
Specifying the de facto OS of a production SoC
Ben Fiedler
ETH Zürich

Zurich, Switzerland

Roman Meier
ETH Zürich

Zurich, Switzerland

Jasmin Schult
ETH Zürich

Zurich, Switzerland

Daniel Schwyn
ETH Zürich

Zurich, Switzerland

Timothy Roscoe
ETH Zürich

Zurich, Switzerland

Abstract
Verification of any operating system is inevitably relative to
a model of the underlying hardware. Within the context of
kernel verification, the underlying hardware model usually
comprises of architectural correctness of the executing cores,
but pays little attention to devices underneath barring the
assumption that they are “trusted”.

Recent work has pointed out that the de facto operating sys-
tem of a machine includes not only the kernel and processes
running on top, but the multitude of other devices driving
the actual hardware: security (co-)processors, DMA engines,
network firmware, and more. The concept of the de facto
OS shines light on a critical boundary between a kernel and
the rest of hardware which is crucial to reasoning about both
kernel isolation, and the security properties of the whole oper-
ating system. In this paper we report on our experience to date
in specifying the de facto OS environment of a production
System-on-Chip, and the implications of this effort so far for
assured kernel isolation.

ACM Reference Format:
Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Tim-
othy Roscoe. 2023. Specifying the de facto OS of a production SoC.
In Workshop on Kernel Isolation, Safety and Verification (KISV ’23),
October 23, 2023, Koblenz, Germany. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3625275.3625400

1 Introduction
We have recently introduced term de facto operating sys-
tem [7] to describe the body of software in a modern com-
puter that performs the functions traditionally ascribed to
an OS: securely multiplexing the hardware resources among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KISV ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0411-6/23/10. . . $15.00
https://doi.org/10.1145/3625275.3625400

principles, abstracting and virtualizing these resources to ap-
plications, etc. The term is useful because it captures the fact
that a traditional OS kernel like Linux or seL4 [9] no longer
performs these functions, except as part of a larger whole
which is typically unspecified and lacks an intentional design.

Such traditional kernels aim to provide isolation between
mutually distrusting processes, and consequently to also iso-
late themselves from such processes to avoid being compro-
mised.

The existence of de facto OSes implies a the third isolation
boundary a kernel must pay attention to: the one underneath
it that protects it from other parts of the de facto OS, system
software running on other cores and DMA-capable devices
like NICs, WiFi chips, video co-processors and everything
else that can issue reads and writes to address space. A steady
stream of security problems sometimes called cross-SoC vul-
nerabilities in Linux come down to paying insufficient atten-
tion to this boundary. While verified kernels like seL4 [9] or
Hyperkernel [12] acknowledge its existence, they defer the
question of how to deal with it [12, 17], and rely on vague
statements such as “hardware correctness” instead.

In this paper we present our experience so far trying to
formally represent the full hardware environment of a widely
deployed System-on-Chip (SoC), the NXP i.MX 8X. We
follow our approach proposed in [7] and try to specify the
complete set of software principles in the system, and what
trust relationships obtain between them, based on source code
and documentation for the hardware.

Our results so far have been instructive. For example,

• Modern, mature memory management unit (MMU) de-
signs can display an extraordinary level of complexity
when attempting to specify their semantic behavior.

• The information provided by hardware vendors to facili-
tate secure OS implementations is often not the informa-
tion needed to formally specify the security properties
of the hardware.

• System-wide hardware features designed to provide
flexible isolation often introduce arbitrary limitations
on security policies, and complexity that can be chal-
lenging to capture in a formal specification.

• The security behavior of some hardware modules can
configured externally, making modular composition of
specifications difficult

https://doi.org/10.1145/3625275.3625400
https://doi.org/10.1145/3625275.3625400

KISV ’23, October 23, 2023, Koblenz, Germany Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy Roscoe

Perhaps most significantly, we find that a focus purely on
kernel isolation misses the point: the Linux kernel, say, plays
a relatively minor role in the dynamic security properties of
an SoC, and it may be better to shift attention to the entire de
facto OS.

We present these results in the rest of this paper, and reflect
on the implications for the concept of kernel isolation.

2 Approach
We use the approach proposed in our earlier work [7], lever-
aging a Rust-based implementation of decoding nets [1] to
describe the de facto OS of the NXP i.MX 8X SoC [19]. Our
goal is to identify a set of behavior assumptions for the com-
ponents of the i.MX 8X that the components of the de facto
OS make about each other and the other soft- and hardware
agents on the SoC to guarantee each component’s integrity.
In general, we expect the same techniques to be applicable to
other SoCs.

Within a decoding net, the address translation state of an
SoC is modeled as a directed graph, where nodes are ad-
dress spaces and edges represent translation between address
spaces. Addresses in a decoding net are always qualified with
an address space they are located in. Besides the primitives
of adding address spaces and mappings, we add additional
annotations, as we have proposed previously [7].

