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Abstract. As part of a general effort to provide a new basis for software
development through reuse of “Trusted Components”, we outline a scheme for
proving that classes equipped with contracts in the Eiffel style meet these contracts.
The approach takes advantage of the inheritance structure to separate proof
obligations between deferred (abstract) classes, to be validated against a model,
and their effective implementations, which then must only be proved against the
contracts of the deferred ancestors. The testbed for this study is the EiffelBase
library of fundamental data structures and algorithms, whose classes include
extensive contracts.

1 TRUSTED COMPONENTS, LOW ROAD AND HIGH ROAD

The techniques proposed here are part of a general effort to deVelsped
Components$8]: reusable software elements with guaranteed properties. We start
with an overview of this broader goal and of the present work’s place in it.

Work on Trusted Components rests on the observation that one of the most
realistic hopes for radical improvements in software quality and productivity is to
combinereuseandquality. Reuse ensures faster time to completion, economies of
scale, and the opportunity to turn expertise into concrete assets. But reuse scales up
everything, deficiencies included; reusable components should be subjected to
quality criteria far more rigorous than ordinary non-reusable software. The effect of
scale then becomes a benefit rather than a risk: every reusing application profits from
the quality investment made in the reusable components.

There has been widespread advocacy for the idea of reuse, especially of object-
oriented classe8] and binary componen{d3]. A real market for components has
emerged in recent years, although the need to associate quality with reuse doesn'’t
seem to have registered with the software industry at large. Trusted Component
efforts attempt to remedy this mistake and to provide a solid basis of high-quality
components for software development.
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Ideally, a Trusted Component should have a formal specification of its relevant
properties and then a proof that its implementation satisfies the specification. This is
indeed the approach explored in the following sections. It assumes, however,
components that are designed from the outset with this goal in mind; while important
for the long term, this view does little to address the concerns of industry developers
who have to work with existing components — object-oriented, EJB, COM, .NET
— that have not been built accordingly; if nothing else, most commercial components
do not publish their source code, making third-party proofs impossible.

As a result we face a choice between providing full proofs of components
produced specifically for this purposes@ftware as it should Beand attempting
partial qualification of existing commercial components built with far more informal
techniques (Software as it i¥. Our work on Trusted Components recognizes the
need for both of these approaches, and as a consequence pursues two tracks at once:

* A high roadfor producing components whose correctness can be proved, and
indeed proving it.

* A low road for assessing properties of existing components, commercial or
open-source. It will generally be impossible to include correctness proofs in
this case, but we can still define relevant quality criteria — extent of functional
and performance specification, examples of use, documentation, evidence of
prior reuse, extendibility... — and assess components against them. A
Component Quality Mode$ under development for this purpd%8].

The work presented here is on the “high road”. Focused on fundamental components
covering common data structures and algorithmes, it attempts to produce full proofs
of their correctness.

An important practical issue of correctness proofs for object-oriented
components is the matter of run-time structures, which typically involves extensive
use ofpointers(or “references”). In parallel with the work described here, a theory
has been developed to model pointer-rich object structures and prove the
corresponding software properties. Described in a separate [ddpeit is closely
connected to the present work, and plays an important part in its application to actual
proofs of object-oriented software.
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2 FORMAL METHODS FOR REUSABLE COMPONENTS

Most applications of formal methods so far have been to systems or subystems,
generally in mission-critical areas where the investment in formality and proofs is
justified by the grave consequences that malfunctions could cause. Examples
include defense applications, transportation systems such as those built with the B
approactil], and Java Bytecode verification through Abstract State Maclpir¥és

With components, the economic justification is simply the effect of scale arising
from reuse. A reusable component may not be by itself “critical” in the same sense
as the system controlling the closing of doors in a train, but the effect of a deficiency
could be just as bad given the number and scope of applications that may rely on it.

