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Abstract
Streaming computations are by nature long-running, and
their workloads can change in unpredictable ways. This
in turn means that maintaining performance may require
dynamic scaling of allocated computational resources.

Some modern large-scale stream processors allow dy-
namic scaling but typically leave the difficult task of de-
ciding how much to scale to the user. The process is
cumbersome, slow and often inefficient. Where automatic
scaling is supported, policies rely on coarse-grained met-
rics like observed throughput, backpressure, and CPU uti-
lization. As a result, they tend to show incorrect provi-
sioning, oscillations, and long convergence times.

We present DS2, an automatic scaling controller for
such systems which combines a general performance
model of streaming dataflows with lightweight instrumen-
tation to estimate the true processing and output rates of
individual dataflow operators.

We apply DS2 on Apache Flink and Timely Dataflow
and demonstrate its accuracy and fast convergence. When
compared to Dhalion, the state-of-the-art technique in
Heron, DS2 converges to the optimal, backpressure-free
configuration in a single step instead of six.

1 Introduction

We present DS2, a low-latency, robust controller for dy-
namic scaling of streaming analytics applications, which
can vary the resources available to a computation so as to
handle variable workloads quickly and efficiently.

Static provisioning is a poor fit for continuous, long-
running streaming applications: it forces users to choose a
single point on the spectrum between allocating resources
for worst-case, peak load (which is inefficient) and suffer-
ing degraded performance during load spikes. Fixing re-
sources a priori almost inevitably leads to a system which
is over- or under-provisioned for much of its execution.
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Figure 1: Effect of Dhalion’s scaling decisions on the
source rate when trying to match the target throughput of
an under-provisioned word count dataflow.

The solution is to dynamically scale the system in re-
sponse to load, an idea used extensively in cloud envi-
ronments [30, 31]. This requires both a mechanism for
scaling the computation, and a scaling controller which
decides when and how to scale. This paper focuses on the
latter; DS2 is designed to be mechanism-agnostic.

A scaling controller makes two kinds of decisions.
First, it detects symptoms of over- or under-provisioning
(e.g. backpressure) and decides whether to make a change.
Detection is often straightforward and addressed by con-
ventional monitoring tools. Second, the controller must
identify the causes of symptoms (e.g. a bottlenecked or
idle operator) and propose a scaling action.

The second decision is challenging, involving perfor-
mance analysis and prediction. Streaming systems sup-
porting a form of automatic dynamic scaling (e.g. Google
Cloud Dataflow [26, 5], Heron [27, 13], Pravega [11],
Spark Streaming [45], and IBM System S [15]) and re-
search prototypes (e.g. Seep [12] and StreamCloud [17])
focus on the first decision and either ignore or provide
speculative, often ad-hoc solutions for the second.



A good scaling controller should provide the SASO
properties [19] familiar from Control Theory: Stability
(not oscillating between different configurations), Accu-
racy (finding the optimal configuration for the given
workload), Short settling times to reach the optimal con-
figuration, and not Overshooting.

Speculative scaling decisions which do not provide
these properties can be bad for streaming systems. First,
they lead to temporary over- or under-provisioning, and
the resulting sub-optimal resource utilization incurs un-
necessary costs. Second, oscillations can in turn degrade
performance due to frequent scaling actions. Finally, spec-
ulative scaling can be slow to converge, resulting in Ser-
vice Level Objective (SLO) violations or load shedding.

Figure 1 illustrates these problems in the state-of-the-
art Dhalion controller [13] of Heron, using the same word
count dataflow as in the original paper. The dashed line
shows the target throughput (source output rate), while
the solid line tracks the achieved throughput, which varies
due to backpressure as Dhalion changes the computa-
tion scale. Dhalion performs six scaling decisions, taking
more than 30 minutes to converge.

We make the following contributions in this paper.
First, we review how existing dynamic scaling techniques
can lead to inaccurate, unstable, or slow provisioning de-
cisions. We identify the causes of these effects (§ 2),
which we attribute to the lack of a comprehensive per-
formance model, dependence on heuristics, and use of
coarse-grained, externally-observed execution metrics.

Second, we propose DS2, a general model and con-
troller for automatic scaling of distributed streaming
dataflows (§ 3). DS2 can accurately estimate parallelism
for all dataflow operators within a single scaling decision,
and operates reactively online. As a result, DS2 elimi-
nates oscillation and overprovisioning when making scal-
ing decisions. DS2 bases scaling decisions on real-time
performance traces, and is general: it relies neither on spe-
cific signals like backpressure, as in [13], nor simplistic
assumptions like 1-1 operator selectivity, as in [41].

Third, DS2 gives leverage on existing state-of-the-art
approaches: when used in Heron, it identifies the optimal
backpressure-free configuration in a few seconds and one
step, while Dhalion performs six steps to reach an over-
provisioned configuration in the same scenario (§ 5.2).

Fourth, we apply DS2 on Apache Flink (§ 5.3)
and demonstrate fully-automatic scaling of streaming
dataflows under dynamic workload.

Finally, we show that DS2 is accurate and converges
quickly for both Apache Flink and Timely Dataflow (§ 5.4
and § 5.5). In all experiments DS2 takes at most three
steps to reach the optimal configuration.

2 Background and Motivation

Designing a scaling controller with SASO properties is
non-trivial, and existing dynamic scaling techniques for
stream processing do not achieve them. Here, we sum-
marize existing approaches, and then examine why they
frequently lead to inaccurate, unstable, and slow scaling
decisions, before proposing our solution.

Many stream processors [45, 8, 40, 27, 4, 43] have elas-
tic runtimes and allow job reconfiguration by migrating
or by externalizing state, but the majority relies entirely
on manual intervention for both symptom detection and
scaling actions.

Table 1 summarizes those systems that do provide
some form of automatic scaling (for details also see [10]).
We categorize them by (i) metrics used for symptom de-
tection, (ii) policy logic for deciding when to scale, (iii)
type of scaling action which defines which operators to
scale and by how much, and (iv) optimization objective
(i.e. latency or throughput SLO).

We identify two areas in which current systems fall
short of the controller properties we would like: first, the
metrics used do not provide enough information to make
fast and accurate decisions as to how to rescale the system,
and second, the policies used for scaling (and the models
they are based on) are often simplistic and rule-based.

