
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
28
Expressions
28.1 OVERVIEW

28.2 GENERAL FORM OF EXPRESSIONS

An expression will use one of the following variants:

Through the various forms ofExpression, software texts can include
denotations of run-time values — objects and references.

Previous discussions havealready introduced some of the available
variants of the construct:Formal, Local, Call, Old, Manifest_tuple, Agent.
The present one gives the full list of permissible expressions and the
precise form of all but one of the remaining categories: operator
expressions, equality and locals. The last category, constants, has its own
separate presentation, just after this one.

Expressions
Expression=∆ Basic_expression| Special_expression

Basic_expression=∆ Read_only| Local | Call | Precursor|
Equality| Parenthesized| Old |
Operator_expression|Bracket_expression|
Creation_expression

Special_expression=∆ Manifest_constant| Manifest_tuple|
Agent|Object_test|Once_string|Address

Parenthesized=∆ "(" Expression ")"

Address=∆ "$" Variable

Once_string=∆ onceManifest_string

Boolean_expression=∆ Basic_expression| Boolean_constant|
Object_test

← Chapter23onCall,
Formaland Local;
““Old” expression”, ,
page235;chapter13on
tuples; chapter27 on
agents.

EXPRESSIONS §28.2754
“Basic expressions” correspond to the common forms of expression
derived from ordinary mathematical notation, such as variables and
operator expressions. “Special expressions” include manifest constants —
constants given directly by their values — as well as original Eiffel
mechanisms such as agents and tuples.

Summarizing the variants ofBasic_expression:

• Read_only, which includes formal arguments of routines andCurrent,
andLocal variables wereseen in the discussion of entities.

• A Call, denoting afeaturecall, is anExpressionif and only if the feature
of the call is a query, that is to say, an attribute or a function. (Otherwise
it would be anInstruction.)

As a special case ofCall, you may use an attributex as an expression in the
text of its class. (In thesyntaxof Call, just usex as Feature_nameof an
Unqualified_call, withoutParenthesized_qualifier or Actuals.)

• Precursorenables the redefined version of a routine — in the case of
expressions, a function — to refer to the original version. We studied the
mechanism in connection with inheritance.

• Equalityexpressions cover both equality and inequality tests, using the
symbols= /=, as well as ~ and /~ for comparing objects. Although they
are syntactically similar to the next category,Operator_expressions, it is
preferable to treat them separately because their semantics,studied in an
earlier chapter, is not that of a call.

• An Operator_expressionis built using unary and binary operators.
Operator expressions have the semantics of calls but a special syntax,
requiring rules of operator precedence.

• You can useParenthesized subexpressions to override these rules.

• A Bracket_expressionagain has the semantics of a call but uses bracket
syntax, as inyour_table[your_index], typically an abbreviation for a
feature callyour_table.item (your_index)whereitemhas been declared
with a bracket alias:alias "[]" .

• An Old_expression, usable only in a postcondition, denotes the earlier
value of an expression. This wasdiscussed with assertions.

• Creation_expressionyields a newly created object and was studied in
the discussion of creation.

Special_expression completes this panoply:

• A Manifest_constanthas a fixed value, given by the form of the
constant, as in theInteger_constant–87. A special case is a
Manifest_string: we may view as constant because it denotes a fixed
string descriptor object, but it gives access to a character sequence
which may in fact change. (This is a potential source of confusion and
will be explained in detail.)

← “Entity, variable,
read-only”, page 504.

← Chapters23 for the
basics of calls and25
about their validity.

← Page618.

← “ADDING TO
INHERITED BEHAV-
IOR: PRECURSOR”,
10.24, page 293.

← “EQUALITY
EXPRESSIONS”,
21.3, page 557.

← ““Old” e xpres-
sion”, , page 235,

← --- FILL IN REFER-
ENCE ---

→ “MANIFEST
STRINGS”, 29.8,
page 784.

§28.2 GENERAL FORM OF EXPRESSIONS 755
Not all constants are manifest: by declaring aconstant attribute you may
use anIdentifier to denote a constant value. Syntactically, as noted above,
constant attributes used as expressions are a special case ofCall, but it will
be convenient tostudy them together with manifest constants.

• A Manifest_tuple is a tuple given by the list of its elements.

• Agentexpressions, representing partially evaluated calls, were studied
in the previous chapter.

• An Object_test, of the form{ loc: T} expasstudied in the discussion of
eradicating void calls, yields true if and only if the expressionexp is
attached on evaluation to an object of typeT, and then binds it locally to
the entityloc.

• A Once_stringis a manifest string constant qualified by the keyword
once to indicate that if it appears in an expression the string will be
evaluated just once, rather than denoting a new string object for each
evaluation of the expression. Since this notion is closely tied to the
semantics of strings it will bestudied in the next chapter as part of the
general discussionof strings. Non-oncestrings—themorecommoncase
— are examples ofManifest_constant, covered by the previous case.

• Addressexpressions, of the form$f wheref is the name of a feature (or
Currentor Result) serve to pass the address of an Eiffel object to non-
Eiffel sofware.

Finally,Boolean_expressionrequires its own construct because a few other
constructs — assertion clauses,Conditional, Exit conditions of loops —
specifically expect a boolean expression.Object_testis one of the variants.

This chapter needs only occasionally to refer to the variants studied in
depth in their own chapters :Read_only, Local, Call (for which wesaw
how to determine the value and type of aCall serving as an expression),
Precursor(whose validity rulestated under what condition you may use a
Precursoras an expression),Equality, Agent, Old, Object_test, Address,
Creation_expression; for Call, we still need to define explicitly the value of
a call expression. After introducing the notion of “subexpression”, the
following sections will explore the remaining variants in the order of the
syntax. Then we’ll explore general properties of expressions, in particular
the notion of Equivalent Dot Form, how to determine the type of an
expression, and the syntactical benefit (having to do with making
semicolonsalwaysoptional) of the distinction betweenBasic_expression
andSpecial_expression.