Proof technology has now advanced to a point where it appear practical enough
to go beyond these applications and consider proofs of components. Although not
extensively explored until now, this combination of formal methods and reuse offers
one of the most interesting outlets for formal development.

In pursuing it we will rely on Eiffel’sDesign by Contract [4] [5] [7]. Classes
equipped with contracts — routine preconditions, routine postconditions and class
invariants — already possess a degree of formal specification.

Although devised from their origin with the ultimate goal of permitting proofs,
contracts have been used so far in Eiffel for other purpp8ess a design method
to obtain correct software; as a documentation technique in connection with the
tools of the EiffelStudio environment; as a central part of the testing, debugging and
guality assurance process; as a management aid; as a guide for using inheritance
properly; and as a basis for exception handling relying on a clear definition of what
constitutes a “normal” and “abnormal” case.

3 LAYERS OF PROOF

To prove properties of components (and in fact of applications too) it appears

desirable, because of the potential complexity of some libraries, to organize the
proof process in a hierarchical manner, where the basic (lowermost) levels are very
close to mathematical concepts, and each higher level is proved conditional to the
correctness of the lower one:
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Applications

Advanced components

Specialized libraries

EiffelBase

Kernel classes

Math classes

Figure 1: Application and component layers

4 EIFFELBASE

Of particular interest among the layers of figlris the EiffelBase library, the focus

of our first investigation. The library results from a systematic approach, detailed in
referencd6], at providing a “Linnaean” taxonomy of the fundamental structures of
computing science. EiffelBase takes full advantage of object-oriented mechanisms
and is thus a good testbed for the scalability of any techniques developed. Eigure
describes the hierarchy of its top inheritance levels.

EiffelBase classes are extensively equipped with contracts, as illustrated by the
examples reviewed below. This makes them a prime target for proofs, since the
properties to prove are already part of the class text.

An obvious objection to the choice of EiffelBase is that industrial users may be
more interested in coarser-grain components (EJB, CORBA, COM, .NET) covering
— say — print drivers, web services or payroll records rather than stacks and linked
lists. But several reasons actually make components such as the EiffelBase classes
actually very useful for such a study:
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Figure 2: EiffelBase classes, topmost inheritance hierarchy

» These components are used extensively in all applications. Bringing them to a
high degree of quality is by itself an important achievement.

* They raise difficult problems, providing a microcosm of the more general
issues of component-based development.

* The underlying theory has been explored in depth, and so is ready for
integration in a proof framework.

« They are a required step: we can hardly hope to provide proofs of more
complex, application-specific components until we know how to tackle these.
If we can’t prove the contracts of a list class, we won't be able to prove a Grid
control.

* Finally, as noted, this is not thethole approach, simply one of its facets,
complemented for more immediate industry needs by the “low road”
techniques mentioned above.

So they appear a proper choice for this foundational work, a first step towards the
development of general techniques for proving properties of different component
kinds, fine-grained and coarse-grained.
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5 AREUSABLE EFFECTIVE CLASS: STACK

Let's take a look at a typical class and see what it would mean to “prove it".
FIXED_STACKIs one of the implementations &TACK through arrays. Along
with ARRAYED_STACK.INKED_STACKand other implementations, it inherits
from the deferred (abstract) cl&SSACK

ARRAYED _
STACK

Inherits
from

* Deferred

Figure 3: Multiple implementations through inheritance

In its general form, including the contrad&XED_STACKooKks like this:

classFIXED_STACHKG] inherit
STACK[G]
ARRAYG]
renameitemasarray_item putasarray_put
countas capacity
end
feature -- Access
count INTEGER
-- Number of stack items
item Gis
-- Top element
require
not_emptycount> 0
do
Result= array_item(coun)
end
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feature -- Element change

put(x: G) is
-- Pushx to top of stack.
require
not_full: count< capacity
do

count:=count + 1
array_put(x, coun)
ensure
pusheditem= x
one_morecount=old count + 1
end
removes
-- Pop top element.
require
not_emptycount> 0
do
count:=count—1
ensure
removed count=old count — 1
end
invariant
meaningful_countcount>=0
bounded_by capacitgount<= capacity
end
A number of details have been omitted as compared to the actual class in the
EiffelBase delivery:

* Assertion inheritance: most of the contracts are actually in the higher-level,
deferred clasSTACK classFIXED STACKinherits them without having to
reproduced them. What is shown here is close to its “flat form” rather than its
actual text.

