3 and 5. Both queries join lineitem with the order

and customer relations by their primary keys. While the queries
lack overlapping subqueries that classic multi-query optimization
(MQO) would detect, they both perform lookups into order and
customer by their respective primary keys when processing an up-
dated lineitem record. Existing stream processors will create and
maintain a per-query index for each relation, as these systems are
designed to decouple the execution of dataflow operators. Shared
arrangements, by contrast, allow Q3 and Q5 to share indexes for
these two relations. This can dramatically reduce the time to in-
stall the second query and provide initial results, and also increases
overall system capacity, as multiple queries share in-memory in-
dexes over the same relations. Finally, these benefits come without
restricting update throughput or latency, as they do not change the
data-parallel execution model of the stream processor.

The key challenge for shared arrangements is to balance the op-
portunities of sharing against the need for coordination in the ex-
ecution of the dataflow. In the scenarios we target, logical opera-
tor state is sharded across multiple physical operators; sharing this
state between the operators of multiple queries could require global
synchronization. Arrangements solve this challenge by carefully
structuring how they share data: they (i) hard-partition shared state
between worker threads and move computation (operators) to it,
and (ii) multiversion shared state within workers to allow operators
to interact with it at different times and rates.

Our full results in §6 confirm that shared arrangements translate
into two benefits: (i) queries deploy and produce correct results
immediately without rescanning historical data, and (ii) the same
capacity (stream volume and concurrent queries) can be achieved
with fewer cores and less RAM. For a streaming variant of TPC-
H and a changing graph, shared arrangements also reduce update
latency by 1.3–3× and reduce the memory footprint of the com-
putation by 2–4×, compared to systems that do not share indexed
state. These benefits hold without degrading performance on other
tasks—batch and interactive graph processing, and Datalog-based
program analysis—on which DD outperforms other systems.

Shared arrangements can be applied to many modern stream pro-
cessors, but we implemented them as part of DD. DD has been the
publicly available reference implementation of Differential Data-

flow for several years [1], and is deployed in variety of industrial
settings. For example, VMware Research uses DD to back their
reactive DDlog Datalog engine [3], applied to problems in network
reconfiguration and program analysis. Shared arrangements have
proved key to the system’s success.

Some benefits of shared arrangements are attainable in purely
windowed streaming settings, which ensure that only bounded his-
torical state must be reviewed for new queries. However, shared ar-
rangements provide similar benefits without these restrictions, and
support windowing of data as one of several join idioms. The main
limitation of shared arrangements is that their benefits apply only in
the cases where actual sharing occurs; while sharing appears com-
mon in settings with relational data and queries, bespoke stream
processing computations (e.g., with complex and disjoint window-
ing on relations) may benefit to varying and lesser degrees.

In many ways, shared arrangements are the natural interpreta-
tion of an RDBMS index for data-parallel dataflow, and bring its
benefits to a domain that has until now lacked them.

2. BACKGROUND AND RELATED WORK
Shared arrangements allow queries to share indexed state. Inter-

query state sharing can be framed in terms of (i) what can be shared
between queries, (ii) if this shared state can be updated, and (iii) the
coordination required to maintain it. Figure 2 compares sharing in
different classes of systems.

Relational databases like PostgreSQL [31] excel at answering
queries over schema-defined tables. Indexes help them speed up
access to records in these tables, turning sequential scans into point
lookups. When the underlying records change, the database up-
dates the index. This model is flexible and shares indexes between
different queries, but it requires coordination (e.g., locking [15]).
Scaling this coordination out to many parallel processors or servers
holding shards of a large database has proven difficult, and scalable
systems consequently restrict coordination.

Parallel-processing “big data” systems like MapReduce [16],
Dryad [24], and Spark [39] rely only on coarse-grained coordi-
nation. They avoid indexes and turn query processing into paral-
lel scans of distributed collections. But these collections are im-
mutable: any change to a distributed collection (e.g. a Spark RDD)
requires reconstituting that collection as a new one. This captures a
collection’s lineage and makes all parallelism deterministic, which
eases recovery from failures. Immutability allows different queries
to share the (static) collection for reading [23]. This design aids
scale-out, but makes these systems a poor fit for streaming compu-
tations, with frequent fine-grained changes to the collections.

1794

System class Example Sharing Updates Coordination
RDBMS Postgres Indexed state Record-level Fine-grained

Batch processor Spark Non-indexed collections Whole collection Coarse-grained
Stream processor Flink None Record-level Coarse-grained

Shared arrangements DD Indexed state Record-level Coarse-grained

Figure 2: Sharing of indexed in-memory state, record-level update granularity, and scalability through coarse-grained coordination are not
all found in current systems. Shared arrangements combine these features in a single system.

Stream-processing systems reintroduce fine-grained mutability,
but they lack sharing. Systems like Flink [12], Naiad [28], and No-
ria [19] keep long-lived, indexed intermediate results in memory
for efficient incremental processing, partitioning the computation
across workers for scale-out, data-parallel processing. However,
stream processors associate each piece of state exclusively with a
single operator, since concurrent accesses to this state from multi-
ple operators would race with state mutations. Consequently, these
systems duplicate the state that operators could, in principle, share.

By contrast, shared arrangements allow for fine-grained up-
dates to shared indexes and preserve the scalability of data-parallel
computation. In particular, shared arrangements rely on multi-
versioned indices and data-parallel sharding to allow updates to
shared state without the costly coordination mechanisms of clas-
sic databases. In exchange for scalability and parallelism, shared
arrangements give up some abilities. Unlike indexes in relational
databases, shared arrangements do not support multiple writers,
and are not suitable tools to implement a general transaction pro-
cessor. Because sharing entangles queries that would otherwise
execute in isolation, it can reduce performance and fault isolation
between queries compared to redundant, duplicated state.

It is important to contrast shared arrangements to Multi-Query
Optimization (MQO) mechanisms that identify overlapping sub-
queries. MQO shares state and processing between queries with
common subexpressions, but shared arrangements also benefit dis-
tinct queries that access the same indexes. Both relational and
big data systems can identify common sub-expressions via MQO
and either cache their results or fuse their computation. For exam-
ple, CJoin [11] and SharedDB [18] share table scans between con-
current ad-hoc queries over large, unindexed tables in data ware-
housing contexts, and Nectar [23] does so for DryadLINQ [38]
computations. More recently AStream [25] applied the architec-
ture of SharedDB to windowed streaming computation, and can
share among queries the resources applied to future windows. Tele-
graphCQ [13] and DBToaster [8] share state among continuous
queries, but sequentially process each query without parallelism
or shared indexes. Noria [19] shares computation between queries
over streams, but again lacks shared indexes. In all these systems,
potential sharing must be identified at query deployment time; none
provide new queries with access to indexed historical state. In con-
strast, shared arrangements (like database indices) allow for post-
hoc sharing: new queries can immediately attach to the in-memory
arrangements of existing queries, and quickly start producing cor-
rect outputs that reflect all prior events.

Philosophically closest to shared arrangements is STREAM [9],
a relational stream processor which maintains “synopses” (often
indexes) for operators and shares them between operators. In con-
trast to shared arrangements, STREAM synopses lack features nec-
essary for coarse-grained data-parallel incremental view mainte-
nance: STREAM synopses are not multiversioned and do not sup-
port sharding for data-parallelism. STREAM processes records
one-at-a-time; shared arrangements expose a stream of shared, in-
dexed batches to optimized implementations of the operators.

Shared arrangements allow for operators fundamentally designed
around shared indexes. Their ideas are, in principle, compatible
with many existing stream processors that provide versioned up-
dates (as e.g., Naiad and Flink do) and support physical co-location
of operator shards (as e.g., Naiad and Noria do).

3. CONTEXT AND OVERVIEW
Shared arrangements are designed in the context of streaming

dataflow systems which provide certain core functionality. We enu-
merate the requirements in §3.1, and describe how several popu-
lar systems meet those requirements in §3.2. Our implementation
builds on Timely Dataflow [2], which offers performant implemen-
tations of key abstractions required by shared arrangements §3.5.
With this context, §3.4 shows how shared arrangements support
deployment and continual maintenance of multiple queries against
evolving data with the example of TPC-H Q3 and Q5.

3.1 Time-aware Dataflow
We designed shared arrangements for use in streaming dataflow

computations that implement incrementally maintained queries on
high-rate streams. Data-parallel stream processing systems express
such computations as a dataflow graph whose vertices are opera-
tors, and whose roots constitute inputs to the dataflow. An update
(e.g., an event in stream) arrives at an input and flows along the
graph’s edges into operators. Each operator takes the incoming up-
date, processes it, and emits any resulting derived updates.