We annotate some address spaces as contexts, meaning they
generate memory operations, which are reads and writes to ad-
dresses within the local address space. Examples of contexts
include CPUs, GPUs, DMA engines and other devices.

Address regions can be defined as accepting, which means
that they terminate the address decoding process. The main
examples of these are memory addresses backed by DRAM or
SRAM, and memory-mapped device configuration registers.

Translation and protection regions are address space re-
gions holding the metadata to configure some translation or
protection operation. They specify in which address region
the configurations are stored, as well as the source and desti-
nation address spaces of the translation or protection process
this data configures. Access to a translation region allows
the accessing context to arbitrarily change the mapping from
source to destination addresses, while access to a protection
region only allows changing which parts of the source and/or
destination address space are accessible, but cannot alter the
underlying mapping(s).

Note our assumptions about the semantics of translation
and protection regions are oversimplified: few components
provide byte-granularity modification of address translation or
protection behaviour. We take care to always over-approximate
the authority conferred in our specification to ensure that we
never incorrectly identify an insecure specification as secure.

To facilitate re-use of common hardware features and their
specifications, we additionally provide concrete components,

which are Rust programs that invoke decoding net primi-
tives to specify the behaviour of complex hardware blocks.
This way components are maximally flexible in their imple-
mentation, which may be quite complex, e.g. in the case
of an i.MX 8X’s Extended Resource Domain Controller
(XRDC). We describe a number of components that make up
the i.MX 8X platform in section 3.

Once we have constructed a decoding net for our SoC, we
proceed to analyze the integrity and isolation guarantees of
individual contexts. Using our SoC model and a set of as-
sumption about the behaviors of contexts in the system, we
compute the set of possible overlaps between a prospective
victim context and the other contexts in the system. When con-
sidering a set of contexts whose guarantees we are interested
in, we re-run our analysis for each individual context.

Our analysis then computes all (potential) address space
overlaps between our victim’s address space and all other con-
texts in the system, under the assumption that every context
adheres to the behavioural assumptions we make of it.

Any overlaps found during our analysis constitute a pos-
sible integrity violation, and thus has to be addressed by the
user. There are multiple ways that these overlaps can be ad-
dressed via behavioral assumptions: (1) assuming that the
overlap between the victim and accessing contexts is vali-
dated by the victim, or (2) by restricting modifications to the
intermediate translation and protection structures. By default,
a context is unrestricted in its behaviour.

Whenever a computed overlap utilizes some context’s abil-
ity to modify translation or protection configuration, then we
also derive a possible sequence of modifications that facili-
tates this access. Note that it is possible that there are multiple
possible ways to modify the translation structures, and in or-
der to guarantee isolation/integrity all possible exploit paths
must be constrained.

Once the user has assembled a list of assumptions that
cause our tool to longer flag vulnerabilities, these assumptions
constitute a set of proof obligations that guarantee the victim’s
isolation within our memory addressing model.

At first, it seems that we haven’t gained much: the derived
assumptions must still be trusted for correct isolation. How-
ever, from this point we can make quantitative statements
about the amount of trust that we have to place in the plat-
form, as well as how trustworthy it is. For instance, due to its
verified functional correctness, we know that trust we place
in seL4 [9] restricting access to certain regions of its address
space is justified.

In the following section, we detail our experience of writing
down the de facto OS of an i.MX 8X platform. Even with the
conservative simplifying assumptions above, the result so far
is remarkably complex, itself a reflection on the current state
of hardware semantics.

Specifying the de facto OS of a production SoC KISV ’23, October 23, 2023, Koblenz, Germany

3 Experience
In this section we discuss our experience so far specifying
the hardware execution environment provided by the NXP
i.MX 8X SoC, as a foundation for reasoning about the de
facto OS running on this chip in a typical deployment.

For the most part, we have found that the relationships be-
tween the various hardware execution contexts and devices on
the i.MX 8X can be captured cleanly using a model based on
decoding nets. However, in the following sections we identify
some features of the SoC where we feel our experience so
far has more general implications for formal reasoning about
isolation in de facto OSes.

3.1 The NXP i.MX 8X
We chose the i.MX 8X for several reasons: it is widely avail-
able (including in the form of low-cost System-on-Modules
(SoMs) and hobbyist boards), it has substantial documentation
and a support community, and much of the default firmware
is readily available as open source code. While it is not a new
part (it was announced in 2013), it remains representative of
the complexity of modern SoCs.

The i.MX 8X is a SoC designed for the automotive market.
The main application processors are a cluster of 4 ARM
Cortex A35 cores, which typically run Linux. However, the
i.MX 8X features many more cores than this: a Cortex M4 for
application use, another Cortex M4 as a System Controller,
a Cortex M0+ core as a “Security Co-processor”, a HiFi4
DSP also capable of running an operating system, multiple
hardware media encoders and decoders, at least two further
Cortex M0+ cores associated with the Vision Processing Unit,
a sophisticated GPU, and more.