*  Several features.

*  Creation procedures.

* Some inheritance details.
* The Indexing clause.

* Array resizing (found inARRAYED_STAOKin general, EiffelBase classes
avoid putting strict limits on size, and instead silently resize the representation
if the contents outgrow it. Here we have chosen the fixed-size variant since it
leads to a simple and interesting contract.
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6 INTRODUCING A MODEL

The first question to ask is: What does it mean to “préV8¥ED_STACR

The accurate phrasing is of course that we are interested in proving the
correctnes®f the class with respect to particusgecification properties

Like the rest of the literature this discussion casually talks about “proving a
software element”, but this is just an abbreviation for the notion of proving that the
element possesses explicitly specified properties.

Thanks to the presence of contracts, these properties are already present in the text,
in the form of preconditionsréquire), postconditions €nsure), class invariants
(invariant). We have to prove that the implementation satisfies these contracts: any
routine called with the precondition satisfied will terminate and ensure the
precondition; in addition, if it is called from outside the class, it will preserve the
invariants.

To talk about such correctness proofs will we use a conceptodelof the
corresponding structure. We consider, for example, that a stack is conceptually
representable as a sequence, where the push opepationappens at the end:\

(BODY) (TOP)

1 _ _ count
Figure 4: Modeling a stack as a sequence

Such a model plays no role in the class implementation; it is also of no significance
to users of the class, who still view it in purely abstract terms, defined by official
features fut, remove itemetc.) according to the principles of abstract data types.
But it will help us for the proofs.

Mathematically, a sequence is a function from an integer interval:

SEQUENCHG] é l.count- G
for somecount s (i) is thei-th item ofs.

We may note here that the choice of a model is independent of the choice of
implementation, such a$IXED_STACK rather than ARRAYED_STACKor
LINKED _STACK It can be done at the level of the deferred cI&IACK their
common ancestor. This opens up the possibility of doing part of the proof at the
deferred level, an interesting prospect since it means that we can use inheritance for
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reuse and factorization in theoftware provingorocess like we do in theoftware
constructiorprocess. Let us see how the deferred class — itself somewhat simplified
too — looks:

deferred class
STACK[G]
feature -- Access
count INTEGER
-- Number of stack items
item Gis
-- Top element
require
not_emptycount> 0

end
feature -- Element change
put(x: G) is
-- Push x to top of stack.
require
not_full not full
deferred
ensure
shed |temNAbstract
ne morecount= old count + I)assertions
end
removes
-- Pop top element.
require
not_emptycount> 0
deferred
ensure
removed count= old count — 1
end
invariant
meaningful_countcount>=0

end

Now we can ask again the question “what does it mean to prove a class?” at the level
of a deferred class such 8 ACK The answer will be obtained by introducing the
model (a sequence in our case) at that level.
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7 MATHEMATICAL CLASSES

To proceed we need a better definition of basic model elements such as sequences.
They will be described using simple set-theoretical concepts: Sets, Relations,
Functions, Sequences (Z or B style).