Limited metrics: Most systems rely on coarse-grained
externally observed metrics to detect suboptimal scaling:
CPU utilization, throughput, queue sizes, etc.

CPU and memory utilization can be inadequate met-
rics for streaming applications, particularly in cloud en-
vironments due to multi-tenancy and performance inter-
ference [38]. StreamCloud [17] and Seep [12] try to miti-
gate the problem by separating user time and system time,
but preemption can make these metrics misleading: high
CPU usage by a task running on the same physical ma-
chine as a dataflow operator can trigger incorrect scale-
ups (false positives) or prevent correct scale-downs (false
negatives), for example. Google Cloud Dataflow [26]
uses CPU utilization only for scale-down decisions but
could still suffer from false negatives. CPU usage is also
unsuitable for systems like Timely [32, 33], where opera-
tors spin waiting for input.

These metrics also imply continuous threshold tuning,
a cumbersome and error-prone process. Incorrect scal-
ing decisions can often arise from slightly misconfigured
thresholds, even on fine-grained metrics [13].

Dhalion [13] and IBM Streams [15] also use backpres-
sure and congestion to identify bottlenecks. These signals
are only helpful where a bottleneck exists. If the dataflow
is using resources unnecessarily, such metrics will not
trigger reconfiguration. Moreover, in under-provisioned
dataflows, backpressure will only detect a single bottle-



System Metrics Policy Scaling Action Objective

Borealis [3] CPU, network slack, queue sizes Rule-based Load shedding Latency, throughput
StreamCloud [17] Average CPU, observed rates Threshold-based Speculative, multi-operator Throughput
Seep [12] User/system CPU time Threshold-based Speculative, single-operator Latency, throughput
IBM Streams [15] Congestion, observed rates Threshold-based,

blacklisting
Speculative, single-operator Throughput

FUGU+ [18] CPU, processing time Threshold-based Speculative, single-operator Latency
Nephele [29] Mean task latency, service time,

interarrival time, channel latency
Queuing theory model Predictive, multi-operator Latency

DRS [14] Service time, interarrival time Queuing theory model Predictive, multi-operator Latency
Stela [44] Observed rates Threshold-based Speculative, single-operator Throughput
Spark Streaming [1, 2] Pending tasks Threshold-based Speculative, multi-operator Throughput
Google Dataflow [6] CPU, backlog, observed rates Heuristics Speculative, multi-operator Latency, throughput
Dhalion [13] Backpressure, queue sizes,

observed rates
Rule-based,
blacklisting

Speculative, single-operator Throughput

Pravega [11] Observed rates Rule-based Speculative, single-operator Throughput

DS2 True processing and output rates Dataflow model Predictive, multi-operator Throughput

Table 1: Overview of automatic scaling policies in distributed dataflow systems.

neck; for this reason and to minimize the effects of incor-
rect decisions [39, 13], each scaling action only config-
ures one operator, increasing convergence time.

Simplistic performance models: scaling policy is gen-
erally expressed in simple rules, using predefined thresh-
olds and conditions, e.g. CPU utilization > 50 and back-
pressure =⇒ scale up. This results in a simple perfor-
mance model with poor predictive accuracy, which is un-
able to consider the structure of the dataflow graph or
computational dependencies among operators. We note
the exceptions of Nephele [29] and DRS [14], which use
queuing theory models. Both systems show poor predic-
tion quality in some cases, while Nephele also seems to
suffer from temporary over-provisioning and slow con-
vergence.

Since the controller cannot accurately estimate how
much to scale an operator, scaling actions are mostly spec-
ulative. The system applies pessimistic strategies which
introduce only small changes to the number of provi-
sioned resources [12, 15] and most policies configure a
single operator at a time. This delays convergence to a
steady state significantly, as all steps of the scaling pro-
cess are repeated many times: SLO monitoring, decision
making, state migration, and redeployment. [13] shows
that, from the point that backpressure is observed, Heron
needs almost an hour to reach a steady state that can han-
dle the input rate.

More aggressive strategies apply configurations, black-
listing them if they degrade performance. [39] allows
arbitrary scaling steps but requires a user-defined func-
tion to calculate the new number of instances whereas
[2] supports exponential increase in resources. Stream-
Cloud [17] tries to estimate the optimal number of VMs in
a single step, but using very coarse-grained scaling (a sub-
graph of the dataflow topology). Google Cloud Dataflow

is the only system we know with fully automatic scaling
per operator, although the details of the model used have
not been disclosed.

A better approach: stepping back, it seems a more
promising approach for making scaling decisions would
take into account both (i) each operator’s true process-
ing and output capabilities, regardless of backpressure or
other effects, and (ii) the dataflow topology and how scal-
ing each operator will affect downstream operators.

Figure 2 gives an intuition of how this works showing
the execution timelines of operator instances in a simple
dataflow. Solid lines show useful work performed by an
instance (e.g. record processing) while dotted lines show
it waiting for input or output. Edges across timelines rep-
resent data transfer.

In this example, o1 is a bottleneck slowing down both
the source and o2 by pausing their execution. Backpres-
sure means that an external observer sees o1 processing
10 rec/s and o2 processing 100 rec/s. Based on this, a
policy might provision three additional instances for o1
to reach a target of 40 rec/s, but it could not accurately
estimate how much to scale o2 and would need to make
a speculative decision or apply an extra reconfiguration
step.

A better approach would measure the useful time of
an operator’s timeline and would determine the true rate
of o1 as 10 rec/s and that of o2 as 200 rec/s, inferring
that when increasing the parallelism of o1 to 4, it also
needs to double the parallelism of o2 to keep up with the
output rate. Note this can be calculated globally, i.e. for
all operators in the dataflow, in a single step.

DS2 does precisely this, obtaining rate measurements
of each operator by lightweight instrumentation (already
present in many streaming systems). In the rest of the
paper we define this notion, extend it to more complex



Figure 2: An under-provisioned dataflow and the execu-
tion timelines of its operators. Target throughput is 40
rec/s, but o1 is a bottleneck creating backpressure and
limiting the observed source rate to 10 rec/s.

dataflow graphs with multiple sources, and show how
DS2 implements it to provide fast, accurate, and stable
reconfiguration of streaming dataflows.