All these subsystems are able either to directly access mem-
ory or initiate Direct Memory Access (DMA)-based copies
to or from main DRAM, which sits on a 36-bit wide main
interconnect called the DRAM Block or DB. This intercon-
nect can route transactions not only to main DRAM but also
to every other subsystem on the i.MX 8X, and therefore its
corresponding address space has a rich memory map.

In addition to the main banks of system DRAM, some of
these components also feature their own memory areas, some
of which are shared between some subsystems, and others are
globally reachable via the DB. As is common in modern SoCs,
the “physical” address at which a given resource is accessed
sometimes depends on the core originating the access.

3.2 The Armv8-A Memory Management Unit
The Armv8-A MMU is ubiquitous in 64-bit ARM-based
SoCs, but is noteworthy due to the sheer complexity of its
semantics. The MMU provides virtual address spaces for
processes running on top of the Cortex-A compute cores on
the i.MX 8X SoC, but also virtual machine support, Trust-
Zone, pointer authentication, 32-bit compatibility, and a host
of other features, all of which concern a specification of its

isolation properties. It is programmable via device registers
that configure address translation properties such as granule
(page) size, input and output address space sizes, number of
translation levels and stages, and more. These registers aside,
most of the rest of the behavior of the MMU is determined
by data structures in memory, access to which from other
contexts might be problematic.

Nothing about this MMU is fundamentally difficult to
model: it is well documented as part of the Armv8-A Archi-
tecture Reference Manual [10]. However, a full description
of the semantics of this MMU is likely to be very large. Our
current specification of a rather restricted subset of its capa-
bilities runs to about 480 lines of specification. Achermann et
al. [3] report similar complexity with the x86 architecture, al-
though (complementary to our work) they focus on the syntax
of data structures rather than the semantics of translation.

An excerpt from our (simplified) spec is shown in List-
ing 1. Every level of page table entries has a set of possible
states: an Invalid entry faults the current translation and
does not induce further mappings, a TableEntry points
to a next-level table filled with the respective entries, and
a BlockEntry translates the current offset in the virtual
address space to the specified physical address. The function
add_new_vas correctly sets up a new virtual address space
and inserts mappings as dictated by the Armv8-A MMU’s se-
mantics. Furthermore, it also annotates the page table regions
as holding translation configuration.

1 enum L0PTE { Invalid, TableEntry(usize, L1Table) }
2 type L0Table = [L0PTE; 512];
3 enum L1PTE { Invalid, TableEntry(usize, L2Table),

BlockEntry(usize) }
4 type L1Table = [L1PTE; 512];
5 // ...
6
7 enum MMUConfiguration {
8 Disabled, OneStage(usize, L0Table), // ...
9 }

10
11 struct MMU {
12 output_as: ASID, translation_walk_as: ASID,
13 }
14
15 impl MMU {
16 fn add_new_vas(DecodingNet, MMUConfiguration) -> ASID
17 }

Listing 1. Excerpt from our Armv8-A MMU specification

We assume that a hardware MMU correctly multiplexes
multiple virtual address spaces based on their individual con-
figurations: the MMU only supports one active context issu-
ing memory operations (per exception level), but supports
multiple contexts running in parallel on top of the MMU.

3.3 Security and System Controllers
The System Controller Unit (SCU) and Security Controller
(SECO) are two Cortex-M cores that drive significant parts
of the i.MX 8X, responsible for booting the big Cortex-A
cores, the other Cortex-M4 core, and initializing and config-
uring the XRDC. NXP provides firmware with the i.MX 8X

KISV ’23, October 23, 2023, Koblenz, Germany Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy Roscoe

SDK that runs on the SCU and the SECO, though it is pos-
sible to modify and/or replace the SCU firmware as needed.
Both components share 256KiB of Tightly Coupled Memory
(TCM) which are used during the boot process to bring up
the main DRAM.

The SCU is the primary intended communication partner
of other system components for interacting with the SECO.
Communication with these components is done via messaging
units (MUs), which are two-way memory-mapped buffers
reachable from (at least) the Cortex-A core cluster and the
user-controlled Cortex-M.

Given their privileged access to the XRDC (see subsec-
tion 3.4), any context that has access to the SCU or SECO
will need to be almost completely trusted by other contexts.
Most SoCs include some form of security processors, so this
situation is not unusual. However, it is not at all clear from
the i.MX 8X documentation exactly what protection applies
to these components.

This shows that the information vital to formally reason
about security of a de facto OS is sometimes not regarded as
useful by the hardware vendors, who assume that trusting the
firmware is sufficient for OS developers.

3.4 The Extended Resource Domain Controller
The XRDC [14] is a reconfigurable, distributed, tree-based
partitioning access protection unit intended to enforce isola-
tion between SoC components. The XRDC is significant not
only because it is the central protection and isolation unit on
the i.MX 8X, but also it represents the solution proposed by
the hardware vendors to the isolation problem yet remains
outside the scope of the traditional OS kernel.

