Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

2 8 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

EXxpressions

28.1 OVERVIEW

Through the various forms oExpression software texts can include
denotations of run-time values — objects and references.

I_Drevious discussions hawdready introduced some of the availak!"~chapter2zoncal,
variants of the construcEormal Local, Call, Old, Manifest_tuple Agent Forlrgaland Localt
; ; ieci ; “Old”__expression”, ,
The_present one gives the full list of perml_ss_lble eXPressions ant .-sc hasteri3on
precise form of all but one of the remaining categories: Operiples chapter27on
expressions, equality and locals. The last category, constants, has itagents

separate presentation, just after this one.

28.2 GENERAL FORM OF EXPRESSIONS

An expression will use one of the following variants:

g | Expressions
Expression? Basic_expressiofSpecial_expression

Basic_expressio® Read_only| Local| Call | Precursof
Equality| ParenthesizepOld |
Operator_expressi¢Bracket_expressidf
Creation_expression

Special_expressio® Manifest_constarjtManifest_tuplg
Agent| Object_testOnce_string Address

Parenthesized "(" Expressior')"
Address2 "$" Variable
Once_string® onceManifest_string

Boolean_expressio& Basic_expressiopBoolean_constarjt
Object_test

754

EXPRESSIONS §28.2

“Basic expressions” correspond to the common forms of expression
derived from ordinary mathematical notation, such as variables and
operator expressions. “Special expressions” include manifest constants —
constants given directly by their values — as well as original Eiffel
mechanisms such as agents and tuples.

Summarizing the variants 8fasic_expressian

» Read_onlywhich includes formal arguments of routines abarent _ entity, variable
andLocal variables wergeen in the discussion of entities. read-only”, paje 504

« A Call, denoting deaturecall, is anExpressionf and only if the feature — chapter23for the
of the call is a query, that is to say, an attribute or a function. (Other\ggzﬁtstﬁ;ﬂ;igi?@
it would be arinstruction) 4
As a special case d@all, you may use an attributeas an expression in the « Page618

text of its class. (In thesyntaxof Call, just usex as Feature_namef an
Unqualified_call withoutParenthesized_qualifier Actuals)

* Precursorenables the redefined version of a routine — in the casIN%HN
expressions, a functlon_— to_ref_er to t_he original version. We studieq - PRECURSOR,
mechanism in connection with inheritance. 10.24, page 293

» Equalityexpressions cover both equality and inequality tests, using uie
symbols= /=, as well as ~ and /~ for comparing objects. Although they
are syntactically similar to the next categabperator_expressiofisis
preferable to treat them separately because their semagttidged in an — "EQUALITY.
earlier chapter, is not that of a call. EXPRESSIONS'.

21.3, p@e 557
* An Operator_expressiois built using unary and binary operatol
Operator expressions have the semantics of calls but a special syinax,
requiring rules of operator precedence.

* You can usé’arenthesizedubexpressions to override these rules.

» A Bracket_expressioagain has the semantics of a call but uses bracket
syntax, as inyour_table[your_inde, typically an abbreviation for a
feature callour_tableitem (your_indexjvhereitemhas been declared
with a bracket aliasalias"[]".

* An Old_expressioyusable only in a postcondition, denotes the ear< “Old" e xpres-
value of an expression. This wdiscussed with assertions. sion”, . page 235

« Creation_expressioyields a newly created object and was studiec'- - FILL IN REFER-
the discussion of creation. ENCE -

Special_expressiocompletes this panoply:

* A Manifest_constanhas a fixed value, given by the form of the
constant, as in thelnteger_constant-87. A special case is a
Manifest_string we may view as constant because it denotes a fixed
string descriptor object, but it gives access to a character sequenge o+
which may in fact change. (This is a potential source of confusionsTrRINGS”, 29.8,
will be explained in detalil.) page 784

§28.2 GENERAL FORM OF EXPRESSIONS 755

Not all constants are manifest: by declaringanstant attribute you may
use anldentifierto denote a constant value. Syntactically, as noted above,

constant attributes used as expressions are a special casd, dfut it will — “GENERALFORM
be convenient tetudy them together with manifest constants. OF CONSANTS”
. . . . page 777
» A Manifest_tuplés a tuple given by the list of its elements. - “MANIFEST

. _ _ TUPLES”, 29.9, pge
» Agentexpressions, representing partially evaluated calls, were st.799

in the previous chapter.

» An Object_testof the form{loc: T} expasstudied in the discussion ¢ “THE OBJECT
eradicating void calls, yields true if and only if the expressiopis 1552430202650
attached on evaluation to an object of tyfpand then binds it locally tc
the entityloc.

* A Once_strings a manifest string constant qualified by the keyword
onceto indicate that if it appears in an expression the string will be
evaluated just once, rather than denoting a new string object for each
evaluation of the expression. Since this notion is closely tied to the
semantics of strings it will betudied in the next chapter as part of t- “Basic manifest
general discussion of strings. Non-once strings — the more commor=ings’.pae 78

— are examples dflanifest_constanicovered by the previous case.

