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Abstract. As part of a general effort to provide a new basis for software
development through reuse of “Trusted Components”, we outline a scheme for
proving that classes equipped with contracts in the Eiffel style meet these contracts
The approach takes advantage of the inheritance structure to separate proo
obligations between deferred (abstract) classes, to be validated against a mode
and their effective implementations, which then must only be proved against the
contracts of the deferred ancestors. The testbed for this study is the EiffelBase
library of fundamental data structures and algorithms, whose classes include
extensive contracts.

1 TRUSTED COMPONENTS, LOW ROAD AND HIGH ROAD

The techniques proposed here are part of a general effort to developTrusted
Components[8]: reusable software elements with guaranteed properties. We
with an overview of this broader goal and of the present work’s place in it.

Work on Trusted Components rests on the observation that one of the
realistic hopes for radical improvements in software quality and productivity i
combinereuseandquality. Reuse ensures faster time to completion, economie
scale, and the opportunity to turn expertise into concrete assets. But reuse sca
everything, deficiencies included; reusable components should be subject
quality criteria far more rigorous than ordinary non-reusable software. The effe
scale then becomes a benefit rather than a risk: every reusing application profit
the quality investment made in the reusable components.

There has been widespread advocacy for the idea of reuse, especially of o
oriented classes[3] and binary components[13]. A real market for components ha
emerged in recent years, although the need to associate quality with reuse d
seem to have registered with the software industry at large. Trusted Comp
efforts attempt to remedy this mistake and to provide a solid basis of high-qu
components for software development.

http://se.inf.ethz.ch
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Ideally, a Trusted Component should have a formal specification of its rele
properties and then a proof that its implementation satisfies the specification. T
indeed the approach explored in the following sections. It assumes, how
components that are designed from the outset with this goal in mind; while impo
for the long term, this view does little to address the concerns of industry develo
who have to work with existing components — object-oriented, EJB, COM, .NET…
— that have not been built accordingly; if nothing else, most commercial compon
do not publish their source code, making third-party proofs impossible.

As a result we face a choice between providing full proofs of compone
produced specifically for this purpose (“software as it should be”) and attempting
partial qualification of existing commercial components built with far more inform
techniques (“software as it is”). Our work on Trusted Components recognizes t
need for both of these approaches, and as a consequence pursues two tracks

• A high roadfor producing components whose correctness can be proved,
indeed proving it.

• A low road for assessing properties of existing components, commercia
open-source. It will generally be impossible to include correctness proof
this case, but we can still define relevant quality criteria — extent of functio
and performance specification, examples of use, documentation, eviden
prior reuse, extendibility… — and assess components against them.
Component Quality Model is under development for this purpose[10].

The work presented here is on the “high road”. Focused on fundamental compo
covering common data structures and algorithmes, it attempts to produce full p
of their correctness.

An important practical issue of correctness proofs for object-orien
components is the matter of run-time structures, which typically involves exten
use ofpointers(or “references”). In parallel with the work described here, a the
has been developed to model pointer-rich object structures and prove
corresponding software properties. Described in a separate paper[11], it is closely
connected to the present work, and plays an important part in its application to a
proofs of object-oriented software.



§2  FORMAL METHODS FOR REUSABLE COMPONENTS 3

tems,
fs is

ples
the B

ing
ense
ency
on it.

ough
h not
ffers

class

fs,

the
and

ritance
hat

ears
the

very
o the
2 FORMAL METHODS FOR REUSABLE COMPONENTS

Most applications of formal methods so far have been to systems or subys
generally in mission-critical areas where the investment in formality and proo
justified by the grave consequences that malfunctions could cause. Exam
include defense applications, transportation systems such as those built with
approach[1], and Java Bytecode verification through Abstract State Machines[12].
With components, the economic justification is simply the effect of scale aris
from reuse. A reusable component may not be by itself “critical” in the same s
as the system controlling the closing of doors in a train, but the effect of a defici
could be just as bad given the number and scope of applications that may rely

Proof technology has now advanced to a point where it appear practical en
to go beyond these applications and consider proofs of components. Althoug
extensively explored until now, this combination of formal methods and reuse o
one of the most interesting outlets for formal development.