Operator State. In processing the update, a dataflow opera-
tor may refer to its state: long-lived information that the operator
maintains across invocations. State allows for efficient incremental
processing, such as keeping a running counter. For many opera-
tors, the state is indexed by a key contained in the input update. For
example, a count operator over tweets grouped by the user who
posted them will access its state by user ID. It is these indexes that
shared arrangements seek to share between multiple operators.

Data Parallelism. Dataflow systems achieve parallel process-
ing by sharding operators whose state is indexed by key. The sys-
tem partitions the key space, and creates operators to independently
process each partition. In the tweet counting example, the system
may partition updates by the user ID, and send each update to an
appropriate operator shard, which maintains an index for its subset
of user IDs. Each operator shard maintains its own private index;
these index shards, taken collectively, represent the same index a
single operator instance would maintain.

Logical Timestamps. Updates flow through a dataflow graph
asynchronously. Concurrent updates may race along the multiple
paths (and even cycles) between dataflow operators potentially dis-
tributed across multiple threads of control, and arrive in different
orders than they were produced. For operators to compute correct
results in the face of this asynchrony, some coordination mecha-
nism is required. Many systems assign a logical timestamp to mes-
sages, either explicitly or implicitly through their scheduling mech-
anisms. At the same time, systems need to inform operators in the

1795

dataflow graphs when each logical time has “passed”, in the sense
that it will not again appear on messages input to the operator. With
logical timestamps on messages and timestamp progress statements
from the system, operators can maintain clear semantics even with
asynchronous, non-deterministic execution.

We use the terminology of Timely Dataflow to describe progress
statements and their consequences. Timely Dataflow reports times-
tamp progress information to each operator input by a frontier: a
set of logical timestamps. We say a time is beyond a frontier when
it is greater than or equal to some element of the frontier. A system
should guarantee that all future timestamps received at an operator
input are beyond the frontier most recently reported by the system,
and that these reports should only advance (i.e., elements of a fron-
tier should each be beyond the prior frontier).

3.2 Time-aware Dataflow Systems
Several dataflow systems are time-aware, either implicitly or ex-

plicitly. We now give examples to relate the concepts for readers
familiar with these systems. Shared arrangements can be imple-
mented in each of these systems, but our implementation will ben-
efit from specific system details, which we explain in §3.5.

Spark Streaming [40] partitions logical time into small batches,
and for each batch evaluates an entire dataflow. Spark Streaming
therefore implicitly provides logical timestamps, with progress in-
dicated by the scheduling of an operator. Spark Streaming opera-
tors do not have long-lived state, but each invocation can read an
input corresponding to its prior state and write an output for its up-
dated state, at greater expense than updating in-memory state.

Flink [12] is a streaming dataflow system that timestamps each
message, and flows control messages, called low watermarks, in-
band with data messages. A ”watermark” for a timestamp t indi-
cates that all messages that follow have timestamps greater or equal
to t. Flink operators can have long-lived state, and can themselves
be the result of sharding a larger dataflow operator.

Timely Dataflow is a model for data-parallel dataflow execu-
tion, introduced by Naiad [28]. Each Timely Dataflow operator is
sharded across all workers, with data exchanged between workers
for dataflow edges where the destination operator requires it. In
Timely Dataflow, all data carries a logical timestamp, and workers
exchange timestamp progress statements out-of-band. Workers in-
dependently determine frontiers for each of their hosted operators.

3.3 Shared Arrangements Overview
The high-level objective of shared arrangements is to share in-

dexed operator state, both within a single dataflow and across mul-
tiple concurrent dataflows, serving concurrent continuous queries.
Shared arrangements substitute for per-instance operator state in
the dataflow, and should appear to an individual operator as if it
was a private copy of its state. Across operators, the shared arrange-
ment’s semantics are identical to maintaining individual copies of
the indexed state in each operator. At the same time, the shared
arrangement permits index reuse between operators that proceed at
a different pace due to asynchrony in the system.

Operators that provide incremental view maintenance, so that
their output continually reflects their accumulated input updates,
offer particularly good opportunities for sharing state. This is be-
cause each stream of updates has one logical interpretation: as an
accumulation of all updates. When multiple such operators want
to build the same state, but vary what subset to read based on the
time t they are currently processing, they can share arrangements
instead. We assume that developers specify their dataflows using
existing interfaces, but that they (or an optimizing compiler) explic-
itly indicate which dataflow state to share among which operators.

Collection trace
(data=(id=342, "Company LLC", "USA"), time=4350, diff=+1)

(data=(id=563, "Firma GmbH", "Deutschland"), time=4355, diff=+1)

(data=(id=225, "Azienda SRL", "Italia"), time=4360, diff=+1)

(data=(id=225, "Azienda SRL", "Italia"), time=6200, diff=-1)

(data=(id=225, "Company Ltd", "UK"), time=6220, diff=+1)

Collection at time t = 4360
(data=(id=342, "Company LLC", "USA"), diff=+1)

(data=(id=563, "Firma GmbH", "Deutschland"), diff=+1)

(data=(id=225, "Azienda SRL", "Italia"), diff=+1)

Collection at time t = 6230
(data=(id=342, "Company LLC", "USA"), diff=+1)

(data=(id=563, "Firma", "Deutschland"), diff=+1)

(data=(id=225, "Company Ltd", "UK"), diff=+1)

Figure 3: Update triples incoming to an operator, a “collection
trace”, and the resulting collection view at different times.

A shared arrangement exposes different versions of the underly-
ing state to different operators, depending on their current time t.
The arrangement therefore emulates, atop physically shared state,
the separate indexes that operators would otherwise keep. Specifi-
cally, shared arrangements maintain state for operators whose state
consists of the input collection (i.e., the cumulative streaming in-
put). Following Differential Dataflow [27] terminology, a collec-
tion trace is the set of update triples (data, time, diff) that define a
collection at time t by the accumulation of those inputs (data, diff)
for which time ≤ t (Figure 3). Each downstream operator selects a
different view based on a different time t of accumulation. Formal
semantics of differential dataflow operators are presented in [7].

An explicit, new arrange operator maintains the multiversioned
state and views, while downstream operators read from their re-
spective views. The contents of these views vary according to cur-
rent logical timestamp frontier at the different operators: for exam-
ple, a downstream operator’s view may not yet contain updates that
the upstream arrange operator has already added into the index
for a future logical time if the operator has yet to process them.

Downstream operators in the same dataflow, and operators in
other dataflows operating in the same logical time domain, can
share the arrangement if they use the same key as the arrange-
ment index. Sharing can extend until the next change of key (an
exchange operator in Differential Dataflow; a “shuffle” in Flink),
an arrangement-unaware operator (e.g., map, which may change the
key), or an operator that explicitly materializes a new collection.

3.4 Shared Arrangements Example
We illustrate a concrete use of shared arrangements with the ex-

ample of TPC-H Q3 and Q5. Recall that in our target setting, an-
alysts author and execute SQL queries against heavily normalized
datasets. Relations in analytics queries are commonly normalized
into “fact” and “dimension” tables, the former containing foreign
keys into the latter. While new facts (e.g., ad impressions, or line
items in TPC-H) are continually added, the dimension tables are
also updated (for example, when a customer or supplier updates
their information). The dimension tables are excellent candidates
for arrangement by primary keys: we expect many uses of these
tables to be joins by primary keys, and each time this happens an
arrangement can be shared rather than reconstructed.

TPC-H Q3 retrieves the ten unshipped orders with the highest
value. This is a natural query to maintain, as analysts work to un-
block a potential backlog of valuable orders. The query derives
from three relations—lineitem, orders, and customer—joined
using the primary keys on orders and customer. A dataflow
would start from lineitem and join against orders and customer

1796

in sequence. TPC-H Q5 lists the revenue volume done through
local suppliers, and derives from three more relations (supplier,
nation, and region). Each relation other than lineitem is joined
using its primary key. A dataflow might start from lineitem and
join against dimension tables in a sequence that makes a foreign
key available for each table before joining it. In both queries, each
dimension table is sharded across workers by their primary key.

The two queries do not have overlapping subqueries—each has
different filters on order dates, for example—but both join against
orders and customer by their primary keys. Deployed on the
same workers, we first apply arrange operators to the orders

and customer relations by their primary keys, shuffling updates
to these relations by their key and resulting in shareable arrange-
ments. In separate dataflows, Q3 and Q5 both have join opera-
tors that take as input the corresponding arrangement, rather than
the streams of updates that formed them. As each arrangement is
pre-sharded by its key, each worker has only to connect its part of
each arrangement to its dataflow operators. Each worker must still
stream in the lineitem data but the time for the query to return re-
sults becomes independent of the sizes of orders and customer.