While not as large as the MMU, the XRDC is still complex.
It can isolate any two resources it considers separate on any
bus it controls on the level of bus transactions in hardware.
Bus masters (in decoding net terminology, contexts), periph-
erals, and memory regions are assigned to partitions, which
are organized hierarchically based on a 5-bit mask. Bus trans-
actions from by contexts are tagged with an ID identifying
their partition, and disallowed accesses generate bus faults.

Contexts can by default only access resources in the same
partition, but peripherals can have different access permis-
sions from each partition. However, Peripherals can only be
configured from within the same partition.

Partitions are also the power management granule, and
rebooting a partition deletes all child partitions and returns
their resources. Communication across partitions is possible
through a limited number of messaging units which operate
like interrupt-enabled postboxes.

Memory Regions are defined by physical start and end
addresses and are always owned by exactly one partition. The
owning partition has broad configuration powers over the
memory region, but can grant other partitions access rights
to the memory region. The number of memory regions that a

particular memory can be split into is restricted and particular
to that memory.

Finally, cores have an associated “process ID” register,
changed on a context switch, which can effectively move the
core from one partition to another.

The XRDC illustrates the expressive power of decoding
nets: we model the XRDC protection regime with a different
decoding net per partition, and assign unique address spaces
to any shared memory.

However, at the same time it shows the difficulty of inter-
preting ambiguous vendor documentation written informally
in English, and translating this into a specification. Many of
the details of how the XRDC hardware operates are unclear,
and since it operates below the Linux kernel it is hard to link
to OS behavior.

An implication for faithfully specifying the de facto OS is
that it may be necessary to generate “litmus tests” in the form
of code and deployment scripts from the specification, that
can execute on the hardware and validate the spec against the
real de facto OS. This was always going to be a requirement
for verification, but documentation ambiguities may mean it
is also a vital a priori part of the specification process.

3.5 ENET DMA engine
The ENET is an Ethernet MAC module in the i.MX 8X “Con-
nectivity Subsystem”. It includes descriptor-based DMA en-
gines to transfer data bidirectionally between the MAC and
the system interconnect.

This is straightforward to model, but ambiguity in the doc-
umentation shows how relevant details configuration and im-
plementation of the core can become important. While the
documentation does not specify the exact aperture the ENET
DMA engine has into the system, it accepts 32-bit pointers as
addresses when configuring its descriptors, and we assume
conservatively that the DMA engine can access the full lower
32-bit address range of the main system bus.

This module illustrates the need to make explicit trust
choices when reasoning about the de facto OS. In this case,
the ENET hardware can potentially access the low 32-bits of
system address space, which might include a range of critical
data structures including page tables. If the ENET firmware
is not to be trusted (for example, if we believe it could be re-
motely compromised), neither can any OS component whose
critical data structures can be accessed by it.

If we choose instead to trust the ENET to only ever access
memory specified by the transmit and receive descriptors,
there is now an obligation both on the device driver to only
supply “safe” descriptors to memory, but crucially we must
also trust any other context which could modify the descrip-
tors in memory and use the ENET DMA engine itself as a
vector for attack.

Specifying the de facto OS of a production SoC KISV ’23, October 23, 2023, Koblenz, Germany

3.6 WiFi Modem
A similar situation with a known vulnerability is seen on our
i.MX 8X SoM which includes an AzureWave AW-CM276NF
WiFi modem [23] based on the NXP 88W8997 chipset [20],
connected to the SoC via PCIe and USB 2.0 and is DMA-
capable. A remote code execution vulnerability has been
found for the firmware on this modem [18, 21]. Exploits for
the application processor kernel using vulnerabilities in WiFi
module firmware as an attack vector have been shown [8].

However, a different issue for specifying the de facto OS
arises because the interface used by the WiFi module and the
similar Bluetooth interface is configured by pins brought out
on the edge connector of the SoM.

This illustrates a further challenge in modeling and speci-
fying the behavior of the de facto OS: what happens within
a module (including DMA accesses) can be dependent on
external hardware outside that module.

3.7 Inter-component DMA
The i.MX 8X features a sophisticated audio subsystem. One
component of this is a Tensilica HiFi4 Digital Signal Pro-
cessor (DSP) [22, 24], which is used for processing audio
signals. This is a Very Long Instruction Word (VLIW) Single
Input Multiple Data (SIMD) core with 64KB of TCM that
is capable of running FreeRTOS [25]. On the i.MX 8X the
DSP has an additional 448KB of local SRAM, and can access
RAM and other subsystems over the main interconnect.