In pursuing it we will rely on Eiffel’sDesign by ContractTM [4] [5] [7]. Classes
equipped with contracts — routine preconditions, routine postconditions and
invariants — already possess a degree of formal specification.

Although devised from their origin with the ultimate goal of permitting proo
contracts have been used so far in Eiffel for other purposes[7]: as a design method
to obtain correct software; as a documentation technique in connection with
tools of the EiffelStudio environment; as a central part of the testing, debugging
quality assurance process; as a management aid; as a guide for using inhe
properly; and as a basis for exception handling relying on a clear definition of w
constitutes a “normal” and “abnormal” case.

3 LAYERS OF PROOF

To prove properties of components (and in fact of applications too) it app
desirable, because of the potential complexity of some libraries, to organize
proof process in a hierarchical manner, where the basic (lowermost) levels are
close to mathematical concepts, and each higher level is proved conditional t
correctness of the lower one:
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4 EIFFELBASE

Of particular interest among the layers of figure1 is the EiffelBase library, the focus
of our first investigation. The library results from a systematic approach, detaile
reference[6], at providing a “Linnaean” taxonomy of the fundamental structures
computing science. EiffelBase takes full advantage of object-oriented mechan
and is thus a good testbed for the scalability of any techniques developed. Fig2
describes the hierarchy of its top inheritance levels.

EiffelBase classes are extensively equipped with contracts, as illustrated b
examples reviewed below. This makes them a prime target for proofs, sinc
properties to prove are already part of the class text.

An obvious objection to the choice of EiffelBase is that industrial users ma
more interested in coarser-grain components (EJB, CORBA, COM, .NET) cove
— say — print drivers, web services or payroll records rather than stacks and li
lists. But several reasons actually make components such as the EiffelBase c
actually very useful for such a study:

Math classes

Kernel classes

EiffelBase

Specialized libraries

Applications

Advanced components

Figure 1: Application and component layers
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• These components are used extensively in all applications. Bringing them
high degree of quality is by itself an important achievement.

• They raise difficult problems, providing a microcosm of the more gene
issues of component-based development.

• The underlying theory has been explored in depth, and so is ready
integration in a proof framework.

• They are a required step: we can hardly hope to provide proofs of m
complex, application-specific components until we know how to tackle th
If we can’t prove the contracts of a list class, we won’t be able to prove a G
control.

• Finally, as noted, this is not thewhole approach, simply one of its facets
complemented for more immediate industry needs by the “low ro
techniques mentioned above.

So they appear a proper choice for this foundational work, a first step toward
development of general techniques for proving properties of different compo
kinds, fine-grained and coarse-grained.

Figure 2: EiffelBase classes, topmost inheritance hierarchy
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5 A REUSABLE EFFECTIVE CLASS: STACK

Let’s take a look at a typical class and see what it would mean to “prove
FIXED_STACKis one of the implementations ofSTACK, through arrays. Along
with ARRAYED_STACK, LINKED_STACKand other implementations, it inherit
from the deferred (abstract) classSTACK:

In its general form, including the contracts,FIXED_STACKlooks like this:

class FIXED_STACK[G] inherit
STACK[G]
ARRAY[G]

rename itemas array_item, putas array_put,
countas capacity

end
feature -- Access

count: INTEGER
-- Number of stack items

item: G is
-- Top element

require
not_empty: count> 0

do
Result:= array_item(count)

end

Inherits
from

ARRAYED_

STACK
∗

STACK
ARRAYED_

STACK
ARRAYED_

STACK
FIXED_
STACK

ARRAYED_
STACK
LINKED_
STACK

* Deferred

Figure 3: Multiple implementations through inheritance
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feature -- Element change
put (x: G) is

-- Pushx to top of stack.
require

not_full: count< capacity
do

count:= count + 1
array_put(x, count)

ensure
pushed: item= x
one_more: count= old count + 1

end
removeis

-- Pop top element.
require

not_empty: count> 0
do

count:= count – 1
ensure

removed: count= old count – 1
end

invariant
meaningful_count: count>= 0
bounded_by_capacity: count<= capacity

end
A number of details have been omitted as compared to the actual class i
EiffelBase delivery:

• Assertion inheritance: most of the contracts are actually in the higher-le
deferred classSTACK; classFIXED_STACKinherits them without having to
reproduced them. What is shown here is close to its “flat form” rather tha
actual text.