3.5 System Features Supporting Efficiency
Shared arrangements apply in the general dataflow setting de-

scribed in §3.1, and can benefit any system with those properties.
But additional system properties can make an implementation more
performant. We base our implementation on frameworks (Timely
and Differential Dataflow) with these properties.

Timestamp batches. Timestamps in Timely Dataflow only need
to be partially ordered. The partial order of these timestamps al-
lows Timely Dataflow graphs to avoid unintentional concurrency
blockers, like serializing the execution of rounds of input (Spark)
or rounds of iteration (Flink). By removing these logical concur-
rency blockers, the system can retire larger groups of logical times
at once, and produce larger batches of updates. This benefits DD
because the atoms of shared state can increase in granularity, and
the coordination between the sharing sites can decrease substan-
tially. Systems that must retire smaller batches of timestamps must
coordinate more frequently, which can limit their update rates.

Multiversioned state. Differential Dataflow has native support
for multiversioned state. This allows it to work concurrently on
any updates that are not yet beyond the Timely Dataflow frontier,
without imposing a serial execution order on updates. Multiver-
sioned state benefits shared arrangements because it decouples the
execution of the operators that share the state. Without multiver-
sioned state, operators that share state must have their executions
interleaved for each logical time, which increases coordination.

Co-scheduling. Timely Dataflow allows each worker to host an
unbounded number of dataflow operators, which the worker then
schedules. This increases the complexity of each worker com-
pared to a system with one thread per dataflow operator, but it in-
creases the efficiency in complex dataflows with more operators
than system threads. Co-scheduling benefits shared arrangements
because the state shared between operators can be partitioned be-
tween worker threads, who do not need mutexes or locks to manage
concurrency. Systems that cannot co-schedule operators that share
state must use inter-thread or inter-process mechanisms to access
shared state, increasing complexity and the cost.

Incremental Updates. Differential dataflow operators are de-
signed to provide incremental view maintenance: their output up-
dates continually reflects their accumulated input updates. This re-
striction from general-purpose stream processing makes it easier

arrange
triples

 Trace

 Batch
 Batch
 Batch
 Batch
 Batch

batches

 Trace handle

 Trace handle

count

 Trace handle

exchange

import
batches

distinct

 Trace handle

dataflow 2

dataflow 1

Figure 4: A worker-local overview of arrangement. Here the ar-
rangement is constructed for the count operator, but is shared with
a distinct operator in another dataflow. Each other worker per-
forms the same collective data exchange, followed by local batch
creation, trace maintenance, and sharing.

to compose dataflows based on operators with clear sharing se-
mantics. Systems that provide more general interfaces, including
Timely Dataflow, push a substantial burden on to the user to iden-
tify operators that can share semantically equivalent state.

4. IMPLEMENTATION
Our implementation of a shared arrangement consists of three

inter-related components:
1. the trace, a list of immutable, indexed batches of updates that

together make up the multiversioned index;
2. an arrange operator, which mints new batches of updates,

and writes them to and maintains the trace; and
3. read handles, through which arrangement-aware operators

access the trace.
Each shared arrangement has its updates partitioned by the key

of its index, across the participating dataflow workers. This same
partitioning applies to the trace, the arrange operator, and the read
handles, each of whose interactions are purely intra-worker; each
worker maintains and shares its shard of the whole arrangement.
The only inter-worker interaction is the pre-shuffling of inbound
updates which effects the partition.

Figure 4 depicts a dataflow which uses an arrangement for the
count operator, which must take a stream of (data, time, diff) up-
dates and report the changes to accumulated counts for each data.
This operation can be implemented by first partitioning the stream
among workers by data, after which each worker maintains an in-
dex from data to its history, a list of (time, diff). This same indexed
representation is what is needed by the distinct operator, in a
second dataflow, which can re-use the same partitioned and indexed
arrangement rather than re-construct the arrangement itself.

4.1 Collection traces
As in Differential Dataflow, a collection trace is the set of update

triples (data, time, diff) that define a collection at any time t by the
accumulation of those (data, diff) for which time ≤ t. A collec-
tion trace is initially empty and is only revealed as a computation
proceeds, determined either as an input to the dataflow or from the
output of another dataflow operator. Although update triples arrive
continually, an arrange operator learns that updates for a subset of
times are complete only as the Timely Dataflow frontier advances.

1797

In our design and implementation a collection trace is logically
equivalent to an append-only list of immutable batches of update
triples. Each batch is described by two frontiers of times, lower and
upper, and the batch contains exactly those updates whose times
are beyond the lower frontier and not beyond of the upper frontier.
The upper frontier of each batch matches the lower frontier of the
next batch, and the growing list of batches reports the developing
history of confirmed updates triples. A batch may be empty, which
indicates that no updates exist in the indicated range of times.

To support efficient navigation of the collection trace, each batch
is indexed by its data to provide random access to the history of
each data (the set of its (time, diff) pairs). Background merge com-
putation (performed by the arrange operator) ensures that at any
time, a trace consists of logarithmically many batches, which en-
sures that operators can efficiently navigate the union of all batches.

Each reader of a trace holds a trace handle, which acts as a cur-
sor that can navigate the multiversioned index. Each handle has an
associated frontier, and ensures that it provides correct views of the
index for any times beyond this frontier. Trace readers advance the
frontier of their trace handle when they no longer require certain
historical distinctions, which allows the arrange operator to com-
pact batches by coalescing updates at older times, and to maintain
a bounded memory footprint as a collection evolves.

4.2 The arrange operator
The arrange operator receives update triples, and must both cre-

ate new immutable indexed batches of updates as its input frontier
advances and compactly maintain the collection trace without vio-
lating its obligations to readers of the trace.

At a high level, the arrange operator buffers incoming update
triples until the input frontier advances, at which point it extracts
and indexes all buffered updates not beyond the newly advanced
input frontier. A shared reference to this new immutable batch is
both added to the trace and emitted as output from the arrange

operator. When adding the batch to the trace, the operator may
need to perform some maintenance to keep the trace representation
compact and easy to navigate.

Batch implementation. Each batch is immutable, but indexed
to provide efficient random access. Our default implementation
sorts update triples (data, time, diff) first by data and then by time,
and stores the fields each in its own column. This balances the
performance of read latency, read throughput, and merge through-
put. We have other batch implementations for specific domains
(e.g., graphs), and new user implementations can be added without
changing the surrounding superstructure. Most OLTP index struc-
tures are more general than needed for our immutable batches, but
many of their data layout ideas could still be imported.

Amortized trace maintenance. The maintenance work of merg-
ing batches in a trace is amortized over the introduced batches, so
that no batch causes a spike in computation (and a resulting spike in
latency). Informally, the operator performs the same set of merges
as would a merge sort applied to the full sequence of batches, but
only as the batches become available. Additionally, each merge is
processed in steps: for each new batch, we perform work propor-
tional to the batch size on each incomplete merge. A higher con-
stant of proportionality leads to more eager merging, improving the
throughput of the computation, whereas a lower constant improves
the maximum latency of the computation.

Consolidation. As readers of the trace advance through time,
historical times become indistinguishable and updates at such times
to the same data can be coalesced. The logic to determine which

times are indistinguishable is present in Naiad’s prototype imple-
mentation [28], but the mathematics of compaction have not been
reported previously. Our extended technical report [26] contains
proofs of optimality and correctness.

Shared references. Both immutable batches and traces them-
selves are reference counted. Importantly, the arrange operator
holds only a “weak” reference to its trace, and if all readers of
the trace drop their handles the operator will continue to produce
batches but cease updating the trace. This optimization is crucial
for competitive performance in computations that use both dynamic
and static collections.

4.3 Trace handles
Read access to a collection trace is provided through a trace han-

dle. A trace handle provides the ability to import a collection into
a new dataflow, and to manually navigate a collection, but both
only “as of” a restricted set of times. Each trace handle maintains
a frontier, and guarantees only that accumulated collections will be
correct when accumulated to a time beyond this frontier. The trace
itself tracks outstanding trace handle frontiers, which indirectly in-
form it about times that are indistinguishable to all readers (and
which can therefore be coalesced).

Many operators (including join and group) only need access
to their accumulated input collections for times beyond their input
frontiers. As these frontiers advance, the operators are able to ad-
vance the frontier on their trace handles and still function correctly.
The join operator is even able to drop the trace handle for an input
when its other input ceases changing. These actions, advancing the
frontier and dropping trace handles, provide the arrange operator
with the opportunity to consolidate the representation of its trace,
and in extreme cases discard it entirely.