One of the audio inputs on the i.MX 8X is an Enhanced
Synchronous Audio Interface (ESAI), which itself is a sophis-
ticated peripheral incorporating an Enhanced Direct Memory
Access (eDMA) controller for transferring audio data. This
eDMA controller can access two different interconnects, one
of which is the system interconnect, and crucially can trans-
fer data directly between the DSP and the ESAI, without
involving main memory or the “traditional” OS kernel in any
way. Neither the source nor destination address spaces of the
eDMA engine are accessible to the kernel.

This does not seem to be unique to this SoC or even the
i.MX 8X audio subsystem (camera data can be transferred to
the display subsystem).

The implication is that viewing the traditional OS kernel as
the arbiter of isolation decisions, and even the primary object
to be isolated in the system, will fail to capture accesses and
potential security vulnerabilities in other parts of the SoC.

3.8 Inline encryption
A final feature we have encountered so far in our efforts is the
Inline Encryption Engine (IEE) on the i.MX 8X, which inter-
operates with the XRDC. Memory regions can be tagged as
IEE-encrypted, causing bus traffic to be re-routed through the
IEE where it is either decrypted or encrypted before continu-
ing. This operation is transparent to the requesting context.

The IEE loads keys over a private bus to the SECO sub-
system from a secure component called the Cryptographic
Acceleration and Assurance Module (CAAM), which can
either generate keys or safely store them for persistent use.

While specific to the i.MX 8X and its variants, it seems
plausible that such privacy features would have value on other
SoC designs, and the functionality also has much in common
with enclave technologies like ARM’s Confidential Compute
Architecture (CCA) [11] and Intel SGX [5].

Formally modeling IEE functionality can be done using
decoding nets by introducing two views on encrypted mem-
ory: one able to read the plain text, and the other only see-
ing the encrypted version. If keys are securely stored, we
might assume that encrypted memory provides isolation from
untrusted components that cannot decrypt it. However, the
untrusted component might still overwrite encrypted memory
with garbage data.

We conjecture that decoding nets may need to be aug-
mented to efficiently express hardware functionality such as
this, but it remains an open question.

4 Discussion
The process we have been going through can be described
as modelling the resource access relationships of a modern
SoC. The approach we have adopted is to use (and extend)
decoding networks and focus on access to memory addresses.

The clearest result from our work so far is that modern
computers are, indeed, enormously complex when it comes
to their use of addresses, address translation, and protection.
This is, of course, no surprise, but what is significant about a
formal specification approach is that, for the first time, it gives
us some kind of measure of this complexity, and a means of
comparing the complexity of hardware designs which, on the
face of it, might provide equivalent functionality.

4.1 Implications for Kernel Isolation
It is also clear that as OS researchers we have to adapt our
reasoning about kernel isolation properties to modern SoCs.

Traditionally, kernel isolation analyses are processor-centric:
they consider the application processor and DRAM and ex-
amine if lower-level privilege contexts can interfere with the
kernel. In this setting, higher-privilege contexts are limited to
the hypervisor and the firmware of the application processor,
which are typically assumed trusted and sufficiently isolated
themselves and can thus be ignored.

Once we extend the scope of such an analysis to a modern
SoC, these assumptions are no longer tenable: The remainder
of the de facto OS is not sufficiently manageable to simply
extend blanket trust to it as previously done to higher-privilege
contexts. Indeed, not even the SoC vendors fully trust their
own platforms any more due to the inclusion of third-party IP
blocks that the limited time to market and growing hardware-
complexity necessitate [16].

KISV ’23, October 23, 2023, Koblenz, Germany Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy Roscoe

It is therefore vital to model all possible resource access re-
lationships of an SoC, as we are doing initialling the i.MX 8X.
If the platform allows the kernel to configure system-level
access control mechanisms, this model can be used to reduce
the required trust in the remainder of the de facto OS to a
minimum: not all the contexts of the OS need the ability
to modify the application kernel’s memory and its isolation
configurations as part of their functionality.

Even if no such mechanisms are available, the model allows
us to make trust statements that are much more qualified. Such
precise trust statements can be useful, for example to generate
proof obligations for formally verified firmware. They can
also direct developers to the areas of code that are especially
vital to increase its assurance, or alternatively, direct security
researchers to the areas most likely to enable system-wide
exploits via complex cross-SoC vectors. The definition of
trust and its incorporation into our model constitutes future
work.

4.2 Viability of the approach
A different question raised by our analysis so far is whether
decoding networks (or extensions thereof) are really sufficient
to capture the important features of isolation in a modern SoC.

So far, we have found decoding nets to be a good fundamen-
tal abstraction, although considerable additional complexity
is required above them to capture units like the Armv8-A
MMU. The component that is likely to stress the abstraction
the most is the inline encryption engine.

A different issue is the potential lack of composability of
isolation boundaries, e.g. in the case of the external SoM
wireless chip. It remains to be seen if a better fundamental
abstraction for describing isolation in a modern SoC exists.