3 The DS2 model

DS2 identifies the optimal level of parallelism for each
operator in the dataflow on the fly, while the computa-
tion executes, based on real-time performance traces. It
maintains a changing provisioning plan, i.e. the number
of resources allocated to each operator. It therefore works
online and in a reactive setting.

Note that we do not target offline computation of an ini-
tial resource provisioning plan (as in [7]). Such initial con-
figurations quickly become sub-optimal in a live system
where workloads and/or internal operator states change
continuously. However, for static workloads known a pri-
ori, DS2 could use historical performance metrics and
offline micro-benchmarks (as in [20, 21, 16]) to estimate
the optimal levels of parallelism before deployment.

In this section we define the scaling problem (§ 3.1),
describe the DS2 model (§ 3.2), and discuss the model
assumptions (§ 3.3) and properties (§ 3.4).

3.1 Problem definition

We target distributed streaming dataflow systems like
Flink [9] and Heron [27] that execute data-parallel com-
putations on shared-nothing clusters. Such a computation
can be represented as a logical directed acyclic graph
G = (V,E), where vertices in V denote operators and
edges in E are data dependencies between them. A ver-
tex with no incoming edges (no upstream operators) is
a source and a vertex with no outgoing edges (no down-
stream operators) is a sink.

A dataflow computation runs as a physical execution
plan which maps dataflow operators to provisioned com-
pute resources (or workers). Let the graph G′ = (V ′,E ′)

logical graph
physical graph

src
o1

o2
o3 sink

o11

src sinko12

o21

o31

o32

o33

Figure 3: Logical and physical dataflow graphs.

represent the execution plan. Vertices in V ′ are operator
(or task) instances of a corresponding vertex in V and
edges are data channels. The assignment of tasks to work-
ers is system-specific. We show in § 5 that DS2’s scaling
policy is independent of this assignment.

Figure 3 illustrates a logical graph and its correspond-
ing physical graph for a dataflow with a source, a sink,
and three operators. Operators o1, o2 and o3 execute with
two, one and three instances, respectively.

The Scaling Problem. Given a logical dataflow with
sources s1,s2, ...,sn and rates λ1,λ1, ...,λn, identify the
minimum parallelism πi per operator such that the physi-
cal dataflow can sustain all source rates.

Source operators generate records at a rate λs, defined
by application data sources (sensors, stock market feeds,
etc.). To maximize system throughput, the execution plan
must sustain the full source rate. This means that each
operator must be able to process data without stalling its
upstream operators from producing output.

Like any controller, DS2 targets workload changes on a
timescale greater than its convergence time, and reacting
to spikes or other changes on a shorter timescale than the
convergence time would cause inefficient fluctuations. In
these latter cases, the use of backpressure, buffering, or
load shedding leads to more stable results than dynamic
scaling at the cost of increased latency or lost data.

3.2 Performance model

We consider operator instances as repeatedly performing
three activities in sequence: deserialization, processing,
and serialization. This fits all types of operators in most
modern streaming dataflow systems, including Heron,
Flink, and Timely. When an operator instance is sched-
uled for execution, it pulls records from its input, dese-
rializes them, applies its processing logic, and serializes
the results (if any), which are pushed to the output. Serial-
ization and deserialization are optional and happen only
when data is moved between operator instances executed
within different OS processes, otherwise data is usually
exchanged via shared memory (e.g. queues).

The model is based on the concept of useful time, which
we define for an operator instance as follows:



Useful Time. The time spent by an operator instance in
deserialization, processing, and serialization activities.

Useful time excludes time spent waiting on input or out-
put. Such waiting does occur in practice, for different rea-
sons depending on the design of the reference system. In
Flink, an operator instance may block on input when the
input buffers are empty, or on output when there is no free
space in the (bounded) output buffers. In Timely, operator
instances may continuously “spin” checking their input
queues until new records appear. In Heron, instances may
be forced to wait due to a backpressure signal from a slow
downstream operator.

In all cases, the useful time amounts to the time an
operator instance runs for if executed in an ideal setting
where it never has to wait to obtain input or push output.
In general, useful time differs from the total observed
time the instance needs to process and output records,
and plays a key role in solving the problem of § 3.1.

Based on this distinction, we define the true processing
and output rate of an operator instance as follows:

True Rates. The true processing (resp. output) rate cor-
responds to how many records an operator instance can
process (resp. output) per unit of useful time.

Intuitively, the true rates denote the capacity of the op-
erator instance, i.e. the maximum processing and output
rate the instance could sustain for the current workload.
In contrast, the observed rates are those measured by sim-
ply counting the number of records processed and output
by the instance over a unit of elapsed time, which might
include waiting. More precisely:

Observed Rates. The observed processing (resp. output)
rate corresponds to how many records an operator in-
stance processes (resp. outputs) per unit of observed time.

Although the observed rates are more sensitive to
changing workloads, due to the potential change in wait-
ing time, true rates typically have lower variance, espe-
cially within short time periods (e.g. a few seconds of
execution) as they represent the average “cost” to process
and output a single record. This cost naturally can depend
on factors like the size of the record, its content, and the
state maintained by the operator instance, but the average
cost can be estimated using appropriate instrumentation
of the operator without needing to saturate it.

We define all rates in our model relative to windows
of size W seconds of observed time. We denote the use-
ful time for an operator instance Wu, where 0≤Wu ≤W .
More precisely:

λp =
Rprc

Wu
(1) λo =

Rpsd

Wu
(2)

λ̂p =
Rprc

W
(3) λ̂o =

Rpsd

W
(4)

Symbol Description

G logical dataflow graph
m number of operators in G (m > 1)
n number of source operators in G (0 < n < m)

W size of a window in time units (observed time)
Wu useful time for an operator instance in W
Rprc number of records pulled from the input in W
Rpsd number of records pushed to the output in W
λ̂p observed processing rate of an operator instance
λ̂o observed output rate of an operator instance
λp true processing rate of an operator instance
λo true output rate of an operator instance
oi i-th operator in G (in topological order)
pi number of instances of the i-th operator

oi[λp] aggregated true processing rate of the i-th operator
oi[λo] aggregated true output rate of the i-th operator

πi optimal number of instances for the i-th operator

Table 2: Notation used in this paper.

where λp and λo are the true processing and output rate
respectively (undefined when Wu = 0), λ̂p and λ̂o are the
observed processing and output rates (undefined when
W = 0), and Rprc (resp. Rpsd) is the total number of
records the instance processed (resp. pushed) in W .