• Several features.

• Creation procedures.

• Some inheritance details.

• The Indexing clause.

• Array resizing (found inARRAYED_STACK): in general, EiffelBase classe
avoid putting strict limits on size, and instead silently resize the representa
if the contents outgrow it. Here we have chosen the fixed-size variant sin
leads to a simple and interesting contract.
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6 INTRODUCING A MODEL

The first question to ask is: What does it mean to “prove”FIXED_STACK?

The accurate phrasing is of course that we are interested in proving
correctness of the class with respect to particularspecification properties.

Like the rest of the literature this discussion casually talks about “proving a
software element”, but this is just an abbreviation for the notion of proving that the
element possesses explicitly specified properties.

Thanks to the presence of contracts, these properties are already present in th
in the form of preconditions (require), postconditions (ensure), class invariants
(invariant ). We have to prove that the implementation satisfies these contracts
routine called with the precondition satisfied will terminate and ensure
precondition; in addition, if it is called from outside the class, it will preserve
invariants.

To talk about such correctness proofs will we use a conceptualmodelof the
corresponding structure. We consider, for example, that a stack is concep
representable as a sequence, where the push operation (put) happens at the end:\

Such a model plays no role in the class implementation; it is also of no significa
to users of the class, who still view it in purely abstract terms, defined by offi
features (put, remove, itemetc.) according to the principles of abstract data typ
But it will help us for the proofs.

Mathematically, a sequence is a function from an integer interval:

SEQUENCE[G] =
∆

 1..count→ G
for somecount. s (i) is thei-th item ofs.

We may note here that the choice of a model is independent of the choic
implementation, such asFIXED_STACK rather than ARRAYED_STACKor
LINKED_STACK. It can be done at the level of the deferred classSTACK, their
common ancestor. This opens up the possibility of doing part of the proof a
deferred level, an interesting prospect since it means that we can use inheritan

1 count

(TOP)(BODY)

Figure 4: Modeling a stack as a sequence
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reuse and factorization in thesoftware provingprocess like we do in thesoftware
constructionprocess. Let us see how the deferred class — itself somewhat simp
too — looks:

deferred class
STACK[G]

feature -- Access
count: INTEGER

-- Number of stack items
item: G is

-- Top element
require

not_empty: count> 0

end
feature -- Element change

put (x: G) is
-- Push x to top of stack.

require
not_full: not full

deferred
ensure

end
removeis

-- Pop top element.

require
not_empty: count> 0

deferred
ensure

removed: count= old count – 1
end

invariant
meaningful_count: count>= 0

end
Now we can ask again the question “what does it mean to prove a class?” at the
of a deferred class such asSTACK. The answer will be obtained by introducing th
model (a sequence in our case) at that level.

Abstract
assertions

pushed: item= x
one_more: count= old count + 1
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7 MATHEMATICAL CLASSES

To proceed we need a better definition of basic model elements such as sequ
They will be described using simple set-theoretical concepts: Sets, Relat
Functions, Sequences (Z or B style).

