
LynX: A Flexible FPGA Virtualization Framework for
Heterogeneous Systems

Dario Korolija
ETH Zurich

Gustavo Alonso
ETH Zurich

Timothy Roscoe
ETH Zurich

Abstract
In the age of big data, with ever-increasing computing require-
ments, alternative approaches to generic CPU computing are
a necessity. Since reconfigurable hardware has been shown to
improve performance and energy efficiency, heterogeneous
systems consisting of coupled CPU-FPGA architectures are
gaining traction and are now available in several cloud based
data centers. However, application development and flexibility
of these systems is lacking as there is no underlying support
for commons tasks and operations (similar to those an oper-
ating system provides on a CPU). We present LynX, a flexi-
ble shell for FPGAs providing various operating system-like
interfaces and improving programming convenience whilst
having a minimal impact on performance. LynX supports
spatial-sharing and a multi-tenant environment with dynamic
reconfiguration and isolation between concurrent applications.
LynX employs a resource virtualization approach based on
a unified virtual memory scheme bringing the FPGA and its
local resources (memory, network) closer to the developer.
Compared to existing proposals targeting similar platforms
our framework offers significant advantages due to LynX’s
configurability and flexibility.

1 Introduction
Although Moore’s law is slowing down [2], application de-
mands continue to grow, leading to the use of alternatives to
conventional CPUs. In particular, FPGAs are becoming perva-
sive accelerators, with performance and energy consumption
close to that of an ASIC [7], without the associated high
design and production costs, and with the flexibility to be
reconfigured even at runtime [9, 10]. Like GPUs they provide
a very high degree of parallelism, but FPGAs do so without
restricting the computational model to dense computations
and sequential access to instructions and data. As a result,
FPGAs have been efficiently used in fields like signal and
image processing [1, 3, 14], machine learning [5, 8, 15], in
network data processing and database acceleration [4, 6, 13],
to name a few.

However, FPGAs have drawbacks. Their clock frequencies
are typically one order of magnitude lower than that of a CPU
or GPU. Performance comes instead from deeply pipelined
hardware designs with high concurrency and high degrees
of specialization. The lack of proper software support and
missing abstractions necessitate hardware expertise and ex-
perience from the developers and makes the usage highly
unattractive for novice users. As FPGAs start to become parts

of a larger ecosystem, being used in hybrid CPU-FPGA archi-
tectures rather than standalone, the added contrast between
hardware and software development creates an additional
problem. Hybrid CPU-FPGA systems require a layer facili-
tating interaction between FPGA and the CPU’s OS. To date,
such layers are primitive, often bound to concrete devices
or brands, and lack the highly needed flexibility one would
expect from a traditional operating system. Examples of the
state of the art include Microsoft’s Catapult [12] or Intel’s
HARP [11]. Both are focused on a specific group of applica-
tions and use cases, which in turn leads to missing features
and resources. This emphasises the need to create new frame-
works for these systems which will allow a more defined,
coherent and abstracted interaction between software and
hardware while at the same time trying to provide adaptabil-
ity for various work loads.

We present LynX, aiming to bridge the gap between the
software and hardware layers in modern heterogeneous sys-
tems. LynX offers flexibility with an operating system-like
shell for FPGAs that is highly configurable and generic in the
sense of being able to support a wide variety of applications
and processing scenarios. LynX brings OS-like interfaces and
functionality such as multitasking between multiple concur-
rent hardware processes, running in virtual FPGA regions,
which can be dynamically reconfigured (resembling a context
switch). On top of that we present a runtime manager which
is able to dynamically schedule jobs in order to optimize their
execution time. Our framework offers ease of use through the
unified virtual memory scheme, focusing on local FPGA re-
sources, which allows us to conceal the fragmentation through
dynamic allocation of the memory and to expose a contigu-
ous virtual address range to the users, greatly reducing the
complexity of interacting with the FPGA from software. The
dynamic allocation of FPGA on-board memory allows us to
implement a custom access pattern leading to an increase in
memory performance. We additionally integrate an RDMA
network stack allowing remote memory operations, greatly
expanding the possible use cases.

