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Abstract
We present the design of Mnemosyne1, a peer-to-
peer steganographic storage service. Mnemosyne
provides a high level of privacy and plausible de-
niability by using a large amount of shared dis-
tributed storage to hide data. Blocks are dispersed
by secure hashing, and loss codes used for re-
siliency. We discuss the design of the system, and
the challenges posed by traffic analysis.

1 Introduction and Motivation
A steganographic file system, first presented in [2],
has the property that it gives a user strong protec-
tion against being compelled to disclose (all) its
contents. Attackers not in possession of the secret
are unable to acquire the contents of files, and they
cannot even gain information about whether a given
file is present or not. In effect, the system allows an
author to plausibly deny the existence of most files2

in the system.
A distributed, peer-to-peer steganographic stor-

age system like Mnemosyne has further interest-
ing properties. Firstly, in common with systems
like FreeNet [6], storage providers can offer a ser-
vice without being able to know what is being
stored. This property may be attractive to a ser-
vice provider concerned about liability as it de facto
confers something akin to common-carrier status
on the provider.

Secondly, for a single user desiring to store files
securely, a distributed steganographic storage sys-
tem makes information less susceptible to machine
failure or denial-of-service: a local storage medium
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1Pronounced ne moz’nē.
2At least some files must be revealed to justify the existence

of the system itself.

can always be stolen, but a peer-to-peer system is
harder to shut down.

Thirdly, such a system may also be used as
a shared-memory communication medium with
steganographic properties: this allows interper-
sonal messaging with a high degree of privacy.

A system with these properties is of great poten-
tial use to the modern business traveler.

Mnemosyne takes advantage of the widespread
availability and low cost of network bandwidth and
disk space. The system comprises servers that pro-
vide unreliable block storage, and clients which
write and read blocks to and from the servers. A
node can serve the function of server and client si-
multaneously. The servers collectively comprise a
peer-to-peer system: a centralized organisation or
authority is neither required nor desirable.

Before describing Mnemosyne itself, we present
a description of our local steganographic file sys-
tem. We do this for two reasons. Firstly, many of
the principles of local steganographic systems carry
over to the distributed case, and discussion of these
helps establish context for describing Mnemosyne
later. Secondly, our implementation of the local
case differs from previous systems (most notably
that described in [13]) in ways significant when ex-
tending the concept to a full peer-to-peer system.

2 A Local Steganographic File System
Anderson et. al. [2] describe two approaches to
the steganographic storage of data. In the first,
randomly-filled “cover files” are created, and user
files are “written” by altering a subset of the cover
files (determined by a passphrase) so that the user
file is the XOR of that subset.

The second construction, followed here, assumes
a disk which can store X blocks of data. To pre-
pare this for use, we first write random data to ev-
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ery block. Then to store a file we simply encrypt
each block and write it to a pseduo-randomly cho-
sen location (e.g. one determined by hashing the
filename and block number with a secret key). With
a sufficiently good cipher and key, the encrypted
blocks will be indistinguishable from the random
substrate, and so an attacker cannot even deter-
mine the existence of the file. On the other hand,
someone privy to the filename and key can recon-
struct the pseudo-random sequence, retrieve the en-
crypted blocks, and decrypt them.

This leads to the problem of collisions, where
blocks are overwritten on the disk by subsequent
files. The well-known “birthday paradox” makes
this quite likely with even a small load factor (ra-
tio of file blocks to total blocks on the disk), and so
replication is used: each block is written to the disk
at n independent locations.

We describe our implementation of this scheme
(over Linux) by first describing the process for
replicating a block on the disk, and then discussing
file structures built over this facility.

Writing and Reading a Single Block
Writing a block to the local steganographic file sys-
tem requires a user’s key K , the block data itself,
and two further pieces of information: an initial
hash value h0 for the block, and a validity check (a
way of determining whether the block data has been
corrupted or not). The initial hash value and valid-
ity check vary according to whether one is storing
directory blocks, inodes, or file blocks (see below).
To write (or overwrite) a block, the procedure is:

� The user computes a sequence of n hash val-
ues h0; h1 = H(h0); : : : ; hn�1 = H(hn�2)

� Replica i (0 � i < n) is encrypted under the
key ki = EK(hi) and stored at block number
bi = hi mod X , where X is the number of
blocks on the disk3.

