© Markus Piischel ETH
Computer Science s

How to Write Fast Numerical Code

Spring 2013
Lecture: Memory hierarchy, locality, caches

Instructor: Markus Pischel
TA: Georg Ofenbeck & Daniele Spampinato

Sssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Left alignment

Calibri, Helvetica, Gill Sans MT, ...

DFT 2" (single precision) on Pentium 4, 2.53 GHz

— > [Gflop/s]
Horizontal 7
y-label

Spiral SSE

6
—
5 -

Main line

s Intel MKL possibly

emphasized

e !
No y-axis 3 Spiral vectorized (red, thicker)
(superfluous)

2

Spiral scalar

No legend; makes decoding easier

Attractive font (sans serif, avoid Arial)

Background/grid
inverted for
better layering

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science

Organization

m Temporal and spatial locality
= Memory hierarchy

m Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2" edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months Bus bandwidth
evolved much slower Main
CPU Reg
Memory
Core 2 Duo: Core 2 Duo:
Peak performance: Bandwidth
2 SSE two operand ops/cycles 2 Bytes/cycle

consumes up to 64 Bytes/cycle

Solution: Caches/Memory hierarchy

How to write fast numerical code
Spring 2013

Typical Memory Hierarchy

A
LO: . .
re gi sters CPU registers hold words retrieved from
L1 cache
L1: on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from
’ L2 cache
faster,
costlier L2: q
or byte on-chip L2
p Y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory
’
slower (DRAM) Main memory holds disk blocks
’ retrieved from local disks
cheaper
per byte L4: local secondary storage .)
| I disk Local disks hold files
(ocal dis! S) retrieved from disks on
remote network servers
L5 remote secondary storage
) (tapes, distributed file systems, Web servers)
y
5
Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011) Memory hierarchy:
Throughput (tp) is measured in doubles/cycle. For example: 2 (4) * Registers
Latency (lat) is measured in cycles * Llcache
1 double floating point (FP) = 8 bytes * L2 cache
Rectangles not to scale Core 2 Corei7 * Main memory
* Hard disk
double FP:
scalar tp:
* 1add/cycle ISA
* 1mult/cycle
vector (SSE) tp
+ 1vadd/cycle = 2 adds/cycle
+ 1vmult/cycle = 2 mults/cycle <
lat: 3 (4) lat: 14 (12) lat: 100
tp:2(4) tp:1(4) tp:1/4
fadd internal 16 FP
registers register depends
fmul L1 Dcache on platform
out of order execution
ALU superscalar
load Main
Memory Hard disk
store | issue LIES (RAM) — 20578
6 ops/ Hops CISC ops 4GB lat: millions
execution H r tp: ~1/250
units Y9 (~1/100)
instruction
decoder
instruction pool (up to 5 ops/cycle) L1 Icache L2 cache depends
i flioht” 4MB on platform
(up to 96 (168) “in flight”) 16-way
32 KB 64B CB
8-way
1 Core 648 CB CB = cache block
on die on die
Core 2 Duo: Core i7 Sandy Bridge:
Core#l — 256 KB L2 cache Core#li— 12—
2 — RAM 2-8MB L3 cache: lat 26-31, tp 4 Core#i2 — 12 —
RAM: tp 1 13 — RAM
Core#2 — vector (AVX) tp Core#3 — L2 —
* 1vadd/cycle = 4 adds/cycle
* 1vmult/cycle = 4 mults/cycle Core#4 — L2 —
Source: Intel manual (chapter 2

© Markus Piischel ETH

\dgensasische Tachnische Hochschule Zurich

Computer Science s

55 Federal Institute of Technology Zurich

How to write fast numerical code
Spring 2013

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Piischel ETH
Computer Science

Why Caches Work: Locality

Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently

History of locality

Temporal locality: : ; memory

Recently referenced items are likely | | | | |
to be referenced again in the near future

Spatial locality: Q ,2 memor
Y

Items with nearby addresses tend | | | | |
to be referenced close together in time

Example: Locality?

sum = 0;
for (1 = 0; i < n; i++)

return sum;

sum += a[i];

Data:
"= Temporal: sum referenced in each iteration
= Spatial: array a[] accessed in stride-1 pattern

Instructions:
= Temporal: loops cycle through the same instructions
® Spatial: instructions referenced in sequence

Being able to assess the locality of code is a crucial skill for a
performance programmer

How to write fast numerical code
Spring 2013

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

Locality Example #1

int sum_array_rows(int a[M][N])

{

int i, j, sum = 9;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];
return sum;

}

Locality Example #2

int sum_array_cols(int a[M][N])

{

int i, j, sum = ©;

for (j = ©; j < N; j++)
for (1 = 0; 1 < M; i++)
sum += a[i][j];
return sum;

}

© Markus Piischel ETH How to write fast numerical code
Computer Science Spring 2013

© Markus Piischel ETH
Computer Science

Locality Example #3

int sum_array_3d(int a[M][N][K])
{

int i, j, k, sum = 0;

return sum;

}

How to improve locality?

