Image Processing and
Computer Vision



Computer Vision

What is computer vision? Interpreting images!

The computer sees 1001110100101010000000001110101...
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Image Processing

What is image processing? Restoring images without ex-
traction of semantic information!

blurring + noise

optimal linear

filtering
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Some Topics of Computer Vision: Quantization

Image Quantization In space and intensity/color.

Sampling the image intensity at discrete positions is called spatial quantization which
requires to limit the high frequency content of images to avoid aliasing.

Intensity quantization is achieved by scalar quantization of grey values or vector quan-
tization (clustering) of color spaces.

Below is an example for spatial color quantization which combines spatial quantization
and dithering with error diffusion.

¢ N
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Edge Detection

Goal: reduce the image content to semantically informative
parts -¢, edges.
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Image Formats: Gauss-Laplace Pyramid

Wavelets or Gauss-Laplace pyramids recode the image to de-
correlate pixels by exploiting the self-similar nature of natural
Images. Thereby, we achieve significantly higher compressi-
on rates.
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Stereo vision: Extract depth in-
formation from pairs of came-
ra images.

Motion estimation: Estimate
the movement of objects in
the image by estimating their
apparent motion from optical
flow.

Shape from shading: Estimate
the shape of objects from
their appearence and their
shading.

Shape from motion: Use moti-
on parallax to estimate depth.

Shape from texture: EXxploit
texture variations as changes
of surface normal w.r.t. line of
sight.
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Image Understanding
Figure-ground segmentation

Perceptual Grouping_;_ G)ljit()z
LIS

b -
-
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The Image Formation Process

mage focal plane ) Incoming
slane f(z1,22) light
9(371, 372)

optical axis
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Mathematical Modelling of Image Processing

Def.. Animage is a continuous, two-dimensional function of the
light intensity or color (x = (z1, z2))
f: R — Ry orR:
x = f(x) or(fi,f2f3)" (%)

Question: How can we compensate an image deformation,
e.g., defocussing?

Goal: reconstruct f(x) from g(x) in the presence of noise!

Model assumption:
1) When f(x) is shifted then g(x) is shifted as well.

2) Doubling the incoming light intensity will double the bright-
ness g(x).
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Linear Shift-Invariant Systems

Strategy for restauration: invert the transformation 7 which
maps the original image f(x) to the defocussed image g(x).

Linearity: (assumption) restrict 7 to linear operators!

fi —|transform 7 | — ¢

fo —|transform7 |— g9

afi + Bf, —|transform 7 |— ag, + Bg2Va,B € R

e Linearity is typically only in the low intensity range fulfilled since physical systems tend

to saturate.
e f;, g; are intensities = power per area with f;, g, > 0 in the full domain.

e Often we experience non-linear imaging errors!
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Shift invariance: (assumption)

f(x1,22) —|transform 7 | — g(x1,z2)

f(ry —a,zo —b) —|transform7 | — g(z1 —a,x2 — b)

e Shift invariance holds only in a limited range since images are finite objects.

Remarks: The assumption of linearity is a significant limitati-
on but it gives the advantage that the linear filter theory is
completely developed.

e An analogous one-dimensional theory applies to passive
electrical circuits, although there time is the essential dimen-
sion and causality constraints the signal.
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How Can We Identify a Transformation?
Dirac’s J-function (1D): T d(x —a)f(x)dxr = f(a)

e Integration with the J-function “samples” the function f(x) at
the position zg = a.
e The ¢-function is a “generalized function”.

e Regqularization of the Dirac “function”:

1 < €
6(r) = lim<°© 7l <5 or
e—=0 10 else

1 z?
5(z) = i ——
(¥) = lm—r—-exp(—3 3)
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Convolution and the Point Spread Function

Assumption: 6(z1,z2) —| 7 |— h(z1,29)

With linearity and shift invariance it holds:

Tf(xwa)
. / F(E.m)S(r — €20 — m)deds

9(513175132)
linearity / / F(&m) [T6(2) — g,xg— n)] dédn

h(w1—€,z2—1)
[shift inv.]

= (f*h)(z1,22)

Linear, shift invariant systems can be written as convolutions!
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|dentification of the Kernel

Let f(x1,22) = 6(x1,22), I.€., the image is a white dot with
“infinite” intensity. Then the measured image g(x1,z2) IS gi-
ven by

g(x1,22) = h)(x1,z2)
/ 5(¢,mh(ay — & 22 — )dedn

(6 *
_ /_OO B
= h(x1,x2)

= 75(331,332) = h(CEl,LCQ)

= testing the linear shift-invariant system with a J-peak will re-
veal the convolution kernel A(x1, x2) of the system.
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Schematic View of a Convolution

out—of-focus plane focal plane
9(x) f(x) = h(x)
— 1,
E— .
X, ‘- _______________
—

e g(x1) dependson f(z) for all z € [z1 — &, 21 + 5.
e convolution kernel h,, (z) describes the influence of f(x) onto g(z).
e shift invariance of h,, (z) results in cumulative influence:

L/2 L/2
g(r)) = / F(2)h(z — x)da = / F(1 — 2)h()da

—L/2 —L/2
F(O)h(z1)A + f(A)h(zy — A)A + f(2A)h(z1 — 2A)A + ...
+f(=A)h(z1 + A)A + f(—2A)h(z1 + 2A)A + ...