For a specific operator instance and a window W , the
following inequalities hold: 0≤ λ̂p ≤ λp and 0≤ λ̂o ≤ λo,
since 0 ≤Wu ≤W . In general, the less an operator in-
stance waits on its input and output the smaller the differ-
ence between the observed and true rates. Table 2 sum-
marizes the notation.

We instantiate the model with (i) the logical dataflow
graph G, (ii) the output rate of each data source, and (iii)
the true processing and output rates (λp and λo) of each
operator instance. G is static (known at compile time)
and does not change during execution, since the logical
dataflow is unaffected by the scaling decisions. The out-
put rates of the data sources are continuously monitored
outside the reference system, and the true rates of the op-
erator instances are computed based on system-generated
traces, as we explain in § 4.1. The output of DS2 is the
optimal parallelism, i.e. number of instances, for each log-
ical operator in the graph G, subject to the constraints of
the problem in § 3.1.

The calculation proceeds as follows: let A be the ad-
jacency matrix of G. Ai j = 1 iff the i-th operator outputs
to the j-th operator, otherwise Ai j = 0. We consider
operators numbered in topological order from i = 0 to
i = m−1, where m is the total number of operators in G.
This means that if oi outputs to o j and, hence, Ai j = 1,
then 0≤ i < j < m. Since G is acyclic (cf. § 3.1), there is
a topological ordering of its nodes and it can be computed
in linear time.

For a time window W and operator oi with pi



instances, pi ≥ 1, we define the aggregated true
processing and output rates oi[λp] and oi[λo] as:

oi[λp] =
k=pi

∑
k=1

λ
k
p (5) oi[λo] =

k=pi

∑
k=1

λ
k
o (6)

where λ k
p and λ k

o are the true processing and output rates
of the k-th instance of oi, as given by Eq. 1 and Eq. 2.

The optimal level of parallelism πi for an operator oi
is now computed using the ratio of the aggregated true
output rate of its upstream operators (when they keep up
with their inputs) to the average true processing rate per
instance of oi. More formally:

πi =

⌈
∑
∀ j: j<i

A ji ·o j[λo]
∗ ·
(

oi[λp]

pi

)−1
⌉
,n≤ i < m (7)

where m is the total number of operators in G, and n is
the number of source operators in G, 0 < n < m.

o j[λo]
∗ denotes the aggregated true output rate of an

operator o j, when o j itself and all operators before it
(in topological order) are deployed with their optimal
parallelism to keep up with their inputs. It is recursively
computed as follows:

o j[λo]
∗ =


o j[λo] = λ

j
src, 0≤ j < n

o j [λo]

o j [λp]
· ∑
∀u:u< j

Au j ·ou[λo]
∗, n≤ j < m

(8)

where λ
j

src is the output rate of the j-th source operator,
0≤ j < n.

Note that o j[λo]
∗ depends on (i) the ratio o j [λo]

o j [λp]
, which

denotes the selectivity of o j, and (ii) the estimated true
output rate of the upstream operators (∀u : u < j in the
summation). The latter implies that o j[λo]

∗ and, hence,
πi can be efficiently computed for all operators in the
dataflow with a single traversal of G, starting from the
sources. This property is important in practice, as it al-
lows us to estimate the required number of instances for
all operators in the dataflow in the same scaling decision.

3.3 Assumptions

DS2 makes the following assumptions about the dataflow
system it is controlling:

Data-parallel operators. An operator’s output can be
produced by partitioning its input on a key and applying

the operator logic separately to each partition. Other than
this, the operator’s internal logic can be any user-defined
function. Data-parallelism is essential for effective scal-
ing decisions: executing multiple operator instances en-
tails partitioning its state into chunks of data processed
in parallel. In contrast, non-data-parallel operators do not
benefit from scaling. System users could tag such opera-
tors for DS2 to ignore, or their lack of parallelism could
be identified online by comparing input and output rates
before and after scaling. As with existing systems, we
leave the integration of such operators for future work.

No data or computation imbalance. Our scaling model
addresses neither data skew across operator instances
nor computational stragglers. Both these types of imbal-
ance can trigger backpressure which cannot be tackled
by changing the degree of parallelism of one or more
operators. Several robust solutions to the skew and strag-
gler problems exist and have been incorporated into real
systems. Techniques such as partial key grouping [35]
introduced in Storm [34] and further evaluated in [25],
and work-stealing for straggler mitigation in MapReduce
[28] and Google Dataflow [26] are complementary to
DS2. In § 4.2 we describe how DS2 could be integrated
in a general controller for streaming applications which
would not only handle dynamic scaling but also include
skew and straggler handling components.

Stable workloads during scaling. Like existing scaling
mechanisms, DS2 operates with the understanding that
workload characteristics remain stable between a scaling
decision being made and the new parallelism configura-
tion being deployed. This window is the time taken for
DS2 to make a decision (which we evaluate in § 5) plus
the time to deploy the new configuration, which depends
on the dataflow system in use. In practice, we find this
timescale is dominated by the latter in current systems.

3.4 Properties

DS2 estimates the optimal parallelism for each opera-
tor assuming perfect scaling, that is, the true processing
and output rates change linearly with the number of in-
stances. In general, however, true rates are described by
non-linear, most commonly sub-linear functions. Super-
linear speedups are possible [16] (e.g. when state fits in
cache after a scale-up) but are rare in practice. When
this “perfect scaling” assumption holds, DS2 estimations
(Eq. 7) correspond to bounds and the model enjoys the
following two properties:

Property 1. No overshoot: a scale-up decision will not
result in over-provisioning. The estimated optimal num-
ber of instances πi for an under-provisioned operator is
always less than or equal to the minimum required to keep
up with the target rate rt = ∑∀ j: j<i A ji ·o j[λo]

∗ in Eq. 7.
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(b) No undershoot when scaling down

Figure 4: Given a target rate rt and aggregated true processing rate λ which does not scale super-linearly, our model
guarantees no over-provisining when scaling up and no under-provisioning when scaling down.