11

Operational Intensity Again

m Definition: Given a program P, assume cold (empty) cache

W(n) — #flops (input size n)

Q(n) = #bytes transferred cache <> memory
(for input size n)

Operational intensity: |(n) =

m Examples: Determine asymptotic bounds on I(n)

= Vectorsum:y=x+y 0(1)
= Matrix-vector product: y = Ax 0(1)
= Fast Fourier transform O(log(n))
= Matrix-matrix product: C= AB + C O(n)

How to write fast numerical code

Spring 2013

Compute/Memory Bound

m A function/piece of code is:

® Compute bound if it has high operational intensity
" Memory bound if it has low operational intensity

m Relationship between operational intensity and locality?

= Qperational intensity ~ locality

13

Effects

FFT: I(n) < O(log(n))

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single)
Gflop/s
3

MMM: I(n) < O(n)

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)
Gflop/s
50

16 3% 64 128 256 512 1024 2048 409 819 16384 32768 65536 131,072 262144
input size

Up to 40-50% peak
Performance drop outside L2 cache
Most time spent transferring data

o 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8000 9,000

matrix size

Up to 80-90% peak

Performance can be maintained
outside L2 cache

Cache miss time compensated/hidden
by computation

© Markus Piischel ETH
Computer Science «

How to write fast numerical code

Spring 2013

Cache

m Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

Main

cPu Cache e

m Naturally supports temporal locality

m Spatial locality is supported by transferring data in blocks
= Core 2: one block = 64 B = 8 doubles

15

General Cache Mechanics

Smaller, faster, more expensive
Cache ‘ 4 H 9 H 10 H 3 ‘ memory caches a subset of
the blocks

Data is copied in block-sized
transfer units

Larger, slower, cheaper memory

Memory ‘ 0 H 1 H 2 H 3 ‘ viewed as partitioned into “blocks”
L a |l s || 6 || 7 |
L 8 || 9 [0 || 11 |
12 || 13 || 14 |[15 |
16
© Markus Piischel ETH How to write fast numerical code

Computer Science = Spring 2013

General Cache Concepts: Hit

Request: 14

Cache | 8 || 9 |[14 | 3 |
Memory | o || 1 || 2 || 3 |
L a |l s || 6 || 7 |

| 8 || 9 | 10 || 11 |

12 || 13 || 14 |[15 |

..

Data in block b is needed

Block b is in cache:
Hit!

17

General Cache Concepts: Miss

Request: 12

Cache | 8 |32 [14 || 3 |

E Request: 12

Memory | o0 || 1 || 2 | 3 |
a4 |l s || 6 || 7 |
. 8 || 9 || 10 || 11 |
| 12 || 13 || 14 |[15 |

..

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

© Markus Piischel ETH
el ot 20

Computer Science s

How to write fast numerical code

Spring 2013

© Markus Piischel ETH
Computer Science «

Types of Cache Misses (The 3 C’s)

m Compulsory (cold) miss
Occurs on first access to a block
m Capacity miss
Occurs when working set is larger than the cache

m Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

m Not a clean classification but still useful

Cache Performance Metrics

= Miss Rate
= Fraction of memory references not found in cache: misses / accesses
=1- hit rate
m HitTime

" Time to deliver a block in the cache to the processor
= Core 2:
3 clock cycles for L1
14 clock cycles for L2
= Miss Penalty
= Additional time required because of a miss

= Core 2: about 100 cycles for L2 miss

20

How to write fast numerical code

Spring 2013

Cache Structure

m Draw a direct mapped cache (E=1, B =4 doubles, S = 8)

m Show how blocks are mapped into cache

21

Ignore the variables sum, i, j

assume: cold (empty) cache,

Example (S=8, E=1)
a[0][0] goes here

int sum_array_rows(double a[16][16])
{
int i, j;

double sum = 03 L 1
for (i = 0; i < 16; i++) |:|
for (j = 0; j < 16; j++)
sum += a[1][3];]
return sums L 1
}

int sum_array_cols(double a[16][16])
{ L 1
double sum = 0;

for (j = 0; j < 16; i++)
for (i =0; i < 16; j++)
sum += a[i][j];
return sum;

} blackboard

B = 32 byte = 4 doubles

22

© Markus Piischel ETH How to write fast numerical code
Computer Science = Spring 2013

Cache Structure

m Add associativity (E = 2, B =4 doubles, S = 8)

m Show how elements are mapped into cache

23

Exa m ple (S=4’ E:Z) Ignore the variables sum, i, j
assume: cold (empty) cache,
int sum_array_rows(double a[16][16]) a[0][0] goes here
{
int i, j; |

double sum = ©0;

| |

for (i = 0; i < 16; i++) ‘ ‘
for (j =0; j < 16; j++) ‘ H ‘
| |

sum += a[1][§];
return sum;
} H_/
int sum_array_cols(double a[16][16]) B = 32 byte = 4 doubles
{
int i, j;
double sum = 0;

for (j = 0; j < 16; i++)
for (i = 0; 1 < 16; j++)
sum += a[i][3j];

return sum;
} blackboard

24

© Markus Piischel ETH How to write fast numerical code
Computer Science swn Spring 2013