Q
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Convolution: 1D-Example

£ X(1)
11
1 | f
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Convolution: 1D-Example (cont'd)
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Facts about Convolution

e Linear shift-invariant (LSI) systems can be written as convo-
lutions.

e The convolution kernel h characterizes the LSI system uni-
guely.

e Cascades of LSI systems: the convolution iIs commutative
and associative:

gxh = hxg
(f*g)xh = [fx(gxh)

fi — | Th:h |—| Ta: ho |— g1

~

hl*hg

= one of the most important operations in signal processing
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Convolution Kernel for Image Defocussing

Defocussing an image amounts to convolving it with a ‘pillbox’:

1 2 2 2
— 7+ 5 < R
h(z1, 20) = {sz 1 5 S

0 otherwise

Note: this convolution kernel is normalized: [ [ h(z1,z2)dz1dzy =1
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Convolution Kernel for Image Defocussing

original image convolved with pillbox kernel

-
= '!_
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A Motion Kernel

Each light dot is transformed into a short line along the x;-axis:

h(zy, 70) = ziz O(zy + 1) — 0(z1 — 1)) 5(2)
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Denoising Time Series

Original Data
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Lena with Gaussian Blurring and Noise

Gaussian blurring kernel: 0 g
n 1 x] + x5
L1, T9) = —— &XPl—
’ g2 T 202
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Lena Convolved with a Laplacian Filter
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Laplacian filter:
h(xy1,x2) = VZ exp(—
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Note: here the normalization is | [ h(x1,z2)dzdzs = 0.

Visual Computing: Joachim M. Buhmann — Computer Vision and Image Processing 26/274



The Fourier Transformation: Basic Facts

Def.. Let f be an absolutely integrable function over R. The
Fourier transformation of f is defined as

A _|_OO
flu) = Flf(x)] = /_ f(x) exp(—12mux)dz.
The inverse Fourier transformation is given by the formula
A +OO A
flx)=F f(u)] = / f(u) exp(12mux)du.

— OO

A

Note: while f(x) is always real, f(u) is typically complex.
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e f(u) is also called the continuous spectrum  of f(z).
e If x IS a space coordinate, then u is called the spatial fre-
guency .

Inversion formula:  f(x) is represented as a continuous super-
position of waves with amplitude f(u).

Example of an odd function approximated by sinus waves
(Remember: exp(1x) = cos(x) + 2sin(x)):

Cne period of %t
£ e

F(x) &~ f(up) sin(2muoz) + f(ur)sin(2ruiz) + f(us) sin(2musz) + . . .
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Fourier Transformation: Example 1 (box)

Given the box function

1 +if|x] <1

f(x) = Q—Z(H(a:+l) —(z—1)) = {21

0 otherwise

the Fourier transform iIs

A o0
Fu) = Flf(z)] = / £ () exp(—12muz)dz

— OO

l
1
= / 5 (cos(2mux) — 28in(2mux))dx
—! /=0
sin(27ul)

= —- T = sinc(27ul)
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Fourier Transformation: Example 1 (box)

Graphs of box and sinc-function for [ = 1:
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Fourier Transformation: Example 2 (Gauss)

Given the function

fla) = - exp(—)
xT) = exp(———=
V2T, P 202
the Fourier transform is
A +(>O
f = FU@I= [ fa)ep(-a2mu)ds
! /OO exp( v ) - (cos(2mux) — 1 sin(2wux) d
= X _) TTUXL ) — 1 S11N\ L2TTUXL i
Voron ) oo TV 202 —
u? 1
=T exp(—ﬁ) where o, = om0

f [Abramowitz, Stegun: Handbook of Mathematical Functions, 1972]

= the Fourier transform of a Gaussian is a (unnormalized) Gaussian!