Property 2. No undershoot: a scale-down decision will
not result in under-provisioning (and, hence, backpres-
sure). The estimated optimal number of instances πi for
an over-provisioned operator is always greater than or
equal to the minimum needed to keep up with the target
rate rt = ∑∀ j: j<i A ji ·o j[λo]

∗ in Eq. 7.

Figure 4 shows hypothetical scale up and scale down
scenarios, each during two consecutive time windows,
W and Wnext . Consider an operator initially configured
with parallelism p and aggregated processing rate λ < rt ,
where rt is the target rate, as shown in Figure 4a (left).
Assuming linear scaling, our model assigns π instances
to reach the target rate rt . Property 1 states that there ex-
ists no π ′ < π such that π ′ matches rt . Indeed such a π ′

can only exist in Wnext if the aggregated processing rate
scales super-linearly, as shown in Figure 4a (right).

Similarly, if an operator is initially configured with par-
allelism p and aggregated processing rate λ > rt , as in
Figure 4b (left), our model assigns π < p instances to
scale down to rt . Property 2 states that there exists no
π ′ > π such that π ′ matches the target rt . As shown in
Figure 4b (right), such a π ′ would violate the assumption
of non-superlinear aggregated true processing rate.

Together, these properties imply that repetitive appli-
cations of DS2 do not oscillate: they will monotonically
converge to the target rate from below or above, ensuring
stability without the need to blacklist previous decisions,
and simplifying the scaling mechanism significantly.

When true rates are linear and the target rate rt is ac-
curately estimated for each operator, DS2 converges in at
most one step. When one of these two conditions does
not hold, for example, true rates do not scale well due
to other overheads (e.g. worker coordination) or dataflow
operators have data-dependent output rates, DS2 needs
more steps to converge to a stable configuration. In each
of these steps, DS2 tries to minimize the error of its pre-
vious decision to get closer to the target, as any typical
controller does. We omit the details of this process here

and we only show empirically (in § 5.4) that DS2 needs
at most three steps to converge in all our experiments.
Further reducing the number of steps requires good ap-
proximation of non-linear rates, which could be gradually
learned by DS2 using machine learning techniques, open-
ing an interesting direction for future work.

4 Implementation and deployment

The DS2 controller consists of about 1500 lines of Rust
running as a standalone process. Here we describe the in-
strumentation requirements it imposes and discuss the is-
sues encountered integrating it with three different stream
processing engines: Flink, Timely dataflow, and Heron.

4.1 Instrumentation requirements

DS2 requires a subset of the instrumentation required
by bottleneck detection tools for stream processors like
SnailTrail [23]. The stream processor must periodically
collect and report records processed, records produced,
and useful time (serialization, deserialization, processing)
or waiting time per operator instance.

Flink gathers some of the metrics required by DS2 (e.g.
records read and produced) by default but we extended
its runtime so that each operator instance maintains lo-
cal counters for (de)serialization and processing duration
as well as for buffer wait time, reporting them to DS2
in configurable intervals. For record-at-a-time systems
like Flink, tracking and emitting metrics for every record
might incur significant overhead. Instead, we aggregate
measurements per input buffer for all operators, except
for sources where we aggregate per output buffer. Specifi-
cally, we have implemented a MetricsManager module
which is responsible for gathering, aggregating, and re-
porting policy metrics. We assign one MetricsManager
instance per parallel thread executing operator logic. Each



thread maintains local counters for records read, records
produced, (de)serialization duration, processing duration,
and waiting for input and output buffers. Source oper-
ator instances send their current local counters to the
MetricsManager every time an output buffer gets full
and regular operator instances send their local counters
every time they receive a new input buffer for processing.
The MetricsManager maintains a data structure with the
current aggregate metrics of its operator instance and re-
ports them to the outside world in configurable intervals.

Timely [32] outputs raw tracing information, which we
aggregate in configurable intervals to produce metrics
for DS2. We use a similar MetricsManager, as in Flink,
which receives streams of logged events coming from
Timely workers and aggregates them on the fly. Each
Timely worker logs individual events of different types,
such as scheduling an operator or sending a message over
a data channel, along with their timestamp in nanosec-
onds. Recall that operator instances in Timely are not
blocked on their input or output queues; instead, they
are continuously spinning, i.e. they are scheduled for
execution (in a round-robin fashion) even if there are
no data records to process. Spinning results in a huge
amount of scheduling event logs, which quickly saturate
the MetricsManager, although most of these logs are
not needed for computing the true rates. To tackle this
problem, we modified Timely’s logger to trace and send
to the MetricsManager only the “useful” scheduling
events, i.e. those that correspond to an operator instance
doing some “useful work” for the actual computation.

Heron also by default outputs detailed, aggregated met-
rics [22], which are periodically collected and fed into
DS2. The aggregation window depends on how fre-
quently Heron samples its metrics and can be configured.

4.2 Integration with stream processors

DS2 is mechanism-agnostic and can be integrated with
any stream processor capable of dynamically varying re-
sources and migrating state. Figure 5 shows the high-level
architecture of such an integration. Instrumented stream-
ing jobs periodically report metrics to a repository. DS2
consists of a Scaling Policy component implementing
the model of § 3.2, and a Scaling Manager monitoring
the repository, invoking the policy when new metrics are
available, and sending scaling commands to the stream
processor.

While DS2 currently only offers scaling functionality,
it could be easily extended with skew and straggler miti-
gation techniques as shown in Figure 5. In this case, the
system would consist of multi-purpose Manager and Pol-
icy components, where the first detects the problem type
(e.g., presence of skew) and the latter invokes the appro-
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Figure 5: DS2 integration with streaming systems

priate policy. Note that DS2 collects metrics from each
operator instance separately, thus skew detection can be
effortlessly implemented by the Manager.

We have integrated DS2 with Apache Flink, which em-
ploys a simple scaling mechanism: when instructed, Flink
takes a savepoint, a consistent snapshot of the job state,
halts the computation, and redeploys it with the updated
parallelism [24]. We demonstrate this integration in ac-
tion and evaluate it under a dynamic source rate in § 5.3.