» Addressexpressions, of the fori$f wheref is the name of a feature (¢ “PASSING THE
Currentor Resul} sene to pass the address of an Eiffel object to nADDRESS OF AN

EIFFEL FEATURE”,
Eiffel sofware. 31.8, pae 823

Finally, Boolean_expressiaequires its own construct because a few other

constructs — assertion claus&pnditiona) Exit conditions of loops — < Unlabeled_assertion

P I . clawse page228
specifically expect a boolean expressiotject_tesis one of the variantstye,, Sagpge@

This chapter needs only occasionally to refer to the variants studi"" P29%2”

depth in their own chaptersRead_only Local, Call (for which we sav

how to determine the value and type o€all serving as an expression),
Precurso(whose validity rulestated under what condition you may us¢- Clausesof “Pr ecur-
Precursoras an expressionjquality Agent, Old, Object_testAddress So-ule”. pae 298
Creation_expressigfor Call, we still need to define explicitly the value ot

a call expression. After introducing the notion of “subexpression”, the

following sections will explore the remaining variants in the order of the

syntax. Then we’ll explore general properties of expressions, in particular

the notion of Equivalent Dot Form, how to determine the type of an
expression, and the syntactical benefit (having to do with making
semicolonsalwaysoptional) of the distinction betweeBasic_expression
andSpecial_expression

As a general note on the use of expressioasmiember that if you havi- “CONVERTING
an expression exp of tygé and want to use it as if it were of a tyfJeto %m’\lg
which U conforms or converts, you may rely on the notation page 408

{T} [exd

756

EXPRESSIONS §28.3

28.3 SUBEXPRESSIONS

.{'\.

This section defines a technical notion; you may skip it on first reading.

the “subexpressions” of an expression: all the components of the expression

mirﬂ For some of the definitions and rules that follow, itis convenient to talk about

that are themselves expressions whose value participates in the evaluation
of the expression as a whole. This notion is mostly useful for operator
expressions, but it's convenient to define it for all other kinds as well;

IIIII':"- TIC-MN

Subexpression, operand
The subexpressionsof an expressione are e itself and
(recursively) all the following expressions:

1 - For aParenthesizeda) or a Parenthesized_targéa|): the
subexpressions @t

2 «For anEquality or Binary_expressiora 8 b, where§ is an
operator: the subexpressionsaaind ofb.

3 *For aUnary_expressiord a, where¢ is an operator: the
subexpressions @t

4 «For aCall or Precursoexpression: the subexpressions of the
Actualspart, if any, of itdJnqualified_part

5 «For anAgent the subexpression of itsgent_actualsf any.
6 « For aqualified call: the subexpressions oftagyet.

7 « For aBracket_expressiofay, ... a,): the subexpressions of
f and those of all odiy, ... a,.

8 ¢ For anOld expressiorold a: a.

9 « For aManifest_tuplday, ... a,]: the subexpressions of all of
aq, ... Ap.

In case® and3, theoperandsof e area and (in case) b.

Clause4 uses “theUnqualified_callpart of aCall”: both of the available
variantsObject_calandNon_object_callindeed include abnqualified_call

For example the subexpressiondaf(c [d, €]) are the whole expressiot
b, (c O[d, €)), c, [d, €]), d ande.

Not every expression physically contained in an expression is a
subexpression: according to the rudet b + ¢ has no subexpression other
than itself; neither hag + y [0z Parts suchaa + b, b+c, x+y, yz
although valid expressions, are not subexpressions. This is because such
examples use more than one binary operator in succession, giving rise to
potential ambiguities; and indeed the part+ y plays no role in
determining the value of + y 0z

The precedence rules which we’ll study shortly let us define a
Parenthesized Forrfor any expression, such ast (y 02) in the second
part, with subexpressionsx and (y [02), both of which participate in thdn addition toy, zand
value of the expression as a whole, the whole expression.

~ Syntax: pagé18

§28.4 PARENTHESIZED EXPRESSIONS 757

28.4 PARENTHESIZED EXPRESSIONS

You may enclose an arbitrarily complex expression in parentheses without
changing its semantics:

Parenthesized Expression Semantics

If eis an expression, the value of tharenthesize®) is the value
of e

Indeed the parentheses have a syntactic role only. You carRaserathesized

» To override default operator precedence in operator expressions as
studied in the next section.

* To apply a certain operation to an expression when the syntax wouldn’t
permit it in the original form of the expression.

An important example of the second case is feature application to a

complex expression. Thgyntax of a query cakbxp.f (or exp.f (args) with _ calland associated
arguments) restricts the targetpto just a few possibilities: a single entitconstructspage61&
as inan_attributef, or one or more other calls, asgnx).an_attributaf.

You may not directly apply the feature to a manifest constant, &fin

(invalid) or to an operator expression, asir b.f (which, if valid, would

applyf just to b, not to the addition). You can achieve the desired effect by

parenthesizing the target expression, as in ~ ConstrucParenthesi-
zed_qualifierpage618
3).f

== (a+ b).f
|

(valid if f is applicable to the respective targets).

28.5 OPERATOR EXPRESSIONS

You may build operator expressions by combining simpler expressions
through prefix and infix operators, using parentheses to remove
ambiguities if necessary.

Operator expression basics

An example, from the postcondition of procedymet_child_leftin class This appears in class

LINKABLE of EiffelBase, is LINKABLE with some
: _ : : extra parentheses for

not (child_position= 2) implies clarity-h The effefr:]t is lihe
H e __ H Y same howeverthanks

child_position= old child_position +1 tothe precedence rules

This uses the infix operatoimplies and+ and the prefix operatamnot,
applied to subexpressions involvifgd andEquality:

758 EXPRESSIONS §28.5

Semantically, operator expressions bring nothing new: they are simply
a different way to write calls, using conventional operator notation rather
than dot notation. Since every feature with an operator alias also has a
Feature_namé€an identifier),you may ignore operators, writing instead
calls in dot notation:

((child_position= 2).negatedl.implication
(child_postior= old (child_position plus(1)))

Operator expression syntax

Here is the general form of operator expressions:

BRIEE. Operator expressions
Operator_expressiof Unary_expressiofBinary_expression

Unary_expressio® Unary Expression

~ This syntax
appeared originally on

Binary_expressiorf Expression Binary Expression page154

Both UnaryandBinary operators can be one of the standard operators, or
a “free” operator that you make up according to very flexibiles. The list _, “Free opeator’
of standard operators already appeared in the discussion of feature npage 883