5 Related work
The role of MMUs in inter-process isolation has been ex-
tensively studied since their emergence in the 1960s and is
considered well-understood. However, the complexity of cor-
rectly configuring a heterogeneous set of MMUs and memory
protection units (MPUs) across a complete SoC has only been
recently studied and addressed by Achermann et al. [2].

The configurations of other platform-level isolation mecha-
nisms, such as IOMMUs, the XRDC on the i.MX 8X or the
MPU proposed in [15] are similarly complex. Prior work [6]
has addressed this problem by automatically generating con-
figurations from desired information flow properties and spec-
ifications of the isolation mechanisms of a platform.

This is approach is similar to our own tool, but it presup-
poses an intimate knowledge of the platform’s interactions to
formulate appropriate information flow properties. In contrast
to this, our tool is intended to help reason about these inter-
actions and derive the necessary trust assumptions to ensure
isolation given a particular configuration.

Other communities have considered the security implica-
tions of modern SoCs. The trusted computation community
is concerned with defining and limiting the Trusted Comput-
ing Base (TCB) of security-critical software. Most research
restricts the TCBs to the application cores [26]. Thus, all con-
texts and resources beyond the application processors are con-
sidered untrusted—mostly to guard against physical attackers,
but justifying trust in the unknown firmware blobs executing
on additional (general purpose) cores on the system would
certainly be problematic, too. The resulting TCB security
analyses and isolation mechanisms therefore do not consider
the SoC interactions in-depth which is vital for kernel-SoC
isolation, because the kernel must interact with the rest of
the platform, unlike the critical code in a Trusted Execution
Environment (TEE).

SoC vendors struggle with the complex SoC supply chain
and the limited time-to-market that forces them to introduce
foreign IP blocks into their design. These IPs may include
Hardware Trojans or security vulnerabilities and must there-
fore be considered untrusted components [16]. Solutions such
as [4] propose adding additional hardware to perform online
security policy enforcement. The inclusion of the platform-
level isolation mechanisms mentioned above has also been
promoted by this mixed-trust setting [15]—the authors imag-
ine that a blanket platform-trust might have been expected of
application-core kernels otherwise.

In [13], an information-flow analysis is performed to en-
sure non-interference between mixed-trust IPs. This is con-
ceptually similar to our own tool, but performed on the much
lower-level of abstraction of hardware gates. Furthermore,
it does not target dynamically allocated resources such as
memory, but only considers access to special-purpose cores
that perform security-critical tasks such as encryption.

6 Conclusion and future work
Our work to specify the i.MX 8X, and at the same time evolve
our specification language and tool set to capture the hardware
protection features we encounter on the way, is ongoing. We
are also starting to specify other SoCs, as a way of extending
the convex hull of what we can capture in the tool.

Beyond this, we note that static analysis is a good start, but
is limited with respect to expressibility. At some point we
would like to make statements based on things that can only
be determined at runtime, for example the statement “we trust
a DMA engine to only access the descriptors it gets handed”.

We do our best to diligently read and understand the hard-
ware manuals and transcribe them to our formal language.
However, errors in understanding can occur, and the informal
manuals themselves are well-known for acquiring numerous
errata over time. Developing a method of tying our model to
the actual hardware implementation would greatly increase
the confidence that we are faithful to the real hardware. A
possible implementation of this could be in the form of litmus

Specifying the de facto OS of a production SoC KISV ’23, October 23, 2023, Koblenz, Germany

tests, where we generate some translation configurations, pick
two contexts and then see whether their actual views match
the ones we compute.

Sometimes it may be impossible to run tests on all involved
contexts. WiFi modems are an example of legal barriers to
modifying firmware. In those cases, we might be able to rely
on SoC models or simulation to gain some confidence.

Currently, context behavior restrictions have to be identi-
fied and written down by us. Automated methods to suggest
restrictions would present a significant usability improvement.
For example, we already compute reconfiguration paths for
some overlaps, and these can give us a good indication where
restrictions could be introduced.

Furthermore, we consider our behavior constraints to be
absolute: i.e. when we assume a context never accesses a
certain part of memory, then we will always assume it does
so, even if it were compromised by another, malicious context.
A more sophisticated (not to mention well-founded) approach
to specifying (1) the behavior assumptions and (2) the trust
implications of those assumptions would help us in judging
how realistic the assumptions we are making are.

Nevertheless, we argue that without clear specifications of
the protection and translation semantics of the entire hardware
platform, reasoning about the isolation properties of the de
facto OS in any modern computer system will not survive
contact with reality.

References
[1] Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe.