As a general note on the use of expressions,remember that if you have
an expression exp of typeU and want to use it as if it were of a typeT to
whichU conforms or converts, you may rely on the notation

{ T} [exp]

→ “GENERALFORM
OF CONSTANTS”,
page 777,
→ “MANIFEST
TUPLES”, 29.9, page
799,

→ “THE OBJECT
TEST”, 24.3,page650,

→ “Basic manifest
strings”, page 786,

→ “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 823,

←Unlabeled_assertion_
clause: page228.
Then_part: page473.
Exit: page487.

← Clause5of“Pr ecur-
sor rule”, page 298,

← “CONVERTING
AN EXPRESSION
EXPLICITLY”, 15.9,
page 408,

EXPRESSIONS §28.3756
28.3 SUBEXPRESSIONS
This section defines a technical notion; you may skip it on first reading.

For some of the definitions and rules that follow, it is convenient to talk about
the “subexpressions” of an expression: all the components of the expression
that are themselves expressions whose value participates in the evaluation
of the expression as a whole. This notion is mostly useful for operator
expressions, but it’s convenient to define it for all other kinds as well:

Clause4 uses “theUnqualified_callpart of aCall”: both of the available
variants,Object_callandNon_object_call, indeed include anUnqualified_call.

For example the subexpressions ofb + (c ∗ [d, e]) are the whole expression,
b, (c ∗ [d, e]), c, [d, e]), d ande.

Not every expression physically contained in an expression is a
subexpression: according to the rule,a + b + c has no subexpression other
than itself; neither hasx + y ∗ z. Parts such asa + b, b + c, x + y, y ∗ z,
although valid expressions, are not subexpressions. This is because such
examples use more than one binary operator in succession, giving rise to
potential ambiguities; and indeed the partx + y plays no role in
determining the value ofx + y ∗ z.

The precedence rules which we’ll study shortly let us define a
Parenthesized Formfor any expression, such asx + (y ∗ z) in the second
part, with subexpressionsx and(y ∗ z), both of which participate in the
value of the expression as a whole,

Subexpression, operand
The subexpressionsof an expressione are e itself and
(recursively) all the following expressions:
1 • For aParenthesized(a) or a Parenthesized_target(|a |): the

subexpressions ofa.
2 • For anEquality or Binary_expressiona § b, where§ is an

operator: the subexpressions ofa and ofb.
3 • For a Unary_expression◊ a, where ◊ is an operator: the

subexpressions ofa.
4 • For aCall or Precursorexpression: the subexpressions of the

Actuals part, if any, of itsUnqualified_part
5 • For anAgent: the subexpression of itsAgent_actualsif any.
6 • For aqualified call: the subexpressions of itstarget.
7 • For aBracket_expressionf [a1, … an]: the subexpressions of

f and those of all ofa1, … an.
8 • For anOld expressionold a: a.
9 • For aManifest_tuple[a1, … an]: the subexpressions of all of

a1, … an.
In cases2 and3, theoperands of e area and (in case2) b.

← Syntax: page618.

In addition toy, zand
the whole expression.

§28.4 PARENTHESIZED EXPRESSIONS 757
28.4 PARENTHESIZED EXPRESSIONS

You may enclose an arbitrarily complex expression in parentheses without
changing its semantics:

Indeed the parentheses have a syntactic role only. You can use aParenthesized:

• To override default operator precedence in operator expressions as
studied in the next section.

• To apply a certain operation to an expression when the syntax wouldn’t
permit it in the original form of the expression.

An important example of the second case is feature application to a
complex expression. Thesyntax of a query callexp.f (or exp.f (args) with
arguments) restricts the targetexpto just a few possibilities: a single entity,
as inan_attribute.f, or one or more other calls, as ing (x).an_attribute.f.
You may not directly apply the feature to a manifest constant, as in3.f
(invalid) or to an operator expression, as ina + b.f (which, if valid, would
applyf just to b, not to the addition). You can achieve the desired effect by
parenthesizing the target expression, as in

(valid if f is applicable to the respective targets).

28.5 OPERATOR EXPRESSIONS

You may build operator expressions by combining simpler expressions
through prefix and infix operators, using parentheses to remove
ambiguities if necessary.

Operator expression basics

An example, from the postcondition of procedureput_child_leftin class
LINKABLE of EiffelBase, is

This uses the infix operatorsimplies and+ and the prefix operatornot,
applied to subexpressions involvingOld andEquality.

Parenthesized Expression Semantics

If e is an expression, the value of theParenthesized(e) is the value
of e.

(3).f
(a + b).f

not (child_position= 2) implies
child_position= old child_position +1

← Call and associated
constructs, page618.

← ConstructParenthesi-
zed_qualifier, page618.

This appears in class
LINKABLE with some
extra parentheses for
clarity. The effect is the
same, however, thanks
to the precedence rules.

EXPRESSIONS §28.5758
Semantically, operator expressions bring nothing new: they are simply
a different way to write calls, using conventional operator notation rather
than dot notation. Since every feature with an operator alias also has a
Feature_name(an identifier),you may ignore operators, writing instead
calls in dot notation:

Operator expression syntax

Here is the general form of operator expressions:

Both UnaryandBinary operators can be one of the standard operators, or
a “free” operator that you make up according to very flexiblerules. The list
of standard operators already appeared in the discussion of feature names:

Precedence and Parenthesized Form

The syntax forOperator_expressionis ambiguous: it would make it
possible to understand an expression such as

in several different ways (expressed with parenthesization):

((child_position= 2).negated).implication
(child_postion= old (child_position.plus(1)))

Operator expressions
Operator_expression=∆ Unary_expression | Binary_expression

Unary_expression=∆ Unary Expression

Binary_expression=∆ Expression Binary Expression

Operators
Unary =∆ not | "+" | "–" | Free_unary

Binary =∆ "+" | "–" | "∗" | "/" | | "//" | "\\" | "^"
"<" | ">" | "<=" | ">=" |
and | or | xor | and then | or else| implies |
Free_binary

a + b + c ∗ d

← This syntax
appeared originally on
page154.