A trace handle has an import method that, in a new dataflow,
creates an arrangement exactly mirroring that of the trace. The im-
ported collection immediately produces any existing consolidated
historical batches, and begins to produce newly minted batches.
The historical batches reflect all updates applied to the collection,
either with full historical detail or coalesced to a more recent times-
tamp, depending on whether the handle’s frontier has been ad-
vanced before importing the trace. Computations require no special
logic or modes to accommodate attaching to in-progress streams;
imported traces appear indistinguishable to their original streams,
other than their unusually large batch sizes and recent timestamps.

5. ARRANGEMENT-AWARE OPERATORS
Operators act on collections, which can be represented either as

a stream of update triples or as an arrangement. These two rep-
resentations lead to different operator implementations, where the
arrangement-based implementations can be substantially more effi-
cient than traditional record-at-a-time operator implementations. In
this section we explain arrangement-aware operator designs, start-
ing with the simplest examples and proceeding to the more complex
join, group, and iterate operators.

5.1 Key-preserving stateless operators
Several stateless operators are “key-preserving”: they do not

transform their input data to the point that it needs to be re-arranged.
Example operators are filter, concat, negate, and the itera-
tion helper methods enter and leave. These operators are imple-
mented as streaming operators for streams of update triples, and as
wrappers around arrangements that produce new arrangements. For
example, the filter operator results in an arrangement that ap-
plies a supplied predicate as part of navigating through a wrapped

1798

inner arrangement. This design implies a trade-off, as an aggres-
sive filter may reduce the data volume to the point that it is cheap
to maintain a separate index, and relatively ineffective to search in
a large index only to discard the majority of results. The user con-
trols which implementation to use: they can filter an arrangement,
or reduce the arrangement to a stream of updates and then filter it.

5.2 Key-altering stateless operators
Some stateless operators are “key-altering”, in that the indexed

representation of their output has little in common with that of their
input. One obvious example is the map operator, which may per-
form arbitrary record-to-record transformations. These operators
always produce outputs represented as streams of update triples.

5.3 Stateful operators
Differential Dataflow’s stateful operators are data-parallel: their

input data have a (key, val) structure, and the computation acts in-
dependently on each group of key data. This independence is what
allows Naiad and similar systems to distribute operator work across
otherwise independent workers, which can then process their work
without further coordination. At a finer scale, this independence
means that each worker can determine the effects of a sequence
of updates on a key-by-key basis, resolving all updates to one key
before moving to the next, even if this violates timestamp order.

5.3.1 The join operator
Our join operator takes as inputs batches of updates from each

of its arranged inputs. It produces any changes in outputs that re-
sult from its advancing inputs, but our implementation has several
variations from a traditional streaming hash-join.

Trace capabilities. The join operator is bi-linear, and needs only
each input trace in order to respond to updates from the other input.
As such, the operator can advance the frontiers of each trace handle
by the frontier of the other input, and it can drop each trace handle
when the other input closes out. This is helpful if one input is static,
as in iterative processing of static graphs.

Alternating seeks. Join can receive input batches of substantial
size, especially when importing an existing shared arrangement.
Naively implemented, we might require time linear in the input
batch sizes. Instead, we perform alternating seeks between the cur-
sors for input batches and traces of the other input: when the cursor
keys match we perform work, and if the keys do not match we seek
forward for the larger key in the cursor with the smaller key. This
pattern ensures that we perform work at most linear in the smaller
of the two sizes, seeking rather than scanning through the cursor of
the larger trace, even when it is supplied as an input batch.

Amortized work. The join operator may produce a significant
amount of output data that can be reduced only once it crosses an
exchange edge for a downstream operator. If each input batch is im-
mediately processed to completion, workers may be overwhelmed
by the output, either buffered for transmission or (as in our proto-
type) sent to destination workers but buffered at each awaiting re-
duction. Instead, operators respond to input batches by producing
“futures”, limited batches of computation that can each be executed
until sufficiently many outputs are produced, and then suspend. Fu-
tures make copies of the shared batch and trace references they use,
which avoids blocking state maintenance for other operators.

5.3.2 The group operator
The group operator takes as input an arranged collection with

data of the form (key, val) and a reduction function from a key and
list of values to a list of output values. At each time the output

might change, we reform the input and apply the reduction func-
tion, and compare the results to the reformed output to determine if
output changes are required.

Perhaps surprisingly, the output may change at times that do not
appear in the input (as the least upper bound of two times does not
need to be one of the times). Hence, the group operator tracks a list
of pairs (key, time) of future work that are required even if we see
no input updates for the key at that time. For each such (key, time)
pair, the group operator accumulates the input and output for key
at time, applies the reduction function to the input, and subtracts
the accumulated output to produce any corrective output updates.

Output arrangements. The group operator uses a shared ar-
rangement for its output, to efficiently reconstruct what it has pre-
viously produced as output without extensive re-invocation of the
supplied user logic (and to avoid potential non-determinism therein).
This provides the group operator the opportunity to share its output
trace, just as the arrange operator does. It is common, especially
in graph processing, for the results of a group to be immediately
joined on the same key, and join can re-use the same indexed rep-
resentation that group uses internally for its output.

5.4 Iteration
The iteration operator is essentially unchanged from Naiad’s Dif-

ferential Dataflow implementation. We have ensured that arrange-
ments can be brought in to iterative scopes from outer scopes using
only an arrangement wrapper, which allows access to shared ar-
rangements in iterative computations.

6. EVALUATION
We evaluate DD on end-to-end workloads to measure the impact

of shared arrangements with regards to query installation latency,
throughput, and memory use (§6.1). We then use microbench-
marks with DD to characterize our design’s performance and the
arrangement-aware operator implementations (§6.2). Finally, we
evaluate DD on pre-existing benchmarks across multiple domains
to check if DD maintains high performance compared to other peer
systems with and without using shared arrangements (§6.3).

Implementation. We implemented shared arrangements as part
of DD, our stream processor. DD is our reference Rust implemen-
tation of Differential Dataflow [27] with shared arrangements. It
consists of a total of about 11,700 lines of code, and builds on an
open-source implementation of Timely Dataflow [2].

The arrange operator is defined in terms of a generic trace type,
and our amortized merging trace is defined in terms of a generic
batch type. Rust’s static typing ensure that developers cannot incor-
rectly mix ordinary update triples and streams of arranged batches.

Setup. We evaluate DD on a four-socket NUMA system with
four Intel Xeon E5-4650 v2 CPUs, each with 10 physical cores
and 512 GB of aggregate system memory. We compiled DD with
rustc 1.33.0 and the jemalloc [5] allocator. DD does distribute
across multiple machines and supports sharding shared arrange-
ments across them, but our evaluation here is restricted to multi-
processors. When we compare against other systems, we rely on
the best, tuned measurements reported by their authors, but com-
pare DD only if we are executing it on comparable or less powerful
hardware than the other systems had access to.

6.1 End-to-end performance impact
We start with an evaluation of shared arrangements in DD, in

two domains with interactively issued queries against incremen-
tally updated data sources. We evaluate the previously described

1799

streaming TPC-H setup, which windows the lineitem relation,
as well as a recent interactive graph analytics benchmark. For the
relational queries, we would hope to see shared arrangements re-
duce the installation latency and memory footprint of new queries
when compared to an instance of DD that processes queries inde-
pendently. For the graph tasks, we would hope that shared arrange-
ments reduce the update and query latencies at each offered update
rate, increase the peak update rate, and reduce the memory foot-
print when compared to an instance of DD that processes queries
indepedently. In both cases, if shared arrangements work as de-
signed, they should increase the capacity of DD on fixed resources,
reducing the incremental costs of new queries.

6.1.1 TPC-H
The TPC-H [6] benchmark schema has eight relations, which

describe order fulfillment events, as well as the orders, parts, cus-
tomers, and suppliers they involve, and the nations and regions in
which these entities exist. Of the eight relations, seven have mean-
ingful primary keys, and are immediately suitable for arrangement
(by their primary key). The eighth relation is lineitem, which
contains fulfillment events, and we treat this collection as a stream
of instantaneous events and do not arrange it.

TPC-H contains 22 “data warehousing” queries, meant to be run
against large, static datasets. We consider a modified setup where
the eight relations are progressively loaded [29], one record at a
time, in a round-robin fashion among the relations (at scale factor
10).1 To benchmark the impact of shared arrangements, we inter-
actively deploy and retire queries while we load the eight relations.
Each query has access to the full current contents of the seven keyed
relations that we maintain shared arrangements for. By contrast,
fulfillment events are windowed and each query only observes the
fulfillment events from when it is deployed until when it is retired,
implementing a “streaming” rather than a “historic” query. This
evaluates the scenario presented in §1, where analysts interactively
submit queries. We report performance for ten active queries.

