
263-2300-00: How To Write Fast Numerical Code
Assignment 5: 100 points

Due Date: Tues April 16, 17:00
http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring13/course.html

Questions: fastcode@lists.inf.ethz.ch

General submission instructions (read carefully):

• (Submission)
We set up a SVN Directory for everybody in the course. The Url of your SVN Directory is
https://svn.inf.ethz.ch/svn/pueschel/students/trunk/s13-fastcode/YOUR.NETZH.LOGIN/ You should see sub-
directory for each homework.

• (Late policy)
You have 3 late days, but can use at most 2 on one homework. Late submissions have to be emailed to
fastcode@lists.inf.ethz.ch.

• (Formats)
If you use programs (such as MS-Word or Latex) to create your assignment, convert them to PDF and submit
to svn in the top level of the respective homework directory. Call it homework.pdf.

• (Plots)
For plots/benchmarks, be concise, but provide necessary information (e.g., compiler and flags) and always
briefly discuss the plot and draw conclusions. Follow (at least to a reasonable extent) the small guide to
making plots (lecture 5).

• (Neatness)
5% of the points in a homework are given for neatness.

Submission instructions for this homework (read carefully):

Follow the instructions below to create, name, and submit your source code. For all questions where you are asked to
provide C code, we provide a corresponding C template file that you need to use to answer the question. In particular,

• do NOT change the signature of the functions

• do NOT change the type of global arguments

• comply with the given environment variables, do not add others

• do not cross-reference functions among your submitted files. Each .c file should be completely independent
should be compilable on its own, (when compiled with our own main.c that you don’t have access to).

• clean up your code as much as possible, do not leave in debug statements

• we provide a helpful sample main.c to show you how we would like the code to be structured. You are free to
use it or not use it. It doesn’t come with a timer, as you need to implement one. (possibly using the one from
Assignment 1). Do not submit this sample file.

Verifying your code: All code that you produce as a part of this assignment (and future assignments too!) needs to
be verified for computational correctness. For MMM, the easiest way is to compare to the standard triple loop (from
assignment 1) for a few randomly selected input matrices. We will independently verify your code for correctness.
Incorrect programs will not receive any credit.

Submitting your code: Your C files corresponding to the questions should be named code0.c, code1.c, code2.c,

and code3.c. In all, you will submit the 4 code<n>.c files, and the finalcode.c file. Do NOT change file names! Do

not zip or otherwise archive the files.

263-2300-00 SS13 / Assignment 5
Instructor: Markus Püschel

Pg 1 of 3 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring13/course.html
https://svn.inf.ethz.ch/svn/pueschel/students/trunk/s13-fastcode/YOUR.NETZH.LOGIN/


Exercises:

1. (Mini-MMM 65 pts) Code needed
The goal of this exercise is to implement a high performance mini-MMM (similar to how ATLAS
optimizes it) to multiply two square NB×NB matrices (NB is a parameter), which is then used within
MMM in problem 2.

(a) (By definition) Implement the code that implements MMM directly based on its definition (triple
loop implementation), using the ijk loop order. Call this code0. We view this code as imple-
menting a mini-MMM.

(b) (Register blocking) Block into micro-MMMs with MU = NU = 2, KU = 1. The inner triple loop
must have the kij order, as explained in class. Manually unroll the innermost i- and j-loop and
perform scalar replacement on this unrolled code and write SSA code. Assume that 2 divides NB .
Call this code1.

(c) (Unrolling) Unroll the innermost k-loop by a factor of 2 (KU = 2, which doubles the loop body)
and again do scalar replacement (SSA code). Note that the MU×NU block of the resulting matrix
is loaded only once outside the innermost k-loop (as explained in class). Assume that 2 divides
NB . This part gives you code2.

(d) (Alternative micro-MMM, following the x86 extended model from class) Now block code0 for
mini-MMM into micro-MMMs with MU = 1, NU = 8, KU = 2. Again, unroll the innermost
k,i,j loops and do scalar replacement with SSA. Assume that 8 divides NB . This part gives you
code3.

(e) (Best block size NB) Determine the L1 data cache size C1 in doubles and its block size B1, also
in doubles. Use the model (inequality) from class (section 2e in the MMM optimization notes) to
determine the best (largest) block size NB for each: code1, code2, code3. Run these three for
this block size and report the performance obtained (three numbers) in flops/cycle. Which one is
best?

(f) (Blocking for L2 cache) Now go through the same steps as in the previous part, but this time
considering your L2 cache. Measure and report the three performance numbers.

Your best mini-MMM is the code plus block size that achieved the highest performance among the six
in parts 1e and 1f

2. MMM (15 pts) Implement an MMM for multiplying two square n×n matrices assuming NB divides n,
blocked into NB×NB blocks using your best mini-MMM code from exercise 1. This is your finalcode.
Create a performance plot comparing this code and code0 (by definition) above for sizes roughly in
the range n = 100, . . . , 1500 in steps of roughly 100 (the exact numbers will depend on the NB you
found since you want multiples of NB). The x-axis shows n; the y-axis performance in flops/cycle.
Briefly discuss the plot.

3. Roofline (15 pts) Assume the following hardware parameters:

• AVX instruction set architecture (256-bit vector length).

• Can issue one (vector) add and one (vector) mult per cycle.

• CPU frequency is 2 GHz.

• Maximal bandwidth is 16 Gbyte/sec.

Draw a roofline plot for single precision floating point operations on the given hardware. The units
for x-axis and y-axis are flops/byte and flops/cycle, respectively. Specifically, the plot should contain
2 lines:

(a) Upper bound based on peak performance π.

(b) Upper bound based on the maximal memory bandwidth β.

263-2300-00 SS13 / Assignment 5
Instructor: Markus Püschel

Pg 2 of 3 Computer Science
ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring12/homeworks/hw05files/prob1.zip


Provide enough detail (labels etc.) so we can check correctness.

Finally answer the followings:

(c) Given is a program that for a certain input has an operational intensity of I = π
4β flops/byte.

What is the maximum achievable performance?

(d) Assume you can achieve this maximal performance in (c) and you want to double it, what are the
possible strategies?

Solution:

a)

b)

c)

(d) Having I = π
2β = 1 flops/byte, the available performance would double. Two possible ways to

increase I are:

i. Improving locality.

ii. Reducing precision. When precision is not a strong requirement, passing from double to single
precision can help to increase the amount of work per unit of transferred memory.

263-2300-00 SS13 / Assignment 5
Instructor: Markus Püschel

Pg 3 of 3 Computer Science
ETH Zurich