For simplicity and consistency, it is useful to express such a notion in a f
that looks like an Eiffel class:

deferred class
SEQUENCE[G]

feature -- Access
count: INTEGER

-- Number of sequence items

item(i: INTEGER): G is
-- Element at indexi

require
in_bounds: i >= 1 and i <= count

deferred
end

last: G is
-- Element of highest index

require
not_empty: count> 0

deferred
ensure

definition: Result= item(count)
end

first: G is
... Similar ...

subsequence(i, j: INTEGER): SEQUENCE[G] is
-- Sequence made of elements fromi to j, if any

require
first_in_bounds: i >= 1 and i <= count

second_in_bounds: j >= 1 and j <= count
deferred
ensure

Result.count= max(j – i + 1, 0)
end
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feature -- Element transformers
extended(x: G): SEQUENCE[G] is

-- Sequence extended withx at end.
deferred
ensure

one_more: Result.count= count + 1
added: Result.last = x
rest_unchanged:

equal(Result.subsequence(1, count), Current),
end

head: SEQUENCE[G] is
-- Sequence minus its first element

require
not_empty: count> 0

deferred
ensure

removed: Result.count= count – 1
rest_unchanged:

equal (Result, subsequence(1, count–1))
end

... Similar declaration fortail ...
invariant

meaningful_count: count>= 0
end
In spite of this programming-like appearance, however, such classes are p
mathematical objects. They correspond to the lowest level of the proof hierarc

Math classes

Kernel classes

EiffelBase

Specialized libraries

Applications

Advanced components

Figure 5: Place of mathematical classes



A FRAMEWORK FOR PROVING CONTRACT-EQUIPPED CLASSES §712

diate

s; no

le to

ing-

pure

for

licity.

s,

g

and

tion
These classes are expressed in a subset of Eiffel called IFL (for Interme

Functional Language), with strong restrictions: no procedures but only function

assignment to attributes; no modifications of any data structure. For examp

represent sequence concatenation classSEQUENCEabove uses a functionextended

that returns a new sequence, not a procedureextendthat would modify the current

sequence. In other words this is a purely applicative language, just a programm

like representation of pure mathematical concepts. We may view IFL as

mathematics disguised in Eiffel syntax. Using a notation similar to that used

actual classes at higher levels of the hierarchy provides consistency and simp

EiffelBase classes such asSTACKand its variants rely on these IFL classe

through an intermediate level that we ignore for this discussion:

In the writing of classSTACKwe can now explicitly introduce the model. Usin

Eiffel techniques for selective export we export the corresponding features —

as a result the corresponding contracts — to a special classSPECIFICATIONand to

that class only. This means that they will not be visible in the official documenta

(“contract form” or “short form”) of the class.

Math classes

Kernel classes

EiffelBase

Specialized libraries

Applications

Advanced components

Figure 6: Place of data structure library
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deferred class
STACK[G]

feature { SPECIFICATION} -- Specification

feature -- Access
count: INTEGERis

-- Number of stack items
deferred
ensure

end
item: G is

-- Top element
require

not_empty: count> 0
deferred
ensure

end
feature -- Element change

put (x: G) is
-- Push x to top of stack.

require
not full: not full

deferred
ensure

end
removeis

-- Pop top element.
require

not_empty: count> 0
deferred
ensure

removed: count= old count – 1

end
invariant

meaningful_count: count>= 0

end

model: SEQUENCE[G] is deferred end

same_count: Result= model.count

is_last: Result= model.last

pushed: item= x
one_more: count= old count + 1

extended: model= old model.extended(x)

Abstract
assertions

Model
assertions

chopped_off: model= old model.head

model_exists: model/= Void
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Our contracts now have two kinds of assertions, marked in the above extrac
original abstract assertions, part of the contracts for the class; and the newmodel
assertions, introduced together with the model. We represent the model, in the c
by a new featuremodel(exported toSPECIFICATIONonly and hence not visible
by normal clients); the model assertions are expressed in terms ofmodel, referring
here to features of the IFL classSEQUENCEas introduced earlier.

We have the first part of the answer to our general question of “what do
mean to prove a class?”:

The following figure illustrates this process

In the example ofSTACKand itsSEQUENCEmodel, the proof is straightforward
For example, considering the postcondition ofput, we set out to prove the firs
clause,item= x. The definition ofitem tells us thatitem is model.last. The model
postcondition tells us thatmodel = old model.extended(x), so item is old
model.extended(x).last. But now the postcondition clausedefinitionof last in class
SEQUENCE tells us that this is indeedx.