The 22 TPC-H queries differ, but broadly either derive from the
windowed lineitem relation and reflect only current fulfillments,
or they do not derive from lineitem and reflect the full accumu-
lated volume of other relations. Without shared arrangements, ei-
ther type of query requires building new indexed state for the seven
non-lineitem relations. With shared indexes, we expect queries
of the first type to be quick to deploy, as their outputs are initially
empty. Queries of the second type should take longer to deploy in
either case, as their initial output depends on many records.

Query latency. To evaluate query latency, we measure the time
from the start of query deployment until the initial result is ready
to be returned. Query latency is significant because it determines
whether the system delivers an interactive experience to human
users, but also to dashboards that programmatically issue queries.

Figure 1a (shown in §1) reports the distribution of query installa-
tion latencies, with and without shared arrangements. With shared
arrangements, most queries (those that derive from lineitem) de-
ploy and begin updating in milliseconds; the five queries that do not
derive from lineitem are not windowed and perform non-trivial
computation to produce their initial correct answer: they take be-
tween 100ms and 1s, depending on the sizes of the relations they
use. Without shared arrangements, almost all queries take 1–2 sec-
onds to install as they must create a reindexed copy of their inputs.
Q1 and Q6 are exceptions, since they use no relations other than

1We focus on shared arrangements here, but DD matches or out-
performs DBToaster [29] even when queries run in isolation [26].

lineitem, and thus avoid reindexing any inputs; shared arrange-
ments cannot improve the installation latency of these queries. We
conclude that shared arrangements substantially reduce the major-
ity of query installation latencies, often by several orders of mag-
nitude. The improvement to millisecond latency brings responses
within interactive timescales, which helps improve productivity of
human analysts and intervential latency for dependent software.

Update latency. Once a query is installed, DD continually up-
dates its results as new lineitem records arrive. To evaluate the
update latency achieved, we record the amount of time required to
process each round of input data updates after query installation.

Figure 1b presents the distribution of these times, with and with-
out shared arrangements, as a complementary cumulative distribu-
tion function (CCDF). The CCDF visualization—which we will
use repeatedly—shows the “fraction of times with latency greater
than” and highlights the tail latencies towards the bottom-right side
of the plot. We see a modest but consistent reduction in processing
time (about 2×) when using shared arrangements, which eliminate
redundant index maintenance work. There is a noticeable tail in
both cases, owed to two expensive queries that involve inequality
joins (Q11 and Q22) and which respond slowly to changes in their
inputs independently of shared arrangements. Shared arrangements
yield lower latencies and increase update throughput.

Memory footprint. Since shared arrangements eliminate dupli-
cate copies of index structures, we would expect them to reduce the
dataflow’s memory footprint. To evaluate the memory footprint, we
record the resident set size (RSS) as the experiment proceeds.

Figure 1c presents the timelines of the RSS with and without
shared arrangements, and shows a substantial reduction (2–3×) in
memory footprint when shared arrangements are present. With-
out shared arrangements, the memory footprint also varies substan-
tially (between 60 and 120 GB) as the system creates and destroys
indexes for queries that arrive and depart, while shared arrange-
ments remain below 40 GB. Consequently, with shared arrange-
ments, a given amount of system memory should allow for more
active queries. In this experiment, ten concurrent queries are in-
stalled; workloads with more concurrent queries may have more
sharing opportunities and achieve further memory economies.

6.1.2 Interactive graph queries
We further evaluate DD with an open-loop experiment issuing

queries against an evolving graph. This experiment issues the four
queries used by Pacaci et al. [30] to compare relational and graph
databases: point look-ups, 1-hop look-ups, 2-hop look-ups, and 4-
hop shortest path queries (shortest paths of length at most four). In
the first three cases, the query argument is a graph node identifier,
and in the fourth case it is a pair of identifiers.

We implement each of these queries as Differential Dataflows
where the query arguments are independent collections that may
be modified to introduce or remove specific query arguments. This
query transformation was introduced in NiagaraCQ [14] and is com-
mon in stream processors, allowing them to treat queries as a stream-
ing input. The dataflows depend on two arrangements of the graph
edges, by source and by target; they are the only shared state among
the queries.

We use a graph with 10M nodes and 64M edges, and update the
graph and query arguments of interest at experiment-specific rates.
Each graph update is the addition or removal of a random graph
edge, and each query update is the addition or removal of a random
query argument (queries are maintained while installed, rather than
issued only once). All experiments evenly divide the query updates
between the four query types.

1800

10-4

10-3

10-2

10-1

100

1ms 10ms 100ms 1 s

co
m
pl
em
en
ta
ry

 c
df

latency

not shared
shared

p95

p99

(a) Latencies for query mix.

1ms

10ms

100ms

1 s

10 s

100 s

104 105 106

p9
9
la
te
nc
y

offered load (tuples/sec)

not shared
shared

(b) 99th percentile latency at given offered load.

1 GB

10 GB

40 GB

 0 1000 2000 3000

not shared

shared

re
si
de
nt

 s
et

 s
iz
e

elapsed seconds

(c) Resident set size.

Figure 5: Shared arrangements reduce query latency, increase the load handled, and reduce the memory footprint of interactive graph queries.
The setup uses 32 workers, and issues 100k updates/sec and 100k queries/sec against a 10M node/64M edge graph in (a) and (c), while (b)
varies the load. Note the log10–log10 scales in (a) and (b), and the log10-scale y-axis in (c).

System # look-up one-hop two-hop 4-path
Neo4j 32 9.08ms 12.82ms 368ms 21ms
Postgres 32 0.25ms 1.4ms 29ms 2242ms
Virtuoso 32 0.35ms 1.23ms 11.55ms 4.81ms
DD, 100 32 0.64ms 0.92ms 1.28ms 1.89ms
DD, 101 32 0.81ms 1.19ms 1.65ms 2.79ms
DD, 102 32 1.26ms 1.79ms 2.92ms 8.01ms
DD, 103 32 5.71ms 6.88ms 10.14ms 72.20ms

Figure 6: On comparable 10M node/64M edge graphs, DD is
broadly competitive with the average graph query latencies of
three systems evaluated by Pacaci et al. [30], and scales to higher
throughput using batching. The DD batch size is the number of
concurrent queries per measurement.

Query latency. We run an experiment with a constant rate of
100,000 query updates per second, independently of how quickly
DD responds to them. We would hope that DD responds quickly,
and that shared arrangements of the graph structure should help
reduce the latency of query updates, as DD must apply changes to
one shared index rather than several independent ones.

Figure 5a reports the latency distributions with and without a
shared arrangement of the graph structure, as a complementary
CDF. Sharing the graph structure results in a 2–3× reduction in
overall latency in the 95th and 99th percentile tail latency (from
about 150ms to about 50ms). In both cases, there is a consistent
baseline latency, proportional to the number of query classes main-
tained. Shared arrangements yield latency reductions across all
query classes, rather than, e.g., imposing the latency of the slow-
est query on all sharing dataflows. This validates that queries can
proceed at different rates, an important property of our shared ar-
rangement design.

Update throughput. To test how DD’s shared arrangements
scale with load, we next scale the rates of graph updates and query
changes up to two million changes per second each. An ideal result
would show that sharing the arranged graph structure consistently
reduces the computation required, thus allowing us to scale to a
higher load using fixed resources.

Figure 5b reports the 99th percentile latency with and without
a shared graph arrangement, as a function of offered load and on
a log–log scale. The shared configuration results in reduced la-
tencies at each offered load, and tolerates an increased maximum
load at any target latency. At the point of saturating the server
resources, shared arrangements tolerate 33% more load than the

unshared setup, although this number is much larger for specific
latencies (e.g., 5× at a 20ms target). We note that the absolute
throughputs achieved in this experiment exceed the best throughput
observed by Pacaci et al. (Postgres, at 2,000 updates per second) by
several orders of magnitude, further illustrating the benefits of par-
allel dataflow computation with shared arrangements.

Memory footprint. Finally, we consider the memory footprint
of the computation. There are five uses of the graph across the
four queries, but also per-query state that is unshared, so we would
expect a reduction in memory footprint of somewhat below 4×.

Figure 5c reports the memory footprint for the query mix with
and without sharing, for an hour-long execution. The memory
footprint oscillates around 10 GB with shared arrangements, and
around 40 GB (4× larger) without shared arrangements. This illus-
trates that sharing state affords memory savings proportional to the
number of reuses of a collection.

6.1.3 Comparison with other systems
Pacaci et al. [30] evaluated relational and graph databases on

the same graph queries. DD is a stream processor rather than a
database and supports somewhat different features, but its perfor-
mance ought to be comparable to the databases’ for these queries.
We stress, however, that our implementation of the queries as Dif-
ferential Dataflows requires that queries be expressed as prepared
statements, a restriction the other systems do not impose.