To read a block given the key K and an initial
hash value h0, we read and decrypt each replica
in turn from block bi until we have a block which
passes the validity check. If no blocks pass the

3We believe that using subkeys ki = EK(hi) improves
over ki = K � hi, used in an earlier version of this paper.

check, the block is deemed lost. The use of a per-
replica key ki ensures that replicas are not identical
on disk. It also means that K alone is not sufficient
to determine the validity of a given block.

In our implementation we use SHA256 as the
hash function H and AES as the block cipher for
encrypting blocks, choosing a key size of 256 bits
to match the size of hash values.

Directories, Inodes and Files
We build a file system over this basic block facility
using directories, inodes, and file blocks.

In Mnemosyne directories are used to aggregate
files which share a common key K . A directory
block contains a known textual name for the direc-
tory itself, and a list of textual file names. The va-
lidity check for a directory block is the presence of
the name of the directory in the block. The initial
hash value used for writing a directory block is ob-
tained by hashing the directory name and XORing
the result with the key, K . Using K in this way pre-
vents different users from overwriting each others’
blocks deterministically when they choose identical
directory names.

Each file is represented in the file system by an
inode block. The inode block is stored using an
initial hash value obtained by concatenating the di-
rectory name and file name to produce a pathname,
hashing this pathname, and then XORing the result
with the key K as before; this is the reason direc-
tory blocks need only store filenames. The filename
is also stored in the inode block, acting as the va-
lidity check. Note that in this scheme directories
themselves are completely optional, serving sim-
ply as a mnemonic device for a set of file names.
Directory names, on the other hand, are necessary
components of path names.

In addition to this file name, the inode block for a
file consists of a list of zero or more finitval, check-
valg pairs, one for each block in the file. These
pairs of 256-bit values are analogous to the block
pointers in a conventional file system. initval, cho-
sen at random, is the initial hash value for locating
the file block replicas. checkval is a secure hash of
the file block and is used as the validity check for
file blocks since, unlike directories and inodes, no
redundant information is stored within file blocks.
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Discussion
As discussed in [2], the choice of n (the number
of replicas) is critical. Intuitively, there is a tension
between increasing n to make an individual replica
set more resilient and decreasing n to reduce the
overall number of blocks written (and hence poten-
tially overwritten). Analytical solutions are diffi-
cult to obtain, but initial experiments (see x5) sug-
gest overall replication factors of 2 to 8.

This results in a significant cost in disk space, but
the factor is constant (while large) over a conven-
tional file system and so we consider it acceptable
since what is offered is a specialised service for cer-
tain types of information. The key point is that the
service scales well in disk size, not how much disk
space is required for a given load.

The systems in [2] and [13] present a hierarchical
security model, which can be generalised to a ma-
trix controlling access by a fixed number of users
(or principals) to a fixed number of security “lev-
els”. We eschew such an approach in favor of a
simpler, flat key space: if a user possesses a key
and the name of a directory, he or she is able to read
and write files in that directory. This has two advan-
tages. Firstly, the indefinite number of keys makes
it less likely that all the keys can be extracted from
a user under duress. Secondly, and more impor-
tantly, when we extend the system to a distributed,
peer-to-peer scenario, we cannot know in advance
how many users, files, or available blocks there will
be. The matrix model implies an authority that at
least allocates rows of the matrix to users; the flat
key space model is more appropriate for a feder-
ated, peer-to-peer world.

Note also that even in this local implementation,
users don’t have to trust the block store, as long as
most of the time it doesn’t throw away blocks, and
the load factor isn’t so great that too many blocks
have all their replicas overwritten. This feature is
significant when we extend the system to the peer-
to-peer case.

3 Distributing the Block Store
We first present here the obvious extension of the
local system to the distributed case, and then dis-
cuss refinements and modifications of this in x4.

Assume there exists a set of M nodes each of
which wishes to contribute N blocks of storage to

the collective. We can logically treat this as an ar-
ray of MN blocks, and proceed to store and re-
trieve files and directories as described in the pre-
vious section. Rather than storing the block replica
i at block number (hi mod X), we need to derive
both a node identifier and a block number on that
node from the 256-bit hash value.

We can do this by leveraging existing work on
peer-to-peer object location and routing schemes.
We use Tapestry [21], although any of [15, 18, 19]
could serve. All we require is routing of messages
tagged with arbitrary n-bit identifiers to nodes.