BRIEE. Operators
Unary & not | "+" | "-" | Free_unary

Binary & "+ | O]]] A
S = S
and | or | xor |and then|or else|implies |
Free_binary

Precedence and Parenthesized Form

The syntax forOperator_expressiois ambiguous: it would make it
possible to understand an expression such as

The correct interpreta-
I A I a+b+cld tion, according to the
s precedence rules given
below is[3].

in several different ways (expressed with parenthesization):

§28.5 OPERATOR EXPRESSIONS

759

BTN TAX

BTN TAX

a+ (b + (cOd)) [1]
a+((b+c)Od) [2]
(a+b) + (cOd) [3]
@+ (b+0)0Od [4]
((@+b)+c)Od [5]

You can always remove ambiguities by adding parentheses as in these last
forms. In mathematical practice, however, it is customary not to require
parentheses in simple cases based on “precedence”. This custom makes
a + b Oclegal and gives it the same meaningaas (b [Ic), based on the
convention thatl“binds tighter” thant.

To formalize this practice, we complement the syntaxpbgcedence
rules. Every possible operator has a precedence, a numerical value
between 1 and 13 determined by the table below. The values themselves are
not important; what matters is the comparison of the precedence values of
any two operators appearing consecutively in an expression. For example,
Ohas precedence 8 andhas precedence 3. In the absence of intervening
parentheses, the one with the higher precedence hinds tighter.

Operator precedence levels

13 . (Dot notation, imualified and non-object calls)

12 old (In postconditions)
not + -Used as unary
All free unary operators

11 All free binary operators.

10 ~ (Used as binary: power)

9 O/ /I \(As binary: multiplicative arithmetic operators)
8 +—Used as binary

7 .. (To define an interval)

6 = /= ~ |-~ < > <= >=(Asbinary: relational operators)
5

and and then
(Conjunctive boolean operators)

4 or orelse xor
(Disjunctive boolean operators)

3 implies(implicative boolean operator)
[](Manifest tuple delimiter)

; (Optional semicolon between
anAssertion_clausand the next)

=N

760 EXPRESSIONS §28.5

This precedence table includes the operators that may appear in an
Operator_expressigothe equality and inequality symbols usedtiguality
expressions, as well as other symbols and keywords which also occur in
expressions and hence require disambiguating: the semicolon in its role as
separator foAssertion_clausethe old operator which may appear in an
Old expression as part of a Postcondition; the dof dot notation, which
binds tighter than any other operator.

The operators listed include both standard operators and predefined
operators¥, /=, ~, /~). For a free operator, you cannot set the precedence:
all free unaries appear at one level, and all free binaries at another level.

This precedence table is the basis for the rule removing potential syntactic
ambiguities in operator expressions. We'll just work from a form that adds
parentheses wherever needed:

Il

Parenthesized Form of an expression

The parenthesized form of an expression is the result of
rewriting everysubepression of one of the forms below, where
8 and f are different binary operators,and # different unary
operators, and, b, ¢ arbitraryoperands, as follows:

1 +Fora §b § cwhere§ is not the power operatdr. (a8 b) 8c
(left associativity).

2+Fora”b”c: a”(b” ¢ (right associativity).

3eFora8bifc: (a8b)tcifthe precedence df is lower than
the precedence @&for the same, ana § (b 1 c) otherwise.

4deForOs a ¢ (% a)
SeFor0agh: (0a)8b
6eForag8dhb: ag8(©b)

7 * For a subexpressiamto which none of the previous pattern
applies:e unchanged.

n

Since the notion of subexpression was defined recursively, the rewriting
must be applied recursively too. Both notions are interesting for the case of
an Operator_expressidout are defined for general expressions, allowing
the recursion to work properly.

The Parenthesized Form of

‘a+chAMdd \

is

\a+mmmﬂmmw» \

§28.5 OPERATOR EXPRESSIONS 761

The Parenthesized Form is not alwdyly parenthesized; it only adds the
parentheses necessary to remove ambiguities. Here it doesn't put any
around the full expression, or around entitieh, c, d.

Operator* gets a special treatment in claugeand2 of the definition
because basic arithmetic typeS TEGER REALand their sized variants)

use it aspower operator: the mathematical notatiaf” is traditionally
understood as meaninzujqu — the only interesting interpretation since
@) is justal™.
Special cases in rules are unpleasant, but it is dangerous to go against long-
standing mathematical conventions. Here a left-associative rule could cause

errors for people trained in mathematics or physics. To avoid worrying about
such issues, just use parentheses wherever there might be any doubt.

Clause4 reflects that, in the above precedence table, all unary operators
have the same precedence; and the last two clauses , that unary operators
bind tighter than all binary operators.

¢ andi can be the same operator, used as unary in one case and binary
in the other. So clauggtells us that — — b— where the two signsust be - “Syntax (non-po-

’ETE separated by a break, lest we take them to startacomment— megnlg). duction):Breakule”.

page 875
To override the meaning implied by this rule, you may always

parentheses. For afynary operator, the first operand ®fn

L4
-

‘ (exp § other_exp ‘

is alwaysexp regardless of the precedence ®fand of the operators
appearing irexg the last operand & in

‘ exp§ (other_exp ‘

is alwaysother_expand for anyJnary operator, the expression

=

r
I

®

mMEETHON]

e

‘ 0 (exp ‘

always denotes the applicationdotfo the value oéxp

The precedence rules are easy to remember but competent Eiffel
programmers mostly use them to understand the code of their macho
colleagues. Don't hesitate to put parentheses around subexpressions to
clarify intent and avoid errors. In particular, you should always use
parentheses when a boolean expression uses different conjunctive and

disjunctive operators in succession, a&ior (b and c)). - Clause‘Equivalent

., Dot Form of an &pres-
We will build the Equivalent Dot Form of an expression, on whichsion' page 771

validity and semantics are based, from its Parenthesized Form. In
words, thanks to this notion we can for all the rest of the discussion fc
about any matters of ambiguity and operator precedence.