We ran DD experiments with a random graph comparable to the
one used in Pacaci et al.’s comparison. Figure 6 reports the average
latency to perform and then await a single query in different sys-
tems, as well as the time to perform and await batches of increasing
numbers of concurrent queries for DD. While DD does not provide
the lowest latency for point look-ups, it does provides excellent la-
tencies for other queries and increases query throughput with batch
size.

6.2 Design evaluation
We now perform microbenchmarks of the arrange operator, to

evaluate its response to changes in load and resources. In all bench-
marks, we apply an arrange operator to a continually changing
collection of 64-bit identifiers (with 64-bit timestamp and signed
difference). The inputs are generated randomly at the worker, and
exchanged (shuffled) by key prior to entering the arrangement. We
are primarily interested in the distribution of response latencies, as
slow edge-case behavior of an arrangement would affect this statis-
tic most. We report all latencies as complementary CDFs to get
high resolution in the tail of the distribution.

1801

10-4

10-3

10-2

10-1

100

10us
100us

1ms 10ms
100ms

1 s

co
m
pl
em
en
ta
ry

 c
df

latency

tuples/sec
1000000
500000
250000
125000
62500
31250

p95

p99

(a) Varying offered load with 1 worker.

10-4

10-3

10-2

10-1

100

10us
100us

1ms 10ms
100ms

1 s

co
m
pl
em
en
ta
ry

 c
df

latency

workers
1
2
4
8
16
32

p95

p99

(b) Varying workers with fixed load.

10-4

10-3

10-2

10-1

100

10us
100us

1ms 10ms
100ms

1 s

co
m
pl
em
en
ta
ry

 c
df

latency

workers
1
2
4
8
16
32

p95

p99

(c) Varying workers and offered load

0

50M

100M

150M

 1 4 8 16 32

th
ro
ug
hp
ut

 (
re
co
rd
s/
s)

workers

batch formation
trace maintenance
count

(d) Task throughput, varying workers.

10-4

10-3

10-2

10-1

100

10us
100us

1ms 10ms
100ms

1 s

co
m
pl
em
en
ta
ry

 c
df

latency

1, lazy
1, default
1, eager
32, lazy
32, default
32, eager

p95

p99

(e) Amortized merging levels.

10-4

10-3

10-2

10-1

100

10us
100us

1ms 10ms
100ms

1 s

co
m
pl
em
en
ta
ry

 c
df

latency

size
20

28

216

217

218

219

220

p95

p99

(f) Join with pre-arranged collection.

Figure 7: Microbenchmarks of our shared arrangement design suggest that our design scales well with growing parallelism ((b)–(d)) and
load ((a), (c)–(d)), and that the key ideas of amortized merging ((e)) and proportional work across inputs ((f)) are crucial to achieving low
update latencies. (b) and (e) generate a fixed load of 1M input records per second.

Varying load. As update load varies, our shared arrangement de-
sign should trade latency for throughput until equilibrium is reached.
Figure 7a reports the latency distributions for a single worker as we
vary the number of keys and offered load in an open-loop harness,
from 10M keys and 1M updates per second, downward by factors
of two. Latencies drop as load decreases, down to the test harness’s
limit of one millisecond. This demonstrates that arrangements are
suitable for both low-latency and high-throughput.

Strong scaling. More parallel workers should allow faster main-
tenance of a shared arrangement, as the work to update it paral-
lelizes, unless coordination frequency interferes. Figure 7b reports
the latency distributions for an increasing numbers of workers un-
der a fixed load of 10M keys and 1M updates per second. As the
number of workers increases, latencies decrease, especially in the
tail of the distribution: for example, the 99th percentile latency of
500ms with one worker drops to 6ms with eight workers.

Weak scaling. Varying the number of workers while proportion-
ately increasing the number of keys and offered load would ideally
result in constant latency. Figure 7c shows that the latency distribu-
tions do exhibit increased tail latency, as the act of data exchange at
the arrangement input becomes more complex. However, the laten-
cies do stabilize at 100–200ms as the number of workers and data
increase proportionately.

Throughput scaling. An arrangement consists of several sub-
components: batch formation, trace maintenance, and e.g., a main-
tained count operator. To evaluate throughput scaling, we issue
batches of 10,000 updates at each worker, repeated as soon as each
batch is accepted, rather than from a rate-limited open-loop har-
ness. Figure 7d reports the peak throughputs as the number of cores
(and thus, workers and arrangement shards) grows. All components
scale linearly to 32 workers.

Amortized merging. The amortized merging strategy is cru-
cial for shared arrangements to achieve low update latency, but its
efficacy depends on setting the right amortization coefficients. Ea-
ger merging performs the least work overall but can increase tail
latency. Lazy merging performs more work overall, but should re-
duce the tail latency. Ideally, DD’s default would pick a good trade-
off between common-case and tail latencies at different scales.

Figure 7e reports the latency distributions for one and 32 work-
ers, each with three different merge amortization coefficients: the
most eager, DD’s default, and the most lazy possible. For a single
worker, lazier settings have smaller tail latencies, but are more of-
ten in that tail. For 32 workers, the lazier settings are significantly
better, because eager strategies often cause workers to stall waiting
for a long merge at one worker. The lazier settings are critical for
effective strong scaling, where eager work causes multiple work-
ers to seize up, which matches similar observations about garbage
collection at scale [20]. DD’s default setting achieves good perfor-
mance at both scales.

Join proportionality. Our arrangement-aware join operator is
designed to perform work proportional to the size of the smaller
of the incoming pre-arranged batch and the state joined against
(§5.3.1). We validate this by measuring the latency distributions to
install, execute, and complete new dataflows that join collections
of varying size against a pre-existing arrangement of 10M keys.

The varying lines in Figure 7f demonstrate that the join work
is indeed proportional to the small collection’s size, rather than to
the (constant) 10M arranged keys. This behavior is not possible
in a record-at-a-time stream processor, which must at least exam-
ine each input record. This behavior is possible in DD only be-
cause the join operator receives as input pre-arranged batches of
updates. Query deployment in the TPC-H workload would not be
fast without this property.

1802

Query statistic tree-11 grid-150 gnp1
tc(x,?) increm., median 2.56ms 346.28ms 18.29ms

incremental, max 9.05ms 552.79ms 25.40ms
full eval. (no SA) 0.08s 6.18s 9.45s

tc(?,x) increm., median 15.63ms 320.83ms 15.58ms
incremental, max 18.01ms 541.76ms 23.84ms

full evaluation 0.08s 6.18s 9.45s
sg(x,?) increm., median 68.34ms 1075.11ms 20.08ms

incremental, max 95.66ms 2285.11ms 26.56ms
full eval. (no SA) 56.45s 0.60s 19.85s

Figure 8: DD enables interactive computation of three Datalog
queries (32 workers, medians and maximums over 100 queries).
Full evaluation is required without shared arrangements.

6.3 Baseline performance on reference tasks
We also evaluate DD against established prior work to demon-

strate that DD is competitive with and occasionally better than peer
systems. Importantly, these established benchmarks are tradition-
ally evaluated in isolation, and are rarely able to demonstrate the
benefits of shared arrangements. Instead, this evaluation is primar-
ily to demonstrate that DD does not lose baseline performance as
compared to other state-of-the-art systems. Most but not all of the
peer systems in this section do maintain private indexed data in op-
erators; this decision alone accounts for some of the gaps.

6.3.1 Datalog workloads
Datalog is a relational language in which queries are sets of

recursively defined productions, which are iterated from a base
set of records until no new records are produced. Unlike graph
computation, Datalog queries tend to produce and work with sub-
stantially more records than they are provided as input. Several
shared-memory systems for Datalog exist, including LogicBlox,
DLV [4], DeALS [37], and several distributed systems have re-
cently emerged, including Myria [35], SociaLite [32], and BigDat-
alog [33]. At the time of writing, only LogicBlox supports decre-
mental updates to Datalog queries, using a technique called “trans-
action repair” [34]. DD supports incremental and decremental up-
dates to Datalog computations and interactive top-down queries.

Top-down (interactive) evaluation. Datalog users commonly
specify values in a query, such as reach(“david”, ?), to request
nodes reachable from a source node. The “magic set” transfor-
mation [10] rewrites such queries as bottom-up computations with
a new base relation that seeds the bottom-up derivation with query
arguments; the rewritten rules derive facts only with the participa-
tion of some seed record. DD, like some interactive Datalog envi-
ronments, performs this work against maintained arrangements of
the non-seed relations. We would expect this approach to be much
faster than full evaluation, which batch processors that re-index the
non-seed relations (or DD without shared arrangements) require.

Figure 8 reports DD’s median and maximum latencies for 100
random arguments for three interactive queries on three widely-
used benchmark graphs, and the times for full evaluation of the
related query, using 32 workers. DD’s arrangements mostly reduce
runtimes from seconds to milliseconds. The slower performance
for sg(x,?) on grid-150 reveals that the transformation is not always
beneficial, a known problem with the magic set transform.

Bottom-up (batch) evaluation. In our extended technical re-
port [26], we compare DD to distributed and shared-memory Dat-
alog engines, using their benchmarks and datasets (“transitive clo-

System cores linux psql httpd
SociaLite 4 OOM OOM 4 hrs
Graspan 4 713.8 min 143.8 min 11.3 min
RecStep 20 430s 359s 74s
DD 1 65.8s 32.0s 8.9s

(a) dataflow query, DD on laptop hardware.

System cores linux psql httpd
RecStep 20 430s 359s 74s
DD 2 53.9s 25.5s 7.5s
DD 4 34.8s 16.3s 4.7s
DD 8 24.4s 11.2s 3.2s
DD 16 20.7s 8.7s 2.5s

(b) dataflow query, DD on server hardware.

System cores linux (kernel only) psql httpd
DD (med) 1 1.05ms 143ms 18.1ms
DD (max) 1 7.34ms 1.21s 201ms

(c) Times to remove each of the first 1,000 null assignments from the inter-
active top-down dataflow query.

Figure 9: DD performs well for Graspan [36] dataflow query on
three graphs. SociaLite and Graspan results from Wang et al. [36];
RecStep results from Fan et al. [17]; OOM: out of memory.

sure” and “same generation” on trees, grids, and random graphs).
Our results show that DD generally outperforms the distributed sys-
tems and is comparable to the best shared-memory engine (DeALS).

6.3.2 Program Analysis
Graspan [36] is a system built for static analysis of large code

bases, created in part because existing systems were unable to han-
dle non-trivial analyses at the sizes required. Wang et al. bench-
marked Graspan for two program analyses, dataflow and points-
to [36]. The dataflow query propagates null assignments along
program assignment edges, while the more complicated points-to
analysis develops a mutually recursive graph of value flows, and
memory and value aliasing. We developed a full implementation of
Graspan—query parsing, dataflow construction, input parsing and
loading, dataflow execution—in 179 lines of code on top of DD.

Graspan is designed to operate out-of-core, and explicitly man-
ages its data on disk. We therefore report DD measurements from
a laptop with only 16 GB of RAM, a limit exceeded by the points-
to analysis (which peaks around 30 GB). The sequential access in
this analysis makes standard OS swapping mechanisms sufficient
for out-of-core execution, however. To verify this, we modify the
computation to use 32-bit integers, reducing the memory footprint
below the RAM size, and find that this optimized version runs only
about 20% faster than the out-of-core execution.

Figure 9a and Figure 10a show the running times reported by
Wang et al. compared to those DD achieves. For both queries, we
see a substantial improvement (from 24× to 650×). The points-to
analysis is dominated by the determination of a large relation (value
aliasing) that is used only once. This relation can be optimized out,
as value aliasing is eventually restricted by dereferences, and this
restriction can be performed before forming all value aliases. This
optimization results in a more efficient computation, but one that
reuses some relations several (five) times; the benefits of the im-
proved plan may not be realized by systems without shared arrange-
ments. Figure 10a reports the optimized running times as (Opt).

In Figure 9b and Figure 10b we also report the runtimes of DD
on these program analysis tasks on server hardware (with the same
hardware configuration as previous sections) and compare them to

1803

System cores linux psql httpd
SociaLite 4 OOM OOM > 24 hrs
Graspan 4 99.7 min 353.1 min 479.9 min
RecStep 20 61s 162s 162s
DD 1 241.0s 151.2s 185.6s
DD (Opt) 1 121.1s 52.3s 51.8s

(a) points-to analysis, DD on laptop. DD (Opt) is an optimized query.

System cores linux psql httpd
RecStep 20 61s 162s 162s
DD 2 230.0s 134.4s 145.3s
DD 4 142.6s 73.3s 80.2s
DD 8 86.0s 40.9s 44.9s
DD 16 59.8s 24.0s 27.5s
DD (Opt) 2 125.2s 53.1ss 46.0s
DD (Opt) 4 89.8s 30.8s 26.7s
DD (Opt) 8 57.4s 18.0s 15.1s
DD (Opt) 16 43.1s 11.2s 9.1s

(b) points-to analysis, DD on server. DD (Opt) is an optimized query.

Figure 10: DD performs well for Graspan [36] program analy-
ses on three graphs. SociaLite and Graspan results from Wang et
al. [36]; RecStep results from Fan et al. [17]; OOM: out of memory.

RecStep [17], a state-of-the-art parallel datalog engine. For all
queries, DD matches or outperforms RecStep running times even
when it is configured to utilize a smaller number of CPU cores.

Top-down evaluation. Both dataflow and points-to can be trans-
formed to support interactive queries instead of batch computation.
Figure 9c reports the median and maximum latencies to remove the
first 1,000 null assignments from the completed dataflow analysis
and correct the set of reached program locations. While there is
some variability, the timescales are largely interactive and suggest
the potential for an improved developer experience.

6.3.3 Batch graph computation
We evaluate DD on standard batch iterative graph computations

on three standard social networks: LiveJournal, Orkut, and Twit-
ter. We report results for the largest of the graphs, Twitter, in Fig-
ure 11; results for LiveJournal and Orkut are available in our ex-
tended technical report [26]. Following prior work [33] we use
the tasks of single-source reachability (reach), single-source short-
est paths (sssp), and undirected connectivity (wcc). For the first
two problems we start from the first graph vertex with any outgo-
ing edges (each reaches a majority of the graph).

We separately report the times required to form the forward and
reverse edge arrangements, with the former generally faster than
the latter as the input graphs are sorted by the source as in the for-
ward index. The first two problems require a forward index and
undirected connectivity requires indices in both directions, and we
split the results accordingly. We include measurements by Shkap-
sky et al. [33] for several other systems. We also report running
times for simple single-threaded implementations that are not re-
quired to follow the same algorithms. For example, for undirected
connectivity we use the union-find algorithm rather than label prop-
agation, which outperforms all systems except DD at 32 cores. We
also include single-threaded implementations that replace the ar-
rays storing per-node state with hash maps, as they might when the
graph identifiers have not been pre-processed into a compact range;
the graphs remain densely packed and array indexed.

DD is consistently faster than the other systems—Myria [35],
BigDatalog [33], SociaLite [32], GraphX [21], RecStep [17], and
RaSQL [22]—but is substantially less efficient than purpose-written

System cores index-f reach sssp index-r wcc
Single thread 1 - 14.89s 14.89s - 33.99s

w/hash map 1 - 192.01s 192.01s - 404.19s
BigDatalog 120 - 125s 260s - 307s
Myria 120 - 102s 1593s - 1051s
SociaLite 120 - 755s OOM - OOM
GraphX 120 - 3677s 6712s - 12041s
RaSQL 120 - 45s 81s - 108s
RecStep 20 - 174s 243s - 501s
DD 1 162.41s 256.77s 310.63s 312.31s 800.05s
DD 2 99.74s 131.50s 159.93s 164.12s 417.20s
DD 4 49.46s 64.31s 77.27s 81.67s 200.28s
DD 8 27.99s 33.68s 40.24s 43.20s 101.42s
DD 16 18.04s 17.40s 20.99s 24.73s 51.83s
DD 32 12.69s 11.36s 10.97s 14.44s 27.48s

Figure 11: System performance on various tasks on the 42M node,
1.4B edge twitter graph. DD does not share any arrangements
here, but the sharing infrastructure does not harm performance.

single-threaded code applied to pre-processed graph data. Such
pre-processing is common, as it allows use of efficient static arrays,
but it prohibits more general vertex identifiers or graph updates.
When we amend our purpose-built code to use a hash table instead
of an array, DD becomes competitive between two and four cores.
These results are independent of shared arrangements, but indicate
that DD’s arrangement-aware implementation does not impose any
undue cost on computations without sharing.

7. CONCLUSIONS
We described shared arrangements, detailed their design and im-

plementation in DD, and showed how they yield improved per-
formance for interactive analytics against evolving data. Shared
arrangements enable interactive, incrementally maintained queries
against streams by sharing sharded indexed state between operators
within or across dataflows. Multiversioning the shared arrangement
is crucial to provide high throughput, and sharding the arrangement
achieves parallel speedup. Our implementation in DD installs new
queries against a stream in milliseconds, reduces the processing and
space cost of multiple dataflows, and achieves high performance
on a range of workloads. In particular, we showed that shared ar-
rangements improve performance for workloads with concurrent
queries, such as a streaming TPC-H workload with interactive ana-
lytic queries and concurrent graph queries.

