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Dimensional Analysis in C++
Scientific and engineering calculations are dependent on correct use of 
units in calculations:

� It makes no sense to assign a time value to a distance variable

� It makes no sense to compare a mass variable with a charge variable

But most software ignores such units:

double t; // time - in seconds

double a; // acceleration - in meters/second2

double d; // distance - in meters

...

cout << d/(t*t) - a; // okay, subtracts meters/sec2

cout << d/t - a; // should be an error, as it
// subtracts meters/sec and
// meters/sec2
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Dimensional Analysis in C++
Typedefs just disguise the problem:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

Time t; 
Acceleration a;
Distance d;

...

cout << d/t - a; // still compiles, but is still wrong

We want a way to use the C++ type system to:

� Make unit compatibility errors impossible:
➠ They’ll be detected during compilation

� Do so with minimal runtime performance impact:
➠ Minimal memory overhead, minimal runtime overhead
➠ As much as possible should be done during compilation
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Enforcing Dimensional Unit Correctness
Observations:

� The number of needed types is, in principle, unlimited:
➠ Time * Time = Time2

➠ Time/Distance = Time/Distance
➠ Distance/Time2 = Distance/Time2

� This suggests we should have templates generate the types 
automatically.

� Types change only when a unit type’s exponent changes:
➠ Unitless numbers (i.e. constants) have unit exponents of 0
➠ In Time * Time, the Time exponent goes from 1 to 2
➠ In Acceleration/Time, the Time exponent goes from -2 to -3

� This suggests we need a template to generate types based on unit 
exponents
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Enforcing Dimensional Unit Correctness
template<int m, // exponent for mass

int d, // exponent for distance
int t> // exponent for time

class Units {
public:

explicit Units(double initVal = 0): val(initVal) {}

double value() const { return val; }
double& value() { return val; }
...

private:
double val;

};

Now we can say:

Units<1, 0, 0> m; // m is of type mass
Units<0, 1, 0> d; // d is of type distance
Units<0, 0, 1> t; // t is of type time

m = t; // error! type mismatch
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Enforcing Dimensional Unit Correctness
Typedefs for commonly-used units make things clearer:

typedef Units<1, 0, 0> Mass;
typedef Units<0, 1, 0> Distance;
typedef Units<0, 0, 1> Time;

Mass m;
Distance d;
Time t;
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Enforcing Dimensional Unit Correctness
Arithmetic operations on these kinds of types are important, so we can 
augment Units as follows:

template<int m, int d, int t>
class Units {
public:

... // as before

Units<m, d, t>& operator+=(const Units<m, d, t>& rhs)
{

val += rhs.val;
return *this;

}

Units<m, d, t>& operator*=(double rhs)
{

val *= rhs;
return *this;

}

...
};

Operators for subtraction and division are analogous.
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Enforcing Dimensional Unit Correctness
Non-assignment operators are best implemented as non-members:

template<int m, int d, int t>
const Units<m, d, t> operator+(const Units<m, d, t>& lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(lhs);
return result += rhs;

}

template<int m, int d, int t>
const Units<m, d, t> operator*(double lhs,

const Units<m, d, t>& rhs)
{

Units<m, d, t> result(rhs);
return result *= lhs;

}
template<int m, int d, int t>
const Units<m, d, t> operator*(const Units<m, d, t>& lhs,

double rhs)
{

Units<m, d, t> result(lhs);
return result *= rhs;

}
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Enforcing Dimensional Unit Correctness
If we adopt the SI units as our standard, we can provide the following 
constants:

const Mass kilogram(1); // each of these constants sets its
const Distance meter(1); // internal val field to 1.0
const Time second(1);

Now we can start defining more interesting objects:

Distance myBatikHeight(0.5 * meter);
Distance myBatikWidth(1 * meter);

Mass myWeight(88.6 * kilogram);

Time halfAMinute(30 * second);
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Enforcing Dimensional Unit Correctness
We can also define other units in terms of our standard:

const Mass pound(kilogram/2.2);

const Mass ton(907.18 * kilogram);

const Time minute(60 * second);

const Time hour(60 * minute);

const Time day(24 * hour);

const Distance inch(.0254 * meter);
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Enforcing Dimensional Unit Correctness
The real fun comes when multiplying/dividing Units:

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1+m2, d1+d2, t1+t2>
operator*( const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1+m2, d1+d2, t1+t2> ResultType;

return ResultType(lhs.value() * rhs.value());
}

template< int m1, int d1, int t1,
int m2, int d2, int t2>

const Units<m1-m2, d1-d2, t1-t2>
operator/( const Units<m1, d1, t1>& lhs,

const Units<m2, d2, t2>& rhs)
{

typedef Units<m1-m2, d1-d2, t1-t2> ResultType;

return ResultType(lhs.value() / rhs.value());
}
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Enforcing Dimensional Unit Correctness
Real implementations typically use more template arguments for Units:

� One specifies the precision of the value (typically float or double)

� The others are for the exponents of the seven SI units:
➠ Mass
➠ Length
➠ Time
➠ Charge
➠ Temperature
➠ Intensity
➠ Angle
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Enforcing Dimensional Unit Correctness
template<class T, int m, int d, int t, int q, int k, int i, int a>
class Units {
public:

explicit Units(T initVal = 0) : val(initVal) {}
T& value() { return val; }
const T& value() const { return val; }
...

private:
T val;

};

template<class T, int m1, int d1, int t1, int q1, int k1, int i1, int a1,
int m2, int d2, int t2, int q2, int k2, int i2, int a2>

Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
operator*(const Units<T, m1, d1, t1, q1, k1, i1, a1>& lhs, 

const Units<T, m2, d2, t2, q2, k2, i2, a2>& rhs)
{

typedef Units<T, m1+m2, d1+d2, t1+t2, q1+q2, k1+k2, i1+i2, a1+a2>
ResultType;

return ResultType(lhs.value() * rhs.value());
}
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Observations
Dimensionless quantities (i.e., objects of type Units<T, 0,0,0,0,0,0,0>) 
should be type-compatible with unitless types (e.g., int, double, etc.).

� Partial template specialization can help:

template<typename T>
class Units<T, 0, 0, 0, 0, 0, 0, 0> {
public:

...
Units(T initVal = 0): val(initVal) {} // allow implicit conversion 
operator T() const { return val; } // to/from values of type T

Units& operator=(T newVal) // allow assignments from
{ val = newVal; return *this; } // values of type T
...

private:
T val;

};

If partial template specialization is unavailable, you can totally specialize 
for e.g., T = double and/or T = float.
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Observations
Some compilers refuse to place objects in registers:

� A Units<double, ...> may thus be treated less efficiently than a raw double

� If efficiency is a problem, you can revert to type-unsafe typedefs:

typedef double Acceleration;
typedef double Time;
typedef double Distance;

➠ This is okay as long as the code has already been shown to compile 
using Units
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Observations
A state-of-the-art implementation of the Units approach is more efficient, 
powerful, and sophisticated:

� It allows fractional exponents (e.g., distance1/2).

� It supports multiple unit system views (beyond basic SI).

� It puts all exponent parameters into a struct to improve the 
readability of the code.
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Conclusions
� Templates are useful for a lot more than just containers

� Templates make it possible to generate and check an unknowable 
number of types during compilation

� Templates can add type safety to code with little or no runtime 
penalty
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Further Reading
� John J. Barton and Lee R. Nackman, “Dimensional analysis,” C++ 

Report, January 1995. Based on section 16.5 of their Scientific and 
Engineering C++: An Introduction with Advanced Techniques and 
Examples, Addison-Wesley, 1994, ISBN 0-201-53393-6.
➠ Now primarily of historical interest.

� Walter E. Brown, “Introduction to the SI Library of Unit-Based 
Computation,” International Conference on Computing in High 
Energy Physics (CHEP ’98), August 1998. Available at
http://fnalpubs.fnal.gov/archive/1998/conf/Conf-98-328.pdf. 
➠ A user’s view of SIUNITS. Describes how five different models of 

the universe are supported.

� Walter E. Brown, “Applied Template Metaprogramming in SIUNITS: 
the Library of Unit-Based Computation,” Second Workshop on C++ 
Template Programming, October 2001. Available at
http://www.oonumerics.org/tmpw01/brown.pdf.
➠ Another description of SIUNITS, this time focusing more on 

implementation strategies.
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Further Reading
� Michael Kenniston, “Dimension Checking of Physical Quantities,”

C/C++ Users Journal, November 2002.
➠ A description of a slightly different approach, one focused on 

working with less conformant compilers (e.g., Visual C++ 6).