→ “F ree operator”,
page 883.

The correct interpreta-
tion, according to the
precedence rules given
below, is [3] .

§28.5 OPERATOR EXPRESSIONS 759
You can always remove ambiguities by adding parentheses as in these last
forms. In mathematical practice, however, it is customary not to require
parentheses in simple cases based on “precedence”. This custom makes
a + b ∗ c legal and gives it the same meaning asa + (b ∗ c), based on the
convention that∗ “binds tighter” than+ .

To formalize this practice, we complement the syntax byprecedence
rules. Every possible operator has a precedence, a numerical value
between 1 and 13 determined by the table below. The values themselves are
not important; what matters is the comparison of the precedence values of
any two operators appearing consecutively in an expression. For example,
∗ has precedence 8 and+ has precedence 3. In the absence of intervening
parentheses, the one with the higher precedence binds tighter.

a + (b + (c ∗ d)) [1]
a + ((b + c) ∗ d) [2]

[3]
(a + (b + c)) ∗ d [4]
((a + b) + c) ∗ d [5]

Operator precedence levels

13 . (Dot notation, inqualified and non-object calls)

12 old (In postconditions)
not + –Used as unary
All free unary operators

11 All free binary operators.

10 ^ (Used as binary: power)

9 ∗ / // \\ (As binary: multiplicative arithmetic operators)

8 + – Used as binary

7 .. (To define an interval)

6 = /= ~ /~ < > <= >=(As binary: relational operators)

5 and and then
(Conjunctive boolean operators)

4 or or else xor
(Disjunctive boolean operators)

3 implies(Implicative boolean operator)

2 [] (Manifest tuple delimiter)

1 ; (Optional semicolon between
anAssertion_clause and the next)

(a + b) + (c ∗ d)

EXPRESSIONS §28.5760
“

This precedence table is the basis for the rule removing potential syntactic
ambiguities in operator expressions. We’ll just work from a form that adds
parentheses wherever needed:

Since the notion of subexpression was defined recursively, the rewriting
must be applied recursively too. Both notions are interesting for the case of
anOperator_expressionbut are defined for general expressions, allowing
the recursion to work properly.

The Parenthesized Form of

is

This precedence table includes the operators that may appear in an
Operator_expression, the equality and inequality symbols used inEquality
expressions, as well as other symbols and keywords which also occur in
expressions and hence require disambiguating: the semicolon in its role as
separator forAssertion_clause; the old operator which may appear in an
Old expression as part of a Postcondition; the dot. of dot notation, which
binds tighter than any other operator.

The operators listed include both standard operators and predefined
operators (=, /=, ~, /~). For a free operator, you cannot set the precedence:
all free unaries appear at one level, and all free binaries at another level.

Parenthesized Form of an expression
The parenthesized form of an expression is the result of
rewriting everysubexpression of one of the forms below, where
§ and‡ are different binary operators,◊ and♣ different unary
operators, anda, b, c arbitraryoperands, as follows:
1 • Fora § b § c where§ is not the power operator̂: (a § b) § c

(left associativity).

2 • Fora ^ b ^ c : a ^ (b ^ c) (right associativity).

3 • Fora § b ‡ c: (a § b) ‡ c if the precedence of‡ is lower than
the precedence of§ or the same, anda § (b ‡ c) otherwise.

4 • For◊ ♣ a: ◊ (♣ a)

5 • For◊ a § b: (◊ a) § b

6 • Fora § ◊ b: a § (◊ b)

7 • For a subexpressione to which none of the previous patterns
applies:e unchanged.

a + b ∗ c ^old d

a + (b ∗ (c ^ (old d)))

§28.5 OPERATOR EXPRESSIONS 761
The Parenthesized Form is not alwaysfully parenthesized; it only adds the
parentheses necessary to remove ambiguities. Here it doesn’t put any
around the full expression, or around entitiesa, b, c, d.

Operator̂ gets a special treatment in clauses1 and2 of the definition
because basic arithmetic types (INTEGER, REALand their sized variants)

use it aspower operator: the mathematical notationabc
is traditionally

understood as meaninga(bc) — the only interesting interpretation since

(ab)
c
 is justab∗c.

Special cases in rules are unpleasant, but it is dangerous to go against long-
standing mathematical conventions. Here a left-associative rule could cause
errors for people trained in mathematics or physics. To avoid worrying about
such issues, just use parentheses wherever there might be any doubt.

Clause4 reflects that, in the above precedence table, all unary operators
have the same precedence; and the last two clauses , that unary operators
bind tighter than all binary operators.

◊ and‡ can be the same operator, used as unary in one case and binary
in the other. So clause6 tells us thata – – b— where the two signsmust be
separated by a break, lest we take them to start a comment — meansa –(– b).

To override the meaning implied by this rule, you may always use
parentheses. For anyBinary operator, the first operand of§ in

is alwaysexp, regardless of the precedence of§ and of the operators
appearing inexp; the last operand of§ in

is alwaysother_exp; and for anyUnaryoperator◊, the expression

always denotes the application of◊ to the value ofexp.

The precedence rules are easy to remember but competent Eiffel
programmers mostly use them to understand the code of their macho
colleagues. Don’t hesitate to put parentheses around subexpressions to
clarify intent and avoid errors. In particular, you should always use
parentheses when a boolean expression uses different conjunctive and
disjunctive operators in succession, as in(a or (b and c)).

