
Spread Spectrum Storage with Mnemosyne

Steven Hand
�

Timothy Roscoe
�

Sprint Advanced Technology Labs Intel Research Berkeley
1 Adrian Court 2150 Shattuck Avenue, Suite 1300

Burlingame, CA 94010, USA Berkeley, CA 94704, USA
�������	��
���	��
����	���������������������� �"!#�%$�����&'�)($��*��$����+!,
��	���.-.(��	�����.(/�����
+�.�

Abstract
We motivate and describe Mnemosyne1, a highly
private and reliable distributed storage system built
over a number of untrusted, unreliable block stores.
A client selects the pseudo-random set of block lo-
cations used to store a particular file by succes-
sive hashing of an initial key value. Resiliency to
collisions is obtained by the use of erasure codes.
The resulting system operates with decentralized
key generation, is resistant to targeted attacks, and
has soft capacity dependent on current load.

1 Introduction
Redundancy in distributed systems is used to pro-
vide increased performance and reliability by tech-
niques such as striping and mirroring [1], fast
fail-over [2], and byzantine fault-tolerance [3].
These schemes are oriented toward collections of
machines and devices which are fairly small (a
few hundred machines at most) relative to mod-
ern wide-area distributed systems – particularly
‘peer-to-peer’ systems – which may have particpant
nodes numbering in the hundreds of thousands.

In the following we introduce spread spectrum
computing as a new term for an old idea. In spread-
spectrum computing a subset of a large number
of distributed resources are selected according to
some keyed pseudo-random process, using redun-
dancy to remove the need to explicitly arbitrate us-
age between independent users. Although the se-
lection is decentralized, if the candidate set is large
enough and the pseudo-random procedure fairly

0
On leave from the University of Cambridge Computer

Laboratory, JJ Thompson Avenue, Cambridge CB3 OFD, UK.1
This work was done while Timothy Roscoe was employed

at Sprint Advanced Technology Labs.
1Pronounced ne moz’nē.

uniform, we can expect relatively good load bal-
ancing. If the keys are good enough, the set of
resources used by any particular client should be
unpredictable and hence difficult to attack.

Mnemosyne [4] is a spread spectrum storage sys-
tem which takes advantage of the widespread avail-
ability and low cost of network bandwidth and disk
space. The system comprises servers that provide
unreliable block storage, and clients which write
and read blocks to and from the servers. Although
our original motivation for the system was to pro-
vide practical steganographic storage, the design
has a number of other benefits.

Firstly, it places all responsibility for higher-
level functionality (such as a filing system) in the
client. Hence each individual user can choose their
own trade-offs in terms of cost, reliability avail-
ability and privacy. Secondly, tolerance to colli-
sions effectively provides “soft capacity” – the to-
tal amount of data which may be stored in the sys-
tem is shared automatically between the number of
users. Thirdly, the extremely simple block storage
model lends itself to a commercial deployment in
which charging is done for write transactions rather
than for storage space [5]. In addition to oper-
ational simplicity, this approach mitigates against
certain denial of service attacks.

In the remainder of this short paper we first
briefly survey related work, then provide an
overview of how Mnemosyne operates. Finally we
discuss how the principles of Mnemosyne relates to
the wider notion of spread spectrum computing.

2 Related Work
Several research efforts are building Internet-scale
storage systems [6–9]. In most cases, replication

1

and/or an erasure code is used over a distributed
hash table scheme such as [10–13]. This results in
self-organising distributed file storage that provides
high availability in the face of node failure or net-
work partition. Other systems have used distribu-
tion and self-organisation to provide anonymity of
access and prevent censorship [14–18].

Mnemosyne was originally conceived to be more
in line with this latter class of system, although fo-
cusing less on the wide-scale publication of data.
Instead, the system was designed to support the
storage and retrieval of small size, high value in-
formation, and where the expectation is that each
piece of information is shared by at most a small
number of users. Indeed, two of our anticipated us-
age scenarios were private data storage for a single
user, and confidential interpersonal messaging.

Mnemosyne also shares some common ground
with private information retrieval systems [19, 20],
although our focus is on hiding the storage of infor-
mation rather than its communication.

3 Mnemosyne: Operational Overview
Mnemosyne was designed as a steganographic stor-
age system; that is, a system in which users who
do not have the required key not only are unable
to read the contents of files stored under that key
(as with a conventional encrypting file system), but
furthermore are unable to determine the existence
of files stored under that key.

This leads to an interesting property: since users
cannot know anything about the location of file
blocks stored by other users, it is always possible
for them to unwittingly overwrite them; the ex-
istence of a file allocation table or list of in-use
blocks defeats the steganographic properties of the
system. Instead, Mnemosyne uses redundancy in
the form of erasure codes to prevent file data being
lost due to the write activity of other users.

The process by which a user of Mnemosyne
stores a vector of bytes in the system can be broken
down into four phases: dispersal, encryption, loca-
tion, and distribution, which we describe in turn.

Dispersal:
In the dispersal phase, the data is encoded to make
it robust in the face of block losses. We use Rabin’s
Information Dispersal Algorithm [21] in the field

���������
	��
to transform blocks of data into ����

blocks, any of which suffice to recover the origi-
nal data. In our prototype, for example, file data is
by default treated as chunks of ���� � blocks and
each chunk transformed into ������������ blocks.
There are clearly trade-offs involved in the choice
of � and : we investigate these in detail in [5].

Encryption:
The dispersed blocks from the previous step are
now encrypted under the user’s key � . The pur-
pose of this is twofold: firstly for security and pri-
vacy, but secondly for authenticity. This is neces-
sary since blocks may be overwritten without no-
tice by other users at any time. Hence we need a
mechanism by which a user may determine whether
a block subsequently retrieved from the network is
really the one originally written. We use the AES
algorithm in OCB mode [22] to provide security
and a 16-byte MAC in one step

Location:
Mnemosyne achieves its security properties by
storing encrypted data blocks in pseudo-random
(and, to an adversary, unpredictable) locations in
a large virtual network store, which is then mapped
onto distributed physical storage devices. The lo-
cations of the encrypted blocks making up a data
set are determined by a sequence of 256-bit values
obtained by successively hashing (using SHA256)
an initial value �! which depends ultimately on the
filename and the user’s key � .

Distribution:
The sequence of 256-bit location identifiers from
the previous step is finally mapped onto physi-
cal storage using a peer-to-peer network of storage
nodes, each of which holds a fixed-size physical
block store.

For each block to be stored, both the node iden-
tifier and the block offset within the block store are
derived from the corresponding location identifier.
The top 160 bits of this identifier are used to as a
node identifier in a Tapestry [13] network and a ran-
domly selected Tapestry node is asked to route the
block to the “surrogate” node for the 160-bit node
identifier. The next 20 bits of the location id are
then used as a block number in a 1GB block store.

2

The block store at each peer-to-peer node sup-
ports only the following two operations:

� putBlock(blockid, data)

� getBlock(blockid) � data

Note that the block storage nodes themselves
need perform no authentication, encryption, ac-
cess checking, or block allocation to ensure cor-
rect functioning of the system, though they might
for billing purposes. Indeed, a block store may ig-
nore the above operations entirely: as long as suffi-
ciently many block stores implement the operations
faithfully, users’ data can be recovered.

3.1 Implementation
A working implementation of Mnemosyne for
Linux exists. The client is written in C and C++,
using freely available reference implementations of
SHA-256 and AES-OCB. It provides a command-
line interface with operations for key management,
creating and listing directories, and copying files
between Mnemosyne and the Unix file system. A
simple block protocol over UDP is used for com-
munication with block servers. The block server
is implemented in Java and runs on Tapestry [13]
nodes. Performance is plausible: we can copy files
into Mnemosyne at 80 kilobytes per second, and
read them at 160 kilobytes per second. A principal
limiting factor in both cases is our (unoptimised)
implementation of matrices over

��� ��� �
	 �
.

In [4] we describe one implementation of a per-
user filing system over the data storage and retrieval
procedures described above. The filing system uses
directories and inodes to simplify the management
of keys and initial hash values, and also handles
versioning of files, a necessity since data is never
actually deleted from Mnemosyne, but rather de-
cays over time. As noted earlier, the choice of filing
system and filing system parameters is completely
under the control of the user.

We hope to make the source code for our imple-
mentation available in the near future.

4 Discussion
Mnemosyne is an illustrative example of spread
spectrum computing in the area of storage, and
it is instructive to compare it with traditional ap-
proaches to remote storage.

A typical file server implements a multi-user file
system, explicitly allocating storage blocks to files
and metadata. The server ensures the consistency
of the file system metadata (including which blocks
belong to which files), keeps storage quotas, and
enforces security by preventing unauthorised users
gaining access to files. Storage-Area Networks
(SANs) and their recent extensions over IP net-
works present a simpler abstraction of storage: au-
thorised users are now allocated virtual block de-
vices which they manage themselves, an approach
which moves filing system metadata to the client
side of the interface. The SAN provides storage
allocation between users and ensures that unautho-
rised users cannot write to a given block device.

Mnemosyne stands in stark contrast to these two
schemes: block servers enforce no boundaries be-
tween users at all. Indeed, they do not need to know
the identity of a user writing a block to ensure cor-
rect operation of the system. The block servers
perform no arbitration whatsoever between users,
clients or requests, other than to serialize read and
write operations to the disks. All mechanisms for
effective sharing of the global storage medium are
dispersed among the clients.

This is what we mean by spread spectrum stor-
age, by analogy with the use of bandwidth in many
wireless communcation systems, including 802.11.
Rendundancy, error correction, and encryption dis-
tributed among clients are used in place of explicit
resource arbitration and allocation centralised in
servers.

We feel spread spectrum techniques like
Mnemosyne can be appropriate for very large,
global-scale applications where central abitration
is undesirable for a variety of reasons: scalability,
reliability, and the need for a federation of service
providers with no controlling authority. Our
current work includes investigating the application
of these principles to other wide-area resource
allocation problems.

3

REFERENCES
[1] Thomas Anderson, Michael Dahlin, Jeanna Neefe,

David Patterson, Drew Roselli, and Randolph Wang.
Serverless network file systems. In Proceedings of the
15th Symposium on Operating System Principles. ACM,
pages 109–126, Copper Mountain Resort, Colorado, De-
cember 1995.

[2] Fernando Pedone and Svend Frolund. Pronto: A
Fast Failover Mechanism for Off-the-Shelf Commercial
Databases. Technical Report HPL-2000-96, HP Labora-
tories, July 2000.

[3] Miguel Castro and Barbara Liskov. Practical Byzantine
Fault Tolerance. In Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation, Usenix
Association, New Orleans, LA, USA, February 1999.
USENIX Association, Co-sponsored by IEEE TCOS and
ACM SIGOPS.

[4] Steven Hand and Timothy Roscoe. Mnemosyne: Peer-
to-Peer Steganographic Storage. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems,
Boston, MA, March 2002.

[5] Timothy Roscoe and Steven Hand. Transaction-based
Charging in Mnemosyne: a Peer-to-Peer Steganographic
Storage System. In Proceedings of the International
Workshop on Peer-to-Peer Computing at Networking
2002, Pisa, Italy., May 2002.

[6] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), Banff, Canada., October
2001.

[7] Peter Druschel and Antony Rowstron. PAST: A large-
scale, persistent peer-to-peer storage utility. In Proceed-
ings of the Eighth Workshop on Hot Topics in Operating
Systems (HotOS-VIII). Schloss Elmau, Germany, May
2001.

[8] John Kubiatowicz, David Bindel, Yan Chen, Steven Cz-
erwinski, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. OceanStore: An
Architecture for Global-Scale Persistent Storage. In Pro-
ceedings of the Ninth international Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS 2000), November 2000.

[9] Tim D. Moreton, Ian A. Pratt, and Timothy L. Harris.
Storage, Mutability and Naming in Pasta. In Proceed-
ings of the International Workshop on Peer-to-Peer Com-
puting at Networking 2002, Pisa, Italy., May 2002.

[10] S Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proceedings of ACM SIGCOMM 2001, San Diego,
California, USA., August 2001.

[11] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM

SIGCOMM 2001, San Diego, California, USA., August
2001.

[12] Antony Rowstron and Peter Druschel. Pastry: Scal-
able, decentralized object location and routing for large-
scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM Internation Conference on Distributed Sys-
tems Platforms (Middleware 2001), Heidelberg, Ger-
many, November 2001.

[13] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D.
Joseph. Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical Report
UCB//CSD-01-1141, U. C. Berkeley, April 2000.

[14] D. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications of the
ACM, 24(2):84–88, February 1981.

[15] Ross Anderson. The Eternity Service. In Proceedings of
the 1st International Conference on the Theory and Ap-
plications of Cryptology (PRAGOCRYPT’96). CTU Pub-
lishing House, Prague, 1996.

[16] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In Work-
shop on Design Issues in Anonymity and Unobservabil-
ity, pages 46–66, July 2000.

[17] Roger Dingledine, Michael J. Freedman, and David
Molnar. The Free Haven Project: Distributed Anony-
mous Storage Service. In Workshop on Design Issues
in Anonymity and Unobservability, pages 67–95, July
2000.

[18] Marc Waldman, Aviel D. Rubin, and Lorrie Faith Cra-
nor. Publius: A robust, tamper-evident, censorship-
resistant, web publishing system. In Proceeding of the
9th USENIX Security Symposium, pages 59–72, August
2000.

[19] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private Information Retrieval. In IEEE
Symposium on Foundations of Computer Science, pages
41–50, 1995.

[20] Michael K. Reiter and Aviel D. Rubin. Crowds:
anonymity for Web transactions. ACM Transactions on
Information and System Security, 1(1):66–92, 1998.

[21] M. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance. Communications of
the ACM, 36(2):335–348, April 1989.

[22] Phillip Rogaway, Mihir Bellare, John Black, and Ted
Krovetz. OCB: A Block-Cipher Mode of Operation
for Efficient Authenticated Encryption. In Eighth ACM
Conference on Computer and Communications Security
(CCS-8). ACM Press, August 2001.

4

