
Cite this paper as follows: Bertrand Meyer, Ilinca Ciupa, Lisa (Ling) Liu, Manuel
Oriol, Andreas Leitner, Raluca Borca-Muresan: Systematic evaluation of test failure
results, to appear in to appear in Workshop on Reliability Analysis of System Fail-
ure Data (RAF 2007), Cambridge (UK), 1-2 March 2007.

Systematic evaluation of test failure results
Bertrand Meyer1, Ilinca Ciupa1, Lisa (Ling) Liu1, Manuel Oriol1, Andreas Leitner1, Raluca Borca-Muresan2

1Chair of Software Engineering, ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

2Department of Computer Science, Technical University
of Cluj-Napoca, Romania
ralucab@student.ethz.ch

Abstract
Systematic software testing provides an important source of software failure analysis. The field suffers, however, from insuf-
ficiently reproducible results, lack of standard credible data, and insufficiently explicit assumptions. The present article at-
tempts to provide an objective basis for failure analysis through an automatic testing framework (AutoTest) for contract-
equipped software. We present five principles for scientific failure analysis, a set of reproducible test results, and a first
analysis of their consequences for software development.

1 Testing strategies and their purpose

The area of software testing provides one of the best pos-
sible illustrations of the lack of credible large-scale failure
analysis highlighted by the call for proposals for this
workshop. While research in software testing has made
considerable advances in recent years, and succeeded in
rehabilitating an approach that used to arise considerable
suspicions caused by the proponents of formal software
development, it still suffers from insufficient credibility
of its results. In particular:
• There are several criteria for assessing the effective-

ness of testing strategies, such as number of faults
uncovered, number of tests to first fault, time to first
fault uncovered, code coverage, ratio of fault-
revealing test cases out of all test cases run. None has
achieved universal acceptance.

• The examples used to assess effectiveness of testing
strategies are often unsatisfactory. For example, they
frequently involve artificial cases, or existing pro-
grams into which faults have been seeded. Some-
times they come from programs written by students,
since this makes it easier to set up experiments in an
academic environment. Conclusions drawn from
such examples raise doubts as to their applicability to
actual industrial developments.

• All too often the supporting elements — test results,
test data, program source and binary code, testing
tool source and binary code — are known only
through published article, and not available for peo-
ple who might want, in the usual practice of experi-
mental scientific research as accepted in disciplines
other than computer science, to reproduce and verify
the results.

It is not surprising then that many of the explicit and
implicit assumptions common in the world of software
testing lack a sound basis. The situation was already criti-
cized by Hamlet [1] several years ago. For example, while
all textbook presentations of testing include a discussion

of coverage measure (instruction, branch, path coverage
etc.) there is not enough connection with actual measures
of software quality.
2 Criteria for testing strategies

We are engaged in a project to help remedy this state of
affairs by uncovering hard evidence about testing strate-
gies through analysis of failure data. This work is based
on five principles: reproducibility, realism, objectivity,
explicitness and quality.
Reproducibility: all of our results should be entirely re-

producible by others. This means that all the code — both
of the programs being tested and of the testing tools — is
publicly available under an open-source license. (In the
future it may become useful to include other people’s
code, in particular example programs, with specific li-
cense status, but we will always focus on reproducibility.)
Realism: while artificial examples may play a useful

pedagogical role, our focus is on test examples from pro-
duction code. So far our work has used Eiffel libraries
such as EiffelBase, which are used in thousands of actual
applications, and other systems in production, originating
with us or with other sources.
Objectivity: we submit all our hypotheses to experimen-

tal validation.
Explicitness: the criteria for such validation are stated

explicitly, and are themselves subject to objective as-
sessment.
Quality: any assessment criterion must be justified by

evidence supporting its relevance to the general issue of
software quality, since any testing strategy must, in the
end, help towards this goal.