762

EXPRESSIONS §28.5

Accounting for target conversion

We need one more definition to handle all cases of operator expressions. It

covers the mechanism that vatudied in the chapter of conversior “MIXED-TYPE
allowing you to follow traditional mathematical practice by writing mixegX"XE>S ENAR
mode expressions suchyasur_integer + your_realvhen you really mearis 12 pae 419 '
to use the +” operator from clas®REAL, converting the first operand t

REAL To make this possible, you must speaifynvert in the declaration

of the operator, in clagBITEGER

plusalias"+" convert (other. INTEGER: INTEGER..

In this case the standard unfolding gbur_integer + your_realinto
your_integerplus(your_rea) doesn’t apply, sincREALneither conforms
nor converts toINTEGER We want to understand the expression as
(your_integerconverted_to_reah your_real Because the first unfolding
would be type-wise invalid, there is no danger of confusion.

A simple definition takes care of this case:

LEFISITHIN

Target-converted form of a binary expression

Thetarget-converted form of aBinary_expressiox 8 y, where

the one-argument feature of ali@én the baseclass ofx has the

Feature_namg is:

1 «If the declaration of includes aconvert mark and the typa&Y
of y is notcompatiblewith the type of the formal argument of
f:{TY[X) 8.

2 * Otherwise: the original expressiorg y.

({TY} [X]) denotex converted to typd Y. This definition allows us, if the
feature fromx’s type TX cannot accept &Y argument but has explicitly
been specified, through tle®nvert mark, to allow for target conversion,
andTY does include the appropriate feature acceptifigkargument, to

use that feature instead.

The archetypal example your_integer + your_reaklwhich, with the
appropriateconvert mark in the'+" feature iNNNTEGER we can interpret
as ({REAL [your_intege]) + your_real where"+" represents thelus
feature fromREAL
(wnereg 1 Y} | X| denotes convertea 1o type Y). In ract tnats ail we need— 15.9, pae 408
the validity and semantics, in this case, will simply rely — through
EquialentDot Form — not on the original expression but on its targ=* clausez, page 771
converted form. There is no need for any special rule, either for validit
for semantics.

§28.5 OPERATOR EXPRESSIONS 763

Operator expression validity and semantics

RALIDIEY

Once no syntactical ambiguity remains, the validity and semantic
properties of an Operator_expressiorare essentially those of a
correspondingall.

For everyOperator_expressiahere will be arEquivalent Dot Form,
syntactically a Call, illustrated above for a postcondition clause of class
LINKABLE. As another example, here is the Equivalent Dot Form of our
earlier expressioa + b + c (d:

\ (a.plus(b)).plus(c.multiplied (d))

This assumes that K's type has a base cla€3 with operator features_ “OPERATOR FEA-

plusalias"+" andmultipliedalias "*" . I;JLLF“ES—":%LDQ&
The next section gives a precise definition of the Equivalent Dot F¢

although the above examples suffice to make the idea clear. Then the

validity constraint on operator expressions is straightforward:

Operator Expression rule VWOE < The validity of calls
was the subject of chap-
A Unary_expressio x or Binary_expressiox 8 y, for some ter 25.
operator§, is valid if and only if it satisfies the following

conditions:
1 « A feature of thdase class ofis declared aalias"§".
2 * The expression’BEquivalent Dot Brm is a validCall.

The Feature Declaration rutells us that a given operator may serve = page160 relying on
alias for a unary feature (a feature without argument), or a binary feedefinition of‘Alias
(with one argument), or both, as in the caserdfi INTEGERandREAL Y2ldity rule”. page
In this last case, two features will match the requirement of claubet
that's OK because the form of the expression, unary or binary, will remove
any ambiguity thanks to traefinition of the Equivalent Dot Form. - Clausel and2,
page771

This rule ensures that every operator is used with the proper numbL . _.
arguments. For examplsl TEGERand other basic arithmetic classes have
a one-argument functigoroductalias "', but not zero-argument version,
as would be required forl@anary. Then of the expressions

202 WARNING second
02 expression not valid

the first is valid but not the second.

764

EXPRESSIONS §28.5

The rule also explains why some binary operators can be used as
“multiary’ — meaning with three or more operands, of types all
compatible with the type of the first — others are limited to two arguments
An example of multiary operator ison integers; relational operators such
as<, on the other hand, are binary but not multiary. This is clear from the
Equivalent Dot Forms. With integer operands,Gperator_expression

‘1+2+3+4 ‘
has theParenthesizeddtm — “Precedence and
‘((1+2)+3)+4 \ W’
yielding the valid Equivalent Dot Form
|((1.plus(2)-plus(3)).plus (4) |
By the same rules, th@perator_expression
‘ 1<2<3 ‘ WARNINGthis expres-

sion is not valitl

would yield the Equivalent Dot Form

\ (L.is_lesg(2)) <3 \

is not valid since the highlighted operand is of tyB©OLEAN but
BOOLEANdoes not have a function aliased<pviolating clausel of the
Operator Expression rule.

If BOOLEANhad a functionis_lessalias "<", perhaps withalse considered
less thartrue, this would still not make the expression valid: such a function
would expect an argument of tyB®©OLEAN notINTEGER In this case it's
clause2 that would fail. A true multiary operator, such 48" on integers,
must accept successive operands of the same or compatible type.

In summary, there is no need to define binary and multiary operators as
separate syntactical categories. The grammar lists both kin8sasy;,
whether a given operator may be used in multiary form depends on the
signature of the corresponding function and on the precedence rules.