4.2.1 Scaling Manager

Operational issues in real deployments that are not cap-
tured by the model must be handled by the implementa-
tion instead. To deal with factors that might affect scaling
decisions in practice, the Scaling Manager provides the
following configuration parameters:

Policy interval defines the frequency with which metrics
are gathered and the policy invoked. Tuning the policy
interval allows the scaling manager to aggregate metrics
meaningfully, e.g. to ensure enough data is available to
compute averages for processing and output rates. Long
intervals give stable metrics but also increase reaction
time. The interval must also be tuned based on the recon-
figuration mechanism of the reference system. In our ex-
periments, we found 5–30s intervals reasonable for Flink
and Timely. For Heron, we found the default 60s suitable.

Warm-up time is the number of consecutive policy in-
tervals ignored after a scaling action, since rate measure-
ments can be unstable at the start of a computation or
before backpressure builds up.

Activation time specifies when DS2 applies a scal-
ing decision, as the number of consecutive policy deci-
sions considered by the scaling manager before issuing
a scaling command. Activation time plus an appropriate



policy interval mitigates the effects of irregularities in
some streaming computations, such as non-incremental
tumbling windows or data-dependent operators. For in-
stance, consider naively-implemented window operators
that buffer records and only apply the computation logic
after the window fires. As long as input is simply assigned
to a window, the operator’s processing rate will appear
high but once the window fires and the actual computa-
tion is performed the processing rate will suddenly drop.
DS2 can consider several consecutive policy decisions
and, for example, compute the maximum or median par-
allelism across intervals before applying a scaling action.

Target rate ratio defines a maximum allowed differ-
ence between the observed source rate achieved by the
policy and the target rate, addressing the practical issue
that processing and output rates might be affected by
overheads not captured by instrumentation. For instance,
adding workers to a distributed computation might incur
higher coordination, channel selection cost, or resource
contention, and so a computation might need more re-
sources to achieve the target rate than the policy indicates.
DS2 estimates the additional resources required by com-
puting the ratio between the currently achieved rate and
the target rate.

4.2.2 Practical considerations

DS2 also ignores minor changes (e.g. changing an opera-
tor’s parallelism by one or two), which can be triggered
by noisy metrics. External disruptions, such as garbage-
collection in Java-based systems or disk I/O, can also in-
fluence rates measurements. For example, when integrat-
ing DS2 with Flink, we took care to properly configure
task managers, heap memory, and network buffers. We
are also aware that system performance might degrade
after a scaling action (though we have not observed this
in practice). If this were to happen, DS2 rolls back to the
previous configuration. Similarly, consecutive decisions
resulting in very small improvements indicate a perfor-
mance issue (e.g. data skew, stragglers) that cannot be
improved by scaling. DS2 can limit the number of deci-
sions to prevent further reconfiguration.

4.2.3 DS2 in the presence of skew

Even though the scaling model assumes no data imbal-
ance and the current implementation of DS2 does not
offer skew mitigation functionality, it is worth discussing
how the system behaves if skew actually appears in a
streaming application it is controlling. In such a case,
the system makes a scaling decision assuming data bal-
ance (§ 3.3) by averaging true processing and output rates.
Thus, DS2 proposes a configuration which might not meet
the target throughput but at the same time will not over-

provision the system. Further, due to DS2’s ability to limit
the number of decisions (§ 4.2.2), the policy is guaran-
teed to converge. We have verified the above behavior ex-
perimentally on Flink varying the skew parameter in the
Dhalion benchmark from 20% to 50% and 70%. In all
cases, DS2 converged after two steps to the configuration
which would be optimal if there was no skew, but which
in this experiment did not meet the target throughput.

4.3 Execution model independence

DS2’s policy can be applied on streaming systems re-
gardless of their execution model. In Flink and Heron
each dataflow operator is assigned a number of worker
threads that define its level of parallelism, i.e. the num-
ber of parallel instances executing the operator’s logic. In
this case, Eq. 7 can be directly used to configure operator
parallelism independently. In Timely, on the other hand,
parallelism is configured globally for the whole dataflow.
Each worker runs every operator in the dataflow graph
according to a round-robin scheduling strategy.

For Timely, DS2 estimates the optimal number of to-
tal workers by summing up the optimal level of paral-
lelism, as given by Eq. 7, for all operators in the dataflow.
The intuition here is simple: an operator that needs πi in-
stances to keep up with its input actually needs πi ·100%
computing power per unit of time. In an execution model
like Timely’s where operators share computing resources
(worker threads), the total computing power needed so
that the system can keep up with its input is ∑∀i πi ·100%.
We experimentally validate the accuracy of DS2 decisions
on Timely in § 5.5.

5 Experimental evaluation

Our evaluation covers DS2 in use with three different
streaming systems: Heron, Flink, and Timely Dataflow.
We start our evaluation by comparing DS2 with the state-
of-the-art Dhalion scaling controller used in Heron, with
the benchmark in the original Dhalion publication [13].
We then demonstrate DS2 in action through end-to-end,
dynamic scaling experiments with Flink, followed by
measurements of DS2 convergence and accuracy in using
both Flink and Timely. Finally, we evaluate the overhead
of the instrumentation used by DS2.

5.1 Setup

We run all Flink and Timely experiments on up to four
machines, each with 16 Intel Xeon E5-2650 @2.00GHz
cores and 64GB of RAM, running Debian GNU/Linux
9.4. We use Apache Flink 1.4.1 configured with 12
TaskManagers, each with 3 slots (maximum parallelism



Figure 6: Comparison of DS2 vs Dhalion on Heron using
the word count dataflow of [13].

per operator = 36), and Timely Dataflow 0.5.0 compiled
with Rust 1.24.0. For the comparison experiment, we
run Heron 0.17.8 on a four socket-machine equipped
with AMD Opteron 6276, with 64 threads in total and
256GiB of memory.

To demonstrate generality across diverse computations
and streaming operators, we selected six queries from the
Nexmark benchmarking suite of Apache Beam [42, 36,
37]. Specifically, we test the policy with Queries 1–3, 5,
8, and 11, which contain various representative streaming
operators: stateless streaming transformations, i.e. map
and filter in Q1 and Q2 respectively, a stateful record-at-
a-time two-input operator (incremental join) in Q3, and
various window operators: sliding window in Q5, tum-
bling window join in Q8, and session window in Q11.
These queries specify computations both in processing
and event time domains [5]. For the comparison with
Dhalion (§ 5.2) and the end-to-end experiment on Flink
(§ 5.3), we use the wordcount dataflow as specified in
Dhalion’s paper [13].