The larger the variance o2, the smaller the variance 02: 0, -0, = 5=

T
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Fourier Transformation: Example 3 (Dirac’s  9)

The Fourier transform of Dirac’s d-function is

N 0
o(u) = Flo(z) = / O(x) exp(—12mux)dx

— OO

= exp(—127u - 0)
= 1

= the Fourier transform of the J-function equals 1 for all fre-
guencies u.
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Properties of the Fourier Transformation

Linearity: If F[f(z)] = f(u) and Flg(z)] = §(u) then it holds
for all complex numbers a,b € C

Flaf(x) +bg(x)] = af (u) + bg(u)

Shift: If [f(x)] = f(u) then it holds for ¢ € R

Flf(x — ¢)] = f(u) exp(—i2mcu)

Modulation: If F[f(z)] = f(u) then it holds for ¢ € R

A

Flf (@) exp(i2mer)] = fu —c)
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Scaling: If F[f(z)] = f(u) and ¢ > 0

Flf(ex)) =~f (=)

1
C

o | &

Differentiation: Let f be piecewise continuous and absolutely
integrable. If the function z f(x) is absolutely integrable then
the Fourier transform f Is continuous and differentiable. It
holds

Flef(@)] = o~ flu)
FILf@) = 2nufu)

dx
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Parseval's Equality: Let f be piecewise continuous and abso-
lutely integrable. Then the Fourier transform f(u) = F|f(x)]

satisfies: - -
/ f(@)Pde = / f () Pdu

Power Spectrum: Considering the auto-correlation function
d;r(z) of a complex function f for x € R,

Dysy(x / f(&—x)f(£)dE .
The Fourier transform is given by

Syp(u) = Fl@sp(z)] = |f(w)].

(f (x) is the conjugate complex function of f(z))
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Fourier Transform of Convolution

Given: convolution g(x) = (f « h)(x) = [ f(§)h(x — &)dE

Calculate Fourier transform of g:

o = Fo@l= [ [ [ s@nte - e)ie] expl-2muryis
-/ j 10|/ j bz~ €) exp(-2mua)do | de
= [ @) exp(-2mug)ag
— h(u)f(uw)

= Convolution in spatial domain becomes multiplication iIn
Fourier space.
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Modulation Transfer Function

System Behavior in Fourier Space: How is a harmonic oscil-
lation transformed by convolution kernel A?
= amplitude modulation A(u):

exp(t2ruxr) — | kernelh(x) |— A(u)exp(:2muz)

Eigenfunction of the convolution  with eigenvalue A(u) is the
oscillation f(x) = exp(12mux).

Output g(z) = (fxh)(x)= /exp(z27ru§)h(:1: — &)d¢

= exp(227ru:1;)/exp(—z27ru§)h(§)d§ — h(u) exp(12muz)

Note: the eigenvalue A(u) equals h(u) = FI[h](u).
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Image Filtering in the Frequency Domain

2D Fourier transformation  of an image f(x), x := (21, x2):

+o00 400

flu,v) = F|f(x)] = / / f(x1, x2) exp(—12mw(uzi + vs))dx

-0 —O0

High-pass filtering: remove low frequencies, for example
choose maximum value B:

A

f(u,v) if u®+0v? > B?
0 otherwise

fhp(uv v) — {

Inverse Fourier transformation  yields high-pass-filtered image

fup(x) = F~H fup(u, )]
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Example of Image Filtering

original image high-pass-filtered

= edge detection
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Low-pass filtering: analogous to high-pass filter, but remove
high frequencies

Example:

original image low-pass-filtered

= removing noise
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The Image Restoration Problem

f(x) —| hx) |—g(x) —]| h(x) |— f(x)

The ‘inverse’ kernel  h(x) should compensate the effect of the
image degradation h(x), i.

h may be determined more easily in Fourier space:

To determine F[h] we need to estimate

1. the distortion model h(x) (point spread function) or F|h](u,v) (modu-
lation transfer function)
2. the parameters of h(x), e.g. r for defocussing.
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Image Restoration: Motion Blur

Kernel for motion blur  h(x) = 5 (6(x1 + 1) — 6(x1 — 1)) d(22)

(a light dot is transformed into a small line in z; direction).

Fourier transformation:

+1 “+ 00

1
Flhl(u,v) = 57 exp(—szua:l)/5(x2)exp(—227rvx2)dx2dx1
—1 tOO J/
=1
in(2
= 31n2( W;Ll) =: sinc(2mul)
U
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: sinc(u):sz'n—u(u) U U 20_ U U

k j 1 /sinc(u)

AaN © W
v A ﬂ m A
h(w) = F[h)(u) = sinc(2rul) Flh)(w) = 1/h(u)

Problems:
e Convolution with the kernel h completely cancels the frequen-
cies 5; for v € Z. Vanishing frequencies cannot be recovered!
e Noise amplification for F[h](u,v) < 1.
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Avoiding Noise Amplification

207

Regularized M b mg v U f

reconstruction filter:

Flil(u,0) = —— A kj

_‘f[h]‘Q—FE ed | (a0 | b L b | |eo

e

The size of e implicitly determines an estimate of the noise level in the image, since we
discard signals which are dampened below the size e.

Singularities are avoided _mz [\
by the regularization e. A /\ -

-20-
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