General Cache Organization (S, E, B)

E = 2¢ lines per set
E = associativity, E=1: direct mapped

A
r Y
- set
| || | | | line
| || | | |
S =25 sets < | I beeeed | |
00000000000 0O0C0OCFOCOCROIOOIOOOOGOS
\ | || | | |
Cache size:
S x E x B data bytes

v

| g | [0[1]2]eeex [B1]

valid bit |

B = 2° bytes per cache block (the data)

25

Cache Read

* Locate set

E = 2¢ lines per set
E = associativity, E=1: direct mapped

AL * Locate data starting

at offset

* Check if any line in set
has matching tag

* Yes + line valid: hit

Address of word:

S =25sets < |

t bits

‘ s bits ‘ bbits‘

tag

set block
index offset

o

valid bit |

B = 2° bytes per cache block (the data)

data begins at this offset

26

© Markus Piischel ETH

Eidgensssi

Computer Science sws

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science

Small Example, Part 1

x[0]

Cache: Array (accessed twice in example)
[:::::] E =1 (direct mapped) x = x[0], .., x[7]

S=2

B =16 (2 doubles)
% Matlab style code Access pattern: 0123456701234567
for j = 0:1 Hit/Miss: MHMHMHMHMHMHMHMH

for i = 0:7
access(x[i])

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

27

Small Example, Part 2

x[0]

Cache: Array (accessed twice in example)
[:::::] E = 1 (direct mapped) x = x[0], .., xX[7]

s$=2

B =16 (2 doubles)
% Matlab style code Access pattern: 0246135702461357
for j = 0:1 Hit/Miss: MMMMMMMMMMMMMMMM

for i = 0:2:7
access(x[i])
for i = 1:2:7
access(x[i])

Result: 16 misses
Spatial locality: no
Temporal locality: no

28

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science «

Small Example, Part 3

x[0]

Cache: Array (accessed twice in example)

|:| E =1 (direct mapped) x = x[0], .., x[7]
S=2

B =16 (2 doubles)

% Matlab style code Access pattern: 0123012345674567
for j = 0:1 Hit/Miss: MHMHHHHHMHMHHHHH
for k = 0:1
for i = 0:3
access(x[i+4j])

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

Terminology

m Direct mapped cache:
" CachewithE=1
® Means every block from memory has a unique location in cache

m Fully associative cache
® Cache with S=1 (i.e., maximal E)
® Means every block from memory can be mapped to any location in cache
® |n practice to expensive to build

m LRU (least recently used) replacement

= when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

How to write fast numerical code
Spring 2013

© Markus Piischel ETH
Computer Science «

What about writes?

= What to do on a write-hit?
= Write-through: write immediately to memory

= Write-back: defer write to memory until replacement of line

= What to do on a write-miss?
= Write-allocate: load into cache, update line in cache

® No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core) Write-through/no-write-allocate

update
update 1: update
cru cru cru ()
Write-hit Write-miss Write-hit Write-miss '

Example: (Blackboard)

z=Xx+Y, X, Y, zvector of length n

m assume they fit jointly in cache + cold cache

memory traffic Q(n)?

operational intensity I(n)?

32

How to write fast numerical code

Spring 2013

Locality Optimization: Blocking

= Example: MMM (blackboard)

The Killer: Two-Power Strided Working Sets

% t=1,2,4,8,.. a 2-power

% size of working set: n/t blackboard

for (i =90; i <n; i +=1t)
access(x[i])

for (i =0; i <n; i+=1)
access(x[i])

Cache: E=2, B =4 doubles

t=1: t=2: t=4: t=8: t=24s:

x[e]

Feeeeeee [e e @] [I [®] [] [®] [O

Feeelfe o e e o] [] [® 1] [] eeeee [I[N

Fee e[o T[T ETTTO@ETITT T OETTT NN NN

eecce cccoe eecee cccee eecee cccee eecee cccee eecee cccee

oo eeee [@ e @] [e][e I i] N NN

Spatial locality Some spatial locality ~ No spatial locality No spatial locality No spatial locality

Temporal locality: Temporal locality: Temporal locality: Temporal locality: Temporal locality:

ifn/t<C ifn/t<C/2 ifn/t<C/4 ifn/t<C/8 ifn/t<2

34

© Markus Piischel ETH How to write fast numerical code

Computer Science Spring 2013

© Markus Piischel ETH
Computer Science «

The Killer: Where Can It Occur?

m Accessing two-power size 2D arrays (e.g., images) columnwise
= 2d Transforms
= Stencil computations
= Correlations

m Various transform algorithms
® Fast Fourier transform
" Wavelet transforms
= Filter banks

Summary

m Itis important to assess temporal and spatial locality in the code
m Cache structure is determined by three parameters

= You should be able to roughly simulate a computation on paper
m Blocking to improve locality

m Two-power strides are problematic (conflict misses)

36

How to write fast numerical code

Spring 2013