5.2 DS2 vs Dhalion on Heron

We compare the accuracy and convergence steps of DS2
with Dhalion, recreating the benchmark in [13].

We run Heron with Dhalion and its dynamic resource
allocation policy enabled. The source operator of the
three-stage wordcount topology (Source, FlatMap, Count)
produces sentences at a fixed rate of 1M per minute. The
FlatMap and Count operators are rate-limited to simulate
bottlenecks: each FlatMap instance splits at most 100K
sentences per minute, and each Count instance counts up
to 1M words per minute (the same ratios as in the Dhalion
paper). We start under-provisioned with one instance per
operator and let Heron stabilize without backpressure.

Figure 7: Dynamic scaling experiment with Flink using
DS2 on the word count dataflow of [13].

We have already seen how the source rate evolves to
match the target throughput in this experiment in Figure 1.
Figure 6 shows the parallelism of FlatMap and Count over
time, from the start until convergence. Dhalion makes six
scale-up decisions (each involving a single operator) and
reaches a stable configuration with 22 FlatMap instances
and 30 Count instances after 2000 seconds.

We then apply DS2 on the same initial under-
provisioned configuration using a 60s decision interval,
no warm-up, one interval activation time, and 1.0 target
ratio (cf. § 4). DS2 indicates a required parallelism of 10
for FlatMap and 20 for Count, which indeed is the mini-
mum configuration that handles 1M sentences per minute.
Note that DS2 correctly estimates the optimal parallelism
in a single step, after only one minute of collecting the
default Heron performance metrics.

Dhalion requires several re-configuration steps, each af-
fecting a single operator, and reaches a final configuration
that is significantly over-provisioned, even in this simple
wordcount dataflow. In contrast, DS2 correctly identifies
the optimal configuration in a single step and two orders
of magnitude less time than Dhalion.

Besides those discussed in § 2, another reason Dhalion
takes so long to reach a backpressure-free configuration
is that its reaction time depends on the size of the operator
queues. By default, Heron has a 100MiB buffer per opera-
tor queue, which may take some time to fill (depending on
the workload) before backpressure kicks in and Dhalion
can react. In contrast, DS2 only depends on the decision
interval where metrics are aggregated, arbitrarily speci-
fied by the user and typically much smaller.

5.3 DS2 on Flink

We now show DS2 driving Apache Flink, in order to
demonstrate the benefits of DS2 when combined with



Bids Auctions Persons
Flink Timely Flink Timely Flink Timely

Q1 4M 5M — —
Q2 4M 5M — —
Q3 — 500K 3M 100K 800K
Q5 500K 2M — —
Q8 — 420K 4M 120K 4M
Q11 1M 9M — —

Table 3: Target source rate (records/s) configuration for
the Nexmark queries on Apache Flink and Timely.

a fast re-configuration mechanism such as that in Flink.
Here, DS2 uses a 10s decision interval, 30s warm-

up time, one interval activation time, and 1.0 target ra-
tio. DS2 hence ignores the first three decisions after re-
configuration, applying a decision immediately after.

We use the same wordcount dataflow as before, this
time with two phases corresponding to scale-up and
scale-down scenarios respectively. In phase 1, the source
rate is 2M sentences per second and Flink starts under-
provisioned with 10 FlatMap instances and 5 Count in-
stances. In this state, FlatMap can not keep up with the
source rate, neither can Count handle FlatMap’s output
rate. Once Flink has reached a backpressure-free config-
uration, we keep the source rate stable for 10 minutes.
During the second phase, we decrease the source rate to
1M sentences per second and keep it stable for another 10
minutes.

Figure 7 shows observed source rate and operator paral-
lelism over time. DS2 applies two scale-up actions. First,
at 40s it re-deploys the dataflow with 14 FlatMap in-
stances and 7 Count instances. This happens right after
the warm-up and activation time, and Flink takes around
30s to snapshot state and restart from the savepoint [24].

At 150s DS2 acts again to increase FlatMap to 19 and
Count to 11 instances. This time Flink takes about 50s to
redeploy the backpressure-free configuration at 200s.

At 803s (3s into the second phase) DS2 reacts to the
reduced source rate by reducing the configuration to 7
FlatMap and 4 Count instances at 845s. At 900s it makes
a final decision to increase Count parallelism by one, and
Flink successfully applies the change at 930s, reaching
the new optimal configuration.

This shows that DS2 plus an efficient re-configuration
mechanism can offer robust dynamic scaling for stream-
ing dataflows, allowing the reference system to react to
changes in its workload in just a few seconds – signifi-
cantly faster than any other systems we are aware of.

5.4 Convergence

We now show DS2 convergence from both over- and
under-provisioned states on more complex dataflows. We

use the same Flink configuration as before, and execute
each query with fixed source rates (cf. Table 3) and ini-
tial configurations of varying parallelism. We run each
query-configuration combination for 5 minutes and evalu-
ate DS2 with 30s decision interval, 30s warm-up time, 1.0
target ratio, and five intervals activation (i.e. we consider
the policy to have converged if the decision is unchanged
over 5 consecutive intervals).

Table 4 shows the indicated parallelism per decision
step for the main operator of each query on Flink. Note
that queries Q3, Q5, Q8, and Q11 include many opera-
tors, but we show results for the main operator of each for
simplicity. DS2 converges in one step for simple queries
and initial configurations close to optimal (e.g. Q1 with
parallelism 12), and in at most three steps for complex
queries and initial configurations far from optimal (e.g.
Q5 with initial parallelism 8).

In all cases, DS2 takes at most three steps to converge.
It needed three steps in 3 experiments (with Q2, Q5, and
Q11), two steps in 14 experiments, and a single step in 19
out of 36 total experiments. We also ran the same queries
using Timely Dataflow and the results were similar.

This shows that DS2 provides two important SASO
properties: stability and short settling time.

Intuitively, one DS2 step moves close to optimal by es-
timating ideal linear scaling (§ 3.4). For far-from-optimal
initial configurations, the second step “refines” this de-
cision with a more accurate measurement, and the third
step compensates for uncaptured overheads.