The key features of LynX, and its key contributions, are:

1. Flexbility of use and abstractions analogous to those
found in operating systems.

2. Ease of use with unified virtual memory space between
FPGA, its resources, and the host.

3. Support for basic system functionality and management
of FPGA resources with dynamic memory allocation,
demand paging and remote memory operations.

1



SPMA ’20, April 27, 2020, Heraklion, Crete, Greece Dario Korolija, Gustavo Alonso, and Timothy Roscoe

User Space 
Application

LynX API
Runtime Library

User Space 
Application

LynX API
Runtime Library

Driver Module

Virtual
FPGA reg.

MMU

Virtual
FPGA reg.

MMU

Virtual

FPGA reg.

MMU

User
Space

Kernel 
Space

Hardware

User Space 
Application

LynX API
Runtime Library

n dynamic 

regions

FPGA

RDMA
Network Stack

Memory Stack

Scheduler

Figure 1. LynX top level framework overview

2 Design Goals and System Overview
The aim in hardware is to create a flexible shell able to accom-
modate a wide span of different application domains. Unlike
with CPUs and GPUs, code running on one model of FPGA
is not guaranteed to work on a different model. Moreover,
in most existing FPGA shells, the features added to user’s
code are often fixed regardless of whether they are used, pre-
venting the adaptation to different applications. Using LynX’s
common interfaces, programmers can quickly deploy both
low level RTL and high level synthesis designs. Data can
be streamed either from the host or the network. Addition-
ally LynX also supports the GPU model where the data is
first offloaded to local on-board memory which offers higher
performance for iterative applications. Essentially all FPGA
deployments today are single user, significantly reducing their
potential, especially in the cloud. The flexible nature of LynX
allows a single FPGA to run multiple applications at the same
time through spatial and temporal sharing while managing
and allowing each of those applications accesses to external
resources (memory, network, host...). This permits a much
broader usage of FPGAs and relieves programming complex-
ity. In its current version, LynX supports a wide range of
Xilinx FPGAs. Our goal is to add support for FPGAs from
other vendors and interconnects in the near future.

Applications using a CPU and an FPGA are usually con-
fronted with two separate, independent memory regions re-
quiring explicit memory management greatly increasing the
programming complexity. In contrast, the aim of LynX is to
provide a unified address space between the FPGA, its re-
sources, and the host. This decreases code complexity as the
memory management, demand paging and the handling of all
page faults is occurring in the background. Similar models
have been proposed for GPUs, but besides the implementation

on the FPGA, the difference of LynX is the ability to support
multiple concurrent contexts in a provided multi-tenant envi-
ronment. This unification into a single virtual address space
greatly simplifies software-hardware interaction. The unified
memory model is implemented through a custom memory
management unit residing in the FPGA fabric which handles
demand paging and supports multiple page sizes. This unit
monitors accesses from the virtual FPGAs to both the host
and to the local on-board FPGA memory. In LynX, the FPGA
can access the complete user virtual address range and oper-
ate on pointer-rich data structures residing in memory either
on the host or on the FPGA side. Dynamic allocation allows
us to implement a custom striding memory access pattern
to the on-board FPGA memory, enabling the optimization
of performance when multiple DRAM channels are present,
whilst preserving a simplistic common DRAM interface.

On top of our hardware layer, we implement a dynamic
runtime manager with the goal of scheduling user jobs to the
available virtual FPGA regions whilst minimizing the amount
of costly operator exchanges via partial reconfiguration. Ad-
ditionally, a hierarchical application interface exposed by the
runtime manager allows the abstraction and minimization of
interaction between low level FPGA communication and the
end user. In software, the goal of LynX is to provide inter-
faces which permit quick integration of applications for the
end user whilst hiding the complexity of the lower levels of
the stack.

3 Evaluation
To evaluate LynX we integrated a number of different data pro-
cessing operators, exhibiting different behaviours and mem-
ory access patterns and measured their performance. Addi-
tionally, we present the performance benefits of the sched-
uling employed by the runtime manager.We implement mi-
crobenchmarks ranging from encryption, cryptohashing and
database operators to more complex real world examples like
the HyperLogLog cardinality estimation algorithm, K-means
operator and decision trees. We examined different scenarios
with single and multiple applications running concurrently
in the FPGA involving deploying as many of these operators
on the FPGA as possible whilst enabling both the memory
and network stacks. We compare the results to the available
commercial platforms and observe the advantage of LynX
due to the adaptability to different processing scenarios.