For simplicity and consistency, it is useful to express such a notion in a form
that looks like an Eiffel class:

deferred class
SEQUENCHG]

feature -- Access
count INTEGER
-- Number of sequence items

item(i: INTEGER: Gis
-- Element at index
require
in_boundsi >=1and i <= count
deferred
end

last Gis
-- Element of highest index
require
not_emptycount> 0
deferred
ensure
definition Result= item(coun)
end

first: Gis
... Similar ...

subsequencg, j: INTEGER: SEQUENCHG] is
-- Sequence made of elements frioto |, if any
require
first_in_boundsi >= 1 and i <= count

second_in_bound$>=1andj <= count
deferred
ensure

Resultcount=max(j—i+ 1, 0)
end
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feature -- Element transformers
extendedx: G): SEQUENCHG] is
-- Sequence extended withat end.
deferred
ensure
one_moreResultcount= count + 1
added Resultlast= x
rest_unchanged
equal(Resultsubsequencg, coun), Curren),
end
head SEQUENCHG] is
-- Sequence minus its first element
require
not_emptycount> 0
deferred
ensure
removed Resultcount= count — 1
rest_unchanged
equal (Result, subsequern(decount-1)
end

... Similar declaration fatail ...
invariant
meaningful_countcount>= 0
end
In spite of this programming-like appearance, however, such classes are purely
mathematical objects. They correspond to the lowest level of the proof hierarchy:

Applications

Advanced components

Specialized libraries

EiffelBase

Kernel classes

Math classes

Figure 5: Place of mathematical classes
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These classes are expressed in a subset of Eiffel called IFL (for Intermediate
Functional Language), with strong restrictions: no procedures but only functions; no
assignment to attributes; no modifications of any data structure. For example to
represent sequence concatenation ESUENCEabove uses a functiaxtended

that returns a new sequence, not a procedutendthat would modify the current
sequence. In other words this is a purely applicative language, just a programming-
like representation of pure mathematical concepts. We may view IFL as pure
mathematics disguised in Eiffel syntax. Using a notation similar to that used for
actual classes at higher levels of the hierarchy provides consistency and simplicity.

EiffelBase classes such & ACKand its variants rely on these IFL classes,
through an intermediate level that we ignore for this discussion:

Applications

Advanced components

Specialized libraries

EiffelBase

Kernel classes

Math classes

Figure 6: Place of data structure library

In the writing of classSTACKwe can now explicitly introduce the model. Using
Eiffel techniques for selective export we export the corresponding features — and
as aresult the corresponding contracts — to a special SREEIFICATIONand to

that class only. This means that they will not be visible in the official documentation
(“contract form” or “short form”) of the class.



87 MATHEMATICAL CLASSES 13

deferred class
STACK[G]
feature { SPECIFICATION -- Specification

model SEQUENCHG] is deferred end

feature -- Access
count INTEGERIis
-- Number of stack items

deferred
ensure

same_countResult= modelcount

end
item Gis
-- Top element
require
not_emptycount> 0
deferred
ensure

is_last Result= modellast
end
feature -- Element change
put(x: G) is
-- Push x to top of stack.
require
not full: not full
deferred
ensure

shed item= x Abstra_ct
ne morecount= old count + Tnassertions
Model

extendedmodel= old modelextendedX)  gssertions

end
removes
-- Pop top element.
require
not_emptycount> 0
deferred
ensure
removed count= old count — 1

chopped_offmodel= old modelhead

end
invariant
meaningful_countcount>= 0
model_existsmodel/= Void
end
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Our contracts now have two kinds of assertions, marked in the above extract: the
original abstract assertiongart of the contracts for the class; and the meadel
assertionsintroduced together with the model. We represent the model, in the class,
by a new featurenodel(exported toSPECIFICATIONonly and hence not visible

by normal clients); the model assertions are expressed in termsa| referring

here to features of the IFL claSEQUENCEas introduced earlier.

We have the first part of the answer to our general question of “what does it
mean to prove a class?”:

Proving a deferred class

To prove a deferred class is to prove that the model assertions imply the
abstract assertions.