We will build the Equivalent Dot Form of an expression, on which its
validity and semantics are based, from its Parenthesized Form. In other
words, thanks to this notion we can for all the rest of the discussion forget
about any matters of ambiguity and operator precedence.

(exp) § other_exp

exp§ (other_exp)

◊ (exp)

→ “Syntax (non-pro-
duction):Breakrule”, ,
page 875.

→ Clause“Equivalent
Dot Form of an expres-
sion”, page 771.

EXPRESSIONS §28.5762
Accounting for target conversion

We need one more definition to handle all cases of operator expressions. It
covers the mechanism that westudied in the chapter of conversions,
allowing you to follow traditional mathematical practice by writing mixed-
mode expressions such asyour_integer + your_realwhen you really mean
to use the “+” operator from classREAL, converting the first operand to
REAL. To make this possible, you must specifyconvert in the declaration
of the operator, in classINTEGER:

In this case the standard unfolding ofyour_integer + your_realinto
your_integer.plus(your_real) doesn’t apply, sinceREALneither conforms
nor converts toINTEGER. We want to understand the expression as
(your_integer.converted_to_real) + your_real. Because the first unfolding
would be type-wise invalid, there is no danger of confusion.

A simple definition takes care of this case:

(where{ TY} [x] denotesx converted to typeTY). In fact that’s all we need:
the validity and semantics, in this case, will simply rely — through the
EquivalentDot Form — not on the original expression but on its target-
converted form. There is no need for any special rule, either for validity or
for semantics.

plusalias "+" (other: INTEGER): INTEGER…

Target-converted form of a binary expression
The target-converted form of a Binary_expressionx § y, where
the one-argument feature of alias§ in thebaseclass ofx has the
Feature_namef, is:
1 • If the declaration off includes aconvert mark and the typeTY

of y is notcompatiblewith the type of the formal argument of
f: ({ TY} [x]) § y.

2 • Otherwise: the original expression,x § y.

({ TY} [x]) denotesx converted to typeTY. This definition allows us, if the
feature fromx’s type TX cannot accept aTY argument but has explicitly
been specified, through theconvert mark, to allow for target conversion,
andTY does include the appropriate feature accepting aTX argument, to
use that feature instead.

The archetypal example isyour_integer + your_realwhich, with the
appropriateconvert mark in the"+" feature inINTEGER, we can interpret
as ({ REAL} [your_integer]) + your_real, where"+" represents theplus
feature fromREAL.

← “MIXED-TYPE
EXPRESSIONS: TAR-
GETCONVERSION”,
15.12, page 419.

convert

← 15.9, page 408.

→ Clause2, page 771.

§28.5 OPERATOR EXPRESSIONS 763
Operator expression validity and semantics

Once no syntactical ambiguity remains, the validity and semantic
properties of an Operator_expressionare essentially those of a
correspondingCall.

For everyOperator_expressionthere will be anEquivalent Dot Form,
syntactically a Call, illustrated above for a postcondition clause of class
LINKABLE. As another example, here is the Equivalent Dot Form of our
earlier expressiona + b + c ∗ d:

This assumes that ifx’s type has a base classC with operator features
plusalias "+" andmultipliedalias "*" .

The next section gives a precise definition of the Equivalent Dot Form,
although the above examples suffice to make the idea clear. Then the
validity constraint on operator expressions is straightforward:

The Feature Declaration ruletells us that a given operator may serve as
alias for a unary feature (a feature without argument), or a binary feature
(with one argument), or both, as in the case of+ in INTEGERandREAL.
In this last case, two features will match the requirement of clause1; but
that’s OK because the form of the expression, unary or binary, will remove
any ambiguity thanks to thedefinition of the Equivalent Dot Form.

This rule ensures that every operator is used with the proper number of
arguments. For exampleINTEGERand other basic arithmetic classes have
a one-argument functionproductalias "∗", but not zero-argument version,
as would be required for aUnary. Then of the expressions

the first is valid but not the second.

(a.plus(b)).plus(c.multiplied(d))

Operator Expression rule VWOE

A Unary_expression§ x or Binary_expressionx § y, for some
operator§, is valid if and only if it satisfies the following
conditions:
1 • A feature of thebase class ofx is declared asalias "§".

2 • The expression’sEquivalent Dot Form is a validCall.

2 ∗ 2
∗ 2

← “OPERATOR FEA-
TURES”, 5.15, page
154.

← The validity of calls
was the subject of chap-
ter 25.

← Page160, relying on
definition of“Alias
Validity rule”, page
162

→ Clause1 and2,
page771.

WARNING: second
expression not valid.

EXPRESSIONS §28.5764
The rule also explains why some binary operators can be used as
“multiary” — meaning with three or more operands, of types all
compatible with the type of the first — others are limited to two arguments
An example of multiary operator is+ on integers; relational operators such
as<, on the other hand, are binary but not multiary. This is clear from the
Equivalent Dot Forms. With integer operands, theOperator_expression

has theParenthesized Form

yielding the valid Equivalent Dot Form

By the same rules, theOperator_expression

would yield the Equivalent Dot Form

is not valid since the highlighted operand is of typeBOOLEAN, but
BOOLEANdoes not have a function aliased to<, violating clause1 of the
Operator Expression rule.

If BOOLEANhad a functionis_lessalias "<", perhaps withfalseconsidered
less thantrue, this would still not make the expression valid: such a function
would expect an argument of typeBOOLEAN, notINTEGER. In this case it’s
clause2 that would fail. A true multiary operator, such as"+" on integers,
must accept successive operands of the same or compatible type.

In summary, there is no need to define binary and multiary operators as
separate syntactical categories. The grammar lists both kinds asBinary;
whether a given operator may be used in multiary form depends on the
signature of the corresponding function and on the precedence rules.

1 + 2 + 3 + 4

((1 + 2) + 3) + 4

((1.plus(2)).plus(3)).plus(4)

1 < 2 < 3

 < 3

← “Pr ecedence and
Parenthesized Form”,
page 758.

WARNING: this expres-
sion is not valid!

(1.is_less(2))

§28.6 SEMISTRICT BOOLEAN OPERATORS 765
There remains to define the semantics of anOperator_expression. You
are probably guessing from the preceding discussion that — as with
validity — it is simply the semantics of its Equivalent Dot Form. You are
guessing almost right; “almost” because (life not always being as simple as
we would like) we must account for a special case, semistrict operators:

28.6 SEMISTRICT BOOLEAN OPERATORS

The semantic rule for operator expressions set out the special case of three
boolean operators, known as “semistrict”. We’ll now take a look at these
operators to understand why they are needed, and obtain the semantic rule
for this case.

The ordinary (“strict”) boolean operatorsnot, and, or andxor, defined
in the Kernel Library classBOOLEAN, define operations on boolean
values. The value ofnot a is true if and only ifa has value false. The others
are binary operators; the value they yield when applied to a first operand of
valuev1 and a second operand of valuev2 is defined as follows:

• For and: true if and only if bothv1 andv2 are false.

• For or: false if and only if eitherv1 or v2 is false.

 Expression Semantics (strict case)

The value of an Expression, other than aBinary_expression
whoseBinary is semistrict, is thevalue of itsEquivalent Dot
Form.

This semantic rule and the preceding validity constraint make it possible to
forego any specific semantics for operator expressions (except in one
special case) and define the value of any expression through other semantic
rules of the language, in particular the rules forcalls andentities.

This applies in particular to arithmetic and relational operators (for
which the feature declarations are in basic classes such asINTEGERand
REAL) and to boolean operators (classBOOLEAN): in principle, although
not necessary as implemented by compilers,a + b is just a feature call like
any other.

The excluded case — covered by a separaterule — is that of a binary
expression using one of the threesemistrict operators:and then, or else,
implies. This is because the value of an expression such asa and then b is
not entirely defined by its Equivalent Dot Forma.conjuncted_semistrict(b),
which needs to evaluateb, whereas theand then form explicitly ignoresb
whena has valueFalse, as the value of the whole expression isFalseeven if
bdoes not have a defined value, a case which should not be treated as an error.

← “PRECISE CALL
SEMANTICS”, 23.17,
page 643; “Entity
Semantics rule”, page
514.

→ “Operator Expres-
sion Semantics (semis-
trict cases)”,page768.

EXPRESSIONS §28.6766
• For xor: true if and only ifv1 andv2 have different values. In other
words,a xor b has the same value as (a or b) and not (a and b).

Three operators, also defined inBOOLEAN, complementand andor, from
which they differ by a special semantic property known as semistrictness.

For operands of valuesv1 andv2 they yield the following results:

• and then (semistrict conjunction): false ifv1 is false, otherwise the
value ofv2.

• or else(semistrict disjunction): true ifv1is true, otherwise the value ofv2.

• implies (semistrict implication): true ifv1 is false, otherwise the value
of v2. (In other words,a impliesbhas the same value asnot aor elseb.)

At first sight,and thenseems equivalent toand, or elseto or, andimplies
toor with the first argument negated. The difference is that any one of these
operators may in some cases yield a result on the sole basis of its first
argumentv1, if the value ofv1suffices to determine the outcome – even if
the second argument does not have a value. They are “strict” (demand a
value) for the first argument only, hence the term “semistrict”.

The difference arises forand thenwhenv1 is false (result: false), foror
elsewhenv1 is true (result: true), and forimplies whenv1 is false (result:
true). In these three cases the implementation must not evaluate the second
argumentv2. No such rule applies toand andor, which are not required to
produce any result for an undefined second argument, and so may use a
strict implementation as well as a semistrict one.

As a consequence, the semistrict operators, in contrast with their
counterparts in standard mathematical logic, are not commutative: they do
not treat their operands symmetrically. For example,a and thenb does not
necessarily have the same effect asb and thena. To be more accurate, any
values these expressions yield will be the same, but it is possible for the
second to yield a value when the first does not.

Semistrict operators
A semistrict operator is any one of the three operatorsand then,
or else andimplies, applied tooperands of typeBOOLEAN.

A general presentation
of semistrictness
appeared in22.13,.You
should not have any
trouble understanding
the present section even
if you skipped the ear-
lier, more theoretical
discussion.

For a more complete
discussion of strictness
see the book"Introduc-
tion to the Theory of
Programming Lan-
guages". For a study of
various degrees of
strictness in boolean
operators see H. Bar-
ringer, J.H. Cheng and
Cliff B. Jones, "A Logic
Covering Undefined-
ness in Program
Proofs", Acta Informat-
ica, 21, 3, October
1984.

§28.6 SEMISTRICT BOOLEAN OPERATORS 767
Because they enable you to write two-operand boolean expressions
whose second operand need not have a value if the first operand’s value
leaves only one possible result, semistrict operators are particularly useful
for a certain kind of loop used to traverse a data structure. Here is an
example from a search routine in classLINKED_LIST in EiffelBase:

The loop will terminate whenever the cursor moves after the last element
(off), or hits an element whose value, as given byitem, is equal to the
argumentv. TheExit expression tests for either of these conditions to occur.
When the first condition (off) is true, however, we do not want to evaluate
the second (item = v): not only would its contribution to the result be
useless (since a disjunction with one true operand may have no value other
than true); evaluating it would in fact be improper since functionitem is
only defined when the cursor is on an actual element, which is not the case
when it isoff. (This is reflected in the precondition foritem, which includes
the conditionnot off.)

To guarantee the desired result, theExit condition usesor else rather
thanor. In the same way, the postcondition only makes sense because of
the semistrictness ofimplies. In other words, the semistrict semantics ofor
elseandimplies guarantees thatsearch_samewill work properly even ifv
does not appear in the list.

This common loop scheme is captured byiterator routines of EiffelBase, —
do_all, do_while, for_all and others — declared in high-level classes such as
LINEARand hence available for most practical data structures. To use these
routines, it suffices to pass them the appropriate agents as arguments, as in
your_list.for_all (agent your_condition) which returns true if and only if
every element ofyour_list satisfiesyour_condition.

search_same(v: like first)
-- Move cursor to first position (at or after current one)
-- wherev appears; move "off" if no such position.

do
from

… (Initialization omitted)…
variant

count – position + 1
until

off or else(item= v)
loop

forth
end

ensure
(not off) implies (item= v)

end

EXPRESSIONS §28.6768
This discussion leads us to the general semantic definition for nonstrict
boolean operators:

Operator Expression Semantics (semistrict cases)

Fora andb of typeBOOLEAN:
• The value ofa and then b is: if a has value false, then false;

otherwise the value ofb.

• The value ofa or else b is: if a has value true, then true;
otherwise the value ofb.

• The value ofa implies b is: if a has value false, then true;
otherwise the value ofb.

For each of the three forms, if the first condition listed holds, the
computationof theexpression’svaluemustnotcauseevaluationofb.

The semantics of other kinds of expression, and Eiffel constructs in
general, iscompositional: the value of an expression with subexpressions
a andb, for examplea + b (wherea andb may themselves be complex
expressions), is defined in terms of the values ofa andb, obtained from the
same set of semantic rules, and of the connecting operators, here+. Among
expressions, those involving semistrict operators are the only exception to
this general style. The above rule is not strictly compositional since it tells
us that in certain cases of evaluating an expression involvingb we should
not consider the value ofb. It’s not just that wemayignore the value ofb
in some cases — which would also be true ofaandb (strict) whena is false
— but that wemust ignore it lest it prevents us from evaluating the
expression as a whole.

It’s this lack of full compositionality that makes the above rule more
operational than the semantic specification of other kinds of expression.
Their usual form is “the value of an expression of the formX is Y”, where
Y only refers to values of subexpressions ofX. Such rules normally don’t
mention order of execution. They respect compositionality and leave
compilers free to choose any operand evaluation order, in particular for
performance. Here, however, order matters: the final requirement of the
rule requiresthat the computation first evaluatea. We need this operational
style to reflect the special nature of nonstrict operators, letting us
sometimes get a value for an expression whose second operand does not
have any.

§28.7 BRACKET EXPRESSIONS 769
28.7 BRACKET EXPRESSIONS

What makes a bracket expression possible is a feature declared with a
bracket alias clause, as in

which — if this declaration appears inHASH_TABLE, andyour_tableis of
typeHASH_TABLE[T, U] — allows writingyour_table[your_key] as an
abbreviation foryour_table.item(your_key).

The Kernel Library classARRAY[G] relies on this technique to allow
accessing array elements through the notationyour_array[n] as a synonym
for your_array.item (n) for an integern. You are not limited to one
argument: a classMATRIX3 [G] describing three-dimensional matrices
may have

allowing element access under the formyour_matrix[n1, n2, n3].

This mechanism is also useful in connection with assigner procedures:
addingassignput (afterG) to any of these examples, with a procedureput
having the appropriate signature, allows you to use assignment syntax, as

in the last example, an abbreviation foryour_matrix.put (v, n1, n2, n3).
The left side is, again, aBracket_expression.

The syntax is simple:

itemalias "[]"(key: H): G …

itemalias "[]" (i, j, k): G …

your_matrix[n1, n2, n3] := v

Bracket expressions
Bracket_expression=∆ Bracket_target "[" Actuals"]"

Bracket_target=∆ Target | Once_string |
Manifest_constant| Manifest_tuple

Targetcovers every kind of expression that can be used as target of a call,
including simple variants likeLocal variables and formal arguments, as
well asCall, representing the application of a query to a target that may
itself be the result of applying calls.

← “BRACKET FEA-
TURE”, 5.17, page
157.

EXPRESSIONS §28.7770
Examples ofBracket_expression are

In the first two cases, theCall_chainis just a single query,your_tableor
your_matrix; such aBracket_expressioncould appear respectively in class
HASH_TABLEor MATRIX3. The last example, with a longerCall_chain,
assumes that in the base class fortable_listthere’s a functioni_th returning
a table.

TheBracket_targetused to the left of the bracket part allows a number
of expression variants;Call_chainis the most common, permitting bracket
expressions such asf [x] but alsoa.b.f [x] (to be understood again as an
abbreviation: fora.b.f.item(x) for the appropriateitem function). One of
the other possibilities isManifest_tuple, as in[a, b, c] [i], taking advantage
of a bracket alias foritem in TUPLE. If you want a more complex
expression as target, use aParenthesized_target, as in

which will be valid if the type ofa + b has a bracket feature.

The reason for the restriction ofBracket_targetto specific kinds of
expressions is — as you might not have guessed! — the need to make the
semicolon optional in all cases without causing any syntactical ambiguity. If
you are interested in understanding this fully, you’ll find the details in the
final section of this chapter.

The Equivalent Dot Form of aBracket_expressionsimply involves
replacing the expression by a call in dot notation, using the associated
feature. For the above three examples it is:

These examples all assumeitemas theFeature_namefor the bracket feature;
this is indeed the most common choice, but of course you may choose any
name you like.

your_table[your_key]
your_matrix[n1, n2, n3]
table_list.i_th (i) [your_key]

(|a + b|) [i]

your_table (your_key)
your_matrix (n1, n2, n3)
table_list.i_th (i) (your_key)

→ “EXPRESSIONS
AND THE SEMICO-
LON”, 28.12,page775.

.item
.item

.item

§28.8 THE EQUIVALENT DOT FORM 771
Here is the validity rule:

The Feature Declaration ruleensures that at most one feature satisfies
clause1. The Equivalent Dot Form, as defined below, relies on that feature.

28.8 THE EQUIVALENT DOT FORM

This section defines precisely the notion of Equivalent Dot Form, already
introduced informally through examples, and used extensively in the
previous sections. It may be skipped on first reading.

For a full specification of the validity and semantics of an
Operator_expressionor Bracket_expression, we need a precise description
of how to obtain its Equivalent Dot Form. Because such expressions may
involve components which are expressions of other kinds (such as calls or
constants), the definition must in fact be applicable to any kind of
expression. In the following definition the most important cases are the first
three, giving dot equivalents for the non-dot forms (operators, bracket):

Bracket Expression rule VWBR

A Bracket_expressionx [i] is valid if and only if it satisfies the
following conditions:
1 • A feature of thebase class ofx is declared asalias "[]" .

2 • The expression’s Equivalent Dot Form is a validCall.

Equivalent Dot Form of an expression
Any Expressionehas anEquivalent Dot Form, not involving (in
any of its subexpressions) any Bracket_expressionor
Operator_expression, and defined as follows, whereC denotes
thebaseclass ofx, pedenotes theParenthesizedForm of e, and
x’, y’, c’ denote the Equivalent Dot Forms (obtained recursively)
of x, y, c:
1 • If pe is a Unary_expression§ x: x’.f, where f is the

Feature_nameof the no-argument feature of alias§ in C.
2 • If pe is a Binary_expressionof target-convertedform x § y:

x’.f (y’) where f is the Feature_nameof the one-argument
feature of alias§ in C.

3 • If pe is a Bracket_expressionx [y]: x’.f (y’) where f is the
Feature_name of the feature declared asalias "[]" in C.

4 • If pe has nosubexpression other than itself:pe.
5 • In all other cases: (recursively) the result of replacing every

subexpression ofeby its Equivalent Dot Form.

← Page160, clause7;
see clause2.of “Alias
Validity rule”, page
162

EXPRESSIONS §28.9772
In the first three cases, the Operator Expression and Bracket Expression
rules seen earlier in this chapter guarantee that there is a featuref of the
given alias. The Feature Declarationrule then ensures that in all of the first
three cases exactly one featuref satisfies the requirements.

The Operator Expression and Bracket Expression rules both rely on the
definition of Equivalent Dot Form, raising the appearance of circular
reasoning. But we are only interested in Equivalent Dot Forms of expressions
that satisfy clause 1 of their respective rules; this is enough to make the
definition of Equivalent Dot Form applicable, and then to use it in the rule’s
second clause. So this mutual dependency does not cause circularity.

In case2 we draw the featuref not from the original expression but from
its target-converted form as presented in the preceding section. It will
usually identical, but allows us for example to acceptyour_integer+
your_real, treating it as(your_integer.converted_to_real) + your_real.

Case4 is the terminal case of the recursion, coveringFormal, Local,
Manifest_constant, and anyCall consisting of a single query with no
arguments. Case5 makes sure that we apply the rule recursively to all
constituents of a complex expression.

Case applies, among others, to aparenthesizedexpression(f), for which it
gives us(f ’) wheref ’ is, recursively, the Equivalent Dot Form off.

28.9 BOOLEAN EXPRESSIONS

ForBoolean_expression, the grammar at the beginning of this chapter gave
three kinds:Boolean_constant, Object_testandBasic_expression. The two
boolean constantareTrue andFalse. Object_testhas its own validity rule.
The third case must satisfy an obvious constraint:

Here the “type” of aBasic_expressionis the result of applying the
Expression Type definition appearingbelow.

28.10 ENTITIES

Entities do not appear as a separate case in the syntax for Expression
because they form a special case of Call (more preciselyUnqualified_call).
But their role as expressions or components of expressions deserves a few
comments.

First, as a reminder, the syntactic definition:

Boolean Expression rule VWBE

A Basic_expressionis valid as aBoolean_expressionif and only
if it is of typeBOOLEAN.

← Pages763 and771.

← Page160, relying on
definition of“Alias
Validity rule”, page
162.

→ Page778.

→ Page“Type of an
expression”, page774.

§28.11 THE TYPE OF AN EXPRESSION 773
The associated constraint, called theEntity rule, required any entity to be
one of: attribute; local variable of the enclosing routine if any (including
Resultif it is a function); formal argument of the enclosing routine or inline
agent; feature of a call;Current.

Together with the Call rule, the Entity rule governs the use of identifiers
in expressions. A simple consequence of these two constraints is:

--- REFERENCE TO ENTITY EVALUATION SEMANTICS

28.11 THE TYPE OF AN EXPRESSION

Every expression has a type; this notion is central to the validity rules
governing (among others) assignment, argument passing and the
construction of larger expressions from smaller ones.

Entities and variables
Entity =∆ Variable | Read_only

Variable =∆ Attribute | Local

Attribute =∆ Identifier

Local =∆ Indentifier | Result

Read_only=∆ Formal | Current

Formal =∆ Indentifier

Identifier rule VWID

An Identifier appearing in an expression in a classC, other than
as thefeatureof anObject_callorqualifiedCall, must be the name
of a feature ofC, or a local variable of the enclosing routine or
inline agent if any, or a formal argument of the enclosing routine
or inline agent if any, or the Object-Test Local of anObject_test.

The restriction “other than as the feature of anObject_callor qualified
Call” excludes an identifier appearing immediately after a dot to denote a
feature being called on a target object: ina + b.c (d), the rule applies toa,
b (target of aCall) and d (actual argument), but not toc (feature of a
qualifiedCall). Forc the relevant constraint is the Call rule, which among
other conditions requiresc to be a feature of the base class ofb’s type.

The Identifier rule is not a full "if and only if" rule; in fact it is
conceptually superfluous since it follows from earlier, more complete
constraints. Language processing tools may find it convenient as a simple
criterion for detecting the most common case of invalidIdentifier in
expression.

This syntax appeared
originally on page504.

← “Entity rule”, page
505.

In the Equivalent Dot
Form, a actually
appears as target of a
call,andbboth as argu-
mentofacalland target
of another.

EXPRESSIONS §28.11774
This static type of the expression, entirely deduced from declarations in the
software text, shouldn’t be confused with thedynamictypeof its value at
some instant of execution.

We are now in a position to define precisely the notion of static type for
each kind of expression.

A full definition must remove the effect of genericity: ifa is of type
D [U] andx is an attribute or function declared of typeG in classD [G], the
type we want fora.x is notG — meaningless outside of classC — butU.
This has been taken care of by the Generic Type Adaptation rule, which
tells us to apply the actual-to-formal parameter substitutions whenever our
types involve generic derivations. By referring to this rule, the following
Expression Type definition can ignore genericity for its own specific cases:

Type of an expression
The type of anExpressione is:
1 • For the predefinedRead_onlyCurrent : thecurrent type.
2 • For a routine’sFormalargument : the type declared fore.
3 • For an Object-Test local: its declared type.
4 • ForResult, appearing in the text of a queryf: the result type off.
5 • For aLocalvariable other thanResult: the type declared fore.
6 • For aCall: the type ofeas determined by theExpressionCall

Type definition with respect to the current type.
7 • For aPrecursor: (recursively) the type of itsunfolded form.
8 • For anEquality: BOOLEAN.
9 • For aParenthesized(f): (recursively) the type off.
10 •Forold f: (recursively) the type off.
11 •For an Operator_expressionor Bracket_expression:

(recursively) the type of theEquivalent Dot Form ofe.
12 •For aManifest_constant: as given by the definition of the

type of a manifest constant.
13 •For aManifest_tuple[a1, … an] (n ≥ 0): TUPLE[T1, … Tn]

where eachTi is (recursively) the type ofai.
14 •For anAgent: as given by the definition of thetypeof anagent

expression.
15 •For anObject_test: BOOLEAN.
16 •For aOnce_string: STRING.
17 •For an Address $v: TYPED_POINTER[T] where T is

(recursively) the type ofv.

Case6, which refers to a definition given in the discussion of calls, also
determines case11, operator and bracket expressions.

← “Dynamic type”,
page 598.

→ The current type is
obtainedfromthecurrent
class by adding the for-
mal generic parameters,
if any. See12.11, page
357.

← “TypeofaCall used
as expression”, page
647.

← “Type of an agent
expression”, page751.

§28.12 EXPRESSIONS AND THE SEMICOLON 775
28.12 EXPRESSIONS AND THE SEMICOLON

We end this review of expressions with a syntactical note (which you may
skip on first reading). The distinction betweenBasic_expressionand
Special_expressionhas, among others, a syntactic purpose. Eiffel’s
Semicolon rule specifies that the semicolon as separator is always optional.
It must be applicable to anyAssertion_clause, which can be an
Unlabeled_assertion_clauseand hence directly follow another clause, which
could end with

using aBracket_expression, the application off to x. To a naive parser,
however, this could look like two successive clauses:

without the semicolon. The second line, aManifest_tuple, is also an
expression, and hence a possible assertion clause if it were valid. It isnot
valid, since a tuple cannot be boolean as required for an assertion clause;
but that’s validity information, whereas it should be possible to parse
software texts on the basis of syntactical information only.

Fortunately, the syntax avoids any such problem thanks to the division
between Basic_expression and Special_expression.
Unlabeled_assertion_clause, and every context where similar ambiguities
could arise, only accept aBasic_expression; all the constructs such as
Manifest_tuple that could cause such ambiguities are part of
Special_expression.

This technique no loss of generality because if you do want to start a
component (for example anUnlabeled_assertion_clause) with a legitimate
expression that, syntactically, is aSpecial_expression, you can just put it in
parentheses: asParenthesizedis part ofBasic_expressionthis does the trick.

In some cases, you may also use aParenthesized_target. Note for
example the following assertion, valid iff is of typeBOOLEAN:

This assertion includes two clauses; the first is true if and only if f is true,
and the second is trivially true since it states that a 3-item tuple has a
positive number of items.

Such cases are extreme, and in fact the conscientious programmer
always labels assertion clauses:

… f [x]

… f ;
[x]

require
f -- No semicolon necessary
({[x, y, z]|).count > 0

require
f
({[x, y, z]|).count > 0

WARNING: not valid.,

Valid, assuming the
proper declarations
(but not the recom-
mended style).

The recommend style.

property_1:
property_2:

EXPRESSIONS §28.12776
But this is only a recommendation. The syntax rule guarantee the basic
Eiffel right of omitting semicolons between elements on different lines —
greatly enjoyed by all users of the language.

	28 28 Expressions
	28.1 OVERVIEW
	28.2 GENERAL FORM OF EXPRESSIONS
	28.3 SUBEXPRESSIONS
	Subexpression, operand

	28.4 PARENTHESIZED EXPRESSIONS
	28.5 OPERATOR EXPRESSIONS
	Operator expression basics
	Operator expression syntax
	Precedence and Parenthesized Form
	Operator precedence levels
	Parenthesized Form of an expression
	Accounting for target conversion
	Target-converted form of a binary expression
	Operator expression validity and semantics

	28.6 SEMISTRICT BOOLEAN OPERATORS
	Semistrict operators

	28.7 BRACKET EXPRESSIONS
	28.8 THE EQUIVALENT DOT FORM
	Equivalent Dot Form of an expression

	28.9 BOOLEAN EXPRESSIONS
	28.10 ENTITIES
	28.11 THE TYPE OF AN EXPRESSION
	Type of an expression

	28.12 EXPRESSIONS AND THE SEMICOLON