In Mnemosyne, even in the local case, blocks
read from the disk need not be correct. Instead, the
validity of blocks is explicitly checked after they
have been retrieved. This allows us to build a dis-
tributed block store in which there is little reliance
on the integrity of any single node. The only oper-
ations a node need implement are:

� putBlock(blockid, data)

� getBlock(blockid) ! data

The semantics of these are weak: putBlock sim-
ply requests that the node store the block data in
such a way that it may be subsequently retrieved by
getBlock using an identical blockid. However, the
node is not required (and may not even be able) to
ensure this — that is, the putBlock operation has
at-most-once semantics.

getBlock requests that the node return whatever
data it has associated with the given blockid. How-
ever the node may ignore the request, or return any
block of data it chooses. The client will determine
if the information is valid after it has been received.

Using this service we construct a first attempt at a
distributed steganographic storage system. We as-
sume a set of Tapestry nodes, each of which ex-
ports the same amount of storage space (e.g. 1GB
arranged as 220 blocks of 1KB each).

To store a block, we follow the block replication
algorithm described in x2, except that we choose
the leading 160 bits of hi as the Tapestry node iden-
tifier Ni, and the next (e.g.) 20 bits as the blockid
bi on that node.

To retrieve a block, the client requests blockids
bi from nodes Ni. We note that these requests may
proceed in parallel. The client then tries to decrypt
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and verify each block until a valid one is found. If
none is found, the block is deemed lost.

We can build directories and files over this basic
system as in the local case. Note that it is not neces-
sary for an individual node to respond “correctly”
or even at all. All that the client requires is that at
least one of the replicas for a block is still available.
This makes it difficult for an attacker without a key
to destroy any particular piece of information.

We note that with lookup services having a no-
tion of unique “successor” for a node (such as
Chord), a new node joining the system can initialize
by duplicating the entire block store of its succes-
sor; neither the new nor the existing node need be
aware of which blocks are “valid”. This duplication
means that the new node will immediately respond
correctly to any getBlock requests made of it. With
Plaxton-based systems like Tapestry, there are sev-
eral nodes analogous to a Chord successor (roughly
4 in Tapestry), but we can still usefully copy frac-
tions of the stores of these nodes.

Discussion
This system has the following useful properties:

Firstly, given the obvious implementation for a
“cooperative” node (viz. to reserve 1GB of space
and then store and retrieve blocks as requested), the
owner of the node can plausibly deny knowledge of
any of the contents. Indeed, they will in general be
unaware even of which blocks are in use.

Secondly, a node can choose to use a smaller
amount of storage by mapping the 20-bit block
identifiers down to k < 20 bits. This produces a
less resilient but still valid store.

Finally, a node can provide more than 2
20 blocks

simply by obtaining more than one node identifier
(e.g. as with “virtual servers” in CFS [7]).

In summary, Mnemosyne provides information
hiding at two levels: first, data is striped widely
across different nodes each of which is unaware of
the other nodes holding parts of the file. Second,
each individual node embeds encrypted blocks in a
random substrate, thus making them indistinguish-
able from one another (without a valid key).

4 Enhancements
Our first enhancement to this basic scheme is to re-
place simple replication with the information dis-

persal algorithm (IDA) [14]. Using this, an author
chooses two numbers m � n and encodes infor-
mation to be published into m blocks such that any
n of these are sufficient to reassemble the original
data. Using the IDA gives us much better resilience
for a given “redundancy factor” (m=n).

The IDA requires that we replace our simple
redundancy-based validity checks with a crypto-
graphic authenticity check on each dispersed block;
our current implementation uses the AES in the
new OCB mode [17] to get both privacy and
authentication in one pass, although CBC-MAC,
XCBC, or IACBC [11] would also suffice.

Readers now independently retrieve m0 of the m
blocks where m0

� n is chosen by each user so as
to obtain a “reasonable” expectation that at least n
blocks will be valid. The publisher chooses m so
that

�
m

m
0

�
is large enough for likely values of m0.

Concurrently, readers retrieve r other blocks cho-
sen at random and discard them on receipt.

This allows us to more efficiently address the
problem of traffic analysis whereby an adversary
who can snoop packet transfers can infer the exis-
tence (and possibly location) of a file. If desired
some of the r blocks could represent a known piece
of content to provide “deniable encryption” [3].

We also use the flexible dispersal of the IDA to
address the problem that any reader of a file can
replace or destroy its contents. To combat hijack-
ing we can simply allow authors to use pseudony-
mous digital signatures, much as in [8]. To pre-
vent destruction of file content we introduce ex-
plicit location keys: randomly chosen values which
are XORed with a (directory or file) name’s hash in
order to choose the set of m storage locations. An
author can now choose any l different location keys
and write lm blocks (assuming no collisions).