The proof of the second postcondition clause,count= old count + 1, is similar,
using the postcondition ofextendedin SEQUENCE.

Note that these proofs of deferred classes really involve mathematical r
than programming properties, since there are no explicit assignment, featur
(the central O-O operation) or control structures.

Proving a deferred class
To prove a deferred class is to prove that the model assertions imply the
abstract assertions.

Devise

ABSTRACT
MODEL

model

Prove
consistency

DEFERRED CLASS

e.g.STACK

e.g. sequences

Figure 7: Proving a deferred class (partial view)

∗
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In practice, it will be convenient to work not directly on the classes, but
mathematical versions that makes the manipulations easier, leading to the follo
variant of the above figure:

8 PROVING THE EFFECTIVE CLASS

We now come back to the effective classFIXED_STACK. It provides
implementations of the features that were deferred inSTACK, for example:

put (x: G) is

-- Push x to top of stack.

require
not full: not full

deferred
ensure

end

The proof of the model assertions has been taken care of at the level of the de
class. So what remains to be done is to check the consistency of the implemen
vis-à-vis that first model:

MATH VERSION

Devise

ABSTRACT
MODEL

model

Transform

Prove
consistency

DEFERRED CLASS

Figure 8: Proving a deferred class (full view)

∗

pushed: item= x
one_more: count= old count + 1

extended: model= old model.extended(x)
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Of course the abstract assertions are those which matter for the clients. B
factoring out the choice of model at the level of the deferred class we have
factored out the proof of the abstract assertions; all that remains of interest a
level of individual effective classes is the model.

In our example the proof is again straightforward, but requires an axiomatizatio
programming language constructs such as assignment, feature call and c
structures, which the present discussion does not address.

Here too it’s more convenient to work on a translation of the class int
mathematical form:

Proving an effective class
To prove an effective class is to prove that the implementation satisfies
the model assertions.

ABSTRACT

Prove
consistency

MODEL

EFFECTIVE CLASS

e.g.FIXED_STACK

Figure 9: Proving an effective class (partial view)

ABSTRACT

Prove
consistency

MODEL

EFFECTIVE CLASS
Transform

MATH VERSION

Figure 10: Proving an effective class (full view)
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9 THE OVERALL SCHEME

The following figure combines the preceding ones to present the overall p
scheme:

10 ISSUES TO BE ADDRESSED

The approach outlined here is only a general scheme. A number of important d
remain to be filled in:

• Choice of a mathematical model for proving class properties. Translating
mathematics avoids the symbol manipulation problems that often plague p
efforts.

• Finding the right mix between axiomatic and denotational approache
modeling the software concepts involved.

• Handling the semantics, in particular (at the level of effective classes)
advanced language constructs.

• Adapting the theory to the form required by the chosen proof engine. Given
amount of proof work involved a fundamental requirement of the appro
described here is mechanical support for proofs.

• Scaling up to bigger components.

• Exploring the possibility ot synthesizing the model automatically in so
cases, instead of having to invent it for every class.

MATH VERSION

Devise

ABSTRACT

Prove
consistency

Inherits
from MODEL

model

Transform

Prove
consistency

EFFECTIVE CLASS
Transform

DEFERRED CLASS

MATH VERSION

Figure 11: Scheme for proving classes

∗
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11 STRATEGY

Because of the number of concepts involved in a full-scale library such as EiffelB
(used daily by numerous applications, including large mission-critical systems
cannot hope to tackle the full current library at once. A related issue is the num
of programming language mechanisms that must be modeled.

To avoid an “all-or-nothing” approach, the strategy starts with elemen
versions of both the language and the library, working its way up on both side
introducing advanced language constructs and advanced library concepts o
one, and proving everything correct at each step.

We hope that this strategy will lead us to a fully proved and practically usa
version of a contract-equipped library of fundamental computing structures.
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