4 Conclusion
LynX is a first step to provide operating system-like features
on an FPGA with the goal of making a flexible environment
and ease of use whilse providing support for basic system
functionality. LynX breaks with the trade-off performance/ab-
straction that in the FPGA world has always been resolved in
favor of performance and demonstrates that generic OS-like
interfaces and features are possible without performance loss.

2



LynX: A Flexible FPGA Virtualization Framework for Heterogeneous Systems SPMA ’20, April 27, 2020, Heraklion, Crete, Greece

References
[1] A. S. Dawood, S. J. Visser, and J. A. Williams. 2002. Reconfigurable

FPGAS for real time image processing in space. In 2002 14th Inter-
national Conference on Digital Signal Processing Proceedings. DSP
2002 (Cat. No.02TH8628), Vol. 2. 845–848 vol.2.

[2] Lieven Eeckhout. 2017. Is Moore’s Law Slowing Down? What’s Next?
IEEE Micro 37, 4 (2017), 4–5.

[3] D. Fortún, C. G. de la Cueva, J. Grajal, M. López-Vallejo, and C. L.
Barrio. 2018. Performance-oriented Implementation of Hilbert Filters
on FPGAs. In 2018 Conference on Design of Circuits and Integrated
Systems (DCIS). 1–6.

[4] Kaan Kara et al. 2018. ColumnML: Column-Store Machine Learning
with On-the-Fly Data Transformation. PVLDB 12, 4 (2018), 348–361.

[5] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang. 2017. FPGA-
Accelerated Dense Linear Machine Learning: A Precision-Convergence
Trade-Off. In 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 160–167.

[6] Kaan Kara and Gustavo Alonso. 2016. Fast and robust hashing for
database operators. In Field Programmable Logic and Applications
(FPL), 2016 26th International Conference on. IEEE, 1–4.

[7] P. H. W. Leong. 2008. Recent Trends in FPGA Architectures and Ap-
plications. In 4th IEEE International Symposium on Electronic Design,
Test and Applications (delta 2008). 137–141.

[8] X. Li, L. Ding, L. Wang, and F. Cao. 2017. FPGA accelerates deep
residual learning for image recognition. In 2017 IEEE 2nd Information

Technology, Networking, Electronic and Automation Control Confer-
ence (ITNEC). 837–840.

[9] W. Lie and W. Feng-yan. 2009. Dynamic Partial Reconfiguration in FP-
GAs. In 2009 Third International Symposium on Intelligent Information
Technology Application, Vol. 2. 445–448.

[10] E. J. McDonald. 2008. Runtime FPGA Partial Reconfiguration. In 2008
IEEE Aerospace Conference. 1–7.

[11] Neal Oliver, Rahul R Sharma, Stephen Chang, Bhushan Chitlur, Elkin
Garcia, Joseph Grecco, Aaron Grier, Nelson Ijih, Yaping Liu, Pratik
Marolia, et al. 2011. A reconfigurable computing system based on
a cache-coherent fabric. In Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on. IEEE, 80–85.

[12] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. 2014. A reconfigurable
fabric for accelerating large-scale datacenter services. ACM SIGARCH
Computer Architecture News 42, 3 (2014), 13–24.

[13] D. Sidler, G. Alonso, M. Blott, K. Karras, et al. [n.d.]. Scalable 10Gbps
TCP/IP Stack Architecture for Reconfigurable Hardware. In FCCM’15.

[14] I. S. Uzun, A. Amira, and A. Bouridane. 2005. FPGA implementations
of fast Fourier transforms for real-time signal and image processing.
IEE Proceedings - Vision, Image and Signal Processing 152, 3 (June
2005), 283–296.

[15] Teng Wang, Chao Wang, Xuehai Zhou, and Huaping Chen. 2019. A
Survey of FPGA Based Deep Learning Accelerators: Challenges and
Opportunities. CoRR abs/1901.04988 (2019).

3


	Abstract
	1 Introduction
	2 Design Goals and System Overview
	3 Evaluation
	4 Conclusion
	References