§28.6 SEMISTRICT BOOLEAN OPERATORS 765

are probably guessing from the preceding discussion that — as with
validity — it is simply the semantics of its Equivalent Dot Form. You are
guessing almost right; “almost” because (life not always being as simple as
we would like) we must account for a special case, semistrict operators:

There remains to define the semantics ofCgrerator_expressioiyou

Expression Semantics (strict case)

The value of an Expression other than aBinary expression
whoseBinary is semistrict, is thevalue of its Equivalent Dot
Form.

This semantic rule and the preceding validity constraint make it possible to

forego any specific semantics for operator expressions (except in one

special case) and define the value of any expression through other semantic

rules of the language, in particular the ruleschts ancdentities. — “PRECISE CALL

This applies in particular to arithmetic and relational operators SE“!@Z‘;P‘Efti‘t 23.17,
which the feature declarations are in basic classes suthT&SGERand semantics rule”, pae

REAL and to boolean operators (cld89OLEAN: in principle, although214
not necessary as implemented by compilars b is just a feature call like
any other.

The excluded case — covered by a separate — is that of a binary _ “Operator Expes-
expression using one of the threemistrict operatorsand then, or elsg sion Semantics (semis-
implies. This is because the value of an expression suchaagl thenb is trict cases)”,page 768
not entirely defined by its Equivalent Dot Foramconjuncted_semistri¢b),

which needs to evaluate whereas thend then form explicitly ignoresb

whena has valudralse as the value of the whole expressiorfrédseeven if

b does not have a defined value, a case which should not be treated as an error.

28.6 SEMISTRICT BOOLEAN OPERATORS

The semantic rule for operator expressions set out the special case of three
boolean operators, known as “semistrict”. We'll now take a look at these
operators to understand why they are needed, and obtain the semantic rule
for this case.

The ordinary (“strict”) boolean operaton®t, and, or andxor, defined
in the Kernel Library clasSOOLEAN define operations on boolean
values. The value afot aiis true if and only ifa has value false. The others
are binary operators; the value they yield when applied to a first operand of
valuevl and a second operand of valigds defined as follows:

* Forand: true if and only if bottvl andv2 are false.
« Foror: false if and only if eithevl orv2 is false.

766 EXPRESSIONS §28.6

« For xor: true if and only ifvl andv2 have different values. In other
words,a xor b has the same value asaf b) and not (aand b).

Three operators, also definedB®OOLEAN complemenand andor, from
which they differ by a special semantic property known as semistrictness.

Semistrict operators

A semistrict operatoris any one of the three operatansd then,
or elseandimplies, applied tooperands of typBOOLEAN

. . A general presentation
For operands of valued andv?2 they yield the following results: of semistrictness

appearedir22.13.You

L . . e . should not have any
 and then (semistrict conjunction): false W1l is false, otherwise thérouble understanding

value ofv2 the present section even
’ if you skipped the ear-
lier, more theoretical

« or else(semistrict disjunction): true iflis true, otherwise the value gg. discussion

« implies (semistrict implication): true i1 is false, otherwise the value
of v2. (In other wordsa implies b has the same value ast aor elseb.)

4 Atfirst sight,and then seems equivalent and, or elseto or, andimplies

Z£=Y% toor with the first argument negated. The difference is that any one of these

T‘ operators may in some cases yield a result on the sole basis of its first
argument/1, if the value ofv1 suffices to determine the outcome — even if
the second argument does not have a value. They are “strict” (demand a
value) for the first argument only, hence the term “semistrict”.

. . . For a more complete
The difference arises fand thenwhenvlis false (result: false), favr discussion of strictness

elsewhenvlis true (result: true), and fomplies whenv1is false (result:>* Egihbecﬁﬁggﬁ’fgfc‘
true). In these three cases the implementation must not evaluate the sProgramming Lan-
argument/2. No such rule applies tand andor, which are not required t(\glgfi‘gﬁg'ggég:;“g]}’ of
produce any result for an undefined second argument, and SO0 may strictness in boolean

strict implementation as well as a semistrict one. operators see FBar-
ringer, J.H. Cheng and

Cliff B. Jones"A Logic
As a consequence, the semistrict operators, in contrast with ﬁgg’gﬂ\”grggfaerf]”ed'
counterparts in standard mathematical logic, are not commutative: thiproofs, Acta Informat-
not treat their operands symmetrically. For examalend thenb does notifg‘éil 3, October
necessarily have the same effecbasd thena. To be more accurate, ar
values these expressions yield will be the same, but it is possible fc

second to yield a value when the first does not.

§28.6 SEMISTRICT BOOLEAN OPERATORS

767

Because they enable you to write two-operand boolean expressions
whose second operand need not have a value if the first operand’s value
leaves only one possible result, semistrict operators are particularly useful
for a certain kind of loop used to traverse a data structure. Here is an
example from a search routine in cladKED_LISTin EiffelBase:

14]
=

search_samév: like first)
-- Move cursor to first position (at or after current one)
-- wherev appears; move "off" if no such position.
do
from
... (Initialization omitted)..
variant
count — position + 1

until
off or else(item=v)
loop
forth
end
ensure
(not off) implies (item=v)
end

The loop will terminate whenever the cursor moves after the last element
(off), or hits an element whose value, as giveniteyn, is equal to the
argument. TheExit expression tests for either of these conditions to occur.
When the first conditiond(f) is true, however, we do not want to evaluate
the secondifem = v): not only would its contribution to the result be
useless (since a disjunction with one true operand may have no value other
than true); evaluating it would in fact be improper since funcitemis

only defined when the cursor is on an actual element, which is not the case
when it isoff. (This is reflected in the precondition fieem, which includes

the conditiomot off.)