Shared arrangements rely on features shared by time-aware data-
flow systems, and the idiom of a single-writer, multiple-reader in-
dex should apply to several other popular dataflow systems. We left
undiscussed topics like persistence and availability. As a determin-
istic data processor, DD is well-suited to active-active replication
for availability in the case of failures. In addition, the immutable
LSM layers backing arrangements are appropriate for persistence,
and because of their inherent multiversioning can be persisted asyn-
chronously, off of the critical path.

DD [1] is the reference open-source implementation of Differen-
tial Dataflow, and is in use by several research groups and compa-
nies.

Acknowledgements. We thank Natacha Crooks, Jon Howell,
Michael Isard, and the MIT PDOS group for their valuable feed-
back, and the many users of DD who exercised and informed its
design. This work was partly supported by Google, VMware, and
the Swiss National Science Foundation. Andrea Lattuada is sup-
ported by a Google PhD fellowship.

1804

8. REFERENCES
[1] https://github.com/TimelyDataflow/

differential-dataflow/.
[2] https:

//github.com/TimelyDataflow/timely-dataflow/.
[3] DDlog. https://research.vmware.com/projects/

differential-datalog-ddlog.
[4] DLVSYSTEM. http://www.dlvsystem.com.
[5] Jemalloc memory allocator. http://jemalloc.net.
[6] The TPC-H decision support benchmark.

http://www.tpc.org/tpch/default5.asp.
[7] M. Abadi, F. McSherry, and G. Plotkin. Foundations of

differential dataflow. In A. Pitts, editor, Foundations of
Software Science and Computation Structures, Lecture Notes
in Computer Science, pages 71–83. Springer Berlin
Heidelberg, 2015.

[8] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster:
Higher-order delta processing for dynamic, frequently fresh
views. PVLDB, 5(10):968–979, 2012.

[9] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom. STREAM:
The Stanford Data Stream Management System, pages
317–336. Springer, Berlin/Heidelberg, Germany, 2016.

[10] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic
sets and other strange ways to implement logic programs
(extended abstract). In Proceedings of the 5th ACM
SIGACT-SIGMOD Symposium on Principles of Database
Systems (PODS), pages 1–15, 1986.

[11] G. Candea, N. Polyzotis, and R. Vingralek. A scalable,
predictable join operator for highly concurrent data
warehouses. PVLDB, 2(1):277–288, 2009.

[12] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl,
and K. Tzoumas. Apache flink: Stream and batch processing
in a single engine. IEEE Data Engineering, 38(4), Dec. 2015.

[13] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
Continuous dataflow processing. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of
Data (SIGMOD), pages 668–668, 2003.

[14] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A
scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA., pages 379–390, 2000.

[15] E. Darling. Locks taken during indexed view modifications.
Brent Ozar Unlimited Blog,
https://www.brentozar.com/archive/2018/09/

locks-taken-during-indexed-view-modifications/,
Sept. 2019.

[16] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Communications of the ACM,
51(1):107–113, Jan. 2008.

[17] Z. Fan, J. Zhu, Z. Zhang, A. Albarghouthi, P. Koutris, and
J. M. Patel. Scaling-up in-memory datalog processing:
Observations and techniques. PVLDB, 12(6):695–708, 2019.

[18] G. Giannikis, G. Alonso, and D. Kossmann. Shareddb:
Killing one thousand queries with one stone. PVLDB,
5(6):526–537, 2012.

[19] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo,
M. Ek, E. Kohler, M. F. Kaashoek, and R. Morris. Noria:

dynamic, partially-stateful data-flow for high-performance
web applications. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 213–231, Oct. 2018.

[20] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani,
D. Vytiniotis, G. Ramalingan, D. Murray, S. Hand, and
M. Isard. Broom: Sweeping out garbage collection from big
data systems. In Proceedings of the 15th USENIX Conference
on Hot Topics in Operating Systems (HotOS), 2015.

[21] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph Processing in a
Distributed Dataflow Framework. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 599–613, 2014.

[22] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang,
L. Ding, and C. Zaniolo. RaSQL: Greater Power and
Performance for Big Data Analytics with
Recursive-Aggregate-SQL on Spark. In Proceedings of the
2019 International Conference on Management of Data
(SIGMOD), page 467–484, 2019.

[23] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and
L. Zhuang. Nectar: Automatic management of data and
computation in datacenters. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 75–88, 2010.

[24] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building
Blocks. In Proceedings of the 2nd ACM SIGOPS European
Conference on Computer Systems (EuroSys), pages 59–72,
Mar. 2007.

[25] J. Karimov, T. Rabl, and V. Markl. AStream: Ad-hoc Shared
Stream Processing. In Proceedings of the 2019 International
Conference on Management of Data (SIGMOD), pages
607–622, 2019.

[26] F. McSherry, A. Lattuada, M. Schwarzkopf, and T. Roscoe.
Shared arrangements: Practical inter-query sharing for
streaming dataflows (extended technical report).
https://arxiv.org/abs/1812.02639.

[27] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In Proceedings of the 6th Biennial
Conference on Innovative Data Systems Research (CIDR),
Jan. 2013.

[28] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: A Timely Dataflow System. In
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), pages 439–455, Nov. 2013.

[29] M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog
eating contest: Distributed incremental view maintenance
with batch updates. In Proceedings of the 2016 ACM
SIGMOD International Conference on Management of Data
(SIGMOD), pages 511–526, 2016.

[30] A. Pacaci, A. Zhou, J. Lin, and M. T. Özsu. Do we need
specialized graph databases?: Benchmarking real-time social
networking applications. In Proceedings of the 5th

International Workshop on Graph Data-management
Experiences & Systems (GRADES), pages 12:1–12:7, 2017.

[31] PostgreSQL Global Development Group. The PostgreSQL
Database Management System.
https://www.postgresql.org/, April 2019.

[32] J. Seo, S. Guo, and M. S. Lam. Socialite: An efficient graph
query language based on datalog. IEEE Trans. Knowl. Data
Eng., 27(7):1824–1837, 2015.

1805

https://github.com/TimelyDataflow/differential-dataflow/
https://github.com/TimelyDataflow/differential-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://github.com/TimelyDataflow/timely-dataflow/
https://research.vmware.com/projects/differential-datalog-ddlog
https://research.vmware.com/projects/differential-datalog-ddlog
http://www.dlvsystem.com
http://jemalloc.net
http://www.tpc.org/tpch/default5.asp
https://www.brentozar.com/archive/2018/09/locks-taken-during-indexed-view-modifications/
https://www.brentozar.com/archive/2018/09/locks-taken-during-indexed-view-modifications/
https://arxiv.org/abs/1812.02639
https://www.postgresql.org/

[33] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie,
and C. Zaniolo. Big data analytics with datalog queries on
spark. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD), pages 1135–1149,
2016.

[34] T. L. Veldhuizen. Transaction repair: Full serializability
without locks. https://arxiv.org/abs/1403.5645,
2014.

[35] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes,
B. Howe, D. Hutchison, S. Jain, R. Maas, P. Mehta,
D. Moritz, B. Myers, J. Ortiz, D. Suciu, A. Whitaker, and
S. Xu. The myria big data management and analytics system
and cloud services. In Proceedings of the 8th Biennial
Conference on Innovative Data Systems Research (CIDR),
Jan. 2017.

[36] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani.
Graspan: A single-machine disk-based graph system for
interprocedural static analyses of large-scale systems code.
In Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 389–404, 2017.

[37] M. Yang, A. Shkapsky, and C. Zaniolo. Scaling up the
performance of more powerful datalog systems on multicore
machines. VLDB Journal, 26(2):229–248, 2017.

[38] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A System for
General-Purpose Distributed Data-Parallel Computing Using
a High-Level Language. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2008.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th

USENIX Conference on Networked Systems Design and
Implementation (NSDI), pages 15–28, Apr. 2012.

[40] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP), pages
423–438, Nov. 2013.

1806

https://arxiv.org/abs/1403.5645

	Introduction
	Background and Related Work
	Context and Overview
	Time-aware Dataflow
	Time-aware Dataflow Systems
	Shared Arrangements Overview
	Shared Arrangements Example
	System Features Supporting Efficiency

	Implementation
	Collection traces
	The arrange operator
	Trace handles

	Arrangement-aware operators
	Key-preserving stateless operators
	Key-altering stateless operators
	Stateful operators
	The join operator
	The group operator

	Iteration

	Evaluation
	End-to-end performance impact
	TPC-H
	Interactive graph queries
	Comparison with other systems

	Design evaluation
	Baseline performance on reference tasks
	Datalog workloads
	Program Analysis
	Batch graph computation

	Conclusions
	References