5.5 Accuracy

We next show accuracy: DS2 converges to configurations
that exhibit no backpressure (and thus keep up with the
source rates) while minimizing resource usage. In partic-
ular, we show that for a given dataflow, fixed input rate,
and initial configuration, DS2 identifies the optimal par-
allelism regardless of whether the job is initially under-
or over-provisioned. We further show that there exists no
other backpressure-free configuration with lower paral-
lelism than the one DS2 computes. Finally, we show that
this configuration gives low latency by minimizing wait-
ing time per operator instance.

We set source rates as in Table 3 and parallelism given
by the convergence experiment. Figure 8 plots observed
source rates (top) and per-record latency (bottom) for the
main operator of each Nexmark query on Flink with dif-
ferent configurations. For queries with two sources (Q3
and Q8), we show results for the higher-rate source (re-
sults for the low-rate sources are similar). In all cases,
DS2 successfully identifies the lowest parallelism that
can keep up with the source rate. Further increasing the
parallelism does not significantly improve latency and
would waste resources, while lower parallelism would



(a) [Q1] Indicated parallelism: 16 (b) [Q2] Indicated parallelism: 14 (c) [Q3] Indicated parallelism: 20

(d) [Q5] Indicated parallelism: 16 (e) [Q8] Indicated parallelism: 10 (f) [Q11] Indicated parallelism: 28

Figure 8: Observed source output rates and per-record latency CDFs for different configurations of the Nexmark
operators on Apache Flink.

(a) [Q3] Indicated parallelism: 4 (b) [Q5] Indicated parallelism: 4 (c) [Q11] Indicated parallelism: 4

Figure 9: CDFs of per-epoch latencies for different configurations of the Nexmark operators on Timely.



Initial configuration Q1 Q2 Q3 Q5 Q8 Q11

8 12→16 11→13→14 16→20 14→15→16 10 12→22→28
12 16 14 18→20 16 10 22→28
16 16 12→14 20 16 8→10 26→28
20 16 13→14 20 14→16 8→10 28
24 16 14 20 14→16 8→10 28
28 16 14 20 13→16 8→10 28

Table 4: DS2 convergence steps for Nexmark queries on Flink. Values are the level of parallelism of the main operator
of each query. Leftmost column shows initial parallelism (from 8 to 28 instances); subsequent columns show optimal
level of parallelism as estimated by DS2 in each step. Final decisions converged to by DS2 are highlighted.

(a) Flink instrumentation overhead (b) Timely instrumentation overhead

Figure 10: Policy instrumentation overhead for the Nexmark queries of Table 3 with instrumentation disabled (vanilla)
and enabled (instr) for both Flink (10a) and Timely (10b).

cause backpressure.
Timely does not have a backpressure mechanism so

data sources are never delayed and the observed source
rates are always equal to the initial fixed rate (instead,
queues grow when the system cannot keep up). We there-
fore simply show CDFs of per-epoch latencies with dif-
ferent configurations for Timely. Figure 9 shows these
for Q3, Q5, and Q11; results are similar for other queries.
Each epoch in the CDFs corresponds to 1s of data, which
must be processed in less than 1s. The optimal parallelism
indicated by DS2 is p = 4 in all queries, regardless of
the starting configuration. For Q3 (left) and Q11 (right),
p = 4 is clearly the configuration that can keep up with
the 1s target (vertical line in the plots) using minimum
required resources. For Q5, 18% of the epochs are above
the target by up to 0.5s. Here, the larger percentage of
epochs that cannot keep up is because of the window op-
erator, which stashes data and then forwards it at certain
time points. This manifests as load spikes, which require
additional resources for the system to keep up. Longer
decision intervals smooth out the spikes but tend to affect
policy decisions towards higher optimal configurations,
which is why DS2 indicated p = 4 (cf. § 4.2).

In summary, DS2 identified optimal configurations in
all experiments and never overshot (provisioned more re-
sources than needed), thereby exhibiting the remaining
two SASO properties: accuracy and no overshoot.

5.6 Instrumentation overhead

Finally, we evaluate instrumentation overhead. We run
the Nexmark queries for 5 minutes with source rates from
Table 3 and a 10s decision interval — the smallest we
use in this paper, which results in the most frequently
aggregated logs and has the highest potential overhead on
the system performance.

We measure per-record latency in Flink using its built-
in metric and per-epoch latency in Timely using 1s event-
time epochs. Figure 10 shows boxplots for both systems.
Individual columns show latency with logging completely
off (vanilla) and instrumentation activated (instr). Over-
heads are small: at most 13% on Flink (40ms absolute
difference) and at most 20% on Timely (5ms absolute dif-
ference) across all queries. Performance penalties are an
acceptable trade-off for a good scaling policy, and could
be further reduced with a larger decision interval and pre-



aggregation of metrics. Note that Heron incurs no over-
head since it gathers the required metrics by default.

6 Conclusion

In this paper we have described and evaluated DS2, a
novel automatic scaling controller for distributed stream-
ing dataflows. Unlike existing scaling approaches, which
rely on coarse-grained metrics and simplistic models,
DS2 leverages knowledge of the dataflow graph, the com-
putational dependencies among operators, and estimates
the operators’ true processing and output rates.

DS2 uses a general performance model that is
mechanism-agnostic and broadly applicable to a range of
streaming systems. We have implemented DS2 atop dif-
ferent stream processing engines: Apache Flink, Timely
Dataflow, and Apache Heron, and showed that it is capa-
ble of accurate scaling decisions with fast convergence,
while incurring negligible instrumentation overheads.

An interesting question for future work is what kind
of scaling and adaptation mechanisms are a good match
for a controller like DS2. The efficiency of DS2’s model
means that responsiveness is often limited by the latency
of the scaling mechanism of the stream processor (when it
is not determined by the granularity of measurement). All
the stream processors we test against implement scaling
actions by checkpointing the dataflow, redeploying, and
restoring from the checkpoint. A faster, more dynamic
reconfiguration mechanism might allow DS2 to operate
on shorter timescales than the tens of seconds it allows in
current systems.

We will release DS2 as open source, together with all
code and data used to produce the results in this paper.
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