To guarantee the desired result, taet condition useor elserather
thanor. In the same way, the postcondition only makes sense because of
the semistrictness ahplies. In other words, the semistrict semanticoof
elseandimplies guarantees thaearch_samevill work properly even ifv
does not appear in the list.

This common loop scheme is captureditgyator routines of EiffelBase, —
do_all, do_while for_all and others — declared in high-level classes such as
LINEARand hence available for most practical data structures. To use these
routines, it suffices to pass them the appropriate agents as arguments, as in
your_list.for_all (agent your_condition which returns true if and only if
every element ofour_listsatisfies/our_condition

768 EXPRESSIONS §28.6

This discussion leads us to the general semantic definition for nonstrict
boolean operators:

Operator Expression Semantics (semistrict cases)

Fora andb of typeBOOLEAN

 The value ofa and then b is: if a has value false, then falsg;
otherwise the value dif

e The value ofa or elseb is: if a has value true, then trug
otherwise the value dif

» The value ofa implies b is: if a has value false, then tru
otherwise the value df

For each of the three forms, if the first condition listed holds, the
computation of the expression’s value must not cause evaluation|of

D

D

_ The semantics of other kinds of expression, and Eiffel constructs in

/™= general, izompositionat the value of an expression with subexpressions
a andb, for examplea + b (wherea andb may themselves be complex
expressions), is defined in terms of the values afidb, obtained from the
same set of semantic rules, and of the connecting operators;.hemeong
expressions, those involving semistrict operators are the only exception to
this general style. The above rule is not strictly compositional since it tells
us that in certain cases of evaluating an expression involying should
not consider the value dd It's not just that wamayignore the value ob
in some cases — which would also be truaahd b (strict) whemis false
— but that wemustignore it lest it prevents us from evaluating the
expression as a whole.

It's this lack of full compositionality that makes the above rule more
operational than the semantic specification of other kinds of expression.
Their usual form is the value of an expression of the fo¥is Y”, where
Y only refers to values of subexpressionsXofSuch rules normally don’t
mention order of execution. They respect compositionality and leave
compilers free to choose any operand evaluation order, in particular for
performance. Here, however, order matters: the final requirement of the
rule requiresthat the computation first evalusae\We need this operational
style to reflect the special nature of nonstrict operators, letting us
sometimes get a value for an expression whose second operand does not
have any.

§28.7 BRACKET EXPRESSIONS 769

28.7 BRACKET EXPRESSIONS

What makes a bracket expression possible is a feature declared with a

braclet alias clause, as in « “BRACKET FEA-
TURE”, 5.17. pge
I & I ‘itemalias"[]"(key H): G ... ‘ 157

which — if this declaration appears ASH_TABLEandyour_tableis of
type HASH_TABLHT, U] — allows writing your_table[your_key as an
abbreviation foryour_tableitem (your_key.

The Kernel Library clas®é\RRAY[G] relies on this technique to allow
accessing array elements through the notateur_array[n] as a synonym
for your_arrayitem (n) for an integern. You are not limited to one
argument: a clasMATRIX3[G] describing three-dimensional matrices
may have

itemalias"[]" (i,], k): G ... \

allowing element access under the foroonr_matrix[n1, n2, n3].

This mechanism is also useful in connection with assigner procedures:
addingassignput (after G) to any of these examples, with a procedpu
having the appropriate signature, allows you to use assignment syntax, as

your_matrix[n1, n2, n3] := v ‘

in the last example, an abbreviation fpour_matrix put (v n1, n2, n3).
The left side is, again,Bracket_expression

The syntax is simple:

Bracket expression
Bracket_expressio® Bracket_target[" Actuals"]"

Bracket_targe Target | Once_string |
Manifest_constarjtManifest_tuple

Targetcovers every kind of expression that can be used as target of a call,
including simple variants liké.ocal variables and formal arguments, as
well asCall, representing the application of a query to a target that may
itself be the result of applying calls.

770 EXPRESSIONS §28.7

Examples oBracket_expressioare

m your_table[your_key
1

your_matrix[n1, n2, n3]
table_list.i_th (i) [your_key

In the first two cases, th€all_chainis just a single queryour_tableor
your_matrix such aBracket_expressiocould appear respectively in class
HASH_TABLEor MATRIX3 The last example, with a long€rall_chain
assumes that in the base classtédnle_listthere’s a functiom_th returning

a table.

TheBracket_targetised to the left of the bracket part allows a number
of expression variant§;all_chainis the most common, permitting bracket
expressions such dg$x] but alsoa.h.f [X] (to be understood again as an
abbreviation: form.b.f.item(x) for the appropriatéemfunction). One of
the other possibilities islanifest_tupleasin[a, b, 4 [i], taking advantage
of a bracket alias foitem in TUPLE If you want a more complex
expression as target, usParenthesized_targets in

[(ja+ b)) [i]

which will be valid if the type o& + b has a bracket feature.

The reason for the restriction oBracket targetto specific kinds of

expressions is — as you might not have guessed! — the need to make the

semicolon optional in all cases without causing any syntactical ambiguity. If

you are interested in understanding this fully, you'll find the details in the | .xprEssIONS

final section of this chapter. AND THE SEMICO-
LON", 28.12page775

The Equivalent Dot Form of &racket expressiorsimply involves
replacing the expression by a call in dot notation, using the associatea
feature. For the above three examples it is:

your_table .item (your_key
your_matri> .item (n1, n2, n3)
table_list.i_th (i) .item (your_key

These examples all assuitemas theFeature_namfor the bracket feature;
this is indeed the most common choice, but of course you may choose any
name you like.

§28.8 THE EQUIVALENT DOT FORM 771

Here is the validity rule:

Bracket Expression rule VWBR

VALIDITY, A Bracket_expressior [i] is valid if and only if it satisfies the
following conditions:

1 « A feature of thdase class of is declared aslias"[]".
2 * The expression’s Equivalent Dot Form is a vélal.