The following figure illustrates this process

[]
DEFERRED CLASS
Prove
e.g.STACK consistency
Devise
model
»| ABSTRACT
MODEL

e.g. sequences

Figure 7: Proving a deferred class (partial view)

In the example oSETACKand itsSEQUENCEmModel, the proof is straightforward.
For example, considering the postconditionpoft, we set out to prove the first
clausejtem= x. The definition ofitemtells us thaitemis modellast The model
postcondition tells us thamodel = old modelextended(x), so item is old
model extendedx).last But now the postcondition clausefinitionof lastin class
SEQUENCHells us that this is indeed

The proof of the second postcondition clausaynt= old count + 1, is similar,
using the postcondition @xtendedn SEQUENCE

Note that these proofs of deferred classes really involve mathematical rather
than programming properties, since there are no explicit assignment, feature call
(the central O-O operation) or control structures.
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In practice, it will be convenient to work not directly on the classes, but on
mathematical versions that makes the manipulations easier, leading to the following
variant of the above figure:

DA YEN ) ] } ATH VERSION

Transform

~ Prove
consistency
Devise
model
> ABSTRACT
MODEL

Figure 8: Proving a deferred class (full view)

8 PROVING THE EFFECTIVE CLASS

We now come back to the effective clagsIXED_STACK It provides
implementations of the features that were deferr&INACK for example:

put(x: G) is
-- Push x to top of stack.
require
not full: not full

deferred
ensure

shed item= x
ne morecount= old count +

extendedmodel= old model extendedx)

end

The proof of the model assertions has been taken care of at the level of the deferred
class. So what remains to be done is to check the consistency of the implementation
vis-a-vis that first model:
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Proving an effective class

To prove an effective class is to prove that the implementation satisfies
the model assertions.

Of course the abstract assertions are those which matter for the clients. But by
factoring out the choice of model at the level of the deferred class we have also
factored out the proof of the abstract assertions; all that remains of interest at the
level of individual effective classes is the model.

ABSTRACT
MODEL

~ Prove
consistency

e.g.FIXED_STACK

Figure 9: Proving an effective class (partial view)

In our example the proof is again straightforward, but requires an axiomatization of
programming language constructs such as assignment, feature call and control
structures, which the present discussion does not address.

Here too it's more convenient to work on a translation of the class into a
mathematical form:

ABSTRACT
MODEL

~ Prove
consistency

- B \|ATH VERSION
Transform

Figure 10: Proving an effective class (full view)
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9 THE OVERALL SCHEME

The following figure combines the preceding ones to present the overall proof
scheme:

L]
DEFERRED CLASS et LAALAYERSIO

Transform

~ Prove
consistency

-

consistency

1 Devise
1 model
i |1 ABSTRACT
Inherits | >
from | MODEL
1
| Prove
1
| |

> 0 \ATH VERSION
Transform

Figure 11: Scheme for proving classes

10 ISSUES TO BE ADDRESSED

The approach outlined here is only a general scheme. A number of important details
remain to be filled in:

*  Choice of a mathematical model for proving class properties. Translating into
mathematics avoids the symbol manipulation problems that often plague proof
efforts.

* Finding the right mix between axiomatic and denotational approaches to
modeling the software concepts involved.

» Handling the semantics, in particular (at the level of effective classes) for
advanced language constructs.

* Adapting the theory to the form required by the chosen proof engine. Given the
amount of proof work involved a fundamental requirement of the approach
described here is mechanical support for proofs.

e Scaling up to bigger components.

» Exploring the possibility ot synthesizing the model automatically in some
cases, instead of having to invent it for every class.
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11 STRATEGY

Because of the number of concepts involved in a full-scale library such as EiffelBase
(used daily by numerous applications, including large mission-critical systems) we
cannot hope to tackle the full current library at once. A related issue is the number
of programming language mechanisms that must be modeled.

To avoid an “all-or-nothing” approach, the strategy starts with elementary
versions of both the language and the library, working its way up on both sides by
introducing advanced language constructs and advanced library concepts one by
one, and proving everything correct at each step.

We hope that this strategy will lead us to a fully proved and practically usable
version of a contract-equipped library of fundamental computing structures.
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