2018. Physical Addressing on Real Hardware in Isabelle/HOL. In
Proceedings of the 9th International Conference on Interactive Theorem
Proving, 2018, Held as Part of the Federated Logic Conference, FloC
2018 (Oxford, UK, 2018) (ITP’18). 1–19. https://doi.org/10.1007/
978-3-319-94821-8_1

[2] Reto Achermann, Lukas Humbel, David A. Cock, and Timothy Roscoe.
2017. Formalizing Memory Accesses and Interrupts. In Proceed-
ings 2nd Workshop on Models for Formal Analysis of Real Systems,
MARS@ETAPS 2017, Uppsala, Sweden, 29th April 2017 (EPTCS),
Vol. 244. 66–116. https://doi.org/10.4204/EPTCS.244.4

[3] Reto Achermann, Ilias Karimalis, and Margo Seltzer. 2023. Why
Write Address Translation OS Code Yourself When You Can Syn-
thesize It?. In Proceedings of the 19th Workshop on Hot Topics
in Operating Systems (Providence, RI, USA) (HOTOS ’23). Asso-
ciation for Computing Machinery, New York, NY, USA, 174–180.
https://doi.org/10.1145/3593856.3595895

[4] Abhishek Basak, Swarup Bhunia, Thomas Tkacik, and Sandip Ray.
2017. Security Assurance for System-on-Chip Designs With Un-
trusted IPs. IEEE Transactions on Information Forensics and Security
12, 7 (July 2017), 1515–1528. https://doi.org/10.1109/TIFS.2017.
2658544

[5] Intel Corporation. 2018. Intel® Software Guard Extensions Developer
Guide. Technical Report. Intel Corporation.

[6] Tobias Dörr, Timo Sandmann, and Jürgen Becker. 2021. Model-Based
Configuration of Access Protection Units for Multicore Processors
in Embedded Systems. Microprocessors and Microsystems 87 (Nov.
2021), 104377. https://doi.org/10.1016/j.micpro.2021.104377

[7] Ben Fiedler, Daniel Schwyn, Constantin Gierczak-Galle, David Cock,
and Timothy Roscoe. 2023. Putting out the Hardware Dumpster

Fire. In Proceedings of the 19th Workshop on Hot Topics in Op-
erating Systems (Providence, RI, USA) (HOTOS ’23). Association
for Computing Machinery, New York, NY, USA, 46–52. https:
//doi.org/10.1145/3593856.3595903

[8] Xiling Gong, Peter Pi, and Tencent Blade Team. 2019. Exploit-
ing Qualcomm WLAN and Modem Over the Air. , 58 pages.
https://www.blackhat.com/us-19/briefings/schedule/index.html#
exploiting-qualcomm-wlan-and-modem-over-the-air-15481

[9] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (Big Sky, Montana, USA) (SOSP ’09). Association
for Computing Machinery, New York, NY, USA, 207–220. https:
//doi.org/10.1145/1629575.1629596

[10] Arm Ltd. 2021. Arm Architecture Reference Manual: Armv8, for A-
profile architecture. Arm Ltd.

[11] Arm Ltd. 2021. Arm CCA Security Model 1.0. Technical Report. Arm
Ltd. ARM-DEN-0096.

[12] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017. ACM, 252–269. https://doi.org/10.1145/3132747.
3132748

[13] Jason Oberg, Timothy Sherwood, and Ryan Kastner. 2013. Eliminating
Timing Information Flows in a Mix-Trusted System-on-Chip. IEEE
Design & Test 30, 2 (April 2013), 55–62. https://doi.org/10.1109/
MDT.2013.2247457

[14] Scott O’Brien. 2018. Extended Resource Domain Controller xRDC.
NXP Semiconductors. NXP AMF-AUT-T3382.

[15] Joël Porquet, Alain Greiner, and Christian Schwarz. 2011. NoC-MPU:
A Secure Architecture for Flexible Co-Hosting on Shared Memory
MPSoCs. In 2011 Design, Automation & Test in Europe. 1–4. https:
//doi.org/10.1109/DATE.2011.5763291

[16] Sandip Ray, Eric Peeters, Mark M. Tehranipoor, and Swarup Bhunia.
2018. System-on-Chip Platform Security Assurance: Architecture and
Validation. Proc. IEEE 106, 1 (Jan. 2018), 21–37. https://doi.org/10.
1109/JPROC.2017.2714641

[17] seL4 Foundation. 2023. Frequently Asked Questions on seL4. on-
line. https://docs.sel4.systems/projects/sel4/frequently-asked-
questions.html accessed on 2023-08-17.

[18] Denis Selyanin. 2018. Researching Marvell Avastar Wi-Fi:
from zero knowledge to over-the-air zero-touch RCE. https:
//2018.zeronights.ru/en/reports/researching-marvell-avastar-wi-
fi-from-zero-knowledge-to-over-the-air-zero-touch-rce/ Accessed
2022-10-20.

[19] NXP Semiconductors. 2019. i.MX 8DualX/8DualXPlus/8QuadXPlus
Applications Processor Reference Manual. NXP Semiconductors. NXP
IMX8QXPSRM.