. .« Pagel6Q clauser;
The Feature Declaration rulensures that at most one feature satiSsee clause.of “Alias

clausel. The Equivalent Dot Form, as defined below, relies on that feai%ﬁg@

28.8 THE EQUIVALENT DOT FORM

.y This section defines precisely the notion of Equivalent Dot Form, already
a4 introduced informally through examples, and used extensively in the
previous sections. It may be skipped on first reading.

For a full specification of the validity and semantics of an
Operator_expressiarr Bracket_expressigmve need a precise description

of how to obtain its Equivalent Dot Form. Because such expressions may
involve components which are expressions of other kinds (such as calls or
constants), the definition must in fact be applicable to any kind of
expression. In the following definition the most important cases are the first
three, giving dot equivalents for the non-dot forms (operators, bracket):

Equivalent Dot Form of an expression

Any Expressiore has arEquivalent Dot Form, not involving (in
any of its subepressions) any Bracket expressionor
Operator_expressigand defined as follows, wheke denotes
the baseclass ofx, pe denotes thé&arenthesize#torm of e, and
X', y’, ¢’ denote the Equivalent Dot Forms (obtained recursively)
of X, y, C:

leIf peis a Unary_expressior8 x: X .f, wheref is the
Feature _namef the no-argument feature of al@s C.

2 «If peis aBinary_expressiownf target-cowvertedform x 8 y:
x".f (y') wheref is the Feature_namef the one-argument
feature of aliag in C.

3 eIf peis aBracket_expressiox [y]: X’ .f (y’) wheref is the
Feature_namef the feature declared akas"[]" in C.

4 «|If pehas nesubepression other than itseffe

5 «In all other cases: (recursively) the result of replacing every
subepression ot by its Equivalent Dot Form.

772

EXPRESSIONS §28.9

In the first three cases, the Operator Expression and Bracket Expre« Pages763and771
rules seen earlier in this chapter guarantee that there is a féaitithe
given alias. The Feature Declaratiare then ensures that in all of the fir=* page160 relying on

three cases exactly one feattigatisfies the requirements. Sl/:lﬁ_g_ition Iofm
idity rule”, page

The Operator Expression and Bracket Expression rules both rely on tF62
definition of Equivalent Dot Form, raising the appearance of circular
reasoning. But we are only interested in Equivalent Dot Forms of expressions
that satisfy clause 1 of their respective rules; this is enough to make the
definition of Equivalent Dot Form applicable, and then to use it in the rule’s
second clause. So this mutual dependency does not cause circularity.

In case2 we draw the featuré not from the original expression but from
its target-converted form as presented in the preceding section. It will
usually identical, but allows us for example to accgpur_integer+
your_real treating it agyour_integerconverted_to_real+ your_real

Case4 is the terminal case of the recursion, coverfigmal Local,
Manifest_constantand anyCall consisting of a single query with no
arguments. CasB makes sure that we apply the rule recursively to all
constituents of a complex expression.

Case applies, among others, tpaenthesizeéxpressior(f), for which it
gives ugf’) wheref’ is, recursively, the Equivalent Dot Formfof

28.9 BOOLEAN EXPRESSIONS

For Boolean_expressigthe grammar at the beginning of this chapter gave

three kindsBoolean_constanObject_tesandBasic_expressiarmrhe two

boolean constargre True andFalse Object_teshas its own validity rule. - Page778
The third case must satisfy an obvious constraint:

Boolean Expression rule VWBE

A Basic_expressiois valid as aBoolean_expressiahand only
if it is of typeBOOLEAN

Here the “type” of aBasic_expressions the result of applying the

Expression Type definition appearibglow. ~ Page‘Type of an
expression”, page 774

28.10 ENTITIES

Entities do not appear as a separate case in the syntax for Expression
because they form a special case of Call (more precisetyalified_cal).

But their role as expressions or components of expressions deserves a few
comments.

First, as a reminder, the syntactic definition:

§28.11 THE TYPE OF AN EXPRESSION 773

An : This syntax appeared
| _ Entities and variables originally on page504
Entity 2 Variable| Read_only

Variable 2 Attribute | Local
Attribute 2 Identifier
Local & Indentifier| Result

Read_only2 Formal| Current

Formal 2 Indentifier

The associated constraint, called thetity rule, required any entity to b gntity rule”, page
one of; attribute; local variable of the enclosing routine if any (includs05

Resulif it is a function); formal argument of the enclosing routine or inline

agent; feature of a calGurrent

Together with the Call rule, the Entity rule governs the use of identifiers
in expressions. A simple consequence of these two constraints is:

Identifier rule VWID

T An Identifier appearing in an expression in a cl&sother than
as thdieatureof anObject_calbr qualified Call, must be the name
of a feature ofC, or a local variable of the enclosing routine or
inline agent if any, or a formal argument of the enclosing routine
or inline agent if any, or the Object-Test Local ofG@nject_test

The restriction “other than as the feature of @bject_callor qualified In the Equivalent Dot

Call” excludes an identifier appearing immediately after a dot to denczggg'a ?sa;tsuglréet ofa
feature being called on a target objectair b.c (d), the rule applies t@, caji, andbboth as argu-
b (target of aCall) andd (actual argument), but not to (feature of amentofacallandtarget
qualifiedCall). Forc the relevant constraint is the Call rule, which amcef another

other conditions requiresto be a feature of the base clasg'stype.

The Identifier rule is not a full "if and only if* rule; in fact it is
conceptually superfluous since it follows from earlier, more complete
constraints. Language processing tools may find it convenient as a simple
criterion for detecting the most common case of invdligntifier in
expression.