Each reader is now provided with the name, the
encryption key, a location key, and m. This pre-
vents a single reader from destroying more than a
fraction of the total replicas. Furthermore, if l is
never disclosed, an author under duress can claim
to delete all copies but later recover the informa-
tion, as in the Eternity Service [1].

Writing of data under Mnemosyne also holds in-
teresting challenges. A per-node rate limiter pro-
tects against brute-force denial-of-service attacks,
as an alternative to the Hash-Cash scheme in [20].
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We note that Mnemosyne is less susceptible to such
attacks due to its sparse use of storage space.

Nonetheless, over time more and more of a docu-
ment D’s replicas will be overwritten until at some
point it is no longer accessible. To avoid this we
need to periodically refresh D. Choosing a good
refresh interval in the absence of global knowledge
is difficult, and so we expect users to err on the side
of caution (i.e. to rewrite rather frequently).

The refresh of files provides us with another traf-
fic analysis problem. We could attempt to resolve
this as before: i.e. arrange for additional writes to
occur so that the “real” ones may be concealed. Un-
fortunately this would result in a large number of
additional writes, and hence collisions.

A better scheme is to require that all messages to
block stores are encrypted and of the same size. A
single bit in a request is used to specify if the ac-
companying payload is to be written. In all cases, a
block of data is returned. This makes it impossible
for an eavesdropper to distinguish between reads
and writes, making traffic analysis more difficult. If
bandwidth is cheap, an obvious extension is for all
users to issue an isochronous stream of requests in
which “real” requests are occasionally embedded.

5 Simulation
Two of the key parameters in the system are the
choices of m and n for a given file since there
is a tension between maximizing the capacity of
the store, and increasing the resilience of each file.
This is further complicated in the decentralized
case since users are free to choose m and n inde-
pendently, and no-one knows how many users there
are, or how much traffic they are generating. Never-
theless, to give some idea of the trade-offs involved,
we present here some initial simulation results for
fixed-size files and uniform coding schemes.

The simulation repeatedly adds files to a store of
4 million blocks and keeps track of how many files
are still retrievable: i.e. files for which n blocks
have not been overwritten in the store. Starting with
an empty store, this number converges to a limit for
each m as files are added, and we call this limit the
capacity of the store. Figure 1 shows how the ca-
pacity changes with choice of m. For low values,
the birthday paradox comes into play and capacity
is limited. As m increases, capacity increases until

the large number of writes per file reduce it again.
Of more importance to actual users of the sys-

tem is the expected lifetime of a file: how long
a file lasts before it becomes inaccessible. Fig-
ure 2 shows cumulative distributions of file life-
times (measured as the number of subsequent file
writes) for the same coding parameters as before.
Of interest to users is where these curves intersect
some low probability of file loss, thus giving an
idea of how often a file needs to be refreshed.

6 Implementation
We have built a working implementation of
Mnemosyne. The client is implemented in C and
makes use of freely available implementations of
SHA256 and the AES; it provides a command-
line interface with operations for creating directo-
ries and copying files between Mnemosyne and the
Unix filing system.

We use the IDA with polynomials over GF (216)
for dispersal, and OCB-AES to provide combined
encryption and authenticity. Local performance is
plausible: we can copy in at around 64KB/s, and
out at circa 375KB/s (for n = 32, m = 96).

The distributed block storage functionality is im-
plemented in Java over Tapestry [21]. The client
uses a simple UDP-based protocol to communicate
with a randomly picked Tapestry node. Read and
write requests are then routed through Tapestry to
the appropriate block store. Responses are returned
to the client via the original Tapestry node. In early
tests using 3 co-located nodes we can copy in files
at around 80KB/s, and copy them out at 160KB/s.

We intend to make the code for Mnemosyne
available in the near future.

7 Relation to Existing Work
Some recent systems have used distribution and
self-organisation to provide robustness and avail-
ability [1, 7, 9, 10, 12]. Other systems use their de-
centralised nature to provide anonymity of access
and prevent censorship [4, 6, 8, 20].

Mnemosyne is more aligned with the latter class
of system. However it provides in addition plau-
sible deniability for clients, and is more suited to
private storage and messaging applications than to
the wide-scale publishing of data. Mnemosyne also
shares some common ground with private informa-
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Figure 1: Capacity of a simulated 4Mblock store
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tion retrieval systems [5, 16].
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