[20] NXP Semiconductors. 2019. NXP® 88W8997 802.11ac wave 2 2 x 2
Wi-Fi® Dual Band with Bluetooth® 5 SoC. NXP Semiconductors.

[21] NXP Semiconductors. 2022. NXP-Wireless-Chipset-Release-Notes.
NXP Semiconductors. L5.10.72_2.2.0_WIFI-Doc.

[22] NXP Semiconductors. 2023. i.MX DSP User’s Guide. NXP Semicon-
ductors. NXP IMXDSPUG.

[23] AzureWave Technologies. 2019. AW-CM276NF IEEE 802.11 2X2
MU-MIMO ac/a/b/g/n Wireless LAN + Bluetooth 5.0 NGFF Module
Datasheet. AzureWave Technologies.

[24] Bryan Thomas. 2018. i.MX 8 Audio and Tensilica HiFi 4
Overview. NXP Semiconductors presentation AMF-AUT-T3362,
https://community.nxp.com/t5/Technology-Days-Training/i-
MX-8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861.

https://doi.org/10.1007/978-3-319-94821-8_1
https://doi.org/10.1007/978-3-319-94821-8_1
https://doi.org/10.4204/EPTCS.244.4
https://doi.org/10.1145/3593856.3595895
https://doi.org/10.1109/TIFS.2017.2658544
https://doi.org/10.1109/TIFS.2017.2658544
https://doi.org/10.1016/j.micpro.2021.104377
https://doi.org/10.1145/3593856.3595903
https://doi.org/10.1145/3593856.3595903
https://www.blackhat.com/us-19/briefings/schedule/index.html#exploiting-qualcomm-wlan-and-modem-over-the-air-15481
https://www.blackhat.com/us-19/briefings/schedule/index.html#exploiting-qualcomm-wlan-and-modem-over-the-air-15481
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1109/MDT.2013.2247457
https://doi.org/10.1109/MDT.2013.2247457
https://doi.org/10.1109/DATE.2011.5763291
https://doi.org/10.1109/DATE.2011.5763291
https://doi.org/10.1109/JPROC.2017.2714641
https://doi.org/10.1109/JPROC.2017.2714641
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://docs.sel4.systems/projects/sel4/frequently-asked-questions.html
https://2018.zeronights.ru/en/reports/researching-marvell-avastar-wi-fi-from-zero-knowledge-to-over-the-air-zero-touch-rce/
https://2018.zeronights.ru/en/reports/researching-marvell-avastar-wi-fi-from-zero-knowledge-to-over-the-air-zero-touch-rce/
https://2018.zeronights.ru/en/reports/researching-marvell-avastar-wi-fi-from-zero-knowledge-to-over-the-air-zero-touch-rce/
https://community.nxp.com/t5/Technology-Days-Training/i-MX-8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861
https://community.nxp.com/t5/Technology-Days-Training/i-MX-8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861

KISV ’23, October 23, 2023, Koblenz, Germany Ben Fiedler, Roman Meier, Jasmin Schult, Daniel Schwyn, and Timothy Roscoe

https://community.nxp.com/t5/Technology-Days-Training/i-MX-
8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861

[25] Yuzuki Tsuru. 2023. FreeRTOS for HIFI4 DSP. https://github.com/
YuzukiHD/FreeRTOS-HIFI4-DSP. https://github.com/YuzukiHD/
FreeRTOS-HIFI4-DSP

[26] Zhenyu Xu, Thomas Mauldin, Zheyi Yao, Shuyi Pei, Tao Wei, and
Qing Yang. 2020. A Bus Authentication and Anti-Probing Architecture
Extending Hardware Trusted Computing Base Off CPU Chips and
Beyond. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). 749–761. https://doi.org/10.1109/
ISCA45697.2020.00067

https://community.nxp.com/t5/Technology-Days-Training/i-MX-8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861
https://community.nxp.com/t5/Technology-Days-Training/i-MX-8-Audio-and-Tensilica-HiFi-4-Overview/ta-p/1098861
https://github.com/YuzukiHD/FreeRTOS-HIFI4-DSP
https://github.com/YuzukiHD/FreeRTOS-HIFI4-DSP
https://github.com/YuzukiHD/FreeRTOS-HIFI4-DSP
https://github.com/YuzukiHD/FreeRTOS-HIFI4-DSP
https://doi.org/10.1109/ISCA45697.2020.00067
https://doi.org/10.1109/ISCA45697.2020.00067

	Abstract
	1 Introduction
	2 Approach
	3 Experience
	3.1 The NXP i.MX 8X
	3.2 The Armv8-A Memory Management Unit
	3.3 Security and System Controllers
	3.4 The Extended Resource Domain Controller
	3.5 ENET dma engine
	3.6 WiFi Modem
	3.7 Inter-component dma
	3.8 Inline encryption

	4 Discussion
	4.1 Implications for Kernel Isolation
	4.2 Viability of the approach

	5 Related work
	6 Conclusion and future work
	References