--- REFERENCE TO ENTITY EVALUATION SEMANTICS

28.11 THETYPE OF AN EXPRESSION

Every expression has a type; this notion is central to the validity rules
governing (among others) assignment, argument passing and the
construction of larger expressions from smaller ones.

774 EXPRESSIONS §28.11

This static type of the expression, entirely deduced from declarations in the
software text, shouldn’t be confused with tdgnamictype of its value at _ «pynamic type”
some instant of execution. page 598

We are now in a position to define precisely the notion of static type tor
each kind of expression.

A full definition must remove the effect of genericity: @fis of type
D [U] andxis an attribute or function declared of ty@dn classD [G], the
type we want for.x is notG — meaningless outside of cla€s— butU.
This has been taken care of by the Generic Type Adaptation rule, which
tells us to apply the actual-to-formal parameter substitutions whenever our
types involve generic derivations. By referring to this rule, the following
Expression Type definition can ignore genericity for its own specific cases:

TTRFTEET 30

Type of an expression
The type of arExpressioreis:

1 < For the predefineBead_onlyCurrent: thecurrent type. — The current type is
oA . s Aarlarad obtainedfromthe current

2 «For a routine’s-ormalargument : the type declared for class by adding the for-

3 «For an Object-Test local: its declared type. mal generic parameters

4 « ForResult, appearing in the text of a quefnthe result type of. fonw Seeiz.LL. pae

5 ¢ For aLocalvariable other thaResult the type declared faz.

6 < For aCall: the type ofe as determined by thexpressiorCall «— ‘TypeofaCallused
Type definition with respect to the current type. Y A

7 « For aPrecursar (recursively) the type of itgsnfolded form.

8 ¢ For anEquality. BOOLEAN

9 « For aParenthesize(f): (recursively) the type df

10 Forold f: (recursively) the type df

11 <For an Operator_expressionor Bracket expression
(recursively) the type of thEquivalent Dot Brm ofe.

12 «For aManifest_constantas given by the definition of the
type of a manifest constant.

13 «For aManifest_tuplday, ... a5] (n=0): TUPLE[T,, ... Tj]
where eacfi; is (recursively) the type a.

14 <For anAgent as given by the definition of thiypeof anagent ~ “Type of an gent
expression. - expression”, page 751

15 «For anObject_testBOOLEAN

16 *For aOnce_stringSTRING

17 «For an Address $v.: TYPED_POINTER[T] where T is
(recursively) the type of.

Case6, which refers to a definition given in the discussion of calls, also
determines casEl, operator and bracket expressions.

§28.12 EXPRESSIONS AND THE SEMICOLON

775

28.12 EXPRESSIONS AND THE SEMICOLON

F,

-'{_

Fi
o4

L
%

We end this review of expressions with a syntactical note (which you may

skip on first reading). The distinction betweddasic_expressiorand

Special_expressiorhas, among others, a syntactic purpose. Eiffel's
Semicolon rule specifies that the semicolon as separator is always optional.
It must be applicable to anyAssertion clause which can be an
Unlabeled_assertion_clauaed hence directly follow another clause, which

could end with

i

using aBracket_expressiqrthe application of to x. To a naive parser,
however, this could look like two successive clauses:

. i
[x]

without the semicolon. The second line,Manifest tuple is also an

WARNING: not valid.

expression, and hence a possible assertion clause if it were validhdt is
valid, since a tuple cannot be boolean as required for an assertion clause;
but that's validity information, whereas it should be possible to parse

software texts on the basis of syntactical information only.

Fortunately, the syntax avoids any such problem thanks to the division

between Basic_expression and

Special_expression

Unlabeled_assertion_claysnd every context where similar ambiguities
could arise, only accept Basic_expressigrall the constructs such as
Manifest_tuple that could cause such ambiguities are part of

Special_expression

This technique no loss of generality because if you do want to start a

component (for example donlabeled _assertion_clayssith a legitimate
expression that, syntactically, isSpecial_expressiggou can just putitin

parentheses: &arenthesizeig part ofBasic_expressicthis does the trick.

In some cases, you may also useParenthesized_targelNote for
example the following assertion, validfiis of typeBOOLEAN

require
f
{[xy. 3

-- No semicolon necessary

).count >0

This assertion includes two clauses; the first is true if and only if fis t

Valid, assuming the
proper declarations
(but not the recom-
mended style).

and the second is trivially true since it states that a 3-item tuple has a

positive number of items.

Such cases are extreme, and in fact the conscientious programmer
always labels assertion clauses:

require
property 1f

property_2 ({[x, v, 3

).count >0

The recommend style.

776 EXPRESSIONS §28.12

But this is only a recommendation. The syntax rule guarantee the basic
Eiffel right of omitting semicolons between elements on different lines —
greatly enjoyed by all users of the language.

	28 28 Expressions
	28.1 OVERVIEW
	28.2 GENERAL FORM OF EXPRESSIONS
	28.3 SUBEXPRESSIONS
	Subexpression, operand

	28.4 PARENTHESIZED EXPRESSIONS
	28.5 OPERATOR EXPRESSIONS
	Operator expression basics
	Operator expression syntax
	Precedence and Parenthesized Form
	Operator precedence levels
	Parenthesized Form of an expression
	Accounting for target conversion
	Target-converted form of a binary expression
	Operator expression validity and semantics

	28.6 SEMISTRICT BOOLEAN OPERATORS
	Semistrict operators

	28.7 BRACKET EXPRESSIONS
	28.8 THE EQUIVALENT DOT FORM
	Equivalent Dot Form of an expression

	28.9 BOOLEAN EXPRESSIONS
	28.10 ENTITIES
	28.11 THE TYPE OF AN EXPRESSION
	Type of an expression

	28.12 EXPRESSIONS AND THE SEMICOLON