3 A framework

Our current work on contract-based testing has provided
first steps for software analysis of test failure data.
AutoTest [2] is a framework for automatic testing of con-
tract-equipped software components. Here “automatic” is

taken to mean more than in the usual application of this
term to testing: AutoTest not only automates the testing
process, but also removes the need for test data (by gen-
erating all objects, routine calls and argument values
automatically) and test oracles (by using contracts, as
present in Eiffel but also in JML and Spec#, as oracles).
Our standard testbed for AutoTest is not artificial exam-
ples but existing programs and libraries, where AutoTest
regularly uncovers actual faults.
We have recently extended AutoTest to run extensive test
campaigns using cluster computer architectures, allowing
far more extensive testing than usually conducted in test-
ing research.
In accordance with the principles above, all our software
is freely available [3] and all our experiments are de-
signed to be reproducible by others.
4. First results

While much remains to be done to provide an answer to
the ambitious goals stated above, the application of
AutoTest in line with the stated guidelines provides a first
set of conclusions summarized below.
First, we can define some credible criteria for testing
strategies on the EiffelBase library captured in a particu-
lar snapshot, for example the version of February 2006.
This is both a realistic example, used in production appli-
cations, and an imperfect piece of software since
AutoTest finds faults. Using always the same older ver-
sion is obviously more accurate to compare results be-
cause when AutoTest finds a fault the maintainers of Eif-
felBase correct it. We can also pretend that we know “all
the faults” in that library: if we ever find a new one, we
simply add it to the fault base and update all the previous
experiments. This leads to precisely defined criteria of
any proposed testing strategy, or any claimed improve-
ment to existing strategies:
• How many of the faults it finds.
• How fast it finds them. We believe this criterion is

more significant than “number of tests to first fault”.

Next, we have a credible database of failure results, pro-
duced through exhaustive automatic testing, which we
can submit to human analysis. This has been performed
on a first set of results, leading to a tentative classification
of faults. Note the combination of automatic mechanisms
(exhaustive automatic testing through AutoTest) and the
necessary human interpretation of the relevant parts of the
result.
The classification of the types of faults we propose is
two-fold: it addresses the two questions Where? and
Why?. The first criterion for this classification is the loca-
tion of the fault (Where?): either a contract or the imple-
mentation. We hence have the following categories, with
percentages of corresponding faults found in EiffelBase
mentioned in parentheses:

• Specification-induced fault (52.2%)
• Implementation-induced fault (46.4%)
• Impossible to judge (we cannot tell if the problem

originates in the specification or in the implementa-
tion) (1.4%)

The second criterion that we use for classifying faults is
the reason of the failure (Why?). A particular case of fail-
ure occurs in routines which (directly or indirectly) de-
pend on routines containing faults. We call this a sup-
plier-induced fault. We have two categories of supplier-
induced faults, determinded by whether the supplier rou-
tine is called from the contract or from the implementa-
tion of the client routine. Other categories are problems
induced by the use of inheritance, wrong export status
(visibility faults), feature call attempted on a void target,
and faults appearing in external routines. The results of
the experiment are summarized below:
• Specification supplier induced fault (6.6%)
• Implementation supplier induced fault (22.1%)
• Inheritance-induced fault (8.8%)
• Wrong export status (14%)
• Feature call on void target (3.6%)
• Failure of an external routine (4.4%)
• Other (40.5%)
5. Summary and perspective

We are currently working on expanding the results ob-
tained so far. In particular, we use cluster computing, as
noted, to extend the scope of AutoTest execution to the
equivalent of hundreds of hours of computer time; using
the framework described here, we systematically evaluate
the benefits of proposed testing strategies such as Adap-
tive Random Testing [4]; we compare the effectiveness of
automated and human testing through carefully controlled
experiments. We also expect to extend the approach to
other libraries and programs.
We welcome the workshop’s focus on applying a scien-
tific approach to failure analysis; by providing a frame-
work for reproducible results, this work presents a contri-
bution in the important area of failures found by testing.
REFERENCES

[1] R. Hamlet, Random testing, in J. Marciniak, editor, Ency-
clopedia of Software Engineering, pages 970-978, Wiley,
1994.

[2] I. Ciupa, A. Leitner, Automatic testing based on design by
contract, Proceedings of Net.ObjectDays, pages 545-557,
2005.

[3] A. Leitner and I. Ciupa, AutoTest,
http://se.ethz.ch/people/leitner/auto_test, 2006

[4] T. Chen, H. Leung, and I. Mak, Adaptive random
testing, In M. J. Maher, editor, Advances in Com-
puter Science - ASIAN 2004: Higher-Lever Decision
Making. 9th Asian Computing Science Conference.
Proceedings. Springer-Verlag GmbH